
972 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 17, NO. 9, SEPTEMBER 1991

A Linear Algorithm For Generating Random
Numbers With a Given Distribution

Michael D. Vose

Abstract-Let [be a random variable over a finite set with
an arbitrary probability distribution. In this paper we make
improvements to a fast method of generating sample values for
(in constant time.

Index Terms-Random, random-number, random-variable.

I. INTRODUCTION

ET [be a random variable distributed over the
L s e t (a0 , . . . , an- l} with corresponding probabilities
{ P O , . . . ,pn-l}. A fast and simple method of generating
sample values for [has been described by several people
(Moss et al. [3], Walker [4], Knuth (21). This method produces
a set of sample values in time proportional to sample size.
Unfortunately, the method as described requires O (n Inn)
time for initialization. In particular, if the distribution of
changes frequently, then the time required to initialize the
algorithm to a new distribution becomes a bottleneck. For
example, this situation arises in Genetic Algorithms where
sample values are needed from a population whose distribution
is constantly changing [11.

We present a modification which reduces the time required
for initialization to O (n) . For a simple Genetic Algorithm, this
improvement changes an O (g n I n n) algorithm into an O (g n)
algorithm (where g is the number of generations, and n is the
population size). For clarity and completeness we present our
version in full detail.

The model of computation we assume includes the follow-
ing:

The existence of a constant time uniform random number
generator
a constant time floor operation
constant time subtraction, comparison, and array refer-
ence
no floating point rounding errors.

This last assumption is partially addressed in Section V, where
rounding errors are considered.

11. SPECIFICATION

and rand, which share state and satisfy:
The problem is equivalent to producing two algorithms, init

Manuscript received March 8, 1990; revised May 9, 1991. Recommended

The author is with the Department of Computer Science, University of

IEEE Log Number 9102388.

by M. V. Zelkowitz.

Tennessee, 107 Ayres Hall, Knoxville, TN 37996.

The input to init, is an array p representing a probability
distribution:

n-1

Pj 2 0 and c p j = 1
j = O

The effect of init is the initialization of rand to a function
of no arguments (the behavior of rand depends only on
internal state) which returns an integer j from the set
(0 , . . . , n - 1} with probability p j .

If the array a contains the range of [such that the probability
of [= aj is p j , then a sample value for [is obtained by a r a n d .

111. ALGORITHMS

We assume the existence of the function uniform(n) which
returns a sample value for a random variable uniformly dis-
tributed over the real interval [0, n) in constant time. We also
assume the existence of the function 1.1 which returns the floor
of its argument in constant time.

A. Rand

Our description of rand follows that given by Knuth [2] .
Let prob and alias be arrays which are initialized by init. The
body of rand is

U =uniform(n)

If (U - j) 5 probj then return
j else return aliasj .

j = 1.1

Clearly, this algorithm executes in constant time.

B. Init

Our version of init proceeds in two stages. The first stage
divides the indices of the input into two arrays, small and
large, via the rule:

p, > 1 / n + j E large
p j 5 l / n + j E small.

The second stage uses the probability distribution p together
with small and large to initialize the arrays prob and alias.
The idea behind this stage is motivated by an analysis of rand.

There are two situations in which rand returns j :
If j = 1.1 and (U - j) 5 probj then j is returned. This
situation occurs with probability

1
- probj
n

0098-5589/91$01.00 0 1991 IEEE

Authorized licensed use limited to: IEEE Xplore. Downloaded on October 15, 2008 at 15:16 from IEEE Xplore. Restrictions apply.

VOSE: LINEAR ALGORITHM FOR GENERATING RANDOM NUMBERS 913

If i = [U] , (U - i) > prob; , and alias; = j then j is An invariant of the first while loop of init is that, for all j :
returned. This situation occurs with probability

~ n-1

1 1 -prob;.
n=o

, = a l m s ,

First, suppose that j E small , and probj were n p j . If every
entry of alias is a member of large, then only the first
situation can occur. Hence rand returns .j with probability

where the arrays prob and alias are initially uninitialized and
V is their domain. At entry 2) = 0, so the invariant becomes:

i p r o b j = p j , as required.
Second, suppose that k E large, and that when the assign- f 2 (1 - prob;) + p j = Probability [E = aj].

r = O ment prob, = npi was made for the previously considered 3 = a l * a s ,

j E small, the entry aliasj was also defined to be k . Then
rand could return k with probability (1 - probj), which is
a term of the second situation. If pk is then redefined to take
this into account via the assignment pk = pk - (1 - probj),
we could iterate these two procedures after reclassifying k as
to being small or large.

Note that the sum is empty and hence 0, because the condition
j = aliasi is not satisfied when aliasi is undefined. Therefore
the invariant holds at entry.

After the body of the while loop has executed, an element
j of small has been included in the domain V. Hence the
net change to This idea motivates our definition of init:

1 = 0 ; s = 0
For j = O to n - 1
if p j > i
then largel = j ; 1 = 1 + 1
else small , = j ; s = s + 1
While s # 0 and 1 # 0
s = s - 1 ; j = small,
l = I - 1 ; k = largel
probj = n * p j
aliasj = IC

if pk > 1
then large1 = k ; l = l + 1
else small , = k ; s = s + 1
While s > 0 do s = s - 1 ; probsmallS = 1
While 1 > 0 do 1 = 1 - 1 ; problaTgel = 1.

Pk = Pk + (p j - i)

Clearly, init runs in O (n) time. The first loop cycles n times.
The second loop decreases 1 + s on each iteration, and initially
1 + s = n. The last two loops complete this decrement of 1
and s to 0.

IV. CORRECTNESS

The arrays prob and alias produced by init are different
from those used by the original algorithm. We are therefore
obliged to prove the correctness of our solution.

To allow the use of convenient notation, we first establish
some conventions.

An array may be regarded as a partial function which maps
an index to the corresponding entry. Uninitialized arrays are
thought of as having empty domain. If a is an array and V
is its domain, then after an assignment a; = . . e , the index i
is an element of V.

Let xv be the indicator function of the set V defined by:

1, if x E 2)
0, otherwise.

is zero since prob, = np, . Moreover, small and large are
kept disjoint, which implies that j = alias, is not possible.
Hence the sum

1 n-l ; (1 -prob,)
t=0

,=*l1as,

also does not change.

then the invariant at k becomes
If k is the element of large which was assigned to alias,,

n-1
1 - (1 - probi) + p k = Probability [E = a k]

n = O
k = o l t o s ,

since the movement of elements is from large to small (if at
all), and a precondition for k E V is that it was previously
in small. Note that the new term in this sum corresponds to
i = j , which represents an increase of

However, pk was redefined by p k = pk f p j - i, which cancels
this increase exactly. We have therefore established the first
invariant.

Another invariant of the first while loop is that
4 - 1

This invariant holds at entry since s+l = n, and the probability
array p is initially partitioned by small and large.

After the body of the while loop has executed, the left-
hand side has been decreased by p j for j = small(s-l) , and
by - p j through the assignment pk = pk + p j - i for
k = large(l-1). Since s+l decreases by 1, the right-hand side
also decreases by i, which establishes the second invariant.

A consequence of this invariant is that the termination
condition of the first while loop is equivalent to the single

Authorized licensed use limited to: IEEE Xplore. Downloaded on October 15, 2008 at 15:16 from IEEE Xplore. Restrictions apply.

974 IEEE TRANSACTIONS ON SOFIWARE ENGINEERING, VOL. 17, NO. 9, SEPTEMBER 1991

condition 1 = 0. This follows from the observation that
otherwise,

1-1

k=O

which violates the invariant when s = 0. Moreover, at
termination of the first while loop, we have:

since

and when 1 = 0, the invariant is:

If s = 0, then neither of the second or third while loops of
init are entered, and the first invariant reduces to:

1 1 *-l
-prob, + - (1 - prob,) = Probability[(= U,]

z=o
3 = a l , o s t

which finishes the proof of correctness for this case.

invariant, since p, =
assignment prob, = 1 leaves

If s > 0, then the second while loop maintains the first
for j = smalls-l implies that the

unchanged. After execution of the second while loop, s = 0
and the third while loop is not entered. The proof of correctness
is finished as before by appealing to the first invariant.

V. ROUNDING ERRORS
The reason for including in init the theoretically unnecessary

termination condition s = 0 and the third while loop which
is theoretically never entered is that floating point rounding
errors may lead to the misclassification of indices onto small
or large.

The analysis of the previous section shows that if the first
while loop is terminated by s = 0, then the remaining elements
of large (in positions 0 through 1 - 1) are misclassified. They
are therefore treated in an appropriate manner (as if they were
in smal l) by the third while loop.

VI. OPTIMIZATION
In this section we point out some features of our algorithm

which, depending on the user’s situation, may be exploited to
significantly reduce running time.

Subtractive or linear congruential methods for random
number generation are fastest when the modulus is 2w0rdsize.
In some applications a resolution of what typically is 32 bits
in the random number generator is not sufficient. In this case,
several calls to a 32-bit random integer generator may be used

to obtain the required precision. Given this situation, the body
of rand becomes:

obtain the required number if random bits
‘U = (some of the bits) * constantl
j = [(the reset of the bits) * constantzJ
If ti 5 probj then return j else return aliusj

where constantl is chosen so that v E [0,1), and constuntz
is chosen so that j E (0:. . . , n - 1). The reader is cautioned
to exercise care in choosing random bits; for example, linear
congruential methods yield low-order bits with small cycle
times. Note that, according to init and rand, the comparison
w 5 probj above has the form:

(some of the bits) * constant1 5 (probj = n * p j)

where the assignment takes place in init. Therefore redefin-
ing constantl (by dividing it by n) makes the assignment
probj = n * p j unnecessary and allows prob and p to be the
same array! The appropriate adjustment to the last two while
loops (of init) is to assign 1/71, instead of 1.

Further optimizations follow by exploiting a homogeneity
property of init. Suppose that q is an array such that:

q J
1-)3 =

Note that

and

It follows that if the constant 1/n in init is replaced by
n-l Cp,, and if constantl is redefined (multiply it by Cpj),
then the array p need not sum to one! This is very significant
because it is almost always faster to compute the direction
of a probability vector than it is to determine the actual
probabilities.

A final optimization is to eliminate the stacks small, large
and their associated variables s, e which are used by init, and
hence to also eliminate the initial sorting of indices of p . This
is accomplished by letting j and IC be indices into p such that
p, would be classified as small (less than n-l E p ,) , and pk

would be classified as large (simply increment j and k until
they point at appropriate objects). The detaiis involved (there
are a few to consider, and a temporary variable is needed for
what was previously the top of small) are all straightforward
and make an easy exercise for the reader.

REFERENCES

[11 D. E. Goldberg, Genetic Algorithms in Search, Optimization, and Ma-
chine Learning.

[2] D. E. Knuth, The Art of Computer Programming, 2nd ed. Reading,
MA: Addison-Wesley, 1981, pp. 115-116.

[3] J. K. Moss, R. J. Simpson, and W. Tempest, “A pseudo-random pulse
train generator with controllable rate for modeling of audiometric
systems,” Radio and Electron. Eng., vol. 42, pp. 419424, 1970.

[4] A. J. Walker, “An efficient method for generating discrete random
variables with general distributions,” ACM Trans. Math Software, vol.
3, no. 3, pp. 253-256, 1977.

Reading, MA: Addison-Wesley, 1989.

Authorized licensed use limited to: IEEE Xplore. Downloaded on October 15, 2008 at 15:16 from IEEE Xplore. Restrictions apply.

VOSE: LINEAR ALGORITHM FOR GENERATING RANDOM NUMBERS

Michael D. Vose was born in San Diego, CA, in
1953. He holds Ph.D. degrees in mathematics (1981)
and computer science (1988) from the University of
Texas at Austin.

In 1982 he was an Assistant Professor of Math-
ematics at Texas A&M University. In 1985 he was
as Associate Research Scientist at the University
of Texas at Austin, and in 1987 he was a member
of the technical staff of Computational Logic, Inc.
Since 1988 he has been an Assistant Professor of
Computer Science at the University of Tennessee,
Knoxville.

975

Authorized licensed use limited to: IEEE Xplore. Downloaded on October 15, 2008 at 15:16 from IEEE Xplore. Restrictions apply.

