Take our survey for a chance to win a MacBook Air Find out more than the state of the State of Table 1.1 and the S

ARTICLE PREVIEW view full access options

NATURE CHEMISTRY **| ARTICLE**

Discovery of a Ni-Ga catalyst for carbon dioxide reduction to methanol

Felix Studt, Irek Sharafutdinov, Frank Abild-Pedersen, Christian F. Elkjær, Jens S. Hummelshøj, Søren Dahl, Ib Chorkendorff & Jens K. Nørskov

Nature Chemistry **6**, 320–324 (2014) doi:10.1038/nchem.1873 Received 12 November 2013 Accepted 14 January 2014 Published online 02 March 2014

Abstract

The use of methanol as a fuel and chemical feedstock could become very important in the development of a more sustainable society if methanol could be efficiently obtained from the direct reduction of CO $_2$ using solar-generated hydrogen. If hyd<u>rogen</u> production is to be decentralized, small-scale CO₂ reduction devices are required that operate at low pressures. Here, we report the di<u>scövv</u>ery of a Ni-Ga catalyst that reduces CO₂ to methanol at ambient pressure. The catalyst was identified through a descriptor-based analysis of the process and the use of computational methods to identify Ni-Ga intermetallic compounds as stable candidates with good activity. We synthesized and tested a series of catalysts and found that Ni₅Ga₃ is particularly active and selective. Comparison with conventional Cu/ZnO/Al $_2$ O $_3$ catalysts revealed the same or better methanol synthesis activity, as well as considerably lower production of CO. We suggest that this is a first step towards the development of small-scale low-pressure devices for CO $_2$ reduction to methanol.

Already a subscriber? Log in now or Register for online access.

Additional access options:

Use a document delivery service | Login via Athens | Purchase a site license | Institutional access

References

- 1. Schlögl, R. Chemistry's role in regenerative energy. *Angew. Chem. Int. Ed.* **50**, 6424–6426 (2011).
- 2. Olah, G. A. Towards oil independence through renewable methanol chemistry. *Angew. Chem. Int. Ed.* **52**, 104–107 (2013).
- 3. Benson, E. E., Kubiak, C. P., Sathrum, A. J. & Smieja, J. M. Electrocatalytic and homogeneous approaches to conversion of CO₂ to liquid fuels. *Chem. Soc. Rev.* **38**, 89–99 (2009).
- Arakawa, H. *et al*. Catalysis research of relevance to carbon management: progress, challenges, and opportunities. *Chem. Rev.* **101**, 953–996 4. (2001).
- 5. Hori, Y., Kikuchi, K. & Suzuki, S. Production of CO and CH₄ in electrochemical reduction of CO₂ at metal electrodes in aqueous hydrocarbonate solution. *Chem. Lett.* **14**, 1695–1698 (1985).
- 6. Kuhl, K. P., Cave, E. R., Abram, D. N. & Jaramillo, T. F. New insights into the electrochemical reduction of carbon dioxide on metallic copper surfaces. *Energy Environ. Sci.* **5**, 7050–7059 (2012).
- 7. Rosen, B. A. *et al.* Ionic liquid-mediated selective conversion of CO₂ to CO at low overpotentials. Science **334**, 643–644 (2011).
- 8. Cole, E. B. *et al*. Using a one-electron shuttle for the multielectron reduction of CO₂ to methanol: kinetic, mechanistic, and structural insights. *J*. *Am. Chem. Soc.* **132**, 11539–11551 (2010).
- 9. Schouten, K. J. P., Kwon, Y., van der Ham, C. J. M., Qin, Z. & Koper, M. T. M. A new mechanism for the selectivity to C(1) and C(2) species in the electrochemical reduction of carbon dioxide on copper electrodes. *Chem. Sci.* **2**, 1902–1909 (2011).
- 10. Chen, Y., Li, C. W. & Kanan, M. W. Aqueous CO₂ reduction at very low overpotential on oxide-derived Au nanoparticles. J. Am. Chem. Soc. **134**, 19969–19972 (2012).
- 11. Peterson, A. A. & Nørskov, J. K. Activity descriptors for CO₂ electroreduction to methane on transition-metal catalysts. J. Phys. Chem. Lett. **3**, 251–258 (2012).
- Lewis, N. S. & Nocera, D. G. Powering the planet: chemical challenges in solar energy utilization. *Proc. Natl Acad. Sci. USA* **103**, 15729–15735 12. (2006).
- 13. Crabtree, G. & Sarrao, J. The road to sustainability. *Physics World* **22**, 24–30 (2009).
- 14. Hansen, J. B. & Nielsen, P. E. H. in *Handbook of Heterogeneous Catalysis* (eds Ertl, G., Knözinger, H. & Schüth, F.) 2920 (Wiley, 2008).
- 15. Kasatkin, I., Kurr, P., Kniep, B., Trunschke, A. & Schlögl, R. Role of lattice strain and defects in copper particles on the activity of Cu/ZnO/Al $_2$ O $_3$

catalysts for methanol synthesis. *Angew. Chem. Int. Ed.* **46**, 7324–7327 (2007).

- 16. Behrens, M. Meso- and nano-structuring of industrial Cu/ZnO/(Al₂O₃) catalysts. J. Catal. **267**, 24–29 (2009).
- 17. Kurtz, M., Wilmer, H., Genger, T., Hinrichsen, O. & Muhler, M. Deactivation of supported copper catalysts for methanol synthesis. Catal. Lett. 86, 77–80 (2003).
- 18. Campbell, C. T., Daube, K. A. & White, J. M. Cu/ZnO(0001) and ZnO_x/Cu(111): model catalysts for methanol synthesis. Surf. Sci. **182**, 458–476 (1987).
- 19. Bowker, M., Hadden, R. A., Houghton, H., Hyland, J. N. K. & Waugh, K. C. The mechanism of methanol synthesis on copper/zinc oxide/alumina catalysts. *J. Catal.* **109**, 263–273 (1988).
- 20. Askgaard, T. S., Nørskov, J. K., Ovesen, C. V. & Stoltze, P. A kintic model of methanol synthesis. *J. Catal.* **156**, 229–242 (1995).
- 21. Fisher, I. A. & Bell, A. T. *In-situ* infrared study of methanol synthesis from H₂/CO₂ over Cu/SiO₂ and Cu/ZrO₂/SiO₂. J. Catal. **172**, 222–237 (1997).
- 22. Meitzner, G. & Iglesia, E. New insights into methanol synthesis catalysts from X-ray absorption spectroscopy. *Catal. Today* **53**, 433–441 (1999).
- 23. Fujitani, T. & Nakamura, J. The chemical modification seen in the Cu/ZnO methanol synthesis catalysts. *Appl. Catal. A* **191**, 111–129 (2000).
- 24. Grunwaldt, J-D., Molenbroek, A. M., Topsøe, N-Y., Topsøe, H. & Clausen, B. S. *In situ* investigations of structural changes in Cu/ZnO catalysts. *J. Catal.* **194**, 452–460 (2000).
- 25. Hansen, P. L. *et al*. Atom-resolved imaging of dynamic shape changes in supported copper nanocrystals. *Science* **295**, 2053–2055 (2002).
- 26. Kurtz, M. *et al*. New synthetic routes to more active Cu/ZnO catalysts used for methanol synthesis. *Catal. Lett.* **92**, 49–52 (2004).
- 27. Waugh, K. C. Methanol synthesis. *Catal. Lett.* **142**, 1153–1166 (2012).
- 28. Yang, Y., Mims, C. A., Mei, D. H., Peden, C. H. F. & Campbell, C. T. Mechanistic studies of methanol synthesis over Cu from CO/CO₂/H₂/H₂O mixtures: the source of C in methanol and the role of water. *J. Catal.* **298**, 10–17 (2013).
- 29. Grabow, L. C. & Mavrikakis, M. Mechanism of methanol synthesis on Cu through CO₂ and CO hydrogenation. *ACS Catal.* 1, 365–384 (2011).
- 30. Behrens, M. et al. The active site of methanol synthesis over Cu/ZnO/Al₂O₃ industrial catalysts. Science **336**, 893–897 (2012).
- 31. Grabow, L. C. *et al.* Descriptor-based analysis applied to HCN synthesis from NH₃ and CH₄. *Angew. Chem. Int. Ed.* **50**, 4601–4605 (2011).
- 32. Lausche, A. C., Hummelshøj, J. S., Abild-Pedersen, F., Studt, F. & Nørskov, J. K. Application of a new informatics tool in heterogeneous catalysis: analysis of methanol dehydrogenation on transition metal catalysts for the production of anhydrous formaldehyde. *J. Catal.* **291**, 133–137 (2012).
- 33. Hammer, B., Hansen, L. B. & Nørskov, J. K. Improved adsorption energetics within density-functional theory using revised Perdew–Burke– Ernzerhof functionals. *Phys. Rev. B* **59**, 7413–7421 (1999).
- 34. Nørskov, J. K. *et al*. The nature of the active site in heterogeneous metal catalysis. *Chem. Soc. Rev.* **37**, 2163–2171 (2008).
- 35. Studt, F., Abild-Pedersen, F., Varley, J. B. & Nørskov, J. K. CO and CO₂ hydrogenation to methanol calculated using the BEEF–vdW functional. *Catal. Lett.* **143**, 71–73 (2013).
- 36. Wellendorff, J. et al. Density functionals for surface science: exchange-correlation model development with Bayesian error estimation. Phys. *Rev. B* **85**, 235149 (2012).
- 37. Nørskov, J. K., Abild-Pedersen, F., Studt, F. & Bligaard, T. Density functional theory in surface chemistry and catalysis. Proc. Natl Acad. Sci. *USA* **108**, 937–943 (2011).
- 38. Studt, F. *et al*. Identification of non-precious metal alloy catalysts for selective hydrogenation of acetylene. *Science* **320**, 1320–1322 (2008).
- 39. Okamoto, H. Ga-Ni (gallium-nickel). *J. Phase Equilib. Diffus.* **31**, 575–576 (2010).
- 40. Baltes, C., Vukojević, S. & Schüth, F. Correlations between synthesis, precursor, and catalyst structure and activity of a large set of CuO/ZnO /Al₂O₃ catalysts for methanol synthesis. *J. Catal.* **258**, 334–344 (2008).
- 41. Arico, A. S., Srinivasan, S. & Antonucci, V. DMFCs: from fundamental aspects to technology development. *Fuel Cells* **1**, 133–161 (2001).
- 42. Kamarudin, S. K., Daud, W. R. W., Ho, S. L. & Hasran, U. A. Overview on the challenges and developments of micro-direct methanol fuel cells (DMFC). *J. Power Sources* **163**, 743–754 (2007).
- 43. Lackner, K. S. A guide to CO₂ sequestration. Science **300**, 1677–1678 (2003).
- 44. Keith, D. W. Why capture CO₂ from the atmosphere? Science 325, 1654–1655 (2009).
- 45. Jones, C. W. CO₂ capture from dilute gases as a component of modern global carbon management. *Annu. Rev. Chem. Biomol. Eng.* 2, 31–52 (2011).
- 46. House, K. Z. et al. Economic and energetic analysis of capturing CO₂ from ambient air. *Proc. Natl Acad. Sci. USA* **108**, 20428–20433 (2011).
- 47. Studt, F. *et al*. CO hydrogenation to methanol on Cu-Ni catalysts: theory and experiment. *J. Catal.* **293**, 51–60 (2012).
- 48. Hummelshøj, J. S., Abild-Pedersen, F., Studt, F., Bligaard, T. & Nørskov, J. K. CatApp: a web application for surface chemistry and heterogeneous catalysis. *Angew. Chem. Int. Ed.* **51**, 272–274 (2012).
- 49. Peterson, A. A., Abild-Pedersen, F., Studt, F., Rossmeisl, J. & Nørskov, J. K. How copper catalyzes the electroreduction of carbon dioxide into hydrocarbon fuels. *Energy Environ. Sci.* **3**, 1311–1315 (2010).

Download references

Author information

Affiliations

SUNCAT Center for Interface Science and Catalysis, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, USA

Felix Studt, Frank Abild-Pedersen, Jens S. Hummelshøj & Jens K. Nørskov

Centre for Individual Nanoparticle Functionality (CINF), Department of Physics, Building 307 Technical University of Denmark, DK-2800

Lyngby, Denmark

Irek Sharafutdinov, Christian F. Elkjær, Søren Dahl & Ib Chorkendorff

SUNCAT Center for Interface Science and Catalysis, Department of Chemical Engineering, Stanford University, Stanford, California 94305,

USA

Jens K. Nørskov

Contributions

F.S., F.A-P., J.S.H. and J.K.N. contributed to the computational work in this article. I.S., C.F.E., S.D. and I.C. contributed to the experimental work.

Competing financial interests

The authors declare no competing financial interests.

Corresponding author

Correspondence to: Jens K. Nørskov

Supplementary information

PDF files

1. Supplementary information (2,689 KB) Supplementary information

Nature Chemistry ISSN 1755-4330 EISSN 1755-4349

© 2014 Macmillan Publishers Limited. All Rights Reserved. partner of AGORA, HINARI, OARE, INASP, ORCID, CrossRef and COUNTER