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Abstract

The use of methanol as a fuel and chemical feedstock could become very important in the development of a more sustainable society if methanol

could be efficiently obtained from the direct reduction of CO  using solar-generated hydrogen. If hydrogen production is to be decentralized,

small-scale CO  reduction devices are required that operate at low pressures. Here, we report the discovery of a Ni-Ga catalyst that reduces CO  to

methanol at ambient pressure. The catalyst was identified through a descriptor-based analysis of the process and the use of computational methods to

identify Ni-Ga intermetallic compounds as stable candidates with good activity. We synthesized and tested a series of catalysts and found that Ni Ga

is particularly active and selective. Comparison with conventional Cu/ZnO/Al O  catalysts revealed the same or better methanol synthesis activity, as

well as considerably lower production of CO. We suggest that this is a first step towards the development of small-scale low-pressure devices for CO

reduction to methanol.
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