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1 IntroductionThe �eld of Inductive Logic Programming (ILP) hasmatured enough in recent years so that researchers inthis �eld now tackle real world problems instead ofhand-crafted toy-domains [King et al., 1992; Muggle-ton et al., 1992; Sommer et al., 1994b]. One strengthof ILP systems lies in the fact that a �rst-order rep-resentation is employed. Such a representation allowsrelations among entities to be expressed by the analystas well as learned by the system. For example, the rel-ative positioning of atoms to each other in moleculescan most naturally be expressed in a relational repre-sentation. Such relations often carry substantial infor-mation, and are di�cult to express, to understand andto maintain in propositional representations.

In this paper we describe work undertaken to ad-dress two of the shortcomings of current ILP sys-tems: (1) Current ILP systems fail to handle contin-uous attribute1 values adequately. Foil [Cameron-Jones and Quinlan, 1994] and Progol [Muggleton,1995] are among the very few exceptions that attemptto overcome this shortcoming. (2) Noise tolerance ofILP systems is generally restricted to the eliminationof the negative e�ects of noisy examples, while nowork in ILP has been published to date describingattempts to �lter out noisy attributes. These issueshave been heavily investigated in the �eld of proposi-tional learning algorithms. In particular, the family ofk-nearest neighbor or instance-based algorithms havebeen found well suited to handle continuous attributevalues, noisy examples and noisy attributes. Instance-based learning algorithms (IBL) have been studied formore than four decades [Fix and Hodges, Jr., 1951;Kibler and Aha, 1987; Dasarathy, 1991; Wettschereck,1994]). These studies have pointed out a number ofstrong points of IBL methods which are (a) often excel-lent performance, (b) the ability to cope with symbolicas well as continuous attribute and class values, and(c) robustness with respect to noise in the data or miss-ing attribute values. This list of the strong points ofIBL algorithms almost reads like a list of weak pointsof most ILP algorithms developed to date. Hence, wepropose in this paper to utilize the potential of IBLalgorithms to advance the state-of-the-art in ILP. IBLmethods can be employed in ILP in two ways: (1)A propositional learner can be incorporated into anILP system as in Linus [Lavrac and Dzeroski, 1994].This approach requires the translation of data fromrelational to propositional representations. The trans-lation approach often generates a very large number ofattributes and is only applicable in domains that allowa representation of cases using determinate clauses.21Throughout this paper we will use the term \attribute"to denote arguments of predicates.2Cohen [1993] proposed an alternative translation ap-proach that does not require determinacy.



(2) Alternatively, as described in this paper, one candevelop an IBL algorithm that directly works with therelational representation.In this paper we will describe a relational, instance-based algorithm which we term Ribl, and presentpromising results of an experimental evaluation. InSection 2 we identify the research issues that surfacewhen developing a relational instance-based learner.In Section 3 we describe our solutions to these issues,while in Section 4 we describe some empirical resultsthat highlight the feasibility of our approach and showthat Ribl quali�es as an important addition to the setof �rst-order learning algorithms.2 Issues in using IBL in ILPA number of issues had to be resolved before we couldapply our experience with propositional instance-based methods to relational methods. We believe thatthe following is common to all propositional IBL meth-ods. Cases are represented by a �xed length vector ofattribute values. Each position in that vector repre-sents a certain attribute, and the similarity of cases iscomputed by combining the similarity of each pair ofattribute values. Queries are classi�ed in a two stepprocess: First the set of the k most similar previouslyseen cases is determined and then these most similarcases vote on the class of the query.We have identi�ed three issues that occur when oneapplies the principle of propositional IBL methods toa relational representation:� What constitutes a case or neighbor? In arelational representation we are given a set offacts and rules that are connected to each otherthrough some common argument value. Hence,we �rst need to extract those facts from the knowl-edge base that together constitute a case.� How can one compute the similarity between ar-bitrary cases? This issue goes beyond whetherone wants to employ Euclidean distance or not.The cases constructed in Ribl may have onlya few predicates in common. In other words,in a relational representation we must be ableto compare apples and oranges in a meaning-ful manner (which does not exclude saying thattheir similarity is 0). Similarity computation be-tween structured cases is an important issue in thecase-based reasoning community [B�orner, 1994;Vo� et al., 1994; Tammer et al., 1995].� How can one estimate the relevance of predi-cates and attributes? Attribute weighting andselection is an important issue in propositionalIBL [Wettschereck et al., 1996], and we argue thatthis issue will be even more important for Ribl.

The case construction procedure will not be ableto construct cases based on anything but syntac-tic relations among predicates as long as it doesnot receive feedback from the classi�cation proce-dure. Therefore, predicates that bear little or norelevance to the task at hand may unnecessarilybe included in the case description. Furthermore,the values of some of the arguments of predicateswith higher arity may also be irrelevant to thetask. To further complicate the matter, predi-cates that are relevant for some cases may noteven appear in the description of other cases.Below, we will describe our solutions to these issues.3 Relational Instance-Based LearningOn an abstract level, our relational instance-basedlearning algorithm, Ribl, combines di�erent well-known techniques in a novel way. The program iscomposed of four main modules:� A case generation module constructs descriptionsof cases (i.e., a conjunction of literals) that serveas examples for learning or as test cases for clas-si�cation.� A module that computes the similarity of pairs ofcases.� A module that computes the relevance of predi-cates and their arguments.� A module that implements distance-weighted k-nearest neighbor learning.The following subsections describe these modules, but�rst let us describe the knowledge representation weare using.3.1 Representation of the learning inputRibl is implemented as an external tool of the knowl-edge acquisition and machine learning system Mobal[Morik et al., 1993; Sommer et al., 1994a]. Ribl in-duces concepts from the knowledge represented in theknowledge base ofMobal using an extended function-free Horn-clause representation that is para-consistentwith negation [Wrobel, 1994]. The concepts \induced"by Ribl are stored within Ribl, whereas the resultsof other external (rule) learning tools are added to theknowledge base of Mobal to enable the Mobal sys-tem's powerful inference engine to apply these rules.In order to utilize Ribl's learning results Mobal hasto call the classi�cation procedure of Ribl.The learning input of Ribl consists of� facts that state properties of objects and relationsamong objects in the domain,



� predicate declarations that de�ne the arity of thepredicates as well as the sorts and mode declara-tions for their arguments, and� type declarations that classify the terms that ap-pear as arguments of facts into values and names,and declare the representation of values.While facts and predicate declarations (includingsorts) are representational constructs ofMobal, typedeclarations are supported by Ribl. Type de�nitionsare used to di�erentiate between arguments that rep-resent an object in a domain (e.g., a person or an errorcode) and attribute values (e.g., a number that speci-�es the age of a person or the price of a component).In addition, type declarations specify how attributevalues are represented (i.e., by using integers, reals,sets of unordered or ordered atoms). Mode declara-tions specify which arguments of a predicate are inputor output arguments. This information is used in thesame manner as it is used in other ILP learners (e.g.,Foil or Golem [Muggleton and Feng, 1992]).To illustrate the concepts proposed in this paper, wewill employ the following example facts and type andmode declarations. The set of facts describes at-tributes of and relations among objects in a telecom-munication security domain [Sommer et al., 1994b]:manager(u1), works-for(u1,d1),works-for(u1,d2), well-known(u1),manager(u2), works-for(u2,d3), sec-op(op1),sub-component(c2,c3), sub-component(c1,c4),covers-region(c2,de), covers-region(c3,de),component(c3), component(c4)sub-component(c4,c6), works-in(u3,d4)operator(o1), ...These facts describe properties of persons, companies,components in a network and their relation to eachother. In addition, the knowledge base contains factsstating which person is/is not allowed to perform par-ticular operations on components in the network, e.g.,may-operate(jim,pabxd-44,con�gure)The following predicate declaration de�nes 0may-operate0 as a three place predicate that consumesarguments of the sorts 0person0, 0component0 and0operation0. The 0!0 declares all arguments as inputarguments. The predicate 0has-age0 is declared as atwo-place predicate with an input argument at the �rstargument position (the predicate will not be used to�nd persons of a particular age).may-operate=3 :! < person >; ! < component >;! < operation > :has-age=2 :! < person >;< age > :type : person : name:type : age : number:

The type de�nitions declare that arguments of sortperson have to be treated as name arguments and ar-guments of sort age are numbers.3.2 Generation of Cases from unstructuredTheoriesInstance-based learners, as well as many ILP algo-rithms such as Golem [Muggleton and Feng, 1992],Clint [De Raedt and Bruynooghe, 1992], and Cola[Emde, 1994a], require the construction of cases (orstarting clauses) from ground facts that can be de-rived from a knowledge base. The construction of casedescriptions is generally restricted by a syntactic orsemantic bias (e.g., restricted by a depth parameter)for reasons of computational complexity (s. [Muggle-ton and de Raedt, 1994]).The case generation of Ribl computes for each ex-ample a conjunction of literals describing the objectsthat are represented by the arguments of the examplefact. Given an example fact (like the 0may-operate0fact above), Ribl �rst collects all facts from the knowl-edge base containing at least one of the arguments alsocontained in the example fact. These are the literalsof depth 0. If a depth parameter greater than 0 isspeci�ed by the user, then Ribl determines the set ofarguments contained in the literals of depth 0 minusthose which occur in the example fact. Collecting allfacts that contain at least one of these new argumentsgives the literals of depth 1, and so on: Literals ofdepth N+1 are those facts that contain at least oneargument that occurs as an argument of a literal atdepth N, but not as an argument at depth I < N.This process is restricted by user speci�ed argumentsorts, types, and modes. Information on argumentsorts ensures that an object referred to by an argu-ment V1 at depth N is only described by literals atdepth N+1 if at least one argument of the new literalequals V1 and is sort compatible with V1. For exam-ple, a person named Mac would not be described byfacts about a computer with the same name. Infor-mation on argument types is utilized to prevent thecase generation module from describing an argumentat depth N+1 that it is recognized at depth N as avalue argument. Suppose the age of a person appearsas an argument of a literal at depth N, then the modulewill not consider adding literals with predicates thathave arguments of sort age at the next depth level.Such literals are assumed not to support the learningprocess. Finally, argument modes enable the moduleto construct cases only along input arguments. Out-put arguments are determined by the input argumentsof the predicate and, therefore, o�er no additional in-formation.For the following section we assume that a case de-



scription is represented as a set of tuples. Each tuplecontains the set of literals of one depth:CD := fh0; literals-of-depth-0i; : : : ;hD; literals-of-depth-Dig (1)where D is a user speci�ed depth parameter. The func-tion LD delivers the set of literals of depth Depth:LD(CD;Depth) :=fliterals j hDepth; literalsi 2 CDg (2)For the following section we assume that Ribl has todetermine the similarity of the following two facts:may-operate(u1; c1; op1) may-operate(u2; c2; op1) (3)Ribl computed these case descriptions from the ex-ample facts:CD1 := fh0; fmanager(u1);works-for(u1; d1);works-for(u1; d2);well-known(u1);sec-op(op1); sub-component(c1; c4)gi;h1; fcovers-region(c2; de)igCD2 := fh0; fmanager(u2);works-for(u2; d3);sec-op(op1); sub-component(c2; c3)gi;h1; fcovers-region(c3; de)ig (4)3.3 Similarity Computation for First OrderLogicThe similarity computation for Ribl is a modi�ed ver-sion of a measure for �rst-order logic representationsproposed by Bisson [1992]. A measure similar to thatby Bisson [1992] has previously been shown to be use-ful within a �rst-order conceptual clustering system[Emde, 1994a]. In contrast to Bisson's measure, ourmeasure can be regarded as a natural extension of sim-ilarity measures for attribute-value representations. Itis designed to be applicable to case descriptions as theyare described in the previous section. Therefore, ourmeasure can be used in systems using a �rst-order rep-resentation of knowledge with facts and rules.The basic idea of the measure is as follows. Objects(e.g., u1 and u2) are described by values (e.g., their ageand weight) and their relation to other objects (e.g.,the companies they are working for). Their similaritydepends on the similarity of their attributes' values(e.g., the similarity of their age) and the similarity ofthe objects related to them (e.g., the similarity of thecompanies they work in). The similarity of the re-lated objects in turn depends on the attribute valuesof these objects and their relation to other objects andso on. If an object is related to other di�erent objectsby the same relation, Ribl tries to �nd the most simi-lar related objects, e.g., if u1's company maintains twonetwork switches and u2's only one, Ribl will use thesimilarity of the most similar switches to compute the

similarity of u1 and u2. The rest of this section is a de-tailed description of the similarity measure employedby Ribl.Given two (example) facts P (A11; : : : ; A1m) andP (A21; : : : ; A2m) and the corresponding case descrip-tions, the similarity measure 0sim-e0 de�nes their sim-ilarity with respect to the user-speci�ed depth param-eter:sim-e(P (A11; : : : ;A1m); P (A21; : : : ;A2m)) :=Pmi=1;i2Input-Args(P)sim-at(P;i)(A1i;A2i; 0; LA1i ; LA2i ; PA1i ; PA2i)card(Input-Args(P)) (5)where card(S) denotes the cardinality of set S andInput-Args(P) denotes the set of positions of inputarguments of P . In order to compute the similarityof a pair of input arguments hA1i; A2ii Ribl uses thefunction 0sim-a0 that comes in several variants distin-guished by the superscript t(P; i):t(P; i) := ( n if i-th argument of P is a name argnumber if i-th argument of P is a numberdiscrete if i-th argument of P is discrete (6)The list of literals that contain the arguments to becompared and the predicates present in this literal arerequired by 0sim-a0 as input information. This infor-mation is extracted from the case descriptions:LAfi = fP (a1; : : : ; an) jP (a1; : : : ; an) 2 LD(CDf ; 0);Afi 2 fa1; : : : ; anggPAfi = fhP; posi jP (a1; : : : ; an) 2 LAfi ; apos = Afigf = 1; 2(7)LA1i stands for the set of all literals in CD1 at depth 0that have A1i as one of their arguments, PA1i describesthe predicate/position of the argument A1i in LA1i .For example, Ribl would evaluate the following ex-pression to compute the similarity of the examples in-troduced in the previous section (Equation 3):sim-e� may-operate(u1; c1; op1);may-operate(u2; c2; op1) � = sim-an(u1; u2; 0; Lu1; Lu2; Pu1; Pu2) +sim-an(c1; c2; 0; Lc1; Lc2; Pc1; Pc2) +sim-an(op1; op1; 0; Lop1; Lop1; Pop1; Pop1) !3 (8)withLu1 = fmanager(u1);works-for(u1; d1);well-known(u1);works-for(u1; d2)gPu1 = fhmanager; 1i; hworks-for; 1i;hwell-known; 1ig (9)A corresponding similarity measure is de�ned for eachdistinct argument type. We use the following measureto compute the similarity of numbers:sim-anumber(A;B;Depth; L1; L2; P1; P2) :=1� (jA�Bj=Range(sort(A))) (10)



where Range(sort(A)) denotes the observed range ofvalues of the sort ofA. The similarity of discrete valuesis computed as:sim-adiscrete(A;B;Depth; L1; L2; P1; P2) :=� 1 if A == B0 otherwise (11)The similarity of two arguments of type name is de-�ned as follows:sim-an(A;B;Depth;L1; L2; P1; P2) :=1max(card(P1);card(P2)) �PhP;posi2P1\P2sim-ls(A;B;Depth;P;pos;LA; LB) (12)where LA and LB are computed for each hP; posi tupleas follows:LA = fP (a1; : : : ; an)jP (a1; : : : ; an) 2 L1; apos = AgLB = fP (a1; : : : ; an)jP (a1; : : : ; an) 2 L2; apos = BgFor example, to compute the similarity between u1and u2 Ribl has to look at the literals with predicates0manages0, 0works-for0, and 0well-known0. As there isno literal with predicate 0well-known0 for u2, 0sim-ls0is only computed for the �rst argument of 0works-for0and the �rst argument of 0manager0:sim-an(u1; u2; 0; Lu1; Lu2; Pu1; Pu2) =� sim-ls(u1; u2; 0;works-for; 1; L1u1; L1u2) +sim-ls(u1; u2; 0;manager; 1; L2u1; L2u2) �max(3;2) (13)with L1u1 = fworks-for(u1; d1),works-for(u1; d2)g andL1u2 = fworks-for(u2; d3)g. The function 0sim-ls0 com-putes the similarity between two arguments only withrespect to literals with a particular predicate (e.g.,0works-for0) and argument position, where the argu-ment appears:sim-ls(A;B;Depth;P; pos;LA; LB) :=8>>>>><>>>>>: 1card(LB)PLx2LA maxLy2LBsim-l(A;B;Depth;P;pos;Lx; Ly)if card(LA) < card(LB)1card(LA)PLx2LB maxLy2LAsim-l(A;B;Depth;P;pos;Ly; Lx)otherwise (14)The sum in Equation 14 is divided by the cardinalityof the larger set of literals to achieve computation ofperfect similarity only if the cardinality of both sets isequal. In our example, Ribl will evaluate the similar-ity of u1 and u2 with with respect to 0works-for0 bycomputing:sim-l(u1; u2; 0;works-for; 1;works-for(u1; d1);works-for(u2; d3))sim-l(u1; u2; 0;works-for; 1;works-for(u1; d2);works-for(u2; d3)) (15)and use the maximum of the two 0sim-l0-values di-vided by two. The division by two achieves that 0sim-l0

computes a smaller similarity for our example than ifL1u2 would contain two 0works-for0 facts. Equation (14)also determines the number of matches used to com-pute the similarity: If one case contains n literals withpredicate P and the other one contains m literals withpredicate P, then Equation (14) determines the leastnumber of literals as base for the similarity compu-tation,i.e., MIN(n,m) matches will be taken into ac-count.The similarity between two single literals is computedas follows:sim-l(O1; O2;Depth;P; pos;P (A1; : : : ;Al);P (B1; : : : ;Bl)) :=weight(P ) �Pli=1� SIM-A if Ai 6= O1 _Bi 6= O20 if Ai = O1 ^ Bi = O2l � (card(fi j Ai = O1 ^Bi = O2g)) (16)withSIM-A =8><>: sim-at(P;i)(Ai;Bi;Depth+ 1; LAi ; LBi ; PAi; PBi)� arg-weight(P; i)if Depth =< MAX-DEPTH; t(P; i) 6= nbase-similarity(Ai;Bi) otherwise(17)andLAi = fq(a1; : : : ; an) jq(a1; : : : ; an) 2 LD(CD1;Depth+ 1);Ai 2 fa1; : : : ; anggLBi = fq(b1 ; : : : ; bn) jq(b1; : : : ; bn) 2 LD(CD2; Depth+ 1);Bi 2 fa1; : : : ; anggPAi = fhP;posi j L 2 LAi ; L = P (a1; : : : ; an);apos = AigPBi = fhP;posi j L 2 LBi ; L = P (b1; : : : ; bn);bpos = Big (18)As long as the user-speci�ed depth parameter is notexceeded, 0sim-l0 will recursively call the function 0sim-a0. If the actual depth exceeds the maximum depth,the similarity of name arguments is computed by thefunction 0base-similarity0, that simply counts how of-ten both arguments appear together at the same argu-ment positions of the same predicate and divides thesum by the maximum of the number of occurrences ofthe arguments [Bisson, 1992].The main di�erences of Ribl's similarity measure toBisson's measure are the following:� The new measure takes into account that theweights of predicates and argument positions de-pends on the depth of their use.� Ribl uses hierarchically organized case represen-tations. The similarity measure of Bisson takesas input a \net of facts" about a part of a do-main, such that the similarity between a pair ofarguments a-b may depend on the similarity of



another pair of facts c-d. The similarity of c-dmay in turn be computed from the similarity ofa-b [Emde, 1994b].� The similaritymeasure ofRibl can be regarded asa generalization of similarity measures employedin attribute-value instance-based learners. This isnot true for Bisson's measure, due to a di�erencein the formula to compute the similarity of literals(17).3.4 The k-Nearest Neighbor Classi�cationModuleRibl is implemented as a generalization of the proposi-tional, distance-weighted k-nearest neighbor algorithm[Macleod et al., 1987; Kibler and Aha, 1987] gener-alized to a relational representation. Ribl stores alltraining cases that are generated by the case genera-tion tool in its knowledge base. It is well known forpropositional nearest neighbor algorithms that clas-si�cation of queries through a vote of several of itsnearest neighbors may, in some domains, lead to supe-rior generalization accuracy [Wettschereck, 1994]. Wesuspect that this is also true for relational IBL algo-rithms. Hence, we employ the method of leave-one-outcross-validation [Weiss and Kulikowski, 1991] to esti-mate the optimal number of neighbors (k) that vote onthe class of a query. Ribl is \distance-weighted" sincethe votes of neighbors further away from the queryare weighted less than the votes of nearby neighbors(i.e., Equation 19). During classi�cation, the k nearestneighbors of each query vote on the class of the query.When asked to classify an instance q, Ribl computesits similarity to each case x in the training set (Equa-tion 19). The k most similar neighbors are then storedin the set K and vote on the class of q:p(q; cj;K) = Px2K xcj � sim-e(x; q)Px2K sim-e(x; q) (19)where x is one of the k-nearest neighbors of q, and xcjis 1 if x is a member of class j. For classi�cation tasksthe class j with the largest p(y; cj ;K) is output. Ifthere is a tie among the maximal p(q; cj;K), then oneof them is randomly selected.3.5 The Predicate and Attribute WeightEstimation ModuleThe third research issue raised in Section 2 identi-�ed the need to assign weights to predicates as wellas to their arguments to achieve best classi�cationresults. In a review of feature weighting methods,Wettschereck et al. [1996] identi�ed ReliefF [Kiraand Rendell, 1992; Kononenko, 1994] as one of themost versatile feature weighting methods of those re-viewed. The advantages of ReliefF are that it is an

iterative algorithm that converges rather quickly, andthat it requires only the similarity between the objectsto be weighted as input (i.e., the attributes and pred-icates in the case of Ribl).A detailed description of ReliefF was given byKononenko [1994]. The core idea behind ReliefF isto incrementally adjust feature weights for a given setof training examples. For each training example, thek-nearest neighbors for each output class are found.Feature weights are then decreased by a fraction of theaverage feature distance to the neighbors of the sameclass and increased by a fraction of the average featuredistance to the neighbors of the other classes, wherethe adjustment for the other classes is weighted by thenormalized class probability of each class. Naturally, itwas necessary to modify the algorithm in several waysto enable it to estimate predicate weights. A sepa-rate weight was computed for each predicate and forall output arguments of all predicates at each \case-generation-depth-level" (see Section 3.2). A simple ex-ample will illustrate why the same predicate may beof varying relevance at di�erent levels. Suppose we aretrying to learn the has-grandson relation. In that caseit is enough to know whether a person has a child whoin turn has a male child. Hence, the gender of the\�rst-level" child is irrelevant, while the gender of the\second-level" child is highly relevant.The most important di�erence of this procedure tothe original ReliefF procedure is that three di�erentcases are distinguished when the weights of predicatesare adjusted. The �rst case occurs when a predicate isused in the description of neighbors belonging to thesame class as the current example as well as to thedescription of neighbors belonging to classes di�erentfrom the current example's class. This corresponds tothe standard case of the original algorithm. The othertwo cases account for the fact that no similarity valueat all is computed for a predicate that does not occurin any of the k nearest neighbors of the same class asthe current example, or in any of the neighbors of theother classes. In these two cases, we adjust the weightsas if the similarity computed for the predicate were 0for all neighbors irregardless of class. These two casesare most likely to occur for predicates of arity 1 suchas male(X) or big(Y). One additional modi�cation toReliefF was necessary: A predicate may occur morethan once in a case at the same level. In that case, thesimilarity values computed for each occurrence of thepredicate are averaged before they are used.4 Empirical EvaluationDue to the fact that the similarity measure of Riblis a generalization of the propositional case (see Sec-tion 3.3) we were able to apply Ribl to several of



propositional domains. The advantage of this ap-proach is that we were able to compare the classi�-cation results obtained by Ribl to those of our propo-sitional implementation of kNN [Wettschereck, 1994].We will not report speci�c results here, since the ac-curacies obtained by Ribl are comparable to thoseof the propositional kNN, which are reported else-where [Wettschereck and Dietterich, 1995]. However,these results establish that Ribl is indeed a general-ization of the propositional case.Ribl was further tested in one relational domain. Theaim of this experiment was to establish whether thecase generation procedure and similarity measure ofRibl were indeed correct. We chose to conduct theseexperiments with the relational mesh domain of Bo-jan Dolsak (available from the ml-archive@gmd.de,http://www.gmd.de/ml-archive). The aim of this em-pirical study was to investigate the feasibility of rela-tional IBL, and to evaluate the quality of the resultsobtained with Ribl. Hence, we compared Ribl to thewell known learning programFoil-6.2 [Quinlan, 1990;Cameron-Jones and Quinlan, 1994], which producesmost discriminant generalizations. We manually se-lected the parameter settings for Foil-6.2 that gavethe best results in these relational test domains.Ten di�erent Finite Element (FE) mesh models wereused as a source of examples. A description of thedomain can be found in [Dolsak and Muggleton, 1992].The target predicate is meshN(E), where E is a name ofthe edge and N is the number of �nite elements on thatedge. While the original data set contains descriptionsof edges with up to 17 elements, we employed in ourexperiments only edges with 1, 2, 3, or 4 elements (318such instances are described in the data set).4.1 Test MethodTen trials with randomly selected training and testinstances were conducted in each domain. The classi-�cation accuracy results discussed below are averagedover these ten trials. In each trial, 30% of the in-stances of the goal concepts were randomly selected totest the induced concepts. From the remaining non-test instances we selected N% (see Figure 1) of eachconcept as training examples. Both programs (i.e.,Foil-6.2 and Ribl) were supplied with exactly thesame training and test sets. Foil-6.2 employed thepositive examples of one class as negative examplesfor the other goal concepts (e.g., mesh1,: : :, mesh4).The accuracy of the learning result was determinedas the accuracy of the predictions made by the twolearning algorithms for the test instances. In Ribl,test instances were assigned to the class that resultedin the maximal value in Equation 19. In Foil-6.2, allinduced concept description were applied to each test

instance. If several concept descriptions covered thesame test instance, then that instance was assigned tothe concept with the largest number of training exam-ples.4.2 Results
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 Figure 1: Learning curves for Ribl and Foil-6.2 inthe Mesh domain.The results obtained with Ribl in the Mesh domainare very encouraging (Figure 1). Ribl achieves ageneralization accuracy superior to Foil-6.2's for allsizes of training sets. The performance of both algo-rithms improves with increasing training set sizes, aswas expected. The results also indicate that predicateweights3 improve classi�cation accuracy in this care-fully designed domain, particularly for small trainingsets.5 Conclusions and DiscussionA relational instance-based learner was proposed andevaluated in a number of experiments. The resultsobtained from the empirical study indicate that thesimilarity measure employed in Ribl indeed retrievesrelevant cases for a large fraction of the test cases.As elaborated in Section 3 and demonstrated in theexperiments, Ribl is a generalization of the proposi-tional k-nearest neighbor algorithm.4 Hence, Ribl isone of the few ILP methods that function equally wellwith propositional and relational representations.3Argument weights turned out to be less relevant in thisdomain.4However, Ribl is computationally less e�cient than itspropositional predecessor, due to its more involved similar-ity measure and the necessity of generating cases.



It is interesting to note that even in a domain as care-fully designed as Mesh, there are irrelevant predicatesas determined by the predicate weight estimation pro-cedure. This information about the relevance of cer-tain predicates with respect to the classi�cation taskat hand can be utilized to improve either the speedor accuracy of Ribl and other inductive logic learningmethods.Ribl is a lazy learning method in that it does notconstruct an explicit model of the knowledge learned(as rules, for example). Hence, one advantage of many�rst-order learning methods, the simple description ofthe learned results, is lost in Ribl.Ribl employs a speci�c inductive bias just as any othermachine learning algorithm, and it is left to future re-search to describe that bias in more detail. The exper-iments uncovered two signi�cant di�culties in movingIBL to a relational representation that will also be thetopic of future research: (1) all test instances are clas-si�ed, even if they have little similarity to any train-ing instance, and (2) all training instances are stored,even if they are not necessary for correct classi�cation.These shortcomings are partially addressed for propo-sitional IBL algorithms and we will adapt some of thepropositional approaches to Ribl to overcome them.AcknowledgementsThis research was partially supported by the ESPRITbasic research/long-term research projects 6020 (In-ductive Logic Programming) and 20237 (InductiveLogic Programming 2). We thank David Aha, KathyAstrahantse�, Sa�so D�zeroski, and Stefan Wrobel fortheir helpful comments on earlier versions of this pa-pers.References[Bisson, 1992] G. Bisson. Learning in FOL with a simi-larity measure. In AAAI92, pages 82{87. AAAI Press,1992.[B�orner, 1994] K. B�orner. Structural similarity as guid-ance in case-based design. In S. Wess, K.-D. Altho�,and M. Michael M. Richter, editors, Topics in Case-Based Reasoning: Selected Papers from the First Eu-ropean Workshop on Case-Based Reasoning (EWCBR-93), volume 837 of Lecture Notes in Arti�cial Intelli-gence, pages 197{208. Springer, 1994.[Cameron-Jones and Quinlan, 1994] R. M. Cameron-Jones and J. R. Quinlan. E�cient top-down inductionof logic programs. SIGART Bulletin, 5(1):33{42, 1994.[Cohen, 1993] W. Cohen. Cryptographic limitations onlearning one-clause logic programs. In AAAI, pages 80{85, 1993.[Dasarathy, 1991] B. Dasarathy. Nearest Neighbor(NN)Norms: NN Pattern Classi�cation Techniques. IEEEComputer Society Press, 1991.
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