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Abstract

A relational instance-based learning algo-
rithm, called RIBL, is motivated and devel-
oped in this paper. We argue that instance-
based methods offer solutions to the often
unsatisfactory behavior of current inductive
logic programming (ILP) approaches in do-
mains with continuous attribute values and
in domains with noisy attributes and/or ex-
amples. Three research issues that emerge
when a propositional instance-based learner
is adapted to a first-order representation are
identified: (1) construction of cases from the
knowledge base, (2) computation of similar-
ity between arbitrarily complex cases, and (3)
estimation of the relevance of predicates and
attributes. Solutions to these issues are de-
veloped. Empirical results indicate that RIBL
is able to achieve high classification accuracy
in a variety of domains.

1 Introduction

The field of Inductive Logic Programming (ILP) has
matured enough in recent years so that researchers in
this field now tackle real world problems instead of
hand-crafted toy-domains [King et al., 1992; Muggle-
ton et al., 1992; Sommer et al., 1994b]. One strength
of ILP systems lies in the fact that a first-order rep-
resentation is employed. Such a representation allows
relations among entities to be expressed by the analyst
as well as learned by the system. For example, the rel-
ative positioning of atoms to each other in molecules
can most naturally be expressed in a relational repre-
sentation. Such relations often carry substantial infor-
mation, and are difficult to express, to understand and
to maintain in propositional representations.

In this paper we describe work undertaken to ad-
dress two of the shortcomings of current ILP sys-
tems: (1) Current ILP systems fail to handle contin-
uous attribute! values adequately. FoiL [Cameron-
Jones and Quinlan, 1994] and ProGoL [Muggleton,
1995] are among the very few exceptions that attempt
to overcome this shortcoming. (2) Noise tolerance of
ILP systems is generally restricted to the elimination
of the negative effects of noisy examples, while no
work in ILP has been published to date describing
attempts to filter out noisy attributes. These issues
have been heavily investigated in the field of proposi-
tional learning algorithms. In particular, the family of
k-nearest neighbor or instance-based algorithms have
been found well suited to handle continuous attribute
values, noisy examples and noisy attributes. Instance-
based learning algorithms (IBL) have been studied for
more than four decades [Fix and Hodges, Jr., 1951;
Kibler and Aha, 1987; Dasarathy, 1991; Wettschereck,
1994]). These studies have pointed out a number of
strong points of IBL methods which are (a) often excel-
lent performance, (b) the ability to cope with symbolic
as well as continuous attribute and class values, and
(¢) robustness with respect to noise in the data or miss-
ing attribute values. This list of the strong points of
IBL algorithms almost reads like a list of weak points
of most ILP algorithms developed to date. Hence, we
propose in this paper to utilize the potential of IBL
algorithms to advance the state-of-the-art in ILP. IBL
methods can be employed in ILP in two ways: (1)
A propositional learner can be incorporated into an
ILP system as in LINUS [Lavrac and Dzeroski, 1994].
This approach requires the translation of data from
relational to propositional representations. The trans-
lation approach often generates a very large number of
attributes and is only applicable in domains that allow
a representation of cases using determinate clauses.?

!Throughout this paper we will use the term “attribute”
to denote arguments of predicates.

2Cohen [1993] proposed an alternative translation ap-
proach that does not require determinacy.



(2) Alternatively, as described in this paper, one can
develop an IBL algorithm that directly works with the
relational representation.

In this paper we will describe a relational, instance-
based algorithm which we term RIBL, and present
promising results of an experimental evaluation. In
Section 2 we identify the research issues that surface
when developing a relational instance-based learner.
In Section 3 we describe our solutions to these issues,
while in Section 4 we describe some empirical results
that highlight the feasibility of our approach and show
that RIBL qualifies as an important addition to the set
of first-order learning algorithms.

2 Issues in using IBL in ILP

A number of issues had to be resolved before we could
apply our experience with propositional instance-
based methods to relational methods. We believe that
the following is common to all propositional IBL meth-
ods. Cases are represented by a fixed length vector of
attribute values. Each position in that vector repre-
sents a certain attribute, and the similarity of cases is
computed by combining the similarity of each pair of
attribute values. Queries are classified in a two step
process: First the set of the & most similar previously
seen cases 18 determined and then these most similar
cases vote on the class of the query.

We have identified three issues that occur when one
applies the principle of propositional IBL methods to
a relational representation:

e What constitutes a case or neighbor? In a
relational representation we are given a set of
facts and rules that are connected to each other
through some common argument value. Hence,
we first need to extract those facts from the knowl-
edge base that together constitute a case.

e How can one compute the similarity between ar-
bitrary cases? This issue goes beyond whether
one wants to employ Euclidean distance or not.
The cases constructed in RIBL may have only
a few predicates in common. In other words,
in a relational representation we must be able
to compare apples and oranges in a meaning-
ful manner (which does not exclude saying that
their similarity is 0). Similarity computation be-
tween structured cases 1s an important issue in the
case-based reasoning community [Borner, 1994;

VoB et al., 1994; Tammer et al., 1995].

e How can one estimate the relevance of predi-
cates and attributes? Attribute weighting and
selection 1s an important issue in propositional
IBL [Wettschereck et al., 1996], and we argue that
this 1ssue will be even more important for RIBL.

The case construction procedure will not be able
to construct cases based on anything but syntac-
tic relations among predicates as long as it does
not receive feedback from the classification proce-
dure. Therefore, predicates that bear little or no
relevance to the task at hand may unnecessarily
be included in the case description. Furthermore,
the values of some of the arguments of predicates
with higher arity may also be irrelevant to the
task. To further complicate the matter, predi-
cates that are relevant for some cases may not
even appear in the description of other cases.

Below, we will describe our solutions to these issues.

3 Relational Instance-Based Learning

On an abstract level, our relational instance-based
learning algorithm, RIBL, combines different well-
known techniques in a novel way. The program is
composed of four main modules:

e A case generation module constructs descriptions
of cases (i.e., a conjunction of literals) that serve
as examples for learning or as test cases for clas-
sification.

e A module that computes the similarity of pairs of
cases.

e A module that computes the relevance of predi-
cates and their arguments.

e A module that implements distance-weighted &-
nearest neighbor learning.

The following subsections describe these modules, but
first let us describe the knowledge representation we
are using.

3.1 Representation of the learning input

RIBL 1s implemented as an external tool of the knowl-
edge acquisition and machine learning system MOBAL
[Morik et al., 1993; Sommer et al., 1994a). RIBL in-
duces concepts from the knowledge represented in the
knowledge base of MOBAL using an extended function-
free Horn-clause representation that is para-consistent
with negation [Wrobel, 1994]. The concepts “induced”
by RIBL are stored within RIBL, whereas the results
of other external (rule) learning tools are added to the
knowledge base of MOBAL to enable the MOBAL sys-
tem’s powerful inference engine to apply these rules.
In order to utilize RIBL’s learning results MOBAL has
to call the classification procedure of RIBL.

The learning input of RIBL consists of

e facts that state properties of objects and relations
among objects in the domain,



e predicate declarations that define the arity of the
predicates as well as the sorts and mode declara-
tions for their arguments, and

e type declarations that classify the terms that ap-
pear as arguments of facts into values and names,
and declare the representation of values.

While facts and predicate declarations (including
sorts) are representational constructs of MOBAL, type
declarations are supported by RiIBL. Type definitions
are used to differentiate between arguments that rep-
resent an object in a domain (e.g., a person or an error
code) and attribute values (e.g., a number that speci-
fies the age of a person or the price of a component).
In addition, type declarations specify how attribute
values are represented (i.e., by using integers, reals,
sets of unordered or ordered atoms). Mode declara-
tions specify which arguments of a predicate are input
or output arguments. This information is used in the
same manner as it is used in other ILP learners (e.g.,
Foir or GOLEM [Muggleton and Feng, 1992]).

To illustrate the concepts proposed in this paper, we
will employ the following example facts and type and
mode declarations. The set of facts describes at-
tributes of and relations among objects in a telecom-
munication security domain [Sommer et al., 1994b]:

manager(ul), works-for(ul,d1),
works-for(ul,d2), well-known(ul),
manager(u2), works-for(u2,d3), sec-op(opl),
sub-component(c2,c3), sub-component(cl,c4),
covers-region(c2,de), covers-region(c3,de),
component(c3), component(c4)
sub-component(c4,c6), works-in(u3,d4)
operator(ol), ...

These facts describe properties of persons, companies,
components in a network and their relation to each
other. In addition, the knowledge base contains facts
stating which person is/is not allowed to perform par-
ticular operations on components in the network, e.g.,

may-operate(jim,pabxd-44,configure)

The following predicate declaration defines 'may-
operate’ as a three place predicate that consumes
arguments of the sorts ’person’, 'component’ and
‘operation’. The '!' declares all arguments as input
arguments. The predicate "has-age’ is declared as a
two-place predicate with an input argument at the first
argument position (the predicate will not be used to
find persons of a particular age).

may-operate/3 :! < person >, < component >,
' < operation > .
has-age/2 :! < person >, < age > .

type : person : name.
type : age : number.

The type definitions declare that arguments of sort
person have to be treated as name arguments and ar-
guments of sort age are numbers.

3.2 Generation of Cases from unstructured
Theories

Instance-based learners, as well as many ILP algo-
rithms such as GoLEM [Muggleton and Feng, 1992],
CLINT [De Raedt and Bruynooghe, 1992], and CoLa
[Emde, 1994a], require the construction of cases (or
starting clauses) from ground facts that can be de-
rived from a knowledge base. The construction of case
descriptions is generally restricted by a syntactic or
semantic bias (e.g., restricted by a depth parameter)
for reasons of computational complexity (s. [Muggle-

ton and de Raedt, 1994]).

The case generation of RIBL computes for each ex-
ample a conjunction of literals describing the objects
that are represented by the arguments of the example
fact. Given an example fact (like the ‘may-operate’
fact above), RIBL first collects all facts from the knowl-
edge base containing at least one of the arguments also
contained in the example fact. These are the literals
of depth 0. If a depth parameter greater than 0 is
specified by the user, then RIBL determines the set of
arguments contained in the literals of depth 0 minus
those which occur in the example fact. Collecting all
facts that contain at least one of these new arguments
gives the literals of depth 1, and so on: Literals of
depth N+1 are those facts that contain at least one
argument that occurs as an argument of a literal at
depth N, but not as an argument at depth I < N.

This process is restricted by user specified argument
sorts, types, and modes. Information on argument
sorts ensures that an object referred to by an argu-
ment V1 at depth N is only described by literals at
depth N+1 if at least one argument of the new literal
equals V1 and is sort compatible with V1. For exam-
ple, a person named Mac would not be described by
facts about a computer with the same name. Infor-
mation on argument types is utilized to prevent the
case generation module from describing an argument
at depth N+41 that it is recognized at depth N as a
value argument. Suppose the age of a person appears
as an argument of a literal at depth N, then the module
will not consider adding literals with predicates that
have arguments of sort age at the next depth level.
Such literals are assumed not to support the learning
process. Finally, argument modes enable the module
to construct cases only along input arguments. Out-
put arguments are determined by the input arguments
of the predicate and, therefore, offer no additional in-
formation.

For the following section we assume that a case de-



scription is represented as a set of tuples. Each tuple
contains the set of literals of one depth:

CD = {{0, literals-of-depth-0), . . ., 1
(D, literals-of-depth-D)} (1)

where D is a user specified depth parameter. The func-
tion Lp delivers the set of literals of depth Depth:

Lp(CD, Depth) := 9
{literals | (Depth,literals) € C D} (2)

For the following section we assume that RIBL has to
determine the similarity of the following two facts:

may-operate(ul, c1, opl) may-operate(u2, ¢2,0pl) (3)

RIBL computed these case descriptions from the ex-
ample facts:

CD, = {{0, {manager(u1), works-for(ul, d1),
works-for(ul, d2), well-known (u1),
sec-op(opl), sub-component(c1, c4)}),

(1, {covers-region(c2,de))} 4)

CD; = {{0, {manager(u2), works-for(u2, d3),
sec-op(opl), sub-component (c2, ¢3)}),

(1, {covers-region(c3,de))}

3.3 Similarity Computation for First Order
Logic

The similarity computation for RIBL is a modified ver-
sion of a measure for first-order logic representations
proposed by Bisson [1992]. A measure similar to that
by Bisson [1992] has previously been shown to be use-
ful within a first-order conceptual clustering system
[Emde, 1994a]. In contrast to Bisson’s measure, our
measure can be regarded as a natural extension of sim-
ilarity measures for attribute-value representations. It
1s designed to be applicable to case descriptions as they
are described in the previous section. Therefore, our
measure can be used in systems using a first-order rep-
resentation of knowledge with facts and rules.

The basic idea of the measure is as follows. Objects
(e.g., ul and u2) are described by values (e.g., their age
and weight) and their relation to other objects (e.g.,
the companies they are working for). Their similarity
depends on the similarity of their attributes’ values
(e.g., the similarity of their age) and the similarity of
the objects related to them (e.g., the similarity of the
companies they work in). The similarity of the re-
lated objects in turn depends on the attribute values
of these objects and their relation to other objects and
so on. If an object is related to other different objects
by the same relation, RIBL tries to find the most simi-
lar related objects, e.g., if ul’s company maintains two
network switches and u2’s only one, RIBL will use the
similarity of the most similar switches to compute the

similarity of ul and u2. The rest of this section 1s a de-
tailed description of the similarity measure employed
by RIBL.

Given two (example) facts P(A1q,...,A41,,) and
P(A21, ..., Aap) and the corresponding case descrip-
tions, the similarity measure ‘sim-e’ defines their sim-
ilarity with respect to the user-specified depth param-
eter:

sim—ren(P(An, ey A1m), P(A21, ..

i=1,ieInput-Args(P)
sim—at(P”)(Au‘, A2i,0, Lay;, Lagy, Payys Pay,)
card(Input-Args(P))

.,AQm)) =

(5)

where card(S) denotes the cardinality of set S and
Input-Args(P) denotes the set of positions of input
arguments of P. In order to compute the similarity
of a pair of input arguments (Ay;, A2;) RIBL uses the
function ‘sim-a’ that comes in several variants distin-
guished by the superscript ¢(P,):

number if i-th argument of P is a number
discrete if i-th argument of P is discrete
6
The list of literals that contain the arguments to (be)
compared and the predicates present in this literal are
required by ‘sim-a’ as input information. This infor-
mation 1s extracted from the case descriptions:
La,, = {P(a1,...,an) |P(a1,...,an) € Lp(CDy,0),
Agi € {al, ... an}}
s a") € LAf,a Apos = Afl}
f=12
(7)
L y4,, stands for the set of all literals in C'D; at depth 0
that have Ay; as one of their arguments, P4, describes
the predicate/position of the argument Ay; in L4,,.

n if i-th argument of P is a name arg
t(P,i) =

Pa,, = {{P,pos) |P(as,...

For example, RIBL would evaluate the following ex-
pression to compute the similarity of the examples in-
troduced in the previous section (Equation 3):

may-operate(ul, c1, opl),
may-operate(u2, c2, opl)
( sim-a”™ (ul, 42,0, Lu1, Luz, Pu1, Pu2) +

sim-e

8
sim-a”(c1,¢2,0, Ley, Lea, Pe1, Pe2) + (8)
sim-a” (opl, 0p1,0, Lop1, Lop1, Pop1, Pop1)

3

with
L1 = {manager(u, ), works-for(uy, dy ),
well-known (u1), works-for(ui,d2)} 9
P.1 = {{manager, 1), (works-for, 1}, (9)
(well-known, 1)}

A corresponding similarity measure is defined for each
distinct argument type. We use the following measure
to compute the similarity of numbers:

sim-a""""*" (A B, Depth, Ly, Ly, Py, Py) := (10)
1 = (JA — B|/Range(sort(A4)))



where Range(sort(A)) denotes the observed range of
values of the sort of A. The similarity of discrete values
is computed as:

sim—adisc”te(A, B, Depth, Ly, La, P, P2) :=
{ 1if A == (11)

0 otherwise

The similarity of two arguments of type name is de-
fined as follows:

sim-a” (A, B, Depth, Ly, Lo, Py, P2) :=
1

max(card(py),card(Py)) (P,pos)EP1NP; (12)
sim-1s(A, B, Depth, P,pos, La, L)

where L4 and Lp are computed for each (P, pos) tuple
as follows:

Lia={P(a1,...,an)|P(a1,...,an) € L1, apos
| P

Gn =A
Lg =A{P(a1,...,an)|P(a1,...,an) € L2, apos = B

——

For example, to compute the similarity between wul
and u2 RIBL has to look at the literals with predicates
'manages’, ‘works-for’, and ’well-known’. As there is
no literal with predicate ‘well-known’ for 42, ’'sim-Is’
is only computed for the first argument of ‘works-for’
and the first argument of ‘'manager’:

sim-a™(ul, 42,0, Lu1, Luz, Pu1, Pu2) =
( sim-ls(ul, 2, 0, works-for, 1, Li1, L1s) + ) (13)

sim-ls(ul, «2, 0, manager, 1, L2;, L2,)
max(3,2)

with L, = {works-for(uy, d;),works-for(uy, ds)} and
Ll, = {works-for(us, ds)}. The function 'sim-1s’ com-
putes the similarity between two arguments only with
respect to literals with a particular predicate (e.g.,
"works-for’) and argument position, where the argu-

ment appears:

sim-1s(A, B, Depth, P,pos, La, Lg) :=
1

Leel, MAXLyelp
sim-1(A, B, Depth, P,pos, L., L,)
if card(La) < card(Lg) (14)
cardl(LA) Z:LQ:GLB MaxXLyel s
sim-1(A, B, Depth, P,pos, Ly, L)

otherwise

card(Lg)

The sum in Equation 14 is divided by the cardinality
of the larger set of literals to achieve computation of
perfect similarity only if the cardinality of both sets 1s
equal. In our example, RIBL will evaluate the similar-
ity of ul and w2 with with respect to ‘works-for’ by
computing:

sim-1(ul, 2, 0, works-for, 1, works-for(u1, d1),
works-for(u2, d3))
sim-1(u1, 2, 0, works-for, 1, works-for(u1, d2)
works-for(u2, d3))

(15)

and use the maximum of the two ‘sim-l’-values di-
vided by two. The division by two achieves that ‘sim-1’

computes a smaller similarity for our example than if
LL, would contain two 'works-for’ facts. Equation (14)
also determines the number of matches used to com-
pute the similarity: If one case contains n literals with
predicate P and the other one contains m literals with
predicate P, then Equation (14) determines the least
number of literals as base for the similarity compu-
tation,i.e., MIN(n,m) matches will be taken into ac-
count.

The similarity between two single literals is computed
as follows:
sim-1(01, Oz, Depth, P, pos, P(Ax, ..., A),
P(B1,...,B)) =
. : SIM-A if A; # Oy V B; # O,
weight(P) 37, _, { 0 if Ai=01AB =0,
I —(card({r | Ai = O1 A B; = 02}))

(16)
with
SIM-A =
sim-a' ") (A;, By, Depth + 1, La,, Lg,, Pa,, P5,)
x arg-weight (P, i)
if Depth =< MAX-DEPTH, t(P,1) # n

base-similarity (A;, B;) otherwise

(17)
and
La, ={qlar,...,an) |
g(a1,...,an) € Lp(CD1, Depth + 1),
A €{al,... an}}
Lg, ={q(b1,...,bn)
g(b1,...,bn) € Lp(CD3, Depth + 1), (18)
B; €{al,...,an}}
Pa, ={(P,posy | L € La,,L =P(a1,...,an),
Apos :Az}
Pg, ={(P,pos) | L € Lp,, L =P(b1,...,bn),
bpos :Bz}

As long as the user-specified depth parameter is not
exceeded, 'sim-1’ will recursively call the function 'sim-
a’. If the actual depth exceeds the maximum depth,
the similarity of name arguments is computed by the
function ’'base-similarity’, that simply counts how of-
ten both arguments appear together at the same argu-
ment positions of the same predicate and divides the
sum by the maximum of the number of occurrences of

the arguments [Bisson, 1992].

The main differences of RIBL’s similarity measure to
Bisson’s measure are the following:

e The new measure takes into account that the
weights of predicates and argument positions de-
pends on the depth of their use.

e RIBL uses hierarchically organized case represen-
tations. The similarity measure of Bisson takes
as input a “net of facts” about a part of a do-
main, such that the similarity between a pair of
arguments a-b may depend on the similarity of



another pair of facts ¢-d. The similarity of e¢-d
may in turn be computed from the similarity of

a-b [Emde, 1994b].

o The similarity measure of RIBL can be regarded as
a generalization of similarity measures employed
in attribute-value instance-based learners. This is
not true for Bisson’s measure, due to a difference
in the formula to compute the similarity of literals

(17).

3.4 The k-Nearest Neighbor Classification
Module

RIBL is implemented as a generalization of the proposi-
tional, distance-weighted k-nearest neighbor algorithm
[Macleod et al., 1987; Kibler and Aha, 1987] gener-
alized to a relational representation. RIBL stores all
training cases that are generated by the case genera-
tion tool in its knowledge base. It is well known for
propositional nearest neighbor algorithms that clas-
sification of queries through a vote of several of its
nearest neighbors may, in some domains, lead to supe-
rior generalization accuracy [Wettschereck, 1994]. We
suspect that this is also true for relational IBL algo-
rithms. Hence, we employ the method of leave-one-out
cross-validation [Weiss and Kulikowski, 1991] to esti-
mate the optimal number of neighbors (k) that vote on
the class of a query. RIBL is “distance-weighted” since
the votes of neighbors further away from the query
are weighted less than the votes of nearby neighbors
(i.e., Equation 19). During classification, the k nearest
neighbors of each query vote on the class of the query.
When asked to classify an instance ¢, RIBL computes
its similarity to each case  in the training set (Equa-
tion 19). The k most similar neighbors are then stored
in the set K and vote on the class of ¢:

Y owek Te; *sim-e(z, q)

- (19)

Ywer Sim-e(z, q)

where z is one of the k-nearest neighbors of ¢, and =z,
is 1 if & is a member of class j. For classification tasks
the class j with the largest p(y,¢;, K) is output. If
there is a tie among the maximal p(q, ¢;, K), then one
of them is randomly selected.

plg,¢;, K) =

3.5 The Predicate and Attribute Weight
Estimation Module

The third research issue raised in Section 2 identi-
fied the need to assign weights to predicates as well
as to their arguments to achieve best classification
results. In a review of feature weighting methods,
Wettschereck et al. [1996] identified RELIEFF [Kira
and Rendell, 1992; Kononenko, 1994] as one of the
most versatile feature weighting methods of those re-
viewed. The advantages of RELIEFF are that it is an

iterative algorithm that converges rather quickly, and
that it requires only the similarity between the objects
to be weighted as input (i.e., the attributes and pred-
icates in the case of RIBL).

A detailed description of RELIEFF was given by
Kononenko [1994]. The core idea behind RELIEFF is
to incrementally adjust feature weights for a given set
of training examples. For each training example, the
k-nearest neighbors for each output class are found.
Feature weights are then decreased by a fraction of the
average feature distance to the neighbors of the same
class and increased by a fraction of the average feature
distance to the neighbors of the other classes, where
the adjustment for the other classes is weighted by the
normalized class probability of each class. Naturally, it
was necessary to modify the algorithm in several ways
to enable it to estimate predicate weights. A sepa-
rate weight was computed for each predicate and for
all output arguments of all predicates at each “case-
generation-depth-level” (see Section 3.2). A simple ex-
ample will illustrate why the same predicate may be
of varying relevance at different levels. Suppose we are
trying to learn the has-grandson relation. In that case
it is enough to know whether a person has a child who
in turn has a male child. Hence, the gender of the
“first-level” child is irrelevant, while the gender of the
“second-level” child is highly relevant.

The most 1important difference of this procedure to
the original RELIEFF procedure is that three different
cases are distinguished when the weights of predicates
are adjusted. The first case occurs when a predicate is
used in the description of neighbors belonging to the
same class as the current example as well as to the
description of neighbors belonging to classes different
from the current example’s class. This corresponds to
the standard case of the original algorithm. The other
two cases account for the fact that no similarity value
at all 1s computed for a predicate that does not occur
in any of the k nearest neighbors of the same class as
the current example, or in any of the neighbors of the
other classes. In these two cases, we adjust the weights
as if the similarity computed for the predicate were 0
for all neighbors irregardless of class. These two cases
are most likely to occur for predicates of arity 1 such
as male(X) or big(Y). One additional modification to
RELIEFF was necessary: A predicate may occur more
than once in a case at the same level. In that case, the
similarity values computed for each occurrence of the
predicate are averaged before they are used.

4 Empirical Evaluation

Due to the fact that the similarity measure of RIBL
is a generalization of the propositional case (see Sec-
tion 3.3) we were able to apply RIBL to several of



propositional domains. The advantage of this ap-
proach is that we were able to compare the classifi-
cation results obtained by RIBL to those of our propo-
sitional implementation of kNN [Wettschereck, 1994].
We will not report specific results here, since the ac-
curacies obtained by RIBL are comparable to those
of the propositional kNN, which are reported else-
where [Wettschereck and Dietterich, 1995]. However,
these results establish that RIBL is indeed a general-
1zation of the propositional case.

RIBL was further tested in one relational domain. The
aim of this experiment was to establish whether the
case generation procedure and similarity measure of
RIBL were indeed correct. We chose to conduct these
experiments with the relational mesh domain of Bo-
jan Dolsak (available from the ml-archive@gmd.de,
http://www.gmd.de/ml-archive). The aim of this em-
pirical study was to investigate the feasibility of rela-
tional IBL, and to evaluate the quality of the results
obtained with RIBL. Hence, we compared RIBL to the
well known learning program Fo1r-6.2 [Quinlan, 1990;
Cameron-Jones and Quinlan, 1994], which produces
most discriminant generalizations. We manually se-
lected the parameter settings for FoiL-6.2 that gave
the best results in these relational test domains.

Ten different Finite Element (FE) mesh models were
used as a source of examples. A description of the
domain can be found in [Dolsak and Muggleton, 1992].
The target predicate ismeshN (E), where E is a name of
the edge and N is the number of finite elements on that
edge. While the original data set contains descriptions
of edges with up to 17 elements, we employed in our
experiments only edges with 1, 2, 3, or 4 elements (318
such instances are described in the data set).

4.1 Test Method

Ten trials with randomly selected training and test
instances were conducted in each domain. The classi-
fication accuracy results discussed below are averaged
over these ten trials. In each trial, 30% of the in-
stances of the goal concepts were randomly selected to
test the induced concepts. From the remaining non-
test instances we selected N% (see Figure 1) of each
concept as training examples. Both programs (i.e.,
Foir-6.2 and RiIBL) were supplied with exactly the
same training and test sets. FoOIL-6.2 employed the
positive examples of one class as negative examples
for the other goal concepts (e.g., meshl,. .. mesh4).

The accuracy of the learning result was determined
as the accuracy of the predictions made by the two
learning algorithms for the test instances. In RIBL,
test instances were assigned to the class that resulted
in the maximal value in Equation 19. In FoIL-6.2, all
induced concept description were applied to each test

instance. If several concept descriptions covered the
same test instance, then that instance was assigned to
the concept with the largest number of training exam-
ples.

4.2 Results
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Figure 1: Learning curves for RIBL and FoIL-6.2 in
the Mesh domain.

The results obtained with RIBL in the Mesh domain
are very encouraging (Figure 1). RIBL achieves a
generalization accuracy superior to FoIL-6.2’s for all
sizes of training sets. The performance of both algo-
rithms improves with increasing training set sizes, as
was expected. The results also indicate that predicate
weights® improve classification accuracy in this care-
fully designed domain, particularly for small training
sets.

5 Conclusions and Discussion

A relational instance-based learner was proposed and
evaluated in a number of experiments. The results
obtained from the empirical study indicate that the
similarity measure employed in RIBL indeed retrieves
relevant cases for a large fraction of the test cases.
As elaborated in Section 3 and demonstrated in the
experiments, RIBL 1s a generalization of the proposi-
tional k-nearest neighbor algorithm.* Hence, RIBL is
one of the few ILP methods that function equally well
with propositional and relational representations.

? Argument weights turned out to be less relevant in this
domain.

*However, RIBL is computationally less efficient than its
propositional predecessor, due to its more involved similar-
ity measure and the necessity of generating cases.



It is interesting to note that even in a domain as care-
fully designed as Mesh, there are irrelevant predicates
as determined by the predicate weight estimation pro-
cedure. This information about the relevance of cer-
tain predicates with respect to the classification task
at hand can be utilized to improve either the speed
or accuracy of RIBL and other inductive logic learning
methods.

RIBL is a lazy learning method in that it does not
construct an explicit model of the knowledge learned
(as rules, for example). Hence, one advantage of many
first-order learning methods, the simple description of
the learned results, is lost in RIBL.

RIBL employs a specific inductive bias just as any other
machine learning algorithm, and it is left to future re-
search to describe that bias in more detail. The exper-
iments uncovered two significant difficulties in moving
IBL to a relational representation that will also be the
topic of future research: (1) all test instances are clas-
sified, even if they have little similarity to any train-
ing instance, and (2) all training instances are stored,
even if they are not necessary for correct classification.
These shortcomings are partially addressed for propo-
sitional IBL algorithms and we will adapt some of the
propositional approaches to RIBL to overcome them.
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