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Karlsruhe Institute of Technology (KIT)
Institut für Technik der
Informationsverarbeitung
Vincenz-Prießnitz-Straße 1
76131 Karlsruhe
Germany
michael.huebner@kit.edu

Jürgen Becker
Karlsruhe Institute of Technology (KIT)
Institut für Technik der
Informationsverarbeitung
Vincenz-Prießnitz-Straße 1
76131 Karlsruhe
Germany
juergen.becker@kit.edu

ISBN 978-1-4419-6459-5 e-ISBN 978-1-4419-6460-1
DOI 10.1007/978-1-4419-6460-1
Springer New York Dordrecht Heidelberg London

# Springer ScienceþBusiness Media, LLC 2011
All rights reserved. This work may not be translated or copied in whole or in part without the written
permission of the publisher (Springer Science+Business Media, LLC, 233 Spring Street, New York,
NY 10013, USA), except for brief excerpts in connection with reviews or scholarly analysis. Use in
connection with any form of information storage and retrieval, electronic adaptation, computer software,
or by similar or dissimilar methodology now known or hereafter developed is forbidden.
The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are
not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject
to proprietary rights.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)



Preface

For the next decade, Moore’s Law is still going to bring higher transistor densities

allowing Billions of transistors to be integrated on a single chip. However, it

became more and more obvious that exploiting significant amounts of instruction-

level parallelism with deeper pipelines and more aggressive wide-issue superscalar

techniques, and using most of the transistor budget for large on-chip caches has

come to an dead end. Especially, scaling performance with higher clock frequencies

is getting more and more difficult because of heat dissipation problems and too high

energy consumption. The latter is not only a technical problem for mobile systems,

but is even going to become a severe problem for computing centers because high

energy consumption leads to significant cost factors in the budget. Improving

performance can only be achieved by exploiting parallelism on all system levels.

Therefore, for high-performance computing systems, for high-end servers as

well or for embedded systems, a massive paradigm shift towards multicore archi-

tectures is taking place. Integrating multiple cores on a single chip leads to a

significant performance improvement without increasing the clock frequency.

Multicore architectures offer a better performance/Watt ratio than single core

architectures with similar performance.

Combining multicore and coprocessor technology promise extreme computing

power for highly CPU-time-consuming applications in scientific computing as

well as for special purpose applications in the embedded area. Especially FPGA-

based accelerators not only offer the opportunity to speedup an application by

implementing their compute-intensive kernels into hardware but also to adapt to

the dynamical behavior of an application.

The purpose of this book is to evaluate strategies for future system design

in MPSoC architectures. Both aspects, hardware design and tool-integration

into existing development tools will be discussed. Also the novel trends in

MPSoC combined with reconfigurable architectures are a topic in this book. The

main emphasis is on architectures, design-flow, tool-development, applications and

system design.
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Chapter 1

An Introduction to Multi-Core System

on Chip – Trends and Challenges

Lionel Torres, Pascal Benoit, Gilles Sassatelli, Michel Robert,

Fabien Clermidy and Diego Puschini

1.1 From SoC to MPSoC

The empirical law of Moore does not only describe the increasing density of

transistors permitted by technological advances. It also imposes new require-

ments and challenges. Systems complexity increases at the same speed. Nowa-

days systems could never be designed using the same approaches applied 20

years ago. New architectures are and must be continuously conceived. It is clear

now that Moore’s law for the last two decades has enabled three main revolu-

tions. The first revolution in the mid-eighties was the way to embed more and

more electronic devices in the same silicon die; it was the era of System On Chip.

One main challenge was the way to interconnect all these devices efficiently. For

this purpose, the Bus interconnect structure was used for long time. Anyway, in

the mid-nineties the industrial and academic communities faced a new challenge

when the number of processing cores became two numerous for sharing a single

communication medieum. A new interconnection scheme based on the Network

Telecom Fabrics, the Network On Chip was born; over the past decade intense

research efforts have led to significant improvements. The last breakthrough was

due to the need to interconnect a set of processors on the same chip, in early 2000.

When previously developed systems embedded a single processor, the master of

the chip, multiple masters must now share the overall control. The first Multi-

processors System-on-Chip (MPSoCs) emerged [1]. They combine several

embedded processors, memories and specialized circuitry (accelerators, I/Os)

interconnected through a dedicated infrastructure to provide a complete

integrated system. Contrary to SoCs, MPSoCs include two or more master

processors managing the application process, achieving higher performances.

Since then, an important number of research and commercial designs have been

developed [2]. They have started to get into the marketplace and are expected to

be widely available in even greater variety in the next few years [3]. It is now
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clear that this third revolution will change drastically the way to consider System

On Chip Architecture. Figure 1.1 summarizes these 3 revolutions that occured in

less than 20 years.

1.2 General Structure of MPSoC

This section describes a generic MPSoC, only introducing the key elements in order

to formulate valid assumptions on the architecture. In general MPSoC is composed

of several Processing Elements (PE) linked by an interconnection structure as it is

presented in Fig. 1.2.

1.2.1 Processing Elements

The PEs of an MPSoC are related to the application context and requirements. We

distinguish two families of architectures. From one side, heterogeneous MPSoCs are

composed of different PEs (processors, memories, accelerators and peripherals).

These platforms were certainly pioneered: the C-5 Network Processor [4], Nexperia

[5] and OMAP [6], as shown in [2]. The second family represents homogeneous

MPSoCs, pioneered by the Lucent Daytona architecture [2, 7], where the same tile is

instantiated several times. This chapter targets both families and Fig. 1.2 represents

either a homogeneous or heterogeneous design. For instance numerousworks consider

that processors as well as flexible hardware such as reconfigurable fabrics compose

heterogeneous PEs.

Fig. 1.1 From SoC to MPSoC
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1.2.2 Interconnection

The PEs previously described are mostly interconnected by a Network-on-Chip

(NoC) [8–11]. A NoC is composed of Network Interfaces (NI), routing nodes and

links. The NI implements the interface between the interconnection environment

and the PE domain. It decouples computation from communication functions.

Routing Nodes, also called routers, are in charge of routing are arbitrating the data

between the source and destination PEs through the links. Several network topolo-

gies have been studied [12, 13]. Figure 1.2 represents a 2D mesh interconnect. The

sizing of the offered communication throughput must be enough for the targeted

application set.

The NoCs facilitate the design of Globally Asynchronous Locally Synchronous

(GALS) property by implementing asynchronous-synchronous interfaces in the NIs

[14, 15]. In Fig. 1.2, an example of an asynchronous router is presented to highlight

this property.

1.2.3 Power Management

One of the major challenges nowadays is the way to achieve energy efficiency for

embedded systems. The GALS feature allows partitioning the MPSoC into several

voltage/frequency islands (VFI) [16]. In this example, each VFI contains a PE

clocked at a given frequency and voltage. This approach allows fine-grain power

management [17]. As in [18, 19], the considered MPSoC incorporates distributed

Dynamic Voltage and Frequency Scaling (DVFS): each PE includes a DVFS

device. The power optimization consists in adapting the voltage and frequency of

Fig. 1.2 General MPSoC architecture
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each PE in order to balance power consumption and performance. In more

advanced MPSoCs, a set of sensors integrated within each PE provides information

about consumption, temperature, performance or any other metric needed to

manage the DVFS. Anyway, due to the cost of adding dedicated circuitry, coarser

grain power management including multiple PEs in one VFI are used in many

MPSoCs, providing a different level of control for the power management.

1.3 Power Efficiency and Adaptability

As presented in the introduction, MPSoCs are following Moore’s law [20]. This

empirical law has demonstrated to be true during several decades. Figure 1.3 shows

some examples of processor with their transistor counts. But for MPSoCs, what are

the challenges coming with Moore’s law? More transistor density also means more

performance (but also increased power consumption) thanks to a multiplication of

the number of cores. But it also means more power consumption. During recent

years power optimization has become one of the hottest design topics not only for

battery-powered devices but also for large variety of application domains such as

household electronic to high performance computing. The ITRS [21] predicts an

increase by a factor of 2 for the next five years in the power consumption of

stationary consumer devices (see Fig. 1.4). Moreover, it is predicted that leakage

and dynamic power consumption will be equivalent for such devices for both logic

and memory parts. These trends, combined with the increasing performance demand,

turn the problem into a real challenge for MPSoC architects [5, 4]. How can we

manage the power/performance trade-off on multi-million transistor designs? It is

Fig. 1.3 CPU transistors count (http://www.ausairpower.net/moore-iw.pdf )
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admitted that advanced energy management is mandatory to achieve efficiency, not

only for mobile devices but also for all kind of electronic equipments.

WhileMPSoC should be designed to be power efficient, the operating environment

can no more be considered as static. Let’s take a simple example to understand the

concept considering fourth generation of telecommunication applications. Compu-

tation-intensive complex channel estimation algorithms are needed to sustain a high

throughput with bad quality transmission channels. Anyway, when the mobile

terminal goes near to a base station a simpler scheme can be used to save energy.

How can we manage these modifications in the environment?

A second example of the environmental conditions considers technological

variability. Moore’s law predicting more and more transistors with improved per-

formance also carries variability problems. Variability is a phenomenon, which

always existed in the manufacturing process of CMOS transistors and has been

historically taken into account with design margins using statistics of discrepancy

between chips of the wafer. However, as transistor size shrinks this phenomenon

increases, coping with variability has become a real challenge: the dispersion of

parameters within the same chip has now an unquestionable impact on system

operation. MPSoCs are affected by this phenomenon. For example, not all PEs of

the same system are able to run at the same clock frequency. As a consequence, two

specimens of the same MPSoC often achieve unequal performance levels. Hence,

how can designers guarantee the performance management under such variations in

the manufacturing process?

In order to improve power efficiency in dynamic environments under variability,

the answer can be self-adaptability. In other words, the solution can be a system able to

adjust itself according to changes in its environment or in parts of the system itself in

order to fulfill the requirements.

Fig. 1.4 SoC consumer stationary power consumption trends [21]
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1.4 Complexity and Scalability

As stated in the introduction, the advances predicted by Moore’s law have also

accelerated the complexity by multiplying the number of processing elements. To

illustrate this increasing complexity, Fig. 1.5 shows the trends predicted by the

ITRS [21]: the number of processing cores in SoC consumer portable equipments

will increase by a factor of about 3.5 times in the next five years. Moreover, the

memory size and logic size will follow the same trends. In this context, how will we

manage the more than six hundred processors predicted in 10 years?

There is an underlying problem to the complexity wall: the scalability. Scalability

is a property of a system, which indicates its ability to be scaled uo to larger

realizations. For MPSoCs, it refers to the capability of a system to increase the

total computational power when resources are added. A system, whose performance

improves after adding hardware, proportionally to the capacity added, is said to be a

scalable system. An algorithm, design, networking protocol, program, or other

system is said to scale if it is suitably efficient and practical when applied to large

situations.

The good solution for today is probably not the good solution for tomorrow:

platform based design and core reuse have driven industrial system designers for

obvious productivity and performance reasons. Thes design techniques are increa-

sigly questioned and may not scale any further. One major drawback is that these

solutions are poorly scalable in terms of software and hardware. We strongly

believe that an alternative is possible from a basis of a scalable hardware and

software framework. For this, the distribution of the management functions of an

MPSoC is crucial.

Fig. 1.5 SoC consumer portable design complexity trends [21]
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1.5 Heterogeneous and Homogeneous Approaches

In the context of scalability requirement associated with self-adaptability need,

MPSoCs are becoming an increasingly popular solution that combines flexibility of

software along with potentially significant speedups. As stated in the introduction

section, we will make a difference between:

– Heterogeneous MPSoC, also referred to Chip Multi-Processing or Multi (Many)

Core Systems: these systems are composed of PEs of different types, such as one

or several general purpose processors, Digital Signal Processors (DSPs), hard-

ware accelerators, peripherals and an interconnection infrastructure like a NoC.

– Homogeneous MPSoC, in this approach, the basic PE embeds all the elements

required for a SoC: one or several processors (general purpose or dedicated),

memory and peripherals. This tile is then instantiated several times, and all these

instances are interconnected through a dedicated communication infrastructure.

Basically, the first approach offers the best performance on power consumption

trade-off and the second one is obviously more flexible and scalable but less power

efficient. Due to their good power efficicency, heterogeneous MPSoC approaches

are used for portable systems, and more generally embedded systems, while

homogeneous approaches are commonly used for video game consoles, desktop

computers, servers and supercomputing.

1.5.1 Heterogeneous MPSoC

AheterogeneousMPSoC is a set of interconnected coreswith different functionalities.

The Fig. 1.6 provides an overview of a generic heterogeneousMPSoC, composed of a

set of general-purpose processor (CPU), several accelerators (video, audio, etc.),

memory elements, peripherals and an interconnection infrastructure.

Beyond its hardware architecture, an MPSoC system is generally running a set of

software applications divided into tasks and an operating system devoted to manage

Memory

CPU

Video
Accelerator

Audio
Accelerator Power

management

B
ridge

USB

UART

Bluetooth

GPIO

Wifi

Fig. 1.6 Simplified overview of a heterogeneous MPSoC
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both hardware and software through a middleware layer (e.g. drivers). Figure 1.7

illustrates an abstract view of an MPSoC, and the interaction between software and

hardware.

In order to illustrate the general principles presented in the previous section, we

can cite The Philips Nexperia, or ST Nomadik or the well-known TI OMAP

Platform, or the MORPHEUS MPSoC [22] from the MORPHEUS European

project. The functional and structural heterogeneity of these platforms permits

obtaining good performance and energy efficiency, allowing them to be integrated

in portable devices such as mobile phones.

The term “platform” also confers some flexibility to this approach. Indeed, it is

possible with the same platform to customize the system for some specific applica-

tions thanks to a basic processor-memory-bus infrastructure, and a library of

optional accelerators and peripherals. This approach allows reducing NRE costs

and the Time-to-Market, but also presents some drawbacks. The flexibility is limited

to the design phase or to some minor extent after fabrication since dedicated

accelerators functionalities cannot be reconfigured. The scalability is also a problem

of such platforms, since required communication bandwidth depends on the number

and types of accelerators and thus can require some adaptation for each design.

1.5.2 Homogeneous MPSoC

As discussed in the previous section, heterogeneous MPSoC systems provide today

the best performances/power efficiency tradeoffs and are natural choice for embedded

systems, but they also suffer from limited flexibility and scalability.

Software part

Hardware part

DSP CPU1 CPU2 MEM HW IP

Network interconnection

Middleware
Hardware/Software Interface

T1 T2 T3 Tj Tn

Software application

Fig. 1.7 MPSoC abstract view
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An alternative lies in building a homogeneous system based on the same

programmable building block instantiated several times. This architectural model is

often referred in the literature to as parallel architecture model. Parallel architectures

were particularly studied in Computer Science and Computer Engineering during the

past 40 years. There is nowadays a growing interest for such approaches in embedded

systems. The basic principle of an architecture that exhibits parallel processing

capabilities relies on increasing the number of physical resources in order to divide

the execution time of each resource. Theoretically, an architecture made of N proces-

sing resources may provide a speedup of at most N; however this speedup is difficult

(or impossible) to obtain in practice. Another benefit of using multiple processing

elements versus a single one is that this allows decreasing the frequency correspond-

ingly; and therefore the power supply voltage: as the consumed power is bound to

voltage to the power of 2, this decreases the dynamic power consumption signifi-

cantly. The dynamic power consumption is: Pdyn ¼ a.CLOAD.VDD
2.FCLK with Pdyn

the dynamic power consumption, a is the activity factor, i.e., the fraction of the circuit

that is switching, Cload the circuit equivalent capacitance,VDD the supply voltage, and

fclock the clock frequency.Assuming that it is possible to reduce the clock frequency by

a factor r (with 0 < r <1), it is then possible to reduce the supply factor by the same

factor thanks to DVFS techniques (DynamicVoltage and Frequency Scaling). Finally,

the dynamic power consumption is: Pdyn ¼ a.CLOAD.(r.VDD)
2.(r.FCLK); with

r ¼ 0,8, the dynamic power is almost divided by 2.

A homogeneous MPSoC based on programmable parallel processors could

provide performance thanks to the “speed-up” and a reduced power-consumption

by decreasing the operating frequency and the power supply and could be consid-

ered as a real alternative to heterogeneous MPSoC. Moreover, their inherent

structure is more flexible and more scalable than heterogeneous systems. Practi-

cally, exploiting efficiently the parallelism is not straightforward; flexibility and

scalability could also be limited due to several factors such as the organization of

the memory, the interconnection infrastructure, etc.

Parallel architectures have been studied intensively during the past 40 years;

there is consequently a huge amount of books and references related to this topic

and we will therefore only focus on general concepts.

The first famous classification was proposed by Flynn [23]. He classifies archi-

tectures according to the relationship between processing units and control units.

He defines four execution models: SISD (Single Instruction Single Data), SIMD

(Single Instruction Multiple Data), MISD (Multiple Instruction Single Data) and

MIMD (Multiple Instruction Multiple Data). The SISD model is the classical Von

Neumann model [24], where a single processing resource executing a single

instruction per unit time processes a single data flow. In SIMD architecture, a

single control unit shares the data flows and distributes data to each processing

resource. The MISD architectures execute several instructions simultaneously on a

single data flow. Finally, several control units manage several processing units in

the MIMD architectures.

In Fig. 1.8, Flynn’s classification has been extended to take into account the

organization of the memory that can be shared (8.a) or distributed (8.b). In shared

memory architecture, processes (executed by different processors) can easily

exchange information through shared variables; however it requires handling

1 An Introduction to Multi-Core System on Chip – Trends and Challenges 9



carefully synchronization and memory protection. In distributed memory architec-

ture, a communication infrastructure is required in order to connect processing

elements and their memories and allow exchanging information.

Based on the memory and the control organization, the Fig. 1.9 depicts an

architecture classification of parallel homogeneous processing architectures. It

distinguishes the centralized control (SIMD) and decentralized control (MIMD),

shared and distributed memories.

It is important to observe here that the organization of the control and the

memory will provide different trade-offs in terms of scalability and management

of the system. For instance, an architecture based on a fully distributed control and

Interconnection network

PE PE PE PE PE

Memory

a - Shared Memory b - Distributed Memory 

Interconnection network

PE PE PE PE PE

M M M M M

Local memory

Fig. 1.8 Memory organization
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memory organization, will be more scalable but less flexible to manage, than

architecture based on a centralized control and a shared memory.

1.6 Multi variable Optimization

Due to the increasing complexity of MPSoC architectures, optimization is a real

challenge since it may target multiple opposite objectives: application performance,

power consumption/energy, temperature, load balacing, etc. In the literature, there

are several methods developed to address this problem. Classical approaches are

static and try to optimize the system at design time. More recent techniques

are employed at run-time and try to adapt the system dynamically. Most advanced

methods aim at taking advantage of the distributed decision capabilities of the

processing elements in order to improve the scalability of the system.

1.6.1 Static Optimization

In the context of MPSoC, a static optimization approach is a way to improve the

system at design time. Several authors have proposed static optimization techniques

to improve the power efficiency. For example, in [25] authors use genetic algo-

rithms to solve the optimization problem at design time. They explore metrics

including communication traffic, memory occupation and throughput aspects.

In [26], authors analyze three static optimization methods: greedy algorithm,

tabu search and simulated annealing. The problem of how to find a task schedule

with the minimum power consumption while satisfying some timing constraints is

studied as a part of the design space exploration process. Firstly, the system

description is decomposed into Synchronous Data Flow (SDF) graphs [27] in a

single frequency domain including timing constraints. Then, an extension of tradi-

tional SDFs to multi-frequency domain graphs is proposed.

In [28], a static policy based on linear models is proposed to optimize the power

consumption while guaranteeing real-time constraints. The problem of selecting the

best operating frequency for each block of a distributed design is studied. The

author models a set of frame-based pipelined applications by using SDF graphs.

Then, applications are mapped on a distributed platform integrating fine-grain

DVFS.

1.6.2 Dynamic Optimization

Static explorations are always necessary to make design-time decisions. Neverthe-

less, considering the increasing uncertainty of implementation technologies and

1 An Introduction to Multi-Core System on Chip – Trends and Challenges 11



applicative scenarios of such systems, dynamic optimizations are becoming man-

datory to provide flexible approaches and reliable designs [29]. Centralized and

distributed approaches are reported in the following subsections.

1.6.2.1 Centralized Approaches

Contrarily to static optimization, dynamic approaches offer adaptability. Figure 1.10

shows a schematic view representing the common dynamic approaches existing for

MPSoC: a centralized optimization subsystem is in charge of the whole system

management. It analyzes global information and optimizes each processing element

in the system.

In [30], the frequency and voltage selection for GALS systems based on VFIs is

addressed. A centralized method based on non-linear Lagrange optimization is used

to select the frequencies and voltages. They present static and dynamic algorithms.

Moreover, authors affirm that ideally in latency-constrained systems, the assign-

ment of optimal voltages would need a global strategy decision.

Similarly, in [31, 32], authors propose a centralized energy management using

models inspired by Kirchhoff’s current law. They argue that while local energy

dissipation of each PE can be minimized using DVS techniques based on workload

predictions, it can be shown that these local minimums usually do not represent the

Fig. 1.10 Centralized dynamic optimization on MPSoC
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global optimum. Moreover, the global optimum can be reached by considering the

relative timing dependencies of all tasks running in the system. Their approach is

based on an online global energy management unit that controls the PEs through a

power source and a clock generator. The block diagram of such approach is

represented in Fig. 1.11. Authors exploit the analogy between the energy minimi-

zation problem under timing constraints in a general task graph and the power

minimization problem under Kirchhoff’s current law constraints in an equivalent

resistive network.

In [33], authors use convex optimization for temperature-aware frequency

assignment on MPSoC. Firstly, they present a complex temperature model. Then,

the problem is formulated for both, steady-state and dynamic-state: assign a single

frequency to each processor, maintaining the temperature and power consumption

below user-defined thresholds. In steady state, frequency and voltage are assigned

once and remained constant, without taking advantage of DVFS. In dynamic state,

the frequencies and voltages are varied over time to better optimize the system

performance.

Authors formulate both scenarios as convex optimization problems. Then, they

propose the steady state and dynamic-state optimization procedures. For the

dynamic case, a 2-phase algorithm is used. Nevertheless, authors only present the

mathematic formulation. Using a Matlab convex-optimization solver solves

the demonstrative scenario shown in this work. The same authors propose in [34]

to pre-calculate some valid solution at design time by using the convex-optimization

method, and to implement a control to choose at run-time the best solution for each

case. Figure 1.12 shows the flow for the design-time table construction.

In [35], authors survey some studies for energy-efficient scheduling in real-time

systems on platforms integrating DVFS. After a long review of techniques applied to

single-processor systems, the article divides multiprocessor platform into

homogeneous and heterogeneous ones. For the first one, it briefly describes

some techniques applied to frame-based real-time task scheduling, periodic real-time

Fig. 1.11 Centralized online global energy management [32]
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scheduling, leakage-aware energy-efficient scheduling and slack reclamation

scheduling. For heterogeneous systems, it presents some techniques for periodic

real-time tasks and allocation cost minimization under energy constraints.

In [36], heuristics for optimal task mapping are discussed in a NoC-based hetero-

geneous MPSoC. There are several approaches where tasks are moved in order to

balance computation workload and homogeneously dissipate the power, for example

in [37]. In that sense, in [38], hot-spot avoidance and thermal gradient control become

an important optimization problem regarding the reliability of MPSoC.

In [38], authors investigate dynamic OS-based schedulers for thermal manage-

ment of MPSoCs. In [39], thermal gradients are also minimized. They focus on

MPSoCs where workload is not known a priori and generally not easy to predict.

They propose an OS-based task migration and scheduling policy that optimizes the

thermal profile of the chip by balancing the system load. Authors claim to obtain

significant reductions in temporal and spatial temperature variations.

In [40, 41], authors propose a design time Pareto exploration and characterization

combined with run-time management. They firstly make a multi-dimensional design-

time exploration. The space includes costs (e.g. energy consumption), constraints

(e.g. performance) and used platform resources (e.g. memory usage, processors,

clocks, communication bandwidth). A low-complexity run-time manager implemen-

ted in the OS takes critical decisions during a second phase.

Fig. 1.12 Design-time table construction by convex optimization [34]
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In [42], the interest is how to select at run-time an energy-efficient mapping on

heterogeneous multi-processor platforms. Considering that many different possi-

ble implementations per application can be available and the selection must meet

the application deadlines under the available platform resources, authors model as

a NP-hard problem: the Multi-dimension Multi-choice Knapsack Problem. In

order to find a near-optimal solution, they propose a heuristic-based OS imple-

mentation.

1.6.2.2 Distributed Approaches

With forecasted hundreds of processing elements (PE), scalability is also a major

concern for the optimization process. For this reason, an alternative approach is to

handle optimization dynamically in a distributed way. Static optimization does

not provide adatability at run-time. On the contrary, existing dynamic approaches

provide reactivity during execution time but they are centralized solutions. They do

not provide scalability since they are not based on distributed models

An alternative solution to centralized approaches is to consider distributed

algorithms. One interesting approach is to conceive the architecture illustrated in

Fig. 1.13: each processing element of an MPSoC embeds an optimization subsys-

tem based on a distributed algorithm. This subsystem manages the local actuators

(DVFS in the figure) taking into account the operating conditions. In other words,

the goal is to conceive a distributed and dynamic optimization algorithm.

Fig. 1.13 Distributed dynamic optimization on MPSoC
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To avoid hotspots and control the temperature of the tiles, dynamic voltage-

frequency scaling (DVFS) can be applied at PE level. At system level, it implies to

dynamically manage the different voltage-frequency couples of each PE in order to

obtain a global optimization. In [43], an original approach based on game theory is

presented, which adjusts at run-time the frequency of each PE. It aims at reducing

the tile temperature while maintaining the synchronization between the tasks of the

application graph. A fully distributed scheme is assumed in order to build a scalable

mechanism. Results show that the proposed run-time algorithm find solutions in

few calculation cycles achieving temperature reductions of about 23%. In [44],

results show that the proposed run-time algorithm requires an average of 20

calculation cycles to find the solution for a 100-processor platform and reaches

equivalent performances when comparing with an offline method.

In [45], this adaptive technique is applied to reduce power consumption. It

optimizes the frequencies of local processors while fulfilling applicative real-time

constraints. The obtained power consumption gains on a telecommunication test

case are between 10% and 25%, while the reaction time to temporal variations due

to application reconfiguration is less than 25ms.

1.7 Static vs Dynamic Centralized and Distributed Approaches

Table 1.1 summarizes the optimization methods described in the previous section.

Several approaches have been considered, representing the directions of MPSoC

optimizations. This table allows a qualitative comparison. The methods are com-

pared regarding the off-line and dynamic phases, their complexities, and their

implementations (centralized or distributed). Approaches presented in [34, 33]

and [30] have complex off-line optimization phases. In [40, 41, 42], most of the

work is done at design time. These approaches can be hardly used at run-time due to

their high complexity.

The solution proposed in [30, 32] operates with a dynamic optimization subsystem

with a low complexity. In the same direction, approaches [38, 39] and [40, 41, 42]

provide run-time management. Nevertheless, all these approaches fail when

distributed aspects are considered. When OS-based implementation is used ([38, 39]

and [41, 42, 43]) a distributed implementation can be imagined. However, we do not

consider doing that since they are not based on distributedmodels. The approach based

onGameTheory [44, 45] is intrinsically based on a distributedmodel, which improves

the scalability of the system. Furthermore, this low complexity method can be easily

implemented at run-time, which implies a good adaptability required by dynamic

systems.

Finally, Table 1.1 also compares the metrics used in each case. One can note

that not every approach includes constrained scenarios but all of them propose

multi-objective optimization. Some of these models can be reused in novel for-

mulations.
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1.8 Conclusion

Semiconductors currently undergo profound changes due to several factors such as

the approaching limits of silicon CMOS technology as well as the inadequacy of the

machine models that have been used until now. These challenges require devising

new design approaches and programming of future integrated circuits. Hence,

parallelism appears as the only solution for coping with the ever-increasing demand

in term of performance. The solutions that are suggested in the literature often rely

on the capability of the system to take online decisions for coping with these issues,

such as scaling supply voltage and frequency for increasing energy efficiency, or

testing the circuit for identifying faulty components and discarding them from the

functionality.

MPSoCs are certainly the natural target for bringing these techniques into

practice: provided they comply with some design rules they may prove scalable

from a performance point of view. Further, since they are in essence distributed

architectures they are well suited to locally monitoring and controlling system

parameters.

In this chapter, we have studied multiprocessor systems and proposed an over-

view of a template that we believe is representative of tomorrows’ MPSoCs. The

important characteristics that have been considered are mostly flexibility, scalability

and adaptability, considering decentralized control, Homogeneous or Heteroge-

neous array of processing elements, Distributed memory, Scalable NoC-style com-

munication network.

Finally, we think that adaptability is an approach that will in the near future be

widely adopted in the area. Not only because of the herementioned limitations such as

technology shrinking, power consumption and reliability but also because computing

undoubtedly go pervasive. Pervasive, or ambient computing is a research area on its

own and in essence implies using architecture that are capable of self-adapting to

many time-changing execution scenarios. Be it mobile sensors deployed for monitor-

ing various natural phenomena or computing devices embedded in clothes (wearable

computing), such systems have to cope with many limitations such as limited power

budget, interoperability, communication issues, and finally, scalability.

GLOSSARY

SoC System On Chip

MPSoC Multiprocessor System On Chip

NoC Network On Chip

HPC High Performance Computing

ASIC Application Specific Integrated Circuit

PE Processing Element

SW Software
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HW Hardware

OMAP Open Multimedia Applications Platform

DVFS Dynamic Voltage and Frequency Scaling

GALS Globally Asynchronous Locally Synchronous

NI Network Interfaces

VFI Voltage/Frequency Islands

ITRS International Technology Roadmap for Semiconductors

CPU Central Processing Unit

SISD Single Instruction Single Data

SIMD Single Instruction Multiple Data

MISD Multiple Instruction Single Data

MIMD Multiple Instruction Multiple Data

OS Operating System
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Chapter 2

Composability and Predictability

for Independent Application Development,

Verification, and Execution

Benny Akesson, Anca Molnos, Andreas Hansson,

Jude Ambrose Angelo, and Kees Goossens

Abstract System-on-chip (SOC) design gets increasingly complex, as a growing

number of applications are integrated in modern systems. Some of these applica-

tions have real-time requirements, such as a minimum throughput or a maximum

latency. To reduce cost, system resources are shared between applications, making

their timing behavior inter-dependent. Real-time requirements must hence be

verified for all possible combinations of concurrently executing applications,

which is not feasible with commonly used simulation-based techniques. This

chapter addresses this problem using two complexity-reducing concepts: compo-
sability and predictability. Applications in a composable system are completely

isolated and cannot affect each other’s behaviors, enabling them to be indepen-

dently verified. Predictable systems, on the other hand, provide lower bounds on

performance, allowing applications to be verified using formal performance analy-

sis. Five techniques to achieve composability and/or predictability in SOC resources

are presented and we explain their implementation for processors, interconnect, and

memories in our platform.

Keywords Composability � Predictability � Real-Time � Arbitration � Resource
Management � Multi-Processor System

2.1 Introduction

The complexity of contemporary Systems-on-Chip (SOC) is increasing, as a growing

number of independent applications are integrated and executed on a single chip.

These applications consist of communicating tasks mapped on heterogeneous

multi-processor platforms with distributed memory hierarchies that strike a good
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balance between performance, cost, power consumption and flexibility [14, 22, 38].

The platforms exploit an increasing amount of application-level parallelism by

enabling concurrent execution of more and more applications. This results in

a large number of use-cases, which are different combinations of concurrently

running applications [15]. Some applications have real-time requirements, such
as a minimum throughput of video frames per second, or a maximum latency for

processing those video frames. Applications with real-time requirements are referred

to as real-time applications, while the rest are non-real-time applications. A use-case

can contain an arbitrary mix of real-time and non-real-time applications.

To reduce cost, platform resources, such as processors, hardware accelerators,

interconnect, and memories, are shared between applications. However, resource

sharing causes interference between applications, making their temporal behaviors

inter-dependent. Verification of real-time requirements is often performed by

system-level simulation. This results in three problems with respect to verification,

since inter-dependent timing behavior requires that all applications in a use-case are

verified together. The first problem is that the number of use-cases increases rapidly
with the number of applications. It hence becomes infeasible to verify the exploding

number of use-cases by simulation. This forces industry to reduce coverage and

verify only a subset of use-cases that have the toughest requirements [14, 37]. The

second problem is that verification of a use-case cannot begin until all applications

it comprises are available. Timely completion of the verification process hence

depends on the availability of all applications, which may be developed by different

teams inside the company, or by independent software vendors. The last problem is

that use-case verification becomes a circular process that must be repeated if an

application is added, removed, or modified [23]. Together these three problems

contribute to making the integration and verification process a dominant part of SOC

development, both in terms of time and money [22, 23, 34].

In this chapter, we address the real-time verification problem using two

complexity-reducing concepts: composability and predictability. Applications in

a composable system are completely isolated and cannot affect each other’s

functional or temporal behaviors. Composable systems address the verification

problem in the following four ways [17]: 1) Applications can be verified in isolation,

resulting in a linear and non-circular verification process. 2) Simulating only a

single application and its required resources reduces simulation time compared to

complete system simulations. 3) The verification process can be incremental and

start as soon as the first application is available. 4) Intellectual property (IP)

protection is improved, since the verification process no longer requires the IP of

independent software vendors to be shared. These benefits reduce the complexity of

simulation-based verification, making it a feasible option with a larger number of

applications. An additional benefit is that composability does not inherently make
any assumptions on the applications, making it applicable to existing applications

without any modifications.

Predictable systems, on the other hand, bound the interference from the platform

and between applications. This enables bounds on performance, such as upper

bounds on latency or lower bounds on throughput, to be provided. Applications
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in predictable systems can hence be verified using formal performance analysis

frameworks, such as network calculus [9] or data-flow analysis [36]. The benefit of

formal performance verification is that conservative performance guarantees can be

provided for all possible combinations of initial states of resources and arbiters,

all input stimuli, and all concurrently executing applications. The drawback is

that formal approaches require performance models of the software, the hardware,

and the mapping [8, 25], which are not always available. Composability and

predictability both solve important parts of the verification problem and provide a

complete solution when combined.

The two main contributions of this chapter are: 1) An overview of five techniques

to achieve composability and/or predictability in multi-processor systems with

shared resources. 2) We show how to design a composable and predictable system

by applying the proposed techniques to three typical resource types: processor tiles,

interconnect (a network on chip), and memory tiles (with either on-chip SRAM or

off-chip SDRAM).

The rest of this chapter is organized as follows. Section 2.2 describes a number

of techniques to achieve composability and/or predictability for shared resources.

We then proceed in Sections 2.3, 2.4, and 2.5 by explaining which of these

techniques are suitable for our processor tiles, network-on-chip, and memory

tiles, respectively. Section 2.6 then demonstrates the composability of our SOC

platform by showing that the behavior of an application is unaffected at the

cycle-level, as other applications are added or removed. Lastly, we end the chapter

with conclusions in Section 2.7.

2.2 Composability and Predictability

The introduction motivates how composability and predictability address the

increasingly difficult problem of verifying real-time requirements in SOCs. The

next step is to provide more details on how to implement these concepts. Firstly,

we establish some essential terminology related to resource sharing, which allows

us to define composability and predictability formally. We then discuss five tech-

niques to achieve these properties and highlight their respective strengths and

weaknesses. This illustrates the design space for composable and predictable

systems, and allows us to explain how different techniques are suitable for different

resources depending on their properties, such as whether execution times are

constant or variable, and whether the resource is abundant or scarce.

2.2.1 Terminology

Our context is a tiled platform architecture following the template shown in

Fig. 2.1. At the high level, this platform comprises a number of processor tiles
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and memory tiles interconnected by a network-on-chip. We return to discuss the

details of this architecture in Sections 2.3, 2.4, and 2.5, respectively. An applica-
tion consists of a set of tasks that may be split across several processor tiles to

enable parallel processing. We assume a static task-to-processor mapping, which

implies that task migration is not supported. Non-real-time tasks can communicate

in any way they like using distributed shared memory, obeying only the restrictions
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on processors, discussed later in Section 2.3.1. However, tasks of real-time applica-

tions operate in a more restrictive fashion to ensure that their temporal behavior can

be bounded. Each real-time task continuously iterates, which means that it reads its

inputs, executes its function, and writes its outputs. Inter-task communication is

implemented using FIFOs, according to the C-HEAP protocol [31], with blocking

read and write operations. Inside a FIFO token, data can be accessed in any

order. We choose this programming model because it perfectly fits the domain of

streaming applications and enables overlapping computation with communication.

It furthermore allows modeling an application as a data-flow graph, which enables

efficient timing analysis. Communication between processor tiles and memory tiles

takes place via the interconnect.

Requests are defined as uses of a resource, such as a processor, interconnect,

or a memory. The originators of requests, and hence the users of the resources,

are referred to as requestors. Requests for a processor resource correspond to

application tasks that are ready for execution. In case of a memory or an inter-

connect, requests are transactions originating from ports on IP components. These

transactions are communicated using standardized protocols, such as AXI [6],

DTL [33], or OCP [32]. Common examples of transactions are reads and writes of

either single data words or bursts of data to a memory location.

The execution time (ET) of a request determines the amount of time a request uses

a resource before finishing. However, a requestor may not have exclusive access to

the resource, due to interference from other requestors. Interference may prevent a

request from accessing the resource straight-away and its execution may be pre-

empted several times before finishing. This is considered in the response time (RT)
of a request, which accounts for both the execution time and the interference. The

response time is hence the total time it takes from when the request is eligible for

scheduling at the resource until it has been served. The point in time at which a

request is scheduled to use the resource for the first time is referred to as its starting
time. It is important to note that the execution time, response time, and starting time

of a request from a requestor often depend on other requestors. The execution time

may depend on others if a request from one requestor alters the state of a resource in

a way that affects the execution time of a following request. A common example of

this is when a memory request from a requestor evicts a cache line from another

requestor, turning a future cache hit into a cache miss. The response time and starting

time both typically varywith the presence or absence of requests from other requestors

in systems with run-time arbitration, such as round robin or static-priority scheduling.

This results in a varying interference that causes both the starting time and response

time to change.We now proceed by defining composability and predictability in terms

of the established terminology.

The functional behavior of a request is defined as composable when its output

is independent of the behavior of requestors belonging to other applications.

The temporal behavior of a request from a requestor using a resource is defined

as composable if its starting time and response time are independent of requestors

from other applications, since this implies that the request starts and finishes using

the resource independently of others. We refer to a resource as a composable
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resource if both functional and temporal composability holds for any set of

requestors and their associated requests. A composable system contains only com-

posable resources. Such a system enables independent verification of applications,

as their constituent requestors and requests are completely isolated from each other

in the time and value (functional) domains. The verification complexity hence

becomes linear with respect to the number of applications. It also makes the resulting

system more robust at run time, because there is no interference from unknown,

failing, or misbehaving applications. In this chapter, we focus on verification of real-

time requirements. We hence limit the discussion to temporal composability and

do not further discuss how to achieve functional composability. For simplicity, we let

composability refer to temporal composability in the rest of this chapter.

For predictability, every request on a resource must have both a useful worst-
case execution time (WCET) and worst-case response time (WCRT). Unlike com-

posability, which inherently considers multiple requestors and applications on a

shared resource, predictability can be considered for a non-shared resource with

only a single requestor. For shared resources, the WCRT can be determined if there

is a bound on the interference from other requestors. A resource is a predictable
resource if all requests from all the requestors mapped on it are predictable.

Similarly, a predictable system is a system only comprising predictable resources.

Predictable systems enable formal verification of real-time requirements, since

applications are sets of requestors for different resources that all provide bounded

WCRT. For a complete end-to-end analysis, these WCRTs have to be used in a perfor-

mance analysis framework. We use data-flow [36] analysis to compute bounds on

throughput and latency for real-time applications, although time-triggered [23] or

network calculus [9] methods can also be used.

It is important to realize that predictability and composability are two different

properties and that one does not imply the other. Predictability means that a useful

bound is known on temporal behavior and is hence a property of a single applica-
tion mapped on a set of resources. Composability, on the other hand, implies

complete functional and temporal isolation between applications and is a property

of multiple applications sharing resources, where each application may be predict-

able or not. We illustrate the difference by discussing four example systems, shown

in Fig. 2.2, that cover all combinations of composability and predictability. The first

system, depicted in Fig. 2.2a, consists of two processors (P), each executing a single

application (A1 and A2, respectively). We assume that both applications are

predictable and hence that worst-case execution times are known for all tasks

when running on predictable hardware. Data is stored in a shared remote zero-

bus-turnaround SRAM that is reached via a bus. This type of SRAM has an execution

time of one clock cycle per read or written word that is independent of other

requestors. The SRAM is shared using time-division multiplexing (TDM) arbitration,

which is a composable and predictable arbitration scheme, since the WCRT of a

requestor is both bounded and independent of other requestors. This makes this

system as a whole both composable and predictable. For our second system in

Fig. 2.2b, we replace the TDM arbiter with a round robin arbiter (RR). This system is

not composable, since response times of requests vary depending on the presence or
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absence of requests from other requestors. However, it is still predictable, since this

interference is easily bounded. We create our last two systems by adding private L1

caches ($) with random replacement policies to the processors in both previous

systems. A private cache is composable, since it is not shared between applications.

However, the random replacement policy makes the systems unpredictable, since a

useful bound cannot be derived on the time to serve a sequence of requests. The

third system, in Fig 2.2c, is hence composable, but not predictable. The last system,

shown in Fig 2.2d, is neither composable, nor predictable.

2.2.2 Composable Resources

This section discusses designing composable resources that may or may not be

predictable. As previously explained in Section 2.2.1, composability implies that

the starting time and response time of a request from a requestor must be

completely independent of requests from requestors belonging to other applica-

tions. Composability is trivially achieved by mapping applications to different

resources, an approach used by federated architectures in the automotive and

aerospace industries [24]. However, this method is prohibitively expensive for
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systems that are not safety-critical. We proceed by looking at two alternatives to

composable sharing of resources. These correspond to the two paths ② ! ⑤ ! ⑦

and ① ! ④ ! ⑦ in Fig. 2.3, which provides an overview of the five techniques
presented in this chapter.

The first technique is called composable scheduling of preemptive resources and
corresponds to following the edges ②, ⑤, and ⑦. This approach considers that
the execution times of requests may be variable and unknown a priori. An example
of this is the time required by a video decoding task executing on a processor to
decode a frame, which is highly dependent on the image contents. This results in non-
composable behavior, as the starting time of a request becomes dependent on the
execution time of the previous request, which may have been issued by a requestor
belonging to a different application. A solution to this problem is to preempt an
executing request after a given time, referred to as the scheduling interval (SI) of the
resource arbiter. This is shown in Fig. 2.4a, where the request of requestor 2 is
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preempted before finishing its execution. We refer to a resource with a worst-case

scheduling interval (WCSI) as a reschedulable resource, as shown in Fig. 2.3, since it
is guaranteed to take new scheduling decisions within a bounded time. Such a

resource ensures progress of all requestors if it is paired with a starvation-free
arbiter, which is a class of arbiters that guarantee that all requestors are scheduled in

a finite time. Both round robin and TDM are examples of arbiters in this class. A static-

priority scheduler, on the other hand, is not free of starvation, since a low-priority

requestor starves if high-priority requestors are constantly requesting.

The next step with this technique is to make all scheduling intervals equal to the

WCSI by delaying the arbiter in case the request finishes early, as shown in Fig. 2.4a.

This step decouples the starting time of a request from the execution time of the

preceding request, which is one of the two requirements to achieve composability.

The second requirement is that the response time must be independent from reques-

tors of other applications. We achieve this by using a composable arbiter, such as

TDM, where the presence or absence of other requestors does not affect the interfer-

ence. This results in independent response times for resources where the execution

time is independent of previous requests, such as a zero-bus-turnaround SRAM.

We have now fulfilled both requirements for a resource to be considered composable.

Note that this type of composable resource is not necessarily predictable. It may, for

example, include a cache that is private or shared between requestors belonging to the

same application, which results in non-useful bounds on execution time for memory

requests, although they are independent of other applications.

Next, we explore a second method of designing composable resources called

composable scheduling of non-preemptive predictable resources, which follows the

edges ①,④, and⑦ in Fig. 2.3. This method is motivated by the main limitation of the
first approach, which is restricted to preemptive resources. Some important resources,
such as SDRAMmemories cannot be preempted during a burst, as they require all the data
associated with a request to be transferred on consecutive clock cycles to function
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correctly. Achieving composability with non-preemptive resources is still possible,
assuming that the resource is predictable and hence has a known WCET. For these
resources, we make the scheduling interval equal to the longest WCET of any request
executing on the resource. This is illustrated in Fig. 2.4b, where the request from
requestor 2 is assumed to have the longest WCET. This technique makes starting times
independent of requests from other applications, which is required for composability.
Supporting non-preemptive resources with bounded execution times is the major
benefit of this technique. However, this method arrives at a reschedulable resource by
characterizing the requests and the resource rather than by enforcement,which has three
drawbacks. Firstly, it cannot be applied to mixed time-criticality systems where real-
time applications share resources with non-real-time applications that do not have
bounded WCET. Secondly, the system is less robust, as it becomes non-composable if
the characterization is incorrect or if a requestor misbehaves. Finally, making the
scheduling interval equal to the longest WCET results in low resource utilization if
there is a large difference between the average and worst-case execution time. This is
not acceptable for scarce resources, such as SDRAM memories.

Since composable scheduling of non-preemptive predictable resources implies

that the WCET of requests have to be bounded, it may result in a system that is

also predictable. This depends on whether or not the composable arbiter is also

predictable. Although this is typically the case, such as for TDM, it is not inherent

to composability. For example, an arbiter that randomly schedules requestors

every WCSI is composable, as it is independent of applications, but it is unpredict-

able, since the WCRT can be infinite. We will return to discuss techniques to share

resources in ways that are both composable and predictable in Section 2.2.4.

The proposed techniques for composable resource sharing make the temporal

behaviors of the requestors independent of each other, thus implementing compo-

sability at the level of requestors. This is a sufficient condition to be composable at

the level of applications, which is the actual requirement from Section 2.2.1.

However, composability at the level of requestors is stricter in the sense that

requestors belonging to the same application are allowed to interfere with each

other in a composable system. It is hence possible to let requestors benefit from

unused resource capacity (slack) reserved by requestors belonging to the same

application to increase performance or reduce power [27]. This can be accom-

plished by using a two-level arbiter, as proposed in [17], where the first level is a

composable inter-application arbiter, and the second an intra-application arbiter

that does not have to be composable. This type of arbitration enables requestors

from the same application to use slack created in the intra-application arbiter to

boost performance without violating composability at the application level.

2.2.3 Predictable resources

Having discussed two ways of building resources that are composable, but not neces-

sarily predictable, we proceed by discussing how to build resources that are
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predictable, but not necessarily composable.Aspreviouslymentioned inSection 2.2.1,

this requires useful bounds on both the WCET and the WCRT.

Our approach to predictable resource sharing is based on combining resources

and arbiters, each with predictable behaviors. In Fig. 2.3, this intuitively corre-

sponds to following the edges ① and ③ from a general resource to a predictable
shared resource. More specifically, we require bounds on the WCET for each request
executing on the resource, since these characterize the worst-case behavior of the
unshared resource. Some resources, such as zero-bus-turnaround SRAMs, are predict-
able and have constant execution times that are easy to determine. However, other
resources, such as SDRAM, have variable execution times that depend on earlier
requests and cannot be usefully bounded at design time in the general case [1].
In this case, the resource controller must be implemented in a way that makes the
resource behave in a predictable manner. We discuss how to accomplish this for an
SDRAM resource in Section 2.5.

If the resource is shared, we require predictable arbitration that bounds the time

within which a request finishes receiving service. Note that by this definition,

all predictable arbiters are starvation free. Predictable arbiters enable the WCRT

to be computed if the resource is reschedulable and hence makes new scheduling

decisions within a bounded time, determined either by a chosen scheduling interval

(preemptive resource) or by the longest WCET of any request executing on the

resource (non-preemptive resource). This is illustrated in Fig. 2.3, where a predict-

able shared resource has to be both predictable and reschedulable and there are two

possible paths to achieve the latter. Computing the WCRT takes the effects of sharing

the resource into account.

An important property of our approach is that it is based on combining indepen-
dent analyses of the resource and the arbitration. The arbiter analysis bounds the

number of scheduling decisions that are made by the arbiter from a request is

eligible for scheduling until it finishes receiving service. The WCRT is then con-

servatively computed by multiplying the number of decisions with the WCSI and

adding the number of pipeline stages between the request buffer and the response

buffer in the architecture. Note that this conservatively accounts for both the

execution time of the request and any preemptions from other requestors during

the execution. The strength of this approach is the generality, as any combination
of predictable resource and predictable arbiter results in a predictable shared

resource. This makes it easy to change the arbiter to fit with the response time

requirements of the requestors in the system, which is exploited by the processor

tile in Section 2.3 and the memory tile presented in Section 2.5.

2.2.4 Composable and predictable resources

Section 2.2.1 explained that composability and predictability are different proper-

ties and that one does not imply the other. We then showed in Sections 2.2.2 and

2.2.3 how to make resources that are either composable or predictable. In this
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section, we discuss two ways of making resources that are both composable and

predictable.

The first and most straight-forward technique to get composable and predictable

resources is to simply combine the approaches in Sections 2.2.2 and 2.2.3. We call

this technique worst-case predictable resource scheduling and it corresponds to

moving from a predictable shared resource via edge ⑨ and from a composable
resource via edge ⑩ to a composable and predictable resource. This implies that the
resource is predictable and that each request has a useful bound on WCET that is
independent of other requestors. It also means that the resource is shared using an
arbiter that is both composable and predictable, such as TDM. Such an arbiter provides
bounded interference from other requestors that is independent of their actual
behaviors, making the resource composable and bounding the WCRT. Since the
original approaches to composable and predictable resources apply to both preemp-
tive and non-preemptive resources, the same property holds for this combination. It
furthermore inherits the possibilities for slack management, previously explained in
Section 2.2.2.

A benefit of this approach to make resources composable and predictable is that

it is easy to conceptually understand and implement. A drawback is that it only

applies to resources where the execution time of a request is independent of

requests from requestors belonging to applications other, as previously described

in Section 2.2.2. If this is not naturally the case, it can be achieved by delaying all

executions to be equal to the WCET. However, this may be costly if the variation in

execution time due to other applications is large, preventing it from being effi-

ciently applied to scarce resources, such as SDRAM. Instead, this technique is used in

the processor tile presented in Section 2.3 and for composable and predictable SRAM

sharing using TDM in [17].

The second technique is called predictable resource scheduling with worst-case
delay and addresses the problem of efficiently dealing with variable execution times

and extends composability to support any predictable arbiter. The problem with

most predictable arbiters is that they typically cause the times at which the resource

accepts requests and sends responses to a requestor to change due to variable

interference from other requestors, making it non-composable. The key idea behind

this technique is to make the system composable by removing the variation in

interference, both from other applications and the resource itself. We accomplish

this by starting from a predictable shared resource and then delay all signals sent to

a requestor to emulate maximum interference from other requestors. A requestor

hence always receives the same worst-case service no matter what other requestors

are doing. This technique corresponds to achieving composability for a predictable

shared resource using edge⑧ in Fig. 2.3. The implication of this approach is that the
interface presented towards the requestor is temporally independent of other reques-
tors. Variation in starting times and response times may be visible on the resource
side of the interface, but not on the requestor side. This is similar to the composable
component interfaces proposed in [23].

The technique implies delaying responses in a response buffer until their WCRT

to prevent the requestor from receiving it prematurely if there is little interference,
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or if the variable execution time is short. However, making the WCRT independent of

other applications is only one of the two requirements for a composable resource.

The second requirement states that the starting time must also be independent. This

is not the case if a request is scheduled earlier than its worst-case starting time.

In this case, another request may be admitted into the resource prematurely,

resulting in a different starting time. This problem is addressed by basing request

accept signals on worst-case starting times of previous requests, as opposed to

actual starting times. Requests are hence admitted into the resource in a composable

manner, regardless of the interference experienced by others.

Figure 2.5 compares ‘predictable resource scheduling with worst-case delay’ to

‘composable scheduling of preemptive resources’, previously discussed in

Section 2.2.2. Figure 2.5a illustrates that requests are scheduled immediately after

a finished execution using ‘predictable resource scheduling with worst-case delay’,

but that responses are delayed until the WCRT. In contrast, Fig. 2.5b (identical to

Fig. 2.4a) shows that ‘composable scheduling of preemptive resources’ delays

scheduling until the WCRT, but releases responses immediately after a finished

execution.

‘Predictable resource scheduling with worst-case delay, has two major benefits

compared to ‘composable scheduling of preemptive resources’: 1) It extends the

use of composability beyond resources and arbiters that are inherently composable.

It is hence not limited to resources where the execution times of requestors are

independent, but can efficiently capture the behavior of any predictable resource.

2) It supports any predictable arbiter, enabling service differentiation that increases

the possibility of satisfying a given set of requestor requirements [2]. For example,

using an arbiter that is more sophisticated than TDM can lead to reduced over-

allocation, and allow lower latencies or higher throughput on a resource. These
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characteristics make the approach suitable for memory tiles with SDRAM, as we will

further explain in Section 2.5.

The main drawback of this technique is related to slack management. This

approach makes the temporal behaviors of the requestors independent of each

other, thus implementing composability at the level of requestors instead of at the

level of applications. It is hence not possible to benefit from unused resource

capacity reserved by requestors belonging to the same application, which may

negatively impact performance.

2.3 Processor tile

Having reviewed the different approaches to achieving composability and

predictability, we proceed by looking at how it is actually implemented in a

multi-processor system, starting with the processor tile. We consider a mixed

time-criticality system, where the processor executes a mix between real-time and

non-real-time applications. In this section, we first present the strategy to achieve

composability of applications on a processor tile, followed by our approach to

implementing predictability. The architecture of the processor tile is shown in

Fig. 2.1. The components of this tile are discussed in the following sections.

2.3.1 Composability

Processors execute requests, corresponding to task iterations. The execution time

of a request is hence the time it takes to execute a task iteration on the processor.

Real-time tasks must have a WCET, which means that they complete an iteration in

bounded time. This is not necessarily the case for non-real-time tasks. In mixed

time-criticality systems, where these types of tasks share resources, the WCRT of

real-time tasks can only be bounded if resources are preemptive. Composability in

the processor is hence implemented using the technique ‘composable scheduling of

preemptive resources’. The key ingredients to achieve composability in this

resource are thus found on the path ②, ⑤, and ⑦ in Fig. 2.3 and constitute:
1) preemption, 2) enforcing a constant scheduling interval equal to WCSI, and
3) using a composable arbitration scheme.

For a processor, the WCSI defines a task slot with bounded duration when a

task can utilize the processor. After a task slot finishes, an operating system (OS)

decides which task to execute next during an OS slot. To ensure independent

starting times and response times of tasks, required for composability, not only

the task slots, but also the OS slot, must have a constant duration and fixed starting

times.

The execution time of the OS may depend on the number of applications and tasks

it has to schedule. If the OS slot is not forced to a constant duration at least equal to its
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WCET, it is impossible to ensure that task starting times and response times are

independent of the presence or absence of other applications in the system. Further-

more, common OSes check if tasks are ready to execute, which depends on the

availability of their input data and output space. For composability, the time at

which this check is performed must be independent of other applications. ‘Compo-

sable scheduling of preemptive resources’ requires the execution times of tasks to

be independent. The functional state of the processor tile at a task switch must hence

be unable to affect the execution time of the scheduled task. This may imply that the

processor instruction pipeline should be empty, and that potential caches should

be cleared of all data to avoid cache pollution. In the following sections, we present

the mechanisms to enforce constant‐duration task and OS slots. Following this, we

describe the scheduling of applications and tasks, which relies on this property.

2.3.1.1 Constant task slots

To enforce a task slot with constant duration and fixed starting times, we use a timer

that interrupts the processor after a programmable fixed duration. When receiving

an interrupt, the first instruction of the interrupt service routine jumps to OS code,

giving control to the OS. This can be implemented with a dedicated timer per tile

that is accessed via a memory-mapped peripheral bus or an instruction-mapped

port. By using a timer outside the processor, in an always-on clock domain, the

processor can enter a low-power state during idle periods without stopping the

timer [13].

To get a constant-duration task slot, the processor should be interruptible in

(preferably short) bounded time. However, processors are typically not interruptible

while instructions are still in the pipeline. The time to start the interrupt service

routine, referred to as the interrupt latency, thus depends on the execution time of

the currently executing instructions. The time it takes to finish executing an

instruction depends exclusively on the processor, except for instructions that

involve other resources. For example, a load from non-local memory also uses

the interconnect and a remote memory. Depending on the predictability and sharing

of those resources, such a load may take thousands of cycles to complete (e.g. when

it has a low priority in the NOC and memory tile).

By restricting the number of outstanding remote-read transactions, the WCET of a

task and its worst-case interrupt latency can be computed, but will be prohibitively

high (thousands of cycles). We hence use an alternative approach by restricting the

processor to only using local (instruction and data) memories and use Remote Direct

Memory Access (RDMA) engines to communicate outside the processor tile. Remote

accesses may stall the RDMA, while the processor only polls locally, resulting in a

short interrupt latency. Note that evenwith only local reads, the execution time of the

interrupt service time is bounded, but not constant. For example, division and

multiplication instructions take more cycles than NOP or jump instructions.

2 Composability and Predictability 39



The processor programs the RDMA to read or write data on remote memories

residing inside another processor tile, or in a memory tile. Programming the RDMAs

is done using only local load and store instructions. An additional advantage of

using RDMAs is that they decouple computation and communication, enabling them

to be overlapped in time. In this chapter, we assume that the local memories of

processor tiles are large enough to store the following state for all tasks mapped on

the tile: 1) instructions, 2) (private) data, and 3) all the buffers (for input and output

tokens) needed for an iteration. RDMAs are hence only used for inter-task communi-

cation between tasks mapped on different processors. This communication is

implemented using uni-directional FIFO buffers with finite size. These FIFO

buffers are located either in the local memory of the consumer (if the memory

space in the processor tile is sufficiently large), or in a remote memory tile. The

producer always posts the data in the buffer via a RDMA write. In Fig. 2.1, the data

travels from the data memory in the producer tile, through the RDMA to the

interconnect. The interconnect then delivers it to the local memory in the consumer

tile. Alternatively, the producer RDMA places the data in a remote memory tile, from

where it is copied by the consumer RDMA to the data memory in its tile. In all cases,

the FIFO administration [31], consisting of read and write pointers, is located in

the producer and consumer tiles.

To achieve composability, a RDMA has to be composable if shared between

applications. Since RDMAs are simple finite state machines, we do not share them

between applications. Instead, each application has its own RDMA, but for maximum

performance, each FIFO of each task can be given its own RDMA. For simplicity,

Fig. 2.1 shows only one RDMA per tile. Note that the local memory should also be

made composable using the techniques detailed in Section 2.5.

2.3.1.2 Constant OS slot

As previously explained, the OS slot should have a constant starting time and

duration. Given a constant task slot duration, the only requirement to achieve a

constant OS starting time is that the task-to-OS switching time should be constant.

The task-to-OS switching time is equal to the interrupt latency of the timer, which

depends on the instructions in-flight on the processor. We force the interrupt latency

to be constant and equal to its WCET via a mechanism to delay actions (execution)

until a fixed future moment in time, as described below.

Our approach to enforce a constant OS slot is to inhibit execution on the processor
until its WCET is reached, thus making the OS execution composable. This corre-

sponds to the technique ‘composable scheduling of non-preemptive resources’,

which uses edges ①, ④, and ⑦ in Fig. 2.3. This can be implemented in several
ways. Polling on a timer [10] is the simplest, but prevents clock-gating of the
processor. If the processor has a halt instruction, the processor can be halted after
the OS finishes its execution. The tile timer, programmed before the halt instruction,
wakes up the processor at the WCET. When a halt instruction is not available, the
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processor clock can be disabled by a voltage-frequency control unit (VFCU in
Fig. 2.1) until the WCET.

Figure 2.6 presents the time line with the seven main events when performing

a task switch: 1) the interrupt is raised, 2) the interrupt is served, 3) the processor

ungate moment in time is programmed, 4) the clock is gated up to the WCET of the

interrupt latency, 5) the OS is executed, 6) the processor ungate moment in time

is programmed, and finally 7) the clock is gated up to the WCET of the OS.

2.3.1.3 Two-level application and task scheduling

The constant-duration task and OS slots ensure that task slots start at fixed points

in time, and that there is a bounded WCSI. A task iteration that has a WCET on a

non-shared processor tile hence has bounded WCET and WCRT on a shared tile.

As mentioned before, the functional state of the processor tile at the start of a

task slot must be independent of other applications to avoid possible interference.

By using a composable scheduler, interference between all tasks is removed.

However, this is unnecessarily strict, since it also prevents slack from being used by

tasks belonging to the same application. Moreover, different applications benefit

from using different schedulers, such as static-order, TDM, or Credit-Controlled

Static-Priority arbitration [5] (CCSP, further described in Section 2.5). The processor

addresses this problem by using a two-level arbitration scheme: a composable inter-

application arbiter (TDM) that schedules applications, and an intra-application arbi-

ter that schedules tasks within an application. The composable inter-application

arbiter ensures the isolation between applications, while the intra-application arbi-

ters are chosen to fit the requirements of the application tasks. The intra-application

arbiters are free to distribute slack to improve performance of the tasks.

2.3.2 Predictability

As already mentioned, we target mixed time-criticality systems that concurrently

execute a set of real-time and non-real-time applications. For real-time appli-

cations, we require the WCET of each task iteration to be known. The execution

time of a task on a processor is hence required to be predictable, which excludes the
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use of out-of-order execution, speculation, and caches with random replacement

policies [40].

To derive the end-to-end application performance (e.g. throughput, latency,

etc.), applications are modeled as data-flow graphs [25, 36]. The nodes in the

data-flow graphs are referred to as actors that are connected via directional edges.
Each actor fires whenever its firing rule is satisfied. A firing rule specifies for each

incoming and outgoing edge, the number of input tokens required and the number

of output tokens produced, respectively. The data-flow model naturally describes a

streaming application: a task is an actor, and a task iteration is an actor firing. FIFO

communication between two tasks is represented as a pair of opposing edges, one

modeling the communicated data, and the other modeling the available inter-task

buffer space.

If several tasks share the same processor, predictable inter-task arbitration is

required. Examples of such arbitration are TDM, CCSP, and round robin. Moreover,

the sharing and arbitration effects should be taken into account when calculating the

end-to-end application performance. Modeling of different arbitration policies as

data-flow graphs is presented in [19, 28].

2.4 Interconnect

The processor and memory tiles in the system communicate via a global

on-chip interconnect, as shown in Fig. 2.1. Typically, processors act as memory-

mapped initiators and memory tiles as memory-mapped targets. This is seen in

the figure, where initiator and target ports are colored black and white, respec-

tively. When tasks execute on a processor, they give rise to read and write

requests that are delivered to the appropriate memory tile based on the address,

and a response is potentially delivered back to the processor. The requestors of
the interconnect, according to Section 2.2.1, are thus the ports of the processor and

memory tiles.

To deliver the aforementioned functionality, the interconnect is subdivided into

a number of architectural components [16]. We first present a brief overview of

the components and then continue to discuss how they provide composability

and predictability. When a request is presented to the interconnect by an initiator,

it is serialized by a protocol shell into a sequence of words. These words are then

passed through a clock domain crossing (CDC) to transition from the clock domain

of the initiator to that of the network, making the platform globally-asynchronous

locally-synchronous (GALS) [30]. The data is then sent through the network,

comprising Network Interfaces (NI) and routers (R), through a logical connection.
The NI packetizes the data and determines the route through the network. The

routers merely forward the data to its destination NI where it is depacketized, before

transitioning to the clock frequency of the target in another clock domain crossing.

The shell then deserializes the request and presents it to the actual target port.

A response, if present, follows the same logical connection back through the
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network until it reaches the initiator. The interconnect resource hence comprises

protocol shells, clock domain crossings, NIs, routers and links.

2.4.1 Composability

The protocol shells are not shared by connections and thus require no special

attention to deliver composability. They are furthermore simple state machines

that can be considered predictable. Moreover, the shells serialize the memory-

mapped transactions of the tiles independently of their protocol, burst size, type

of transaction etc. Thus, when presented to the NIs as a stream of words, the level of

flow control and preemption is a single word (using a FIFO protocol).

Once the serialized transactions are delivered to the NIs, each logical connection

has dedicated input and output buffers in the NIs. At this level, the network can thus

be seen as a set of composable distributed FIFOs, interconnecting pairs of protocol

shells. The NIs packetize the individual words of data in units of flits and send them

through the network links and routers. Each packet starts with a header (flit) with

the path to the destination output buffer. In contrast to many on-chip networks, our

interconnect does not perform any arbitration inside the network. The routers

simply obey the path encoded in the packet headers, and push the responsibility

of scheduling and buffering to the NIs. Thus, all arbitration takes place in the NI, and

the routers merely forward the flits until they reach the destination NI, making the

network appear as a single (pipelined) shared resource.

To make the network as a whole composable (and predictable), we use the

technique ‘worst-case predictable resource scheduling’. We describe the imple-

mentation of this technique in three steps, corresponding to edges ⑤, ⑦, and ⑩ in
Fig. 2.3. Firstly, the network resources are preemptive at the level of flits (edge⑤). A
scheduling decision is thus taken for every flit, independent of the length of the
packets. Furthermore, as we have already seen, the data in the NI FIFOs has no notion
of memory-mapped transactions, and there is consequently no correspondence
between transactions and packets. As there is no buffering inside the router network,
the NIs use end-to-end flow control to ensure the availability of buffer space.

Consequently, flits are only injected if they are guaranteed not to stall anywhere

inside the network.

Secondly, the flit size is fixed at three words, resulting in a constant scheduling

interval of three cycles. If a connection’s input buffer is empty or if it runs out of

flow control credits, it uses only one or two words of the three-word flit. The

constant flit length corresponds to making all scheduling intervals equal to the

WCSI, indicated by edge ⑦ in Fig. 2.3. It is worth noting that there is no need to
determine how long it takes for other requestors flits to reach their destination, only
how long it takes until a new flit can be scheduled, i.e. the execution time and
response time of other requestors is irrelevant.

Thirdly, the fixed flit length is combined with a global schedule of the logical

connections, where each NI regulates the injection of flits using a TDM arbiter [11],

such that contention never occurs on the network links. The schedule relies on a
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(logical) global synchronicity of the network components, but the concept has been

demonstrated on both mesochronous and asynchronous implementations of the

network [18]. The TDM schedule is programmed at run time according to the running

use-case, but is typically determined at design time.

The last part of the interconnect composability is enforced insertion of packet

headers for non-consecutive flits. That is, if another connection could have used the

link, assume it did (even if it did not), and insert a new packet header. The header

insertion ensures that the arbiter is stateless in terms of influence from other

requestors.

2.4.2 Predictability

With the aforementioned mechanisms in place, the interconnect offers composability

at the level of connections, between pairs of protocol shells. Predictability additionally

requires worst-case response times for the shared resources. As discussed in detail

in [19], the temporal behavior of a connection depends on the TDM scheduler settings,

the path length, and the size of the input and output buffers. The scheduler determines

how long words have to wait in the input buffer until injected into the network, once

eligible. The path, in turn, determines the time required to traverse the network

(without stalling). The input and output buffers affect the time at which words are

accepted and become eligible for scheduling. All these contributions can be bounded

and captured in a data-flow graph, thus offering predictability.

2.5 Memory tile

This section presents our memory tile and discusses the techniques employed to

implement composability and predictability. The architecture of the memory tile,

shown in Fig. 2.1, is divided into a front-end and a back-end. The front-end is

independent of memory technology and contains buffering, arbitration, and com-

ponents to make the memory tile composable. The back-end interfaces with the

actual memory device and makes it behave like a predictable resource. The back-

end is hence different for different types of memories, such as SRAM and SDRAM, as

indicated by the figure. The components in the architecture are discussed further in

the following sections.

Although our memory tile is general and supports both SRAM and DDR2/DDR3 SDRAM,

we will focus the discussion on SDRAM, since these memories have three important

characteristics that make the implementation of composability and predictability

challenging. 1) The execution time of a request and the bandwidth offered by the

memory is variable and depends on other requestors. 2) Some memory requestors

are latency critical and require low response time to reduce the number of stall cycles

on the processor. 3) For cost reasons, SDRAM bandwidth is a scarce resource that must
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be efficiently utilized. This section is organized as follows. Firstly, Section 2.5.1

explains how to make an SDRAM behave like a predictable shared resource. Sec-

tion 2.5.2 then discusses how to make the predictable shared memory composable.

2.5.1 Predictability

Section 2.2.1 states that a predictable resource must provide a useful bound on WCET

to all requests. In addition, a memory tile must bound the bandwidth offered to a

requestor to ensure that bandwidth requirements are satisfied. This section elabo-

rates on how our memory tile delivers on these requirements. The memory tile

follows our general approach to predictable shared resources and combines a

predictable resource with predictable arbitration. First, the concepts behind an

SDRAM back-end that makes the memory behave like a predictable resource,

corresponding to edge ① in Fig. 2.3, are explained. We then discuss how to share
the predictable memory between multiple requestors, covering edge ③.

2.5.1.1 Predictable SDRAM back-end

SDRAM memories are challenging to use in systems with real-time requirements

because of their internal architecture. An SDRAM memory comprises a number of

banks, each containing a memory array with a matrix-like structure, consisting of

rows and columns. A simple illustration of this architecture is shown in Fig. 2.7.

Each bank has a row buffer that can hold one open row at a time, and read and write

operations are only allowed to the open row. Before opening a new row in a bank,

the contents of the currently open row are copied back into the memory array. The

elements in the memory arrays are implemented with a single capacitor and a

resistor, where a charged capacitor represents a logical one and an empty capacitor

a logical zero. The capacitor loses its charge over time due to leakage and must be

refreshed regularly to retain the stored data.

The SDRAM architecture makes the execution time of requests highly variable for

three reasons. 1) A request targeting an open row can be served immediately, while
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it otherwise needs the current row to be closed and the required row to be opened.

2) The data bus is bi-directional and requires a number of cycles to switch from read

to write and vice versa. 3) The memory must occasionally be refreshed before

executing the next request. The impact of these factors may cause the execution

time of an SDRAM burst to vary by an order of magnitude from a few clock cycles to a

few tens of cycles.

The behavior of an SDRAM memory is determined by the sequence of SDRAM

commands that are communicated from the back-end of the memory tile to the

memory device. These commands tell the memory to activate (open) a particular

row in the memory array, to read from or write to an open row, or to precharge

(close) an open row and store its contents back into the memory array. There is also

a refresh command that charges the capacitors of the memory elements to ensure

that the contents of the memory array are retained. The behaviors of some of these

commands are illustrated in Figure 2.7. Scheduling SDRAM commands is not a trivial

task, since there are a considerable number of timing constraints that must be

satisfied before a command can be issued. These timing constraints are typically

minimum delays between issuing particular SDRAM commands, such as two

activates, or an activate and a read or a write.

Existing SDRAM controllers can be divided into two categories, depending on

how they schedule SDRAM commands. Statically scheduled controllers [7] execute

precomputed command schedules that are guaranteed at design time to satisfy all

timing constraints of the memory. Executing precomputed schedules makes these

controllers predictable and easy to analyze. However, they are also unable to adapt

to the dynamic behavior of applications in contemporary SOCs, such as bandwidth

requirements or read/write ratios that vary over time. The second category of

controllers uses dynamic scheduling of commands, which requires the timing

constraints to be enforced at run time. These controllers [20, 21, 26, 29, 35] have

sophisticated command schedulers that attempt to maximize the average offered

bandwidth and to reduce the average latency at the expense of making the resource

extremely difficult to analyze. As a result, the offered bandwidth can only be

estimated by simulation, making bandwidth allocation a difficult task that must

be re-evaluated every time a requestor is added, removed or is modified.

We use a hybrid approach to SDRAM command scheduling that combines ele-

ments of statically and dynamically scheduled SDRAM controllers in an attempt to

get the best of both worlds. Our approach is based on predictable memory pat-
terns [1], which are precomputed sequences (sub-schedules) of SDRAM commands

that are known to satisfy the timing constraints of the memory. These patterns are

dynamically combined at run-time, depending on the incoming request streams.

The memory patterns exist in five flavors: 1) read pattern, 2) write pattern, 3) read/

write switching pattern, 4) write/read switching pattern, and 5) refresh pattern.

The patterns are created such that multiple read or write patterns can be scheduled

in sequence. However, a read pattern cannot be scheduled immediately after a

write pattern. In this case, the read pattern must be preceded by a write/read switch-

ing pattern. This works analogously in the other direction. The refresh pattern can be

scheduled immediately after either a read pattern or a write pattern. Both read and
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write patterns can be scheduled immediately after a refresh without any preceding

switching patterns.

The read and write patterns consist of a fixed number of SDRAM bursts, all

targeting the same row in a bank. The bursts are issued to the different banks in

sequence, since the data bus is shared between all banks to reduce the number of

pins on the SDRAM interface. The fixed number of bursts is hence first sent to the first

bank, then to the second, and so forth in an interleaving fashion until all banks have

been accessed. This way of accessing the SDRAM results in a short period with

frequent accesses, followed by a longer period without any accesses. The patterns

exploit bank-level parallelism by issuing activate and precharge commands to the

banks during the long intervals in which they do not transfer any data. The read and

write patterns are hence very efficient in terms of bandwidth, since it is possible to

hide a significant part of the latency incurred by activating and precharging rows.

This limits the overhead cycles incurred by always precharging a bank immediately

after it has been accessed, which is known as a closed page policy. We implement

this policy, as it effectively removes the dependency on rows opened by earlier

requests by returning the memory to a neutral state after every access. Removing

this dependency between requests is a key element in our approach, since it reduces
the variation in the offered bandwidth and latency, enabling tighter bounds on

bandwidth and WCRT to be derived.

Although interleaving memory patterns allow us to bound the offered band-

width, they come with two drawbacks. The first drawback is that continuously

activating and precharging the banks increases power consumption compared to if a

single bank is used at a time. The second drawback is that the memory is accessed

with large granularity and hence requires large requests to be efficient. An efficient

access requires at least one SDRAM burst to every bank. A typical burst size for SDRAM

is eight words and the number of banks is either four or eight. The minimum

efficient request size for a 32-bit memory interface is hence between 128-256 B,

depending on the size and generation of the DDR SDRAM [3]. Working with large

requests in a non-preemptive manner also means that urgent requests can be

blocked longer, resulting in longer WCRT.

Requests are dynamically mapped to patterns in a non-preemptive manner by the

command generator in the SDRAM back-end. A scheduled read request maps to a read

pattern, possibly preceded by a write/read switching pattern. Similarly, a write

request is mapped to a write pattern and potentially a preceding read/write switch-

ing pattern. Refresh patterns are scheduled automatically by the SDRAM back-end

on a regular basis between requests. The mapping from requests to patterns and

from patterns to SDRAM bursts is shown for an SDRAM with four banks in Fig. 2.8.

The figure illustrates that the execution time of a request of four bursts varies

depending on whether or not a switching pattern is required and if a refresh is

scheduled before the request.

The benefit of memory patterns is that they raise SDRAM command scheduling to a

higher level. Instead of dynamically issuing individual SDRAM commands, like a

dynamically scheduled SDRAM controller, our back-end issues memory patterns that

are sequences of commands. This implies a reduction of state and constraints that have
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to be considered, making our approach easier to analyze than completely dynamic

solutions.Memory patterns allow a lower bound on the offered bandwidth andWCRT to

be determined, since we know the execution time of each pattern, howmuch data they

transfer, and what the worst-case sequence of patterns is. This analysis is presented

and experimentally evaluated in [3]. The use of memory patterns gives our approach

the predictability of statically scheduled memory controllers. In addition, our

approach has some properties of dynamically scheduled controllers, such as the ability

to dynamically choose between read and write requests, and the use of run-time

arbitration. The latter is discussed in the following section.

2.5.1.2 Predictable arbitration

After the previous section, we assume that we have a predictable memory, such as

a zero-bus-turnaround SRAM or our SDRAM back-end based on predictable memory

patterns, where useful bounds on both the offered bandwidth and the WCET of

requests are known. In this section, we consider the effects of sharing the predictable

memory between multiple requestors. As mentioned in Section 2.5.1, we require a

predictable arbiter, where the number of interfering requests before a particular

request is served is bounded. This enables the WCRT to be determined. There are a

large number of predictable arbiters described in literature, such as TDM and round

robin. However, most of these arbiters are unable to provide low response time to

critical requestors, making them unsuitable for memory tiles. This problem is

addressed by priority-based arbitration, but as previouslymentioned in Section 2.2.2,

conventional static-priority scheduling is not starvation-free and cannot be used to

build predictable or composable systems. To address this issue, we have developed a

Credit-Controlled Static-Priority (CCSP) arbiter [5]. The CCSP arbiter consists of a rate

regulator and a static-priority scheduler. The rate regulator isolates requestors by

enforcing an upper bound on the provided service, according to an allocated budget.

It furthermore decouples allocation granularity and latency, which enables band-

width to be allocated with an arbitrary precision without affecting latency [4].

A clean trade-off is hence provided between over allocation and area, allowing
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over allocation to become negligible. This is essential for scarce SOC resources with

very high loads, such as SDRAMs. The static-priority scheduler schedules the highest

priority requestor that is within its budget. The use of priorities decouples latency

and rate, thus enabling low latency to be provided to requestors with low bandwidth

requirements without wasting bandwidth. The combination of rate regulator and

static-priority scheduler makes the arbiter predictable, while still being able to

satisfy the requirements of latency-critical requestors.

A rate regulator creates a separation of concerns and makes it possible to bound

the WCRT of a requestor in a static-priority scheduler without relying on the coopera-

tion of higher priority requestors. Instead, the bounds on WCRT are based on the

allocated bandwidths and burstinesses, which are determined at design time. How-

ever, to be completely robust, we also need to be independent of the sizes

of scheduled requests to prevent a malfunctioning requestor from preventing access

from others by issuing very large requests. We solve this problem using preemptive

service, which is enabled by the atomizer [17] block, shown in Fig. 2.1. The atomizer

splits requests into smaller atomic service units, which are served by thememory in a

known bounded time. This effectively makes the memory preemptive on the granu-

larity of an atomic service unit. The size of the atomic requests are fixed and

determined at design time. It is chosen to be the minimum request size that can be

efficiently served by the resource. For an SRAM, the natural service unit is a single

word, but it is much larger for an SDRAM with predictable memory patterns. For these

memories, the appropriate size might be between 16 and 256 words, depending on

the memory device and the desired trade-off between efficiency and latency.

2.5.2 Composability

Composability in the memory tile is achieved using the technique called ‘predict-

able resource scheduling with worst-case delay’. This is for two reasons related to

the characteristics of SDRAM, presented earlier. Firstly, because SDRAMs have highly

variable execution times that depend on other requestors. This prevents the use of

‘worst-case predictable resource scheduling’ unless the execution time is made

independent of other requestors. This is possible by delaying all executions until the

WCET by setting WCSI=WCET. For most patterns, this involves assuming a read/write

switch for every memory request. Although possible to implement, this may

increase the response time and decrease the offered bandwidth by up to 20% [3].

This is not a feasible option, considering that SDRAM bandwidth is a scarce and

expensive resource. The second reason is that the first technique is limited to

composable arbiters, such as TDM or static scheduling, which cannot distinguish

requestors with low response time requirements. However, the second technique

works with any predictable arbiter, such as our priority-based CCSP arbiter.

The technique is implemented by the delay block, shown in Fig. 2.1. This compo-

nent emulates worst-case interference from other requestors to provide a
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composable interface towards the atomizer. This makes the interface of the entire

front-end composable, since the atomizer is not shared.

It is worth noting that the delay block could have been placed in the processor

tile, as opposed to in the memory tile. The advantage of this is that it offers

composability to platforms with predictable, but not composable, interconnect

by eliminating interference from both the interconnect and the memory tile at

once. However, our interconnect is composable in itself using another technique,

defeating the purpose of moving the delay block. Delaying in the processor tile

furthermore comes with the drawback of making debugging of the platform more

difficult, since the states of both the interconnect and memory tile change if

applications are added, removed, or modified.

2.6 Experiments

The proposed composability inducing mechanisms are implemented for each

resource of an SOC prototyped on FPGA having four processor tiles with one Micro-

Blaze core each, one memory tile and an Æthereal NoC [12]. On this platform, we

execute several use-cases constructed using the following applications: a simple

synthetic application (A1), an H.264 video decoder [39] (A2), and a JPEG decoder

(A3), each consisting of a set of communicating tasks. Figure 2.9 presents the task

graphs and the task-to-processor mapping of these applications.

If the SOC is composable, the behavior of an application should remain the same

regardless of the presence or absence of other applications. We investigate compo-

sability in two ways: first by checking the cycle-level differences between some

signals of the MicroBlaze interface in multiple simulations, and second by verifying

whether the response time and starting time of an application remains constant

when other applications are added in the system.

Tile 1 Tile 2 Tile 3 Tile 4

Synthetic

H.264

JPEG

T2 T3 T4 T5

outdeblkintraidctcavlcnal

T1

vld idct cc

(A1)

(A2)

(A3)

Fig. 2.9 The applications and mappings used in the experiments
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To investigate composability at the cycle level, we run two simulations and

compare a number of signals in the first MicroBlaze core. For our simulations, we

utilize the synthetic application, A1, and the H.264 application, A2. The int_out signal
(the timer interrupt) indicates the border between the end of a task slot and the

beginning of an OS slot. This signal is kept high until the processor acknowledges

that the interrupt is being served. In the first simulation, A1 transfers data tokens of

4 KBytes and in the second it transfers data tokens of 16 Bytes. Figure. 2.10 presents

the signal differences between the two simulations. The application TDM slot assign-

ment is shown at the bottom of the diagram.We observe that signals in the task slots of

A2 are identical, whereas, the signals in A1’s slots change, as expected. The striped
zone represents cycles that differ between the two runs. As seen in Fig. 2.10, the timer

interrupt signals are not always identical in the two simulations. The reason for this is

that different instructions are interrupted in different simulations, thus the int_out
signal has different timing. The comparison between the two traces clearly shows that

the only signal differences occur in the time slots of the changed applications and in

the OS slot, indicating that cycle-level composability is achieved.

To investigate the potential variations in the starting time and response time

of applications, we run the H.264 and JPEG applications alone (H.264-single and

JPEG-single, respectively), and in combination with the synthetic application

(H.264-multi and JPEG-multi, respectively) on the FPGA. In these cases, we compare

the response times and starting times of each iteration of each H.264 and JPEG task.

If the system is composable, these times should be identical in different runs,

regardless of the presence or absence of the synthetic application. Figures 2.11

and 2.12 present the response time differences for a JPEG and a H.264 task in two

cases: 1) when all applications share a single RDMA engine (one RDMA per tile), and

2) when each application has its own RDMA engine (one RDMA per application).

As shown in the figures, the response times differ when using a single RDMA per tile,

thus revealing interference. On the other hand, the response time difference is zero

when using a single RDMA per application, showing no interference. Due to lack of

space,wedonot present the response times and starting timesof all tasks.Theobserved

behavior is the same,whichmeans that the system is composablewhen using one RDMA

per application. However, sharing a RDMA engine results in interference between

applications, and variations in application timing behavior, just as expected.

In conclusion, we experimentally show that the processor behavior remains the

same at both the cycle level and at the task-iteration level, indicating that our SOC is

temporally composable. The inspected signal traces in this section only cover the

processor. However, the experiments strongly suggest that the interconnect and the

Fig. 2.10 MicroBlaze signal differences when A1 varies its behavior
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memory tile are also composable. Otherwise, the timing variations in these

resources would have resulted in variations in the response time of the tasks, or at

the cycle-level timing of the processor signals.

2.7 Conclusions

This chapter addresses the verification and integration problem in embedded

multi-processor platforms that have resources shared by a mix of real-time and

non-real-time applications. We discuss two complexity-reducing concepts:

Fig. 2.12 H.264, deblock task response time difference between RDMA per tile or per application

Fig. 2.11 JPEG, vld task response time difference between RDMA per tile or per application
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composability and predictability. Applications in a composable system are

completely isolated and cannot affect each other’s functional or temporal beha-

viors. Applications in a use-case can hence be verified individually instead of

together, resulting in smaller state spaces. This enables a faster verification process,

e.g. using simulation-based techniques, that can start as soon as the first application

in a use-case is available. Predictable systems, on the other hand, provide lower

bounds on application performance, such as latency and throughput. This enables

applications to be verified at design time using formal performance analysis frame-

works. The benefit of formal performance verification is that conservative perfor-

mance guarantees can be provided for all possible combinations of initial states of

resources and arbiters, all input stimuli, and all concurrently executing applications.

However, formal approaches require performance models of the software, the

hardware, and the mapping, which are not yet widely adopted by industry. Compo-

sability and predictability hence both solve important parts of the verification

problem and provide a complete solution when combined.

Composability and predictability are different properties in the sense that

predictability implies the existence of useful bounds on temporal behavior and is

hence a property of a single application mapped on a set of resources. Compo-

sability implies complete isolation between applications and is a property of

multiple applications sharing a resource, each of which may be predictable

or not. We formally consider temporal composability achieved if the starting

times and response times of an application, i.e. when it is scheduled for reso-

urce access and when it finishes receiving service, are independent of other

applications.

The contributions of this chapter are twofold. Firstly, we present a thorough

overview of five techniques for achieving composability and/or predictability and

highlight their respective strengths and weaknesses. Secondly, we show how to

build a composable and predictable system by applying the proposed techniques to

three common resource types: processor tiles, interconnects (networks-on-chip),

and memories (both on-chip SRAM and off-chip SDRAM).

On an unshared resource, predictability means that a request with finite size has a

bounded worst-case execution time (WCET). On a shared resource, we achieve

predictability by combining resources and arbiters, each with predictable behaviors.

This enables the worst-case response time (WCRT) of requests to be determined for

any combination of predictable arbiter and resource.

Composability can be achieved in four ways, described in the following para-

graphs. The first way is useful if the execution times of all requests cannot be

bounded. However, this requires that they can be preempted after a chosen worst-

case scheduling interval (WCSI), which is the maximum time between two arbitra-

tion decisions. To create the premises of independent starting times, all scheduling

intervals must have constant length equal to the WCSI. This decouples the starting

time of a request from the execution times of previous ones. To enforce independent

starting and response times, requests must be scheduled by a composable arbiter,

such as time division multiplexing (TDM). The main limitation of this way to

implement composability is that it only applies to preemptive resources in which
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the execution time of a request is independent of requests from other requestors.

This is the case for zero-bus-turnaround SRAM memories, but not for SDRAM.

The second way to implement composability applies particularly to

non-preemptive resources. This technique requires that the resource is predictable

and has a known WCET. The idea is to set the scheduling interval equal to the largest

WCET of a request on the resource to make starting times independent of previous

requests. Combining this with composable arbitration ensures that the worst-case

response times are also independent. The two drawbacks of this technique are:

1) that execution times of requests have to be independent of requests from other

requestors, just like for the previous method, and 2) making the scheduling interval

equal to the longest WCET results in low resource utilization if there is a large

difference between the average and worst-case execution time, which is the case

for SDRAM memories.

The third and fourth ways to implement composability are based on predictabil-

ity, resulting in resources with both properties. The third method is an extension of

the first with an additional requirement that the composable arbiter is also predict-

able, such as TDM. This enables the WCRT to be computed for predictable applications

with known WCET that is independent of other requestors.

The last way to implement composability (and predictability) applies to both

preemptive and non-preemptive resources and supports variable execution times

that depend on other requestors. It can furthermore be used with any combination of

predictable resource and predictable arbiter. The key idea behind this approach is to

make the system composable by enforcing maximum interference from other

requestors to remove variation caused by other applications. This is accomplished

by starting from a predictable shared resource and delay responses to emulate

maximum interference from other requestors.

We experimentally demonstrate some of the proposed techniques on a tiled

multi-processor system with MicroBlaze cores connected to an SRAM memory tile

via a network-on-chip. Netlist simulations of this platform show that the cycle-level

behavior of an application is unaffected, as the behavior of other applications

changes, indicating composable execution.
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Chapter 3

Hardware Support for Efficient Resource

Utilization in Manycore Processor Systems

A. Herkersdorf, A. Lankes, M. Meitinger, R. Ohlendorf,

S. Wallentowitz, T. Wild, and J. Zeppenfeld

Abstract Effective utilization of the available processing resources in current

multi- and manycore systems primarily depends on the manual talent of the applica-

tion programmer. This chapter analyses opportunities and suggests approaches to

tackle the challenge ofmaking proper use of parallel resources bymeans of a holistic,

cross-layer and inter-disciplinary optimization of application, middleware and archi-

tecture aspects. Using heterogeneous network processors as an example, we show

how application specific architecture optimizations in this processor domain can be

adapted to benefit designs of homogeneous general purpose manycore systems. In

addition, methods which have been applied successfully to HPC and scientific

computing over the past decades are assessed and down-scaled to benefit manycores.

Finally we show how bio-inspired principles (i.e., self-organization and self-adapta-

tion) provide rich opportunities for meaningful adoption in both application-specific

and general purpose manycores, for example to provide self-optimization of proces-

sor parameters and workload utilization. In summary, we present a set of suggestions

for architectural improvements and building blocks that, from our perspective, are

useful for future manycores in order to better support the exploitation of available

parallel processing resources.

Keywords Manycore � Multicore � Hardware Support � Network Processing

� Bio-Inspired � Self-Organization � Learning Classifier � Platform Optimiza-

tion � Processing Efficiency � Hardware Accelerators � Supercomputing � Network
Processing � Network-On-Chip � High Performance Computing

A. Herkersdorf (*)

Institute for Integrated Systems, TU M€unchen, Arcisstr. 21, 80333 M€unchen, Germany

e-mail: herkersdorf@tum.de
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3.1 Introduction

Chip multiprocessors are becoming the de facto industry standard for processor

architecture. In comparison with sophisticated uni-processors, multicore systems

are superior in terms of scalable computing performance and power efficiency.

Such multiprocessor system-on-chip (MPSoC) are found as either homogeneous or

heterogeneous platforms, integrating identical or different types of programmable

processing elements on a common silicon substrate.

Continued progress in scaling CMOS semiconductor technology (“Moore’s Law”)

makes it technically feasible to implement on the order of one hundred or more such

processing elements on a single chip. Commercial and academic examples, such as

Tilera’s TILE-Gx,1 Intel’s Rock Creek2, or the TRIPS architecture [5], underpin the

trend towardmanycore architectures. In the following, we use the term core to refer to

a programmable processing element or on-chip processor building block. Further-

more, whenever we refer to a manycore system, which we use as a general term in this

chapter, we imply that the discussed methods also apply to multicores.

General purpose computing systems – PCs, servers or high performance computing

(HPC) clusters – are usually provided with homogeneous manycores based on

identical cores, such as AMD’s 12-core Magny Cours3 or Intel’s 8-core Nehalem-

EX.4 The particular needs of various embedded application domains, such as mobile

communications, IP data plane networking, interactive online gaming, visual compu-

ting, automotive control units, medical electronics, and industrial automation are often

better addressed by heterogeneous manycore solutions. Such heterogeneous manycores

are composed of different types of cores which, by means of their instruction sets and

microarchitectural structuring (SIMD, VLIW, super-scalar), are particularly optimized

and tailored toward the respective needs of the applications. Examples of heterogeneous

multicores include TI’s OMAP platform,5 the Cell BE6, and the CSX700 from Clear-

Speed.7

Both homogeneous and heterogeneous manycore systems will coexist in the

future for reasons of their particular advantages in specific application domains.

However, both classes have a number of individual technical and methodological

challenges which, for the time being, throttle their rapid adoption on an even

broader scale. An omnipresent technical challenge of processors is absolute and

area-density specific electrical power dissipation. As a result of all forms of

1 Tilera. http://www.tilera.com/.
2 Intel, Single Chip Cloud Computer. http://techresearch.intel.com/articles/Tera-Scale/1826.htm.
3 The AMD Opteron 6000 Series Platform. http://www.amd.com/us/products/server/processors/

6000-series-platform/.
4 Intel Microarchitecture Codename Nehalem. http://www.intel.com/technology/architecture-sili-

con/next-gen/.
5 Texas Instruments, OMAP platform. http://www.ti.com/OMAP_DSPs.
6 The Cell project at IBM Research. http://www.research.ibm.com/cell/.
7 ClearSpeed CSX700. http://www.clearspeed.com/products/csx700.php.
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environmental and fabrication related variations, as well as transient perturbations

from ionizing radiation, reliability exposures due to an increasing sensitivity of

MOSFET transistor operation will become equally relevant in the future [4, 17].

In this chapter, we address another key shortcoming of existing manycore

architectures and corresponding software development tools. Our primary concern

is the limited exploitation of the nominal processing performance by the applica-

tions running on the manycore. We see a significant deficiency in today’s manycore

architectures and tools to allow system developers to efficiently utilize the available

resources. The most critical parts are the efficient partitioning of applications into

concurrent tasks on the one hand, and the spatial and temporal mapping of those

tasks onto processing resources on the other. This involves static analysis or,

advantageously, even dynamic runtime balancing, both of which are NP-hard

problems.

Today, effective utilization of the available processing resources often depends

on the manual skills and talents of the application programmer. This approach,

however, is deemed to fail in the long run and is by no means scalable. In

consequence, the effective processing performance seen by the application typi-

cally lags factors behind the aggregate performance of all processing cores. One

might argue that diminishing returns with increasing number of processors in

manycores is to be expected from Amdahl’s law. However, be reminded that

Amdahl’s law applies to the degree an individual application can be partitioned

into parallel processes. In embedded system domains – such as those listed for

heterogeneous architectures above – manycores typically run numerous applica-

tions in concurrent fashion. Hence, by assigning different processes to different

cores, parallel architectures should substantially improve overall system perfor-

mance even though individual processes are inherently sequential.

Our proposal to tackle the parallel resource exploitation challenge implies a

holistic, cross-layer and inter-disciplinary optimization of application, middleware

and architecture aspects of manycore solutions. The central objective is to narrow

down the processing efficiency gap from both the software and the hardware side.

Thereby, we primarily focus on hardware support techniques to achieve this

objective. It should be noted that we do not claim to solve the complex issues

presented before. Instead our goal is to raise the awareness in the direction of

hardware support for manycore systems.

Concretely speaking, in Sect. 2 we will identify opportunities where application-

specific architecture optimizations in heterogeneous network processors (NPs) are

beneficial for the future design of homogeneous general purpose manycore systems.

Thus, learning from thorough analysis of applications characteristics may also benefit

manycore architectures intended for different domains, like supercomputing, if the

optimizations are of a generic nature. Networking was used here as one representative

example for an application domain with high computational requirements.

The reverse direction, how application-specific manycores can benefit from

homogeneous structures used in supercomputing, is covered in Sect. 3. This ques-

tion implies reassessing methods that have successfully (or unsuccessfully) been

applied to HPC and scientific computing over the past decades. Investigations will
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determine whether and how established methods in HPC can be down-scaled to

benefit manycores with their specific dimensions. Finally, by example of swarm

intelligence, Sect. 4 will show that bio-inspired principles found in nature (i.e., self-

organization and self-adaptation) provide rich opportunities for meaningful adop-

tion in both application-specific and general purpose manycores.

Generally speaking, we provide a set of suggestions for architectural improvements

and building blocks that, from our perspective, are candidates for adoption in future

manycores to support better exploitation of the available parallel processing resources.

Overall, as depicted in Fig. 3.1, we encourage an open exchange of methods and

techniques among different manycore application domains and different scientific

disciplines – engineering, natural and computer science – for the sake of benefiting

manycore performance, power efficiency, and reliability.

3.2 Learning from Network Processing Applications

Network processors (NPs) are high-performance application-specific manycore

processors with dedicated hardware enhancements for TCP/IP packet forwarding

and advanced networking services. While the high link rates in current networks

mandate use of application-specific hardware acceleration for computationally

intensive tasks such as address lookups or cryptographic operations, the flexibility

requirement to cope with an increasing variety of network protocols and new

transmission standards (e.g., moving away from ATM and Sonet/SDH toward

Carrier Grade Ethernet) demands disposability of sufficient software-programma-

ble processor resources. The key design challenge of NPs is to find a proper balance

between software- and hardware-based processing entities with high overall flexi-

bility and computational density.

Application
Characteristics

Internet
Networking

Supercomputing

Communication,
Synchronization,

Task Management
HW Support

for Manycores
Homogeneous/
Heterogeneous

Nature

Self-Organization,
emergent behavior

Fig. 3.1 Different processor and nonprocessor related domains contributing to manycore HW

support
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3.2.1 Commercial Network Processors

Depending on the specific deployment scenario for NPs inside the network infra-

structure (access versus core network), commercial NP vendors offer customized

blends of programmable processors and domain-specific hardware accelerators

integrated on a single chip. NPs can further be classified into symmetric and

pipelined processor clusters, each class coming with its associated programming

model: run-to-completion or pipelined. While highest link rate NPs tend toward

deeply pipelined architectures (Xelerated8), the majority of commercial NP offer-

ings favor the parallel cluster approach as depicted in Fig. 3.2. In a parallel data

plane processor cluster, each core is capable of executing the entire set of packet

processing functions andmay access hardware accelerators to offload computationally

intensive subfunctions. This assembly is complemented by a high-capacity on-chip

interconnect, on- and off-chip memories and network as well as switch fabric specific

I/Os. The cores are programmed according to the the run-to-completion model, i.e.,

the entire packet processing software can be seen as a single thread being executed on

the same core from the beginning to its end. Parallel cores or hardware accelerators

within the NP architecture are exploited by assigning arriving packets to different

cores. Cores are often multithreaded, which ensures continuation in processing

(of different packets) during long latency memory or hardware accelerator accesses.

Proper dimensioning of shared communication, memory and hardware accelerator

resources is absolutely critical in a parallelmanycorecluster architecture, sinceon-chip

interconnect speeds and memory access bandwidths can be as much as 10 times the

nominal network speed rate of the NP.

8Xelerated. Xelerator X11 Network Processors. http://www.xelerated.com/uploads/files/5.pdf.

Data Plane Processor Cluster

Off-chip
Mem Ctrl

I/O
(MAC)

On-chip
Mem

Proc
HW

Accel

I/O
(Fabric)

Proc
Control
Plane

Interconnect

Fig. 3.2 Parallel processor cluster architecture (run-to-completion), e.g., AMCC nP3700, Cisco

QFP, Cavium Octeon II
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3.2.2 Example Networking Applications

The most elementary Internet networking application that must be supported by

every router is IP forwarding. Basic IP forwarding is defined in IETF RFC1812 [3]

and requires an integrity check of the arriving packet, a next-hop route lookup on

the destination address of the packet, decrementing the TTL-field in the header,

recalculating the IP checksum and retransmitting the packet on the correct output

interface. While the address lookup is often implemented with a dedicated TCAM-

based (Ternary Content Addressable Memory) network search engine (NSE),9 the

other packet manipulations are rather straightforward tasks. Usually, commercial

NPs perform these tasks on the software-programmable cores. We will show that

standard IP forwarding can also be accomplished efficiently with a few hardware

building blocks.

In wireless access networks, traffic from several base stations (NodeB) is

aggregated toward the radio network controllers (RNC) and mobile switching

centers (i.e., SGSN in UMTS) [15]. The transmission protocol architecture of

wireless networks specifies complex protocol conversion and adaptation functions

that have to be executed in the RNCs for traffic arriving from the NodeBs and

leaving toward the SGSN and vice versa (see Fig. 3.3). On the other hand, traffic

between adjacent RNCs is simply forwarded. Hence, traffic terminating at an RNC

or NodeB requires intensive and flexible processing in software, while forwarding

traffic between neighboring RNCs can be processed efficiently with adequate

hardware support. Assuming a network topology with eight daisy-chained RNCs

aggregating their traffic to a single SGSN, around 85% of the traffic could be

handled by hardware forwarding, while only 15% of the traffic would be subject

to more demanding protocol conversion processing.

The third networking application example deals with the IPsec security protocol

suite [11]. Here, packet classification and security parameter management leanmore

toward a flexible software realization, while the computationally intensive data

manipulations for en- and decryption of packet payloads in real-time is better

addressed by dedicated hardware engines. IPsec packet processing would therefore

start with analysis of the packet using software routines on a processor core, then

handing the packet it then over to a hardware accelerator for en- or decryption before

performing the remaining packet processing in software prior to transmission of the

packet. If the packet type can be determined near the receive interfaces of the NP, it

is possible to direct encrypted packets directly to a hardware accelerator for decryp-

tion. Thus the processor will be interrupted only once, after decryption has finished,

and the software can perform the remaining protocol processing tasks.

In conclusion, networking applications exhibit a broad mix of tasks with greatly

varying processing requirements (hundreds to several thousand operations per packet).

Depending on the flexibility (likelihood for a task or protocol to change) and

9 IDT. Network Search Engines. Product Flyer. http://www.idt.com/products/getDoc.cfm?

docID¼10154.
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processing performance requirements, some tasks are more favorably implemented in

software, and some are better suited for an implementation as dedicated hardware

accelerators. Irrespective of the form of realization, the sequence in which tasks are

traversed within anNPmatters. Commercial NP architectures typically pass control of

packet processing immediately to a software-based core. After software packet

inspection, processing is either completed on the core(s) or processing is interle-

aved with hardware accelerator calls over the shared communication infrastructure.

Each and every packet traverses a core at least once, no matter how simple the packet

processing is.

Based on the above analysis, we noticed the need and potential to rethink overall

NP structuring. The result, and what insight this new approach bears for other

manycore applications, is described in the following two subsections.

3.2.3 The FlexPath NP Approach

A key aspect for improving the performance of NP systems is finding the right mix

of dedicated hardware functions and software-programmable resources, and assign-

ing packets to the proper processing instance in an efficient manner. In conse-

quence, we proposed the FlexPath NP architecture [16, 19], with the functional

extensions as shown in Fig. 3.4, that achieves performance benefits through the

following measures:
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Fig. 3.3 UMTS Backhaul network architecture
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l Introduction of hardware-offload units (Pre-Processor, Post-Processor) that are

able to relieve the central processor complex from simple, recurring tasks such

that the flexibility inherent in the software-programmable resources is not

wasted for “routine” tasks.
l The hardware-offload units are able to handle basic forwarding traffic, such that

the central processor complex can be completely bypassed for those kinds of

packets. This feature is referred to as “AutoRoute” in the context of FlexPath

NP.
l The FlexPath NP provides a classification unit at the ingress side to differentiate

packets from different networking applications. Thus, packets can be routed

along on-chip processing paths (i.e., the precise traversal sequence of the

functional units in the NP chip) that are specifically optimized for the various

applications. The simplest example is choosing between a path through the

central processor cluster for pure software processing and sending the packet

over the AutoRoute path for pure hardware processing.
l The classification function is run-time reconfigurable, so that the system can be

adapted during runtime to accommodate additional traffic types or react to short-

time changes in the application mix. The classification function may then also be

reused to support advanced QoS features and implement application-aware load

balancing strategies in the NP that further improve the system performance.

To address the problem of reordered packets that arises when packets belonging

to the same flow may (potentially) be routed over several paths, we also had to

introduce a packet sequence control that resequences out-of-order packets at the

egress side of the NP.
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Exploiting the hardware offload of pre- and post-processor alone doubles the

forwarding performance of the processor cluster. If the AutoRoute path can be

chosen for certain traffic types, the processor cluster is completely bypassed and the

forwarding performance is greatly increased.

Apart from increasing the forwarding performance, the AutoRoute feature has

another notable benefit for the NP system. In Fig. 3.5, we compare the average

latencies for packet processing in the programmable cores with the latency on the

AutoRoute path through the NP. The system is offered IMIX10 traffic in two

streams, one of which will be forwarded by two PowerPC cores and the other

one being AutoRouted. The line rates of both streams are then adjusted to generate

different proportions of AutoRoute traffic. The aggregated traffic imposed on the

system is shown on the x-axis, while the y-axis visualizes the measured average

packet latency through the system, differentiated for the two processing paths.

The packet latencies observed for AutoRoute packets are significantly smaller

than those for packets forwarded by the cores in software. When the traffic load

on the NP is increased, we are reaching a point when the processor cluster becomes

fully utilized and packets start being queued in front of the processor cluster waiting

to be processed. Further increasing the input load quickly drives the processor into

an overload situation, where all buffers get filled and packets are being dropped.
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10 Agilent. Mixed Packet Size Throughput. http://advanced.comms.agilent.com/n2x/docs/insight/

2001-08/TestingTips/1MxdPktSzThroughput.pdf.
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The additional queuing delays add to the core processing latency and deteriorate the

performance of the NP for the processor-bound packets. For higher shares of

AutoRoute traffic, we can observe that the cutoff point at which the queues in

front of the processor complex start being filled is moved further to the right,

showing that we are able to process more traffic with the same resources. When

the NP’s processors are fully overloaded, the packet latency approaches an upper

bound determined by the depth of the queues multiplied with the processing latency

per packet. However, even when the software processed traffic stream is in over-

load, the forwarding performance of the AutoRoute packets is not much deterio-

rated. Hence AutoRoute leads to lower processing latencies that are independent of

the software core utilization, and to a higher overall throughput.

We have also performed an intensive investigation on QoS-aware load balancing

strategies in the context of FlexPath NP systems. Figure 3.6 shows the simulated

packet loss rates of amulticoreNP systemwhen imposedwith a given backbone traffic

trace for an increasing number of cores. All cores perform plain IP forwarding, but

different load balancing strategies are used to distribute the arriving packets over the

available cores. AHH [10] and HABS [22] refer to two state-of-the-art load balancing

schemes.While AHH is an adaptive hashing-based assignment scheme, HABS refines

hashing-based load assignmentwith an additional flow-aware burst shifting algorithm.

The improved performance of HABS costs additional implementation effort in the

ingress side of the NP.

We have investigated two further load assignment schemes in the context of

FlexPath, namely Hash Lookup (HLU) and packet spraying. In contrast to AHH,

HLU has a simpler adaptation routine and achieves similar results as AHH. The loss

rates are smaller especially for systems with little performance headroom (i.e., five

to seven cores in the setup shown in Fig. 3.6). It is important to realize that all load
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balancing schemes which assign certain flows or flow bundles onto a distinct core

reach a minimum packet loss floor. In contrast, packet spraying always assigns

incoming packets to the next available core. This leads to a well balanced system

and thus minimum packet loss rates. For the given traffic traces, the packet loss rate

can be reduced to zero when provisioning more than seven cores in the system for

the given traffic trace. However, packet spraying may only be used for stateless

traffic types (e.g., IP forwarding), as successive packets belonging to the same

connection may be processed by different cores. If the processing depends on a

connection state, it is strongly advisable to process an entire stream on the same

core. This avoids shared connection states and maintains data consistency. In

addition, the packet sequence may become out-of-order, which is solved in the

FlexPath NP architecture by resequencing all packets after processing in the Path

Control unit. We propose to use packet spraying for all stateless traffic flows, while

hash lookup is preferential from the performance and complexity point of view for

all stateful traffic flows.

In addition, we have shown [20] that, using the classification capabilities of the

FlexPath ingress data path pipeline, QoS features can be applied directly on the

incoming traffic stream. This leads to better performance results compared to

implementations where the QoS differentiation is performed in software on one

of the programmable cores.

As we have seen in the previous paragraphs, significant performance benefits can

be achieved with the FlexPath NP architecture by enhancing the NP with additional

hardware offload functions. However, these hardware modules consume chip area,

which otherwise could be used for additional software programmable cores. To

make a fair performance evaluation, it is necessary to compare the consumed chip

area for the proposed hardware modules versus the resulting computational power if

this chip area were instead dedicated for additional processors.

Figure 3.7 shows the area requirements (measured in FPGA slices and embedded

SRAM blocks) of the FlexPath-specific functional modules. In total, the consumed

area is 5,721 slices and 22 BlockRAMs, corresponding to 22.6% of the slices and

9.5% of the embedded SRAM blocks of a Xilinx Virtex-4 FX 60 device. This FPGA

area could instead be utilized to implement 3.7 MicroBlaze embedded 32bit RISC

Fig. 3.7 HW enablement overhead of FlexPath NP modules compared to soft core CPU cores

3 Hardware Support for Efficient Resource Utilization in Manycore Processor Systems 67



processors, each of which would consume 1533 slices and 4 BlockRAMs in a

typical configuration. Next we compare the packet processing performance. The

FlexPath hardware pipeline that is used for the AutoRoute feature has a 32bit data

path and operates at 100MHz. It is capable of forwarding packets at a line rate of

3.2Gbit/s irrespective of the packet length. The MicroBlaze processors would in

turn be able to forward packets at a cumulated packet rate of 95 kpps. This results in

a data rate of 366Mbit/s when assuming an average packet length of 481 bytes in

the Internet (IMIX). Hence, the area investment for the proposed FlexPath hardware

assists are a good investment compared to additional software programmable

resources.

3.2.4 What Can Other Manycore Domains Learn
from Network Processing?

To open the concepts discussed in this section to other manycore domains, it is

necessary to find a suitable generalization of the networking environment. Instead

of considering IP packet processing, it is possible to focus the investigations on

more general processing requests. Such a processing request might either be an

interrupt that requests execution of a certain service routine, a sensor signal that

leads to periodic execution of certain functions depending on that signal’s value, or

arrival of video or data blocks in a video processing or digital signal processing

system. Abstractly speaking, it is the arrival of a certain chunk of data that causes

execution of a certain piece of code on the manycore system. By analyzing (parts

of) the arriving data, the proper action can be determined. In the most general case,

one could even think of processing requests as RTOS tasks that contain both the

data and the code for processing that data. As we have outlined in the packet

processing domain, such processing requests can be categorized with respect to

request interdependence (i.e., whether or not two consecutive processing requests

may be processed individually without referral to a shared processing state) and

with suitability for hardware implementation/offload. This classification of the

processing request types, which has to be performed separately for each application

domain, decides which and how many of the concepts derived in FlexPath NP are

applicable for deployment in the more general manycore system.

l Identify feasible abstractions which open FlexPath concepts to different
application domains: After generalizing packets to processing requests,

corresponding generalizations have to be found for the pre-processing and classifi-

cation functions of FlexPath. Depending on the application, a suitable processing

request parserhas tobe implementedwitha request classifier that canbeused later to

identify the different request types present in the investigated manycore system.
l Traverse different cores/coprocessors in an application-specific sequence: After

request classification, we can assign the processing requests to the computing

entities in an application-optimized way. In a homogeneous manycore system, it
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might be enough to assign the incoming requests to a specific core (or set of

cores) that execute the respective application. In a heterogeneous manycore,

where processing of at least a part of all applications will be executed by both

programmable cores and application-specific accelerators, the decision would

include specifying the sequence in which the different involved entities have to

be invoked. In both cases, a performance benefit can be achieved by offloading

the classification and scheduling task from software into dedicated hardware and

using the programmable cores only for the actual computations.
l Making use of hardware offload where feasible: In FlexPath, we have demon-

strated various levels of hardware offload for different networking applications,

but hardware offload is not restricted to the network processing domain. A first

level of hardware offload is always achieved by the processing request pre-

processing and classification function as described in the previous bullet. If a

certain application is best implemented by a combination of software and hard-

ware components – which is often the case in video processing for example –

direct assignment of the processing request to the application-specific accelerator

and subsequent invocation of the programmable core with the intermediate result

is more efficient than calling the accelerator under the control of the core.We have

shown that offloading standard packet integrity checks to hardware and only

performing the plain routing function in software already doubles the system

performance. The highest benefit is of course achieved when the entire processing

can be offloaded to hardware (e.g., AutoRoute in FlexPath), when the cores are

relieved from executing an entire application class and can focus on the remaining

processing request types instead.
l Generic hardware support for workload balancing: The differentiated load

balancing strategy presented for FlexPath NP can also be transferred to a wider

class of manycore architectures. We have shown in our work that workload

spraying is an optimal load balancing strategy for independent processing

requests, i.e., when processing of each incoming request can be performed

independently from prior and/or later requests. If the processing requests involve

a shared processing state, it is beneficial to use hashing-based assignment

schemes, where all processing requests sharing a common context are dispatched

to the same processing resource, which may then hold a local copy of the

processing state. This insures correct and consistent processing of the application

while avoiding the overhead and performance degradation associated with the

deployment of a distributed shared connection state, which has to be locked by

every core in the correct sequence. If the manycore system processes a mix of

stateful and stateless applications, a combination of the two presented workload

balancing strategies can be applied.
l Directed data preload to local memories: When a system is scaled towards a

manycore architecture, use of local memories is essential to circumvent the scaling

problems and bottlenecks of a shared bus and memory infrastructure (see also the

requirement for NoCs in Chap. 3.3.1). The classification function determines the

type of subsequent processing entities and the sequence in which different proces-

sing entities are invoked for the arriving packet or transaction. This information can
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also be used for DMA purposes. The data belonging to the current request can be

stored in the local memory for the processing instance to which the task has been

assigned. In consequence, the core has a faster and more efficient access to the

required data and the system processing performance will be increased.

3.3 Learning from HPC and Scientific Computing

For decades, high performance computing (HPC) has developed increasingly

sophisticated massively parallel computing systems. Both research and industry

are dealing with optimization across all hardware- and software-abstraction layers,

including efficient programming models and scalable architectures. With the trans-

formation from huge and complex clusters composed of hundreds of thousands of

cores to upcoming manycore systems on-chip, former experience with HPC is a

welcome catalyst for the hardware and software ecosystem.

In comparison with HPC, manycore chips run at different time scales, reduced

system dimensions, and increased bandwidth. These operating conditions have an

impact on the adaptation of HPC concepts to manycore systems on-chip, where

impact depends on the requirements of the concepts. Some concepts may easily be

adapted, including some that may not have been practicle in HPC systems.

In this section, we will discuss the adaptability of HPC concepts to novel

manycore on-chip architectures by examining certain examples for this adaptation.

Network-on-chip (NoC) is the adaption of packet-based routing networks for on-

chip communication. With changing conditions due to the transition from super-

computing to on-chip manycore, novel opportunities show up, for example hierar-

chical NoC. For Task Management, the HPC process and job management is not

easily downscaled to changed conditions in multicore architectures. Instead,

approaches with different granularity are necessary. Finally, separate Synchroniza-
tion Subsystems are discussed. Similar systems have previously been discussed for

supercomputing architectures, but the changed conditions rejuvenate this topic.

Another challenge, which is not discussed here, is the integration of novel

manycore chips in HPC architectures. The integration of such systems requires

multilevel approaches.

3.3.1 Hierarchical Multi-Topology Networks-on-Chip

Flat, two-dimensional-mesh network on chip (NoC) is the predominant intercon-

nect structure for current homogeneous manycore architectures such as Tilera’s

Tile64 [24] with 64 cores and Intel’s Teraflop [7] with 80 cores. The mesh topology

is well suited for uniform traffic among cores (i.e., each core sends an equal amount

of traffic with equal probability to all other cores).
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However, future manycores will no longer be entirely homogeneous. Instead,

different kinds of hardware accelerator resources will be integrated on chip. For

example, Intel’s general purpose Westmere processors contain a dedicated graphics

core. In the future, heterogeneous manycores will contain different kinds of accel-

erator modules to assist general purpose cores in executing certain functionalities,

such as en-/decryption, graphics, etc. In heterogeneous multiprocessors, the traffic

will no longer be as uniformly distributed as in homogeneous multicore systems.

Traffic flows to and from shared hardware accelerator modules can already be

estimated at design time. Consequently, it will be possible to optimize and adapt the

interconnect infrastructure according to this knowledge.

Mesh topology is not necessarily the best choice for heterogeneous manycores

from a global perspective. Certain portions of the manycore might be better served

with other interconnect topologies which exhibit lower latencies, higher throughput

or come at lower areal cost. For a group of cores that form a processing pipeline, a

ring topology might be better suited due to its lower chip area and higher through-

put, enabled by higher router clock rates [13]. An example is IBM’s cell processor

[2], which uses a high speed ring interconnect to allow communication between the

SPE processing units. Other subportions of a manycore may not have high through-

put but low latency requirements. Such subportions are better interconnected with

crossbar switches, star topology based NoCs or even shared buses. These multifacet

requirements call for a multitopology interconnect approach for heterogeneous

manycore systems.

Another issue in systems on‐chip is traffic to and from shared resources. Shared

resources typically attract an over proportional amount of traffic from many cores

of the system or are the source of traffic toward all these cores. Examples include

shared on-chip memories, transactional memory, hardware accelerators, and IOs.

For certain accelerator cores or IOs, a possible option to optimize the communica-

tion cost of traffic from distant cores would be to instantiate multiple instances

distributed over the whole system. However, this solution is not applicable for

shared memories that, by definition, cannot be partitioned or distributed. For IOs,

this approach might also be prohibitive in most cases due to pin count limitations of

the chip package. To optimize the communication performance and decrease

communication cost, the communication infrastructure should be optimized for

traffic to and from the shared resources. By reducing the network distance between

the communication partners, not only the performance but also the latency and

energy consumption can be decreased.

Hierarchical multi-topology NoCs [14], as shown in Fig. 3.8, address both pro-

blems introduced above. Hierarchical networks allow the efficient adaptation of

the subnetwork’s communication infrastructure towards bandwidth and latency

requirements. In this way, a subnetwork can either be based on a mesh topology if

it requires high bandwidth, or on a ring network if the communication pattern is

predefined by the application running on the cores. If allowed by the aggregate

bandwidth requirements of a group of cores, even a bus can be considered for

connecting them. However, the partitioning into subnetworks is not advantageous

for all traffic flows. For traffic traveling from one subnetwork to another, the hop
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count is generally lower in a full 2D mesh that is not partitioned. In case the share of

this class of traffic is very high, the hierarchical network design can also be realized

without partitioning the lowest hierarchy level into subnetworks.

The hierarchical network concept also allows an efficient connection of shared

resources by connecting them to the upper hierarchy level(s). Since the communi-

cation structure of the upper hierarchy connects all the subnetworks, the cores

connected in this hierarchy can be efficiently accessed by all other cores.

In the following, the advantages of hierarchical networks in accessing shared

resources will be backed up by simulations. Two SoCs based on hierarchical

network architectures are compared to one based on a conventional 2D mesh.

The simulated systems consist of processing cores, with the exception of two

memories, that represent the shared resources. In Fig. 3.9, the number of tiles

(cores) of the systems is denoted by n�n. In the conventional mesh, the central

tiles (i.e., shared resources) are connected in the middle of two facing borders of the

network. The hierarchical network architectures are realized according to the

principle shown in Fig. 3.8. A global ring connects the subnetworks and the two

central tiles. However, the simulated systems have four subnetworks which are all

based on mesh topologies. In total, these subnetworks have the same number of

cores as the 2D mesh based SoC. In contrast to the hierarchical NoC in Fig. 3.8, the

routers of the global ring connecting the subnetworks are not implemented sepa-

rately, but are integrated into submesh routers (denoted as hMiR in the following).

The networks are built from routers based on an input and output buffered archi-

tecture and use wormhole forwarding.

For the evaluation, three types of traffic are used t0, t1, and t2. Traffic t2 is

targeted to the shared resources and its rate is chosen in such a way as to fully load

the network interface of these tiles. Traffic t0 is traffic that stays within a subnetwork

and traffic t1 consists of packets with a destination in another subnetwork. The rate

of traffic (t0+t1) is increased during the simulations, with the relation of t0/t1 being

3/1. The discrimination between traffic t0 and t1 in the mesh is done by a maximum

hop count for packets of traffic t0. This hop count threshold is set in such a way that

the average hop count of t0 is equal in the mesh and the hierarchical networks.

Global ring

Star topology

Memory

Central tiles

IO

Bus

Mesh topology

Fig. 3.8 Hierarchical NoC
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The hop counts of traffic t1 can be seen in Fig. 3.9a for different network sizes

(6�6 up to 10�10). Although our proposed hierarchical topology reduces the maxi-

mum hop counts significantly, the average hop counts are only reduced for larger

networks. However, for traffic of class t2 Fig. 3.9b shows a reduction in maximum as

well as average hop counts for the hierarchical approach, especially for networks with

a larger number of tiles.

Figure 3.9 also shows the latency measurements, although only for networks of

size 6�6. By comparing the latencies of the network hMiR and the 2D mesh in

Fig. 3.9d, it becomes obvious that the network hMiR cannot profit from a reduction

of average hop counts by 20%. This is due to the low bandwidth of hMiR’s global

ring, which is not able to cope with traffic t2 and t1 aggregating in the upper

hierarchy level. Both latency diagrams (Fig. 3.9c, d) show that the network hMiR

has only a very low throughput for the applied traffic (3/4 t0, 1/4 t1 and t2). The

result of increasing the global ring’s bandwidth by doubling the ring routers’ clock

(denoted as hMiR@2BW) is a significant improvement in latency as well as in

network throughput. This increase in network throughput despite the use of worm-

hole switching is only possible due to virtual channels in the global ring. These

virtual channels are actually implemented to break the routing cycle in the channel

dependency graph, and thus prevent deadlocks.

Simulation results show that hierarchical networks can considerably lower the

communication costs (e.g., hop count, energy consumption, latency) of the traffic.

a

c d

b

Fig. 3.9 Hop counts and latencies for different realizations of hierarchical networks
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In particular, this is true for traffic to and from shared resources (t2), but also applies

to inter-core traffic (t0 and t1). However, the effect of reduced hop counts on

latencies are minimal when wormhole forwarding is used. Nevertheless, the chal-

lenge in the design of hierarchical networks is to equip the upper hierarchy with

enough bandwidth to cope with the aggregating traffic of the types t1 and t2. In this

way, the performance of the proposed network architectures relies greatly on the

realizable routers and their throughput.

3.3.2 Task Management

The run-time management of processing resources is a crucial part of massively

parallel computing. In HPC environments, the job and process management was

controlled by software. With the introduction of chip multithreading, the scheduling

ofwork portions has been addressed bymodern architectures. The granularity, i.e., the

number of instructions, of such work portions strongly depends on the overhead of

thread management and scheduling operations. Context saving and the migration

of tasks differ significantly from supercomputing environments in the granularity of

such “tasks.” Due to the changed conditions ofmanycores, the granularity of tasks can

be significantly reduced. The overhead introduced can be scaled down to approaches

where tasks only consist of a few instructions. Reduced latency and increased

bandwidth allow for sophisticated chip-wide task management approaches.

As a result, novel approaches aim at different granularities and exhaust the

freedom given by on-chip constraints. Examples for such novel approaches are

discussed in the following.

The Carbon approach [12] is a hardware support for dynamic thread scheduling

and focuses on small threads. Even optimized software schedulers can hardly cope

with an increasing amount of cores. Task queues become a crucial part of a design, so

that in this approach, the queues and their management are implemented in hardware.

Low overhead task queues are distributed hierarchically on a chipmultiprocessor: one

global task unit stores hardware thread contexts, while local task units manage the

tasks executed on the cores and allow for prefetching of contexts. The instruction set of

the processor cores is extended with specific instructions for the queuing and dequeu-

ing of tasks. For RMS (Recognition,Mining, and Synthesis) benchmarks, the technol-

ogy shows improvements of up to 109% compared to software implementations and

nearly reaches the optimal (zero-overhead) case.

Another approach to the changed conditions of novel manycore architectures is

the Self-adaptive Virtual Processor (SVP) as proposed by [9]. Here, so-called

microthreads execute tasks in a fine-grained manner. The SVP can be “considered

an operating system, implemented in a core’s ISA” [9, p. 247]. Thread families,

with those microthreads being in the order of few instructions, are run on this

specialized architecture, where the processor pipeline is augmented with special

components to handle the execution of up to 256 threads in parallel and provides an
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additional mutex infrastructure. The approach proposes the usage of this

specialized processor in a ring with local communication. Results show that the

approach can gain good scaling even for memory intensive applications.

CAPSULE [21] is another approach that introduces processor extensions for

hardware-assisted dynamic multithreading. In contrast to SVP, CAPSULE utilizes

standard threads and gives means to augment them with the ability to allocate

additional resources. A thread can spawn another thread, and the decision of the

target core is based on hardware probes of specific performance characteristics.

Although this approach shows promising results, it currently only focuses on single-

core support.

Similar to this, hardware probes also control the concept of Invasive Computing [23].
In addition to allowing threads to spawn or allocate communication resources based

on hardware probes, the approach introduces a new paradigm, the resource-aware
invasive computing. By extending prevailing programming models with primitives

for invading and retreating other resources, the approach targets the self-organizing

execution of standard hardware with specific extensions or tightly coupled processor

arrays. The approach comprises the hardware architecture, programming models,

and the runtime system. Since the approach is still in its proposal-state, results

cannot yet validate this promising approach for chip multiprocessors.

3.3.3 Synchronization Subsystem

In addition to pure data communication, synchronization is an important element of

concurrent programming. While the utilization of the increased data communica-

tion bandwidth and latency has been discussed before in the context of NOC, such

synchronization has strong demands on the communication latency.

Prevailing approaches in HPC had to cope with the more complex conditions for

communication, but novel manycore architectures allow for sophisticated synchroni-

zation subsystems. Separation of inter-processor, memory, and interrupt synchroniza-

tion is generally a powerful design concept to scale system-level data throughput and

bound data access latencies.

IBM Blue Gene [1] serves as an example in the HPC domain: it provides

additional networks for synchronization and special data operations. The global

interrupt network supports low latency inter-process synchronization across the

entire CPU cluster, while the global collective network supports special collec-

tive data operations. Although promising approaches such as those in Blue Gene

exist, such advanced networks have not found their way into many HPC

systems.

In our opinion, special awareness is required for low overhead barriers among

subclusters and their application to MPSoC. The approach of separation of concerns

becomes relevant with the changed conditions of manycore systems. Examples for

such separate networks are depicted in Fig. 3.10, which can be utilized to allow fast
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and low-latency-connections for synchronization and collective data operations.

Current architectures such as Tilera manycores 11 are the first to utilize such separate

systems, and we consider this as an important research topic for future manycores of

hundreds to thousands of loosely-coupled cores on a chip.

3.3.4 What Can Other Manycore Domains Learn
from Supercomputing?

With the changed boundary conditions we have identified different methods of

transferring concepts from supercomputing to novel manycore on-chip systems:

l Transformation of concepts to changed conditions: Many concepts can be

changed with respect to their parameters. For example, the implementation of a

message passing protocol is adaptable with different buffer sizes, reduced packet

sizes, operation set modifications, etc.
l Changed conditions have a significant effect on adaption: Other supercomputing

concepts are more heavily impacted by the changed conditions in manycore

systems. For example, the utilization of local memories depends on memory

sizes, latencies, etc. Despite being used by the most recent IBM supercomputing

architecture BlueGene/L, the on-chip instantiation of various communication

systems is a topic of its own. Another important topic is task/thread management

support. Here, management overhead is significantly reduced and approaches

such as hardware-assisted scheduling become relevant.

data communication

separate synchronization

Core

Sync HW
Memory

NoC router

Fig. 3.10 Separate infrastructure for synchronization comes to focus with changed constraints in

multicore systems. The dashed elements sketch approaches for a separate synchronization infra-

structure

11 Tilera. http://www.tilera.com/.
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l Concepts that are not feasible in supercomputing: In some cases, the overhead

or cost of concepts does not allow for their use. An example is a separate

synchronization subsystem. Other advanced technologies, such as Transactional

Memory, are becoming possible to implement now.

Concretely speaking, the following concepts show this adaption of supercom-

puting methods:

l Hierarchical multitopology NoC concept: The multitopology approach allows

individual and optimal adaptation of the on-chip interconnect structure for each

subcluster of the system. Combining several multitopology clusters into a hierar-

chical network enables the efficient connection of shared resources. Both aspects

optimize the communication cost and the performance of a manycore system.
l Task management: The granularity of tasks changed from complex jobs and

processes in supercomputing down to light weight threads, or even a few

instructions, in manycores. In consequence, software scheduling overheads

would increasingly affect overall system performance. Hardware supported

scheduling in novel manycore systems can and shall be realized with signifi-

cantly reduced overhead costs.

3.4 Learning from Bio-Inspired, Self-Organizing

Systems in Nature

While the previous two sections focused on the cross-architectural exchange of

techniques between homogeneous and heterogeneous manycores and, thus, derived

means for the hardware support of MPSoC out of the native domain of processor

architecture, this section seeks inspiration for unconventional and new concepts by

looking at nontechnical systems. In essence, as stated in the introduction, improving

resource utilization in manycore systems boils down to a complexity problem,

where parallel processes should be mapped in an optimal fashion onto several

processor cores. In nature, swarm communities (such as ant colonies, insect

swarms, herds of land animals, or fish schools) exhibit complex collective beha-

viors for purposes such as, e.g., shortest path routing or predator protection based on

fully decentralized, self-organized control. Hence, if self-organization is an ade-

quate means to cope with complexity in natural (many entities) systems, how can it

be applied advantageously to technical manycores?

3.4.1 Collective Behavior of Entities in Natural
and Technical Systems

In the following we use a school of fish as an analogy for a “manycore system of

nature.” We assume that an individual fish corresponds to a single core, and the

behavior exhibited by the entire fish school corresponds to the behavior of an
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application running on the manycore. The application level behavior of a manycore

processor is the result of cooperative interactions among all cores. In nature, the

complex three-dimensional formation of a fish school and the collective movement

of the entire community emerges from the individual behavior of each fish. Behav-

ioral biologists have discovered that all fish follow a simple and identical set of

elementary rules [8], summarized in conjunction with Fig. 3.11. Depending on the

distance d between a particular fish and its nearest companion in the sector of sight,

the fish either shows a repulsive action to not run into the neighbor (d<Rr), is

attracted by the companion if the next neighbor is relatively far away (Rp< d<Ra),

or aligns in parallel to the companion if the neighbor is in a medium distance

(Rr< d<Rp). These simple, local rules and behaviors at the individual fish level

emerge into a sophisticated behavior at the fish school level. Self-organizing,

emergent behavior is the consequence of hidden causal relationships among the

behavior of the individuals within their community [6]. A prerequisite for self-

organization is the existence of a population of interacting system constituents (i.

e., fish or cores), and a higher-layer, hierarchical structuring (i.e., fish school or

manycore) at which the system-level behavior is observed (see Fig. 3.12).

The fish school example illustrates the potential of exploiting self-organization

or emergence – complex systems can be built from a community of individuals that

execute only simple tasks. Would it not be intriguing to compose software applica-

tions for manycores from simple tasks whose behavior collectively results in the

desired system function? The caveat is that, up to now, scientists have not found a

calculus or systematic approach to reliably forecast what system level behavior will

emerge from what component level rules and actions. Nor can we deterministically

tackle the inverse problem – what local behavior would be needed to obtain a

certain system level behavior. Emergence may even result in chaotic system level

behavior. Hence, when applied to technical systems, it is essential to find ways to

meaningfully control emergence [18].

Ra
Rp

Rr

Fig. 3.11 The reactions of an

individual fish depend on its

proximity to neighboring

companions
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At this point, we will go into a little more detail about the reasoning behindmaking

a processor core the technical equivalent of a “fish.” While a large number of small

entities allows for very simple individual behavior, adding self-adaptive mechanisms

to many entities can become prohibitive in cost. For example, the smallest entity in

an integrated system could be considered a single transistor. However, even very

simple self-adaptive mechanisms would require rule evaluation logic containing

hundreds to thousands of transistors, clearly making the overheads unacceptable.

Coming from the opposite direction, a “school” of entities can be considered equiva-

lent to a complete MPSoC. Such a system is composed of multiple component

modules, “types of fish,” such as memories, interconnects, processor cores etc.,

generally referred to as IP cores inMPSoC design. Each of these cores is large enough

such that reasonably complex self-adaptivemechanisms can be addedwith acceptable

overheads, while sufficient components exist to allow for emerging system-wide

behaviors.

3.4.2 Technical Realization of Self-Adaptive IP Cores

We now turn to the problem of choosing an approach for making MPSoC cores self-

adaptive. One way would be to redesign all cores from scratch with self-adaptive

properties in mind, which would be very costly and time-consuming. Instead, it is

preferable to reuse existing IP libraries and extend these with self-adaptive con-

cepts. For this, it is necessary to monitor the behavior of the underlying component,

and to be able to effect changes (actions) in the component’s operating parameters.

For example, it should be possible to monitor a component’s utilization and effect

appropriate changes in the component’s frequency parameter.

In the following, we will assume that various monitor and actuation interfaces

have already been integrated into each component. We focus instead on the

decision system needed to determine an appropriate action given a certain operating

Fig. 3.12 Emergent behavior

manifests itself at the system

level as a result of

collaborative interactions

between individuals at the

component level
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condition reported by the monitors [26]. In accordance with the simple rules

governing a fish’s movement within its school, the decision system of each

MPSoC component consists of individual rules that identify actions to be taken in

specific situations. At its simplest, every rule contains a condition and an action.

When the condition matches the incoming monitor signals, the associated action is

performed.

Rather than relying on static rules that were specified by the designer, it is prefera-

ble for a system to learnwhich rules are best, and to create new rules that can copewith

situations not previously specified. This makes it unnecessary during design time to

predict all possible situations the system may encounter. It also allows the system to

adjust to unpredictable circumstances, such as manufacturing defects affecting only a

certain chip, or different environmental conditions under which otherwise identical

chips are deployed.

In addition to a condition and an action, the rules governing the behavior of a

technical system therefore also contains a measure of the rule’s fitness. The fitness

is an indication of how well the rule has performed in the past, simultaneously

providing a prediction of how well the rule will perform in similar situations in

the future. This prediction is based on a reward returned by the system after a rule

has been executed. If execution of the rule causes improvements to the system’s

operating state, a large reward is returned. If the rule shows no improvement or even

harms the system, a small or no reward is returned.

To compare the state of the system before and after a rule has been applied, a

function (henceforth called the objective function) must be defined that can be used

to quantify how well the system is operating at any point in time. The best possible

operation of a system is achieved when the objective function returns some optimal

value. To simplify calculations, we choose the objective function such that it

returns zero when the optimal system state is reached. The larger the value returned

by the objective function, the further away from the optimal state the system is

operating. The objective function indicates an overall system state to avoid local

optimization. For example, while a reduction in frequency may appear beneficial

locally (lower power consumption), it could actually be detrimental to the system as

a whole if the system is no longer capable of keeping up with the workload.

As shown in Fig. 3.13, the reward R is calculated by comparing the value of the

objective function O before (OT� 1) and after (OT) the rule has been applied. If the

1.0

1.0

0.0

OT−1

OT

OT−1 2

R
(O

T
)

–1.0

Fig. 3.13 Reward

calculation from value of

objective function before

(OT� 1) and after (OT)

application of rule
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value increases (OT>OT� 1), indicating that the system state has moved further

away from the optimum, a negative reward is returned. If the value has decreased

(OT<OT� 1), a positive reward is returned. The reward is factored into the fitness F
of a rule using a running average,

Fnew ¼ b � reward þ ð1� bÞ � Fold;

where b is the learning coefficient indicating the rate at which learning should

occur. A value of b close to 1. 0 allows for faster learning, but is also more sensitive

to fluctuations in the reward signal, which can occur as a result of noise on the

monitor signals feeding the objective function.

Once the fitness of a rule has been calculated over a sufficient number

(roughly 1 /b) of trials, it can be used to decide which rule should be chosen

given multiple rules matching a given monitor state. One possibility is to ignore

the rule fitness completely, randomly choosing any rule from the set of matching

rules. While this maximizes the exploration of rules to determine how well each

performs, it makes no use of the learned fitness knowledge. At the opposite

extreme, the one rule with the highest fitness could always be chosen. This would

maximize the predicted reward of the system, but might never explore undervalued

actions that have the potential to lead to even better behavior. A third option acts as

a compromise between the above two methods, and uses each rule’s fitness as a

weight to determine its probability of selection. This leads to more frequent

execution of the actions proposed by rules with a high fitness, but does not entirely

prevent exploration of rules with a low fitness.

In the following, the self-adaptation and learning concepts introduced above will

be applied to a multicore networking application [25], a block diagram of which is

shown in Fig. 3.14. The system consists of an Ethernet MAC, memory controller,

and multiple processing cores (Core1-Core3). Incoming packets are stored by the

MAC in the memory, from where the cores are able to fetch the packets and process

them through several tasks:

Task 1: Accept packet and configure MAC for further reception

Task 2: Process packet header and determine payload processing subtask

Task 3.n: Perform one of N payload processing subtasks

Task 4: Reorder packets for in-order transmission

Task 5: Set up Ethernet MAC to transmit the packet

At system startup, all tasks are scheduled to run on a single core. The objective

of the core’s decision system is then to autonomically distribute the tasks

evenly and power efficiently across all processing elements. To accomplish this,

each core’s decision system has access to two local monitor signals: the

core’s current operating frequency and its utilization. In addition, a monitor

signal is available that indicates how the workload of the core compares with

the workload of other cores in the system. Workload is simply the product of

frequency and utilization, and indicates the number of cycles actually spent proces-

sing data every second.

3 Hardware Support for Efficient Resource Utilization in Manycore Processor Systems 81



Two actions are available to each core: Adjustment of the core’s operating

frequency and migration of one of its tasks to another core. Should the workload

of a core become too high, this allows for two distinct optimization methods; either

increase the frequency to cope with the workload, or migrate a task to another core

to reduce the workload. Whereas in a classical system the decision of which

optimization method to choose would have had to be made by the designer at

design time, the decision system can learn which optimization strategy yields the

best results under different operating conditions.

To transform the above stated objective function into a formal, mathematical

expression useable for construction of appropriate combinatorial logic, we intro-

duce the following delta values that incorporate available monitor information to

indicate how far various design parameters deviate from their optimum value:

dfrequency / frequency

dutilization / ð100%� utilizationÞ
dworkload / jworkloadlocal � workloadaveragej

For the networking application presented here, we would like the frequency (and

voltage, which is assumed to scale accordingly with frequency) of each core to be as

low as possible to reduce power consumption. The utilization of each core should

be high to avoid wasted processing cycles, and the workload of all three cores

should be similar to avoid inconsistent aging effects or temperature hot spots.

Depending on the designer’s optimization goals and the available monitor signals,

other delta values may be chosen.
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Fig. 3.14 Block diagram of a multicore networking application
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Once defined, the delta values are combined into the system-wide objective

function O. First, an objective function for each core is created by weighting the

various delta values. A core’s objective function for the delta values given above

would be:

Ocore ¼ w1 � dfrequency þ w2 � dutilization þ w3 � dworkload

The weights can be chosen based on the optimization goal deemed most important

by the designer. For the results presented below, each delta function was weighted

equally. The system-wide objective function is then simply a weighted average of

the objective functions of each component in the system. Again, the weights are

chosen based on design goals, here the objective functions of the three cores are

weighted equally.

Figure 3.15 shows the autonomic optimization of frequency and task distribution

over the three processing cores in the system. As mentioned, all tasks are initially

executed by core 1, causing an initial, dramatic increase in the frequency of that

core to cope with the tremendous workload. As the workload is distributed more

evenly across the cores, the frequencies of all three cores stabilize to a similar, low

value. The resulting average packet latency shown in Fig. 3.15 also varies dramati-

cally while the system is being optimized, but stabilizes once an appropriate

frequency and task distribution have been found. Note that the latency is considered

neither as a monitor signal nor as part of the system’s objective function. Despite

this, the autonomic system optimizes the system such that the latency stabilizes to a

reasonably low value.

3.4.3 What Can Manycore Domains Learn from Nature?

l Delegate decisions from design to run time: By allowing the decision system to

make certain decisions at run time, the designer no longer has to consider and

predict all aspects of system behavior. Not only does this alleviate the burden on

the designer, but when performing decisions at run time, much more information

about the actual application being executed and the system’s operating environ-

ment is available. In contemporary designs, the designer has to guess these

operating conditions during design time.
l Accept low overheads to improve reliability, performance, and power

consumption: The continuing increase in chip capacity results in an overabun-

dance of resources, which are often used simply by replicating components.

Unfortunately, it is difficult for the application developer to actually make use of

such massively parallel architectures. By utilizing some of the extra area (the

rule-based decision system discussed above requires roughly 5% of the

resources of a Leon3 processor core) to add bio-inspired principles, other

resources can potentially be used much more efficiently by the designer.
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l Extend rather than replace existing IP cores: Given monitor and actuator

interfaces, bio-inspired concepts can be added to a system without requiring

completely new IP. Adding monitors and actuators can often be done with minor

changes to existing cores.
l Bio-inspired concepts are applicable to any system component: Although we

have presented a decision system applied only to the processing cores of a

system, similar approaches can be used to optimize other system components,

such as interconnect, memory, hardware accelerators, or I/O.
l Not all aspects of self-adaptive systems are fully explored: Despite the benefits

of bio-inspired systems, several challenges must still be faced. First and
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foremost, by delegating design decisions into the hands of the system at run time,

it is difficult to guarantee reliable operation. In addition, although the choice of a

per-component distributed decision system is good from a scalability standpoint,

the many independent decisions potentially made simultaneously across the

system could lead to instabilities and oscillating behaviors. Due to the penalties

associated with parameter and behavioral adjustments, it is important to ensure

that even a widely distributed decision system will find a stable operating point.

On the other hand, open questions such as these make bio-inspired systems a

highly interesting topic of research, with initial results demonstrating that they

are not only feasible, but also have the potential to enormously simplify the

design of complex, manycore system architectures.

3.5 Summary and Conclusions

State-of-the-art CMOS technology enables the integration of more than a hundred

programmable processing cores on a single chip. The efficient utilization of this

huge amount of computing performance – for the time being – predominantly

depends on the individual skills of application programmers. Today’s manycore

architectures and programming tools provide insufficient support for the systematic

exploitation of massively parallel resources. This chapter cannot deliver a “silver

bullet” to this grand challenge either. However, it attempts to provision examples

for improvements in form of generic hardware support building blocks for both

homogeneous and heterogeneous manycore platforms. These hardware support

building blocks are the result of (1) an in-depth analysis of manycore applications,

(2) successful and unsuccessful approaches deployed or dismissed in supercomput-

ing environments, and (3) the adoption of bio-inspired principles found in nature,

such as collective emergent behavior or self-organizing swarms.

We have shown that significant improvements of performance and resource

utilization can be achieved by including specific hardware extensions in manycore

architectures. For example, if a HW accelerated classifier analyzes processing

requests of a manycore system before programmable cores take control over

them, the optimum sequence for traversing different subfunctions in the course of

overall processing can be determined and the processing requests can immediately

be dispatched to proper resources.

Similarly, generic functions for synchronization of tasks, which is critical in

massively parallel architectures, can be moved to optimized accelerators. All of

these measures move utilization support functions from the programmable cores

into specialized hardware assists.

Nevertheless, it is necessary to ensure that the overhead for adding such hard-

ware extensions is viable from an economic perspective. This means that the overall

benefit for the manycore due to the hardware support building blocks must be

higher than using the associated chip area for further programmable cores. For

application specific manycores, it is straight forward to evaluate what type of
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support module may be profitable when composing the hardware architecture. In

the case of general purpose manycore architectures, the major challenge for such a

hardware-based support infrastructure is to find an appropriate mix of generic

extensions that are useful for a wide range of applications.
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Chapter 4

PALLAS: Mapping Applications onto Manycore

Michael Anderson, Bryan Catanzaro, Jike Chong, Ekaterina Gonina,

Kurt Keutzer, Chao-Yue Lai, Mark Murphy, Bor-Yiing Su,

and Narayanan Sundaram

Abstract Parallel programming using the current state-of-the-art in software

engineering techniques is hard. Expertise in parallel programming is necessary to

deliver good performance in applications; however, it is very common that domain

experts lack the requisite expertise in parallel programming. In order to drive the

computer science research toward effectively using the available parallel hardware

platforms, it is very important to make parallel programming systematical and

productive. We believe that the key to designing parallel programs in a systematical

way is software architecture, and the key to improve the productivity of developing

parallel programs is software frameworks. The basis of both is design patterns and a

pattern language.

We illustrate how we can use design patterns to architect a wide variety of

real applications, including image recognition, speech recognition, optical flow

computation, video background subtraction, compressed sensing MRI, computa-

tional finance, video games, and machine translation. By exploring software archi-

tectures of our applications, we achieved 10x-140x speedups in each of the

applications. We illustrate how we can develop parallel programs productively

using application frameworks and programming frameworks. We achieve 50%-

100% of the performance while using four times fewer lines of code compared to

hand-optimized code.
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4.1 PALLAS

PALLAS stands for Parallel Applications, Libraries, Languages, Algorithms, and

Systems. We believe that productive development of applications for an emerging

generation of highly parallel micro processors is the preeminent programming

challenge of our time. Consequently, our goal is to enable the productive develop-

ment of efficient parallel applications by domain experts, not just parallel program-

ming experts. We believe that the key to the design of parallel programs is software
architecture, and software frameworks [1] are the key to their efficient implemen-

tation. In our approach, the basis of both is design patterns and a pattern language.
Borrowed from civil architecture, a design pattern refers to a generalizable solution
to a recurring design problem. A pattern language is simply an organized way of

navigating through a collection of design patterns to produce a design (Fig. 4.1).

The computational elements of Our Pattern Language [2, 3] are built up from a series

of computational patterns drawn largely from thirteen motifs [4] (Fig. 4.1(b)). We see

these as the fundamental software building blocks that are then composed using the

structural patterns of Our Pattern Language drawn from common software archi-

tectural styles [5], such as pipe‐and‐filter (Fig. 4.1(a)). A software architecture is

then the hierarchical composition of computational and structural patterns, which

we subsequently refine using lower‐level design patterns.

This software architecture and its refinement, although useful, are entirely con-

ceptual. To implement the software, we rely on frameworks. We define a pattern-

oriented software framework as an environment built on top of a software architec-

ture in which customization is only allowed in harmony with the framework’s

Fig. 4.1 Our Pattern Language
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architecture. For example, if based on pipe‐and‐filter, then customization involves

only modifying pipes or filters. We see application developers being serviced by

application frameworks. These application frameworks have two advantages: First,

the application programmer works within a familiar environment using concepts

drawn from the application domain. Second, we prevent expression of many annoy-

ing problems of parallel programming such as non‐determinism, races, deadlock,

and starvation.

To test and demonstrate our approach to parallel software development we have

applied a pattern-oriented approach to parallel software development to a broad

range of applications in computer vision, speech recognition, quantitative finance,

games, and natural language translation. We have first used patterns and Our

Pattern Language as conceptual tools to aid in the design and implementation of

the applications. This work is described in Section 4.2. As our understanding of the

use of patterns matured we have used patterns to define pattern-oriented frame-

works for a speech recognition application and a programming framework for data

parallelism. This is defined in Section 4.4.

4.2 Driving Applications

We describe eight applications from a broad set of domains ranging includ-

ing image recognition, speech recognition, optical flow computation, video back-

ground subtraction, compressed sensing Magnetic Resonance Imaging (MRI),

computational finance, video games and machine translation. In each of these

applications we demonstrate how our pattern-based approach establishes a common

set of vocabulary, aids in understanding parallelism opportunities and bottlenecks,

and leads to the development of efficient parallel implementations of the underlying

algorithms. We first describe the overall software architecture of an application,

then illustrate how pattern decomposition helps highlight parallelism opportunities

and bottlenecks, and discuss execution speedups achieved.

4.2.1 Content-Based Image Retrieval

The Content-Based Image Retrieval (CBIR) application is used to select images

that match a set of training samples from a huge image database. As shown in

Fig. 4.2, the user will select some exemplar images as input, and then the CBIR

application will collect features from images in the image database, train the

classifier based on the chosen exemplar images, and exercise the classifier to find

some of the images that match the characteristics of the exemplar. For example

a user may want to find all the photos of roses in a large database of pictures of

flowers. If there are incorrect classification results, the user can provide feedback
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to the system, and the system will retrain and reexamine the image database to

generate more accurate results.

A wide variety of features can be used to describe an image, such as SIFT,

SURF, HOG, MSER, color, texture, edges, contours, etc. We studied the state-

of-the-art contour detection algorithm, the gPb algorithm [6]. This algorithm finds

the boundaries between semantically meaningful objects in images without a priori

knowing the content of the images. The computations of the gPb algorithm can be

architected using the pipe-and-filter pattern as shown in Fig. 4.2. Gradients on

color, brightness, and texture represent local cues of the image contours. The

eigenvectors of an affinity matrix on pair-wise pixel similarity represent the global

cues of the image contours. The gPb algorithm combines the local cues and the

global cues to find image contours. Each computation in the gPb algorithm can

be further architected by structural and computational patterns. For example, the

k-means algorithm can be described by an iterative refinement pattern, iteratively

compute sample means using the dense linear algebra pattern, and compute sample

labels using the map-reduce pattern.

Given the feature vectors of images, we need to distinguish images that the

end user recognizes as matches from the images the end user does not recognize

as matches. Many machine learning algorithms can achieve this goal, such as

k-nearest neighbor, naı̈ve Bayes, logistic regression, support vector machine, deci-

sion tree, adaBoost, etc. We studied a particular state-of-the-art classifier approach

known as support vector machines (SVM) [7]. The training phase and the classifi-

cation phase of the SVM algorithm are architected in Fig. 4.2. The iterative

Fig. 4.2 Architecture of the CBIR application
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refinement pattern is used to describe the computation of the training phase. Within

the iterator, the map-reduce pattern is used to describe the computation of updating

optimal conditions, selecting working set, and solving the quadratic programming

problem. For the classification phase, the dense linear algebra pattern is used to

represent the computation of dot products on vectors, and the map-reduce pattern is

used to represent the computation of kernel function, summation, and scaling.

By examining efficient parallel algorithms for performing image contour detec-

tion, along with careful implementation on highly parallel, commodity processors

from Nvidia, we reduced the runtime of the gPb algorithm from 237 seconds on

the Intel Core i7 920 (2.66GHz) platform to 1.8 seconds on the Nvidia GTX 280

GPGPU, about 130x speedup, with uncompromised results [8]. We implemented

the SVM by the Platt’s Sequential Minimal Optimization algorithm and an adaptive

first and second order working set selection heuristic in parallel on the Nvidia

GeForce 8800 GTX GPGPU, and achieved 9-35x speedup on the training phase,

81-138x speedup on the classification phase against LIBSVM [9] on the Intel

Core 2 Duo (2.66 GHz) platform [10].

4.2.2 Optical Flow and Tracking

Optical flow computation is a crucial first step for almost all dense motion feature

extraction in video. Optical flow models have become far more reliable over the

years, and recent parallel hardware, especially GPUs, also offers the potential to

meet the speed requirements of large throughput video analysis. Currently the

dominant class of optical flow techniques is based on extensions of the variational

model of Horn and Schunck. In particular, we use the Large Displacement Optical

flow (LDOF) algorithm [11] which integrates discrete point matches with a contin-

uous energy formulation in order to obtain accurate flow for large displacements of

small structures. This helps us track objects like limbs in human motion, balls in

sports videos etc. much more accurately than other techniques.

A quite general numerical scheme that can efficiently compute solutions of

basically all variational models is based on a coarse-to-fine warping scheme,

where each level provides an update by solving a nonlinear system given by the

Euler-Lagrange equations followed by fixed point iterations and a linear solver [12].

This strategy is very general and accommodates even non-convex regularizers

(We use a convex regularizer that approximates the L1 norm). On serial hardware,

a very efficient and quite straightforward linear solver is given by Gauss-Seidel

with successive overrelaxation. But on parallel hardware, there is a need to investi-

gate which algorithms perform better for optical flow problems. It is necessary to

fully characterize the properties of the matrices involved - in this case, they are

positive definite, enabling the use of the Conjugate gradient algorithm.

Figure 4.3(a) shows the overall architecture of the application. There are 3 main

iterative refinement blocks – One for the coarse to fine refinement, one for doing

the fixed-point iterations (linearizing the non-linear regularizer), and the third
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for the iterative sparse linear solver. Our implementation uses Preconditioned

Conjugate gradient for solving the linear system of equations (third loop) for all

the fixed points at all scales. Compared to other parallel solvers like Red-black

relaxations, the preconditioned conjugate gradient algorithm performs more work

per iteration (2.1x more) but requires fewer iterations (about 3x less), thus ensuring

40% better performance. For all solvers, it was necessary to take advantage of the

sparse matrix structure (block penta-diagonal) to achieve high memory throughput.

Compared to a serial Gauss-Seidel solver running on Intel Core2 Quad Q9550, our

conjugate gradient solver on Nvidia GTX480 achieves a 47x speedup. We achieve a

78x speedup on the full application for achieving an equivalent error rate on the

Middlebury optical flow dataset [13]. The runtime for running LDOF on a pair of

640x480 sized frames has been brought down from over 2 minutes to 1.8 seconds,

making large displacement optical flow practical to use in a wide variety of motion

estimation tasks.

By using the efficient optical flow solver, we developed a point tracking

system [14]. Figure 4.3(b) shows the high level description of the tracker. The

optical flow computation dominates the runtime of the tracker, taking up 93% of the

total runtime even after parallelization. Compared to the most commonly used KLT

tracker [15], we can track three orders of magnitude more points while achieving
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Fig. 4.3 (a) Architecture of the large displacement optical flow application. (b) High-level

description of the point tracker based on large displacement optical flow
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46% better accuracy. Compared to the Particle Video tracker [16], we achieved

66% better accuracy while running an order of magnitude faster. In addition to the

improved accuracy and speed, the tracker based on LDOF also provides improved

tracking density and the ability to track large displacements. This has been possible

through algorithmic exploration and an efficient parallel implementation of the

large displacement optical flow algorithm on highly parallel processors (GPUs).

4.2.3 Stationary Video Background Subtraction

Stationary-video background subtraction is the problem of extracting the moving

parts from a video where the camera does not move during the duration of the video,

as is the case in surveillance videos. One tool used in solving this problem is a

singular value decomposition (SVD) of a matrix with one column for each frame

and a row for each pixel of the video [17]. The SVD operation makes it possible to

extract the parts of the video that are common to every frame (i.e. the background).

The shape of this videomatrix is extremely tall and skinny, because the number of

pixels in a frame is typically far greater than the number of frames. For matrices of

this shape, the SVD can very efficiently be found by first solving the QR decompo-

sition of the matrix. The QR decomposition is an operation in which a matrix is

factored into a product of two matrices, Q and R, where Q is orthogonal and R is

upper triangular. So the main computation being done in this approach to stationary-

video background subtraction is the QR decomposition of a tall-skinny matrix.

Figure 4.4 is the architecture used for a stationary-video background subtraction

algorithm. The video matrix is the main data structure. We can apply geometric

decomposition to break down the data structure into many small blocks that fit

in cache, shown in Fig. 4.4. A recent algorithm for the QR decomposition, Com-

munication-Avoiding QR [18], allows us to factor the entire matrix using only a

sequence of small operations on these blocks. We get good performance because

we are able to operate on each block in parallel in each processor’s cache. Using

Fig. 4.4 Architecture of stationary-video background subtraction application
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this approach on a Nvidia GTX480 card, we achieve a 27x speedup for the entire

application compared to using Intel’s Math Kernel Library.

4.2.4 Automatic Speech Recognition

The Automatic Speech Recognition (ASR) application takes a speech audio wave-

form as input and produces a sequence of words representing the most-likely

utterance the speaker intended to communicate. As shown in Fig. 4.5, ASR does

this by first extracting acoustic features from the waveform and then decodes the

feature sequence to produce a word sequence.

The feature extraction process involves a sequence of signal processing steps in

the form of the pipe-and-filter pattern. The filters are aimed to remove variations

among speakers and room acoustics and preserve features most useful to distinguish-

ing word sequences. The decoding process performs statistical inference on a hidden

Markov model using the Viterbi algorithm. The inference is performed by comparing

each extracted feature to a speech model, which is trained off-line using a set of

powerful statistical learning techniques. The module that performs inference, shown

in Fig. 4.5 as the Inference Engine, has an iterative outer loop (iterative refinement

pattern), that handles one input speech feature vector at a time. In each of the loop

iterations, the algorithm performs a sequence of data-parallel steps (pipe-and-filter

Fig. 4.5 Architecture of the ASR application
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pattern). Modern manycore processors take advantage of the parallelism within each

algorithmic step to accelerate the inference process (map-reduce pattern).

An implementation of such an inference engine involves a parallel graph tra-

versal through an irregular graph-based knowledge network with millions of states

and arcs (graph algorithm pattern). The challenge is not only to define a software

architecture that exposes sufficient fine-grained application concurrency but also to

efficiently synchronize between an increasing number of concurrent tasks and to

effectively utilize parallelism opportunities in today’s highly parallel processors.

Chong, You et al. [19, 20] demonstrated substantial speedups of 3.4x on Intel

Core i7 and 10.5x on NVIDIA GTX280 compared to a highly optimized sequential

implementation on Core i7 without sacrificing accuracy. The parallel imple-

mentations contain less than 2.5% sequential overhead, promising scalability and

significant potential for further speedup on future platforms. Further parallel opti-

mizations were demonstrated in Chong et al [21] through speech model transforma-

tions using domain knowledge and exploring other speech models on the latest

manycore platforms [22].

Additional opportunities on the basis of such parallel implementations include

accelerating the Hidden Markov Model (HMM) training algorithm, for example the

Baum-Welch algorithm, and performing realtime multistream decoding, e.g. for

audiovisual speech recognition. Both of these applications can make use of the

highly parallelized likelihood computations that have already been optimized for

the purpose of ASR, and can be expected to obtain similar gains in performance due

to their highly regular and parallel structure.

4.2.5 Compressed Sensing MRI

Compressed Sensing is an approach to signal acquisition that enables high-fidelity

reconstruction of certain signals sampled significantly below the Nyquist rate.

The signal to be reconstructed must satisfy certain “Sparsity” conditions [23], but

these conditions are satisfied at least approximately by signals in many aplications.

Compressed Sensing has been applied to speed up the acquisition of MRI data [24],

increasing the applicability of MRI to Pediatric medicine. Compressed Sensing

reconstruction is computationally difficult, requiring solution of a non-linear L1

minimization problem [23]. L1 minimization problems are more difficult than, for

example, least squares problems due to the non-differentiability of the L1 objective

function. The difficulty is compounded by the size of the problems to be solved: we

must determine the value of each voxel in a 3D MRI scan, so our L1 minimization

typically involves billions of variables. This computational difficulty leads to long

runtimes, limiting the clinical applicability of the technique. MRI images must

be available interactively (i.e. in a few minutes) to the radiologist performing the

examination, so that time-critical decisions can be made about further images to

be taken.
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Our solver for this problem implements a Projections Onto Convex Sets (POCS)

method, which is shown in Fig. 4.6: we iteratively project the solution onto convex

sets representing sparse signals and the feasible region of the minimization prob-

lem. Since these sets are convex and their intersection is nonempty, the procedure is

guaranteed to converge. While L1 minimization problems can be cast as linear

programs (LP) and solved by e.g. the Simplex method or Interior Point methods, the

high numerical accuracy of LP solvers is unnecessary in our case. The POCS

algorithm is much faster, and produces sufficiently high-quality images. Even

still, the original Matlab implementation required approximately 30 seconds per

2D slice; a full 3D scan typically has several hundred slices, and an entire scan

required hours to reconstruct. The L1 minimization is necessarily proceeded by a

“Calibration” phase, which requires the solution of a number of least-squares

problems. We solve these systems directly, using standard linear algebra libraries.

The solutions of these systems provide a “Self-Consistency” model that incorpo-

rates information from up to 32 redundant acquisitions (channels) of the MR image.

We have produced two highly efficient parallel implementations of the POCS

algorithm. Our evaluation platform is a 12-core 2.67GHz Intel Xeon E5650machine

with four 30-core, 8-wide-SIMD 1.3 GHz Nvidia Tesla C1060 GPGPUs. For

typically sized datasets with 8 channels, our OpenMP parallelized calibration runs

in 20 seconds (140 ms per slice), on average. 40 iterations of our OpenMP POCS

solver, sufficient for most datasets to converge, run in 334 seconds (2.1 seconds per

slice) using all 12 CPU cores. On a single GPGPU, our Cuda POCS solver runs in

75 seconds (480 ms per slice) - 4.5x faster than the version on 12 CPU cores. Using

multiple GPUs we get nearly linear speedup: the POCS solver runs in 20 seconds.

Our GPUwavelet implementation is bandwidth-inefficient: a more highly optimized

implementation will be up to 50% faster. Also, multi-GPU parallelization will

Fig. 4.6 Architecture of the

compressed sensing MRI

application
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provide additional 3-4X speedup. Using our OpenMP calibration and our Cuda

POCS solver results in 40-second reconstruction times: this is the first clinically

feasible compressed sensing MRI reconstruction implementation [25].

4.2.6 Market Value-at-Risk Estimation in Computational Finance

The proliferation of algorithmic trading, derivative usage and highly leveraged

hedge funds has necessitated the estimation of market Value-at-Risk (VaR) in

future market scenarios to measure the severity of potential financial losses. VaR

reports are typically generated daily to summarize the vulnerabilities to market

movements in the positions financial business units take. They are the central tenet

of financial institutions’ market risk management operations.

VaR estimation is a direct application of the Monte Carlo computation pattern.

It broadly entails simulating the effects of thousands to millions of potential market

scenarios to collect statistics about the portfolio loss distribution going into the

future. Each VaR simulation involves four steps as illustrated in Fig. 4.7(a). There

exist significant parallelism opportunities for executing each of the steps over all

the scenarios (Fig. 4.7(b)). We use the loss distribution of the resulting portfolio

valuation, to estimate the exposure of a portfolio to a severe loss. The VaR is

Fig. 4.7 Architecture of the market value-at-risk estimation in computational finance application
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typically taken to be the value associated with a specific frequency in the range of

the 1-in-100 up to the 1-in-20 loss event.

For an implementation optimized on a highly parallel platform such as today’s

GPUs [26], we use the geometric decomposition pattern to partition the workload

into blocks such that a block of scenarios can fit into a given size of fast memory in

an implementation platform. Specifically, a small block of steps (1) and (2) can be

merged and made to fit in lowest level cache, and a block of all four steps should fit

into the memory on the device in a GPU-based platform (Fig. 4.7(c)).

We evaluated a standard implementation of quadratic VaR estimation using a

portfolio-based approach, where financial outcome for all instruments in a portfolio

are aggregated from quadratic approximations of risk factor losses. For step (1) we

use a Sobol quasi-random number sequence; for step (2), we used the Box-Mueller

transformation; for step (3), we use the quadratic estimation for the loss estimation;

and for step (4), we use parallel reduction within a block and sequential reduction

across blocks.

For a portfolio with up to 4096 risk factors, we achieved a 8.21x speedup on

the GPU compared to an algorithmically equivalent multicore CPU implementa-

tion. Step (1) and (2) attained a speedup of 500x by more effectively utilizing

computation and memory locality from applying the geometric decomposition

pattern. Step (3) attained a speedup of 5x, and is limited by capabilities of Basic

Linear Algorithm Subroutine (BLAS) implementations. Step (4) takes proportion-

ally negligible runtime. Noting the key computation bottleneck in the loss estima-

tion, we reformulated step (3) algorithmically and gained a further 60x speedup in

loss estimation.

4.2.7 Games

A typical video game is a composition of several large subsystems such as physics,

artificial intelligence (AI), and graphics. Subsystems can be large reusable libraries

or “engines”, or functions created for a specific game. A primary concern of the

game designer is how to efficiently manage communication between subsystems.

The communication becomes more complex if the subsystems are to be run in

parallel on a multicore device, requiring special coordination or locking for shared

data. Also, each subsystem should have a well defined interface so it can easily be

swapped with another similar library if necessary [27].

A solution to this problem is the application of the puppeteer pattern (Fig. 4.8).

A puppeteer sits above the subsystems and acts as an intermediary for communica-

tion between subsystems. Suppose the AI subsystem changes a character’s direction

and needs to inform the Physics subsystem, which will in turn update the char-

acter’s position and velocity. Instead of interfacing directly with the Physics

subsystem, the AI subsystem informs the puppeteer of the change. The puppeteer

passes on the information to any interested subsystems. The main benefit of the
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puppeteer pattern is that it reduces the total number of subsystem interfaces, which

allows for greater flexibility and scalability.

Graphics Processing Units were developed specifically to enable more computa-

tion in the graphics subsystem. For other subsystems to take advantage of these

parallel devices, they must be decomposed into their patterns and sped up individu-

ally. A simple AI subsystem, for example, is a collection of character state machines

that read and write from a set of shared data. The shared data could contain the

locations and orientations of the characters. This system can be architected struc-

turally using the Agent & Repository pattern. Since the AI state machines operate

independently from one another within a single frame, the task parallelism imple-

mentation pattern can be applied to speed up computation on parallel hardware.

Video games have a real-time constraint, the frame rate. The worst-case amount

of computation must meet this constraint for a user with the minimum required

hardware, unless the computation does not affect game play and can be optionally

skipped. Another challenge is effectively managing access to the scene graph, the

main data structure containing the game’s state. Data transfer can also be prohibi-

tively expensive, especially when moving between devices.

4.2.8 Machine Translation

Machine translation (MT) is one of the classic problems in computer science and a

vast area of research in the field of natural language processing (NLP). High-quality

and fast MT enables a variety of exciting applications, such as real-time translation

in foreign environments on handheld devices as well as defense and surveillance

applications. A fast machine translator will also enable people speaking different

languages communicate and share resources altogether on the Internet.

The most prevalent way of machine translation is the CKY algorithm [28, 29],

which is composed of three phases: To use a translation model to translate phrases,

to combine the translated phrases in a bottom-up fashion, and to extract the most

likely translation with a top-down traversal. The architecture of the ML application

is summarized in Fig. 4.9, where the three phases are represented by the pipe-and-

filter pattern. The bottleneck of the CKY algorithm is in the second phase, in which

we examine the probabilities of all possible combinations over the translated

phrases using an N-gram language model, and this computation can be represented

Fig. 4.8 Architecture of the game application
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by the dynamic programming pattern. We parallelized the second step of the CKY

algorithm on both GPU and CPU. When translating 1000 sentences with an average

length of 28 words from Spanish to English, we achieved 1.8x speedup on GTX 480

and 2.3x speedup on Core i7 using 4 threads. When translating 350 sentences with

length of more than 40 words, we achieved 2.3x speedup on GTX 480 and 2.6x

speedup on Core i7 using 4 threads. This shows our parallelization works better

with longer sentences because more concurrency is available.

4.2.9 Summary

In this section, we have explored eight applications from a variety of domains, and

demonstrated how patterns can serve as a set of vocabulary to allow software

developers to quickly articulate and communicate the architecture of a piece of

software. We have also touched on how patterns provide a set of known tradeoffs to

inform software developers of potential bottlenecks in a design. These known

tradeoffs help software developers identify key design decisions impacting the

performance of an application. In the next section, we provide some perspective

on the parallel speedups achieved in these applications.

Fig. 4.9 Architecture of the ML application
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4.3 Perspectives on Parallel Performance

When one writes parallel software, performance considerations are always close at

hand. This is natural, since one could always forgo parallelization and use a

sequential implementation, were it not for performance requirements. These per-

formance considerations raise many questions: How can we tell if a program has

been successfully parallelized? How can we compare performance between parallel

platforms? How generally can we extrapolate from one performance claim to

performance projections for another algorithm or architecture? Varying assump-

tions and perspectives lead to a surprising diversity of opinions on these questions,

which is why it is important to be explicit about the assumptions one makes when

making and evaluating performance claims.

We consider performance results under the following three guidelines, which we

will explain, along with their justifications and implications.

1. Perfect linear speedup, under strong scaling, is not a necessary condition for

successful parallelization.

2. The most useful kind of performance information comes from measured perfor-

mance of a real application, running on real hardware.

3. Some algorithms are inherently more difficult to parallelize than others.

4.3.1 Linear Scaling Not Required

In the past, when one evaluated parallel software, it was important to achieve linear

speedup under strong scaling, meaning that if one doubled the number of proces-

sors, keeping the problem size the same, the computation should take half the

runtime. This was primarily due to economic reasons. Since a computer with twice

as many cores cost at least twice as much as a smaller computer, in order to recoup

one’s investment, linear scaling was required.

The situation has now changed, since we integrate large numbers of cores on a

single die. Consider the status quo before the advent of on-die parallelism. Proces-

sor vendors created new microarchitectures, spending ever larger amounts of

transistors on increasingly sophisticated single-thread processors. However, it

was widely known that new microarchitectures did not provide performance

gains in proportion to their increased complexity. Pat Gelsinger, of Intel, famously

stated that processor performance increases only with the square root of transistor

count [30]. Although the industry did not see linear increases in performance with

respect to transistor count, the resulting performance gains realized through the

uniprocessor era were still sufficient to propel the industry forward, providing end

users new capabilities through increased performance.

On-die parallelism has exposed architectural complexity to the programmer as

increased core counts. Today, increases in transistor count, to a first order approxi-

mation, are accompanied with linear increases in exposed parallelism, although not
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to linear increase in cost, due to Moore’s law. Accordingly, sublinear performance

scaling as we increase the number of transistors, and hence the number of cores,

should still provide end-users with the increased capabilities they have come to

expect from the computer industry. In addition, workload sizes tend to scale as

problems get harder, making parallelization easier to use in practice than Amdahl’s

law and strong scaling assumptions would suggest [31]. We do not need to apply

parallelism to every computation, only to those which are computationally inten-

sive, which tend to have better parallelization characteristics because they are larger

problems. Summarizing, when evaluating the success of the parallelization of a

particular piece of software, we believe it is important to remember that the

economics of parallelism today have made it possible for even modestly paralle-

lized software to be successful.

4.3.2 Measure Real Problems on Real Hardware

It is often tempting to examine the parallel performance of the kernels of an

application. They capture the heavy computational load of the application, and

so their performance is critical. However, excessive focus on the kernels can be a

mistake, since the glue that holds an application together can quickly become

a bottleneck when the kernels are composed to form an application. Data structures

often have to be transformed between kernels, serial work must be done to decide

how the application should proceed, kernels must coordinate to ensure correct

results. Accordingly, the most important performance data is achieved on complete

applications, taking into account the composition of the entire application.

It is also important to examine realized, delivered application performance on

concrete hardware, rather than comparing peak kernel-performance claims across

various hardware platforms and trying to generalize and extrapolate expected

performance. Peak, theoretical numbers are useful bounds, but they can be distract-

ing. Most computations are not as easy to parallelize as kernels like Linpack [32],

even though the kernels provide bounds on application performance. Some parallel

platforms are significantly more brittle than others, in the sense that they may do

very well on isolated kernels, but their general performance is fairly poor. In the

end, the most important performance results concern complete applications on

concrete hardware, all other performance results are useful primarily as bounds.

4.3.3 Consider the Algorithms

Successful parallelization requires consideration of the algorithms being paralle-

lized. This is important in two senses. Firstly, we must realize that certain algo-

rithms are harder to parallelize than others. Algorithms which require a lot of

data sharing between threads, have unpredictable memory access patterns, or are
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characterized by very branchy control flow, are often inherently more difficult to

parallelize than others. Some algorithms are embarrassingly sequential. Some are

mostly sequential, and can be parallelized only through heroics that often result in

modest performance gains despite significant software complexity. For this reason,

it’s important not to compare speedup results for one algorithm versus another,

if the algorithms accomplish different tasks. One should not expect all algorithms to

parallelize with the same efficiency.

Secondly, when parallelizing an application, it is often useful to rethink the

algorithms involved. Sometimes it is better to use algorithms which do more work,

but are more parallelizable. And of course, if rethinking the algorithm leads to

algorithmic variations which improve parallel as well as sequential efficiency, those

improvements should be capitalized on.

4.3.4 Summing Up

At the end of the day, we parallelize applications because the increased performance

leads to increased capabilities for end-users. Ultimately, we parallelize in order

to solve bigger and harder problems, continuing to realize the full performance

provided by Moore’s law in real applications.

4.4 Patterns to Frameworks

We define a software architecture as a hierarchical composition of structural and

computational patterns. A pattern-oriented framework is a software environment
(e.g. Ruby on Rails) that is based on particular software architecture (e.g. Model

View Controller) and in which all user customization must be in harmony with

that software architecture. In other words only particular customization points

within the software architecture (e.g. elements of the Controller) are available for

end-users to customize. Patterns and pattern-oriented frameworks assist application

developers in quick prototyping of parallel software and enable fast exploration of

software architectural design space. There are two types of frameworks being

developed to target different developer usage models. The application frameworks

provide an efficient reference implementation in an application domain along with

a set of extension points to allow customization of functions in selected modules

without jeopardizing the efficiency of the underlying efficient infrastructures.

The programming frameworks provide a set of flexible tools to take advantage of

parallel scalability in hardware without the burden of particular platform details.

We motivate the need for these two types of frameworks and illustrate how they

can be used.
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4.4.1 Application Frameworks

Developing an efficient parallel application is often a significant undertaking.

It requires not only a deep understanding of an application domain, but also

advanced programming techniques for a parallel implementation platform. A deep

understanding of an application domain enables domain experts to discover paral-

lelization opportunities and make application-level design trade-offs to meet the

requirements of the end user. Advanced programming techniques allow parallel

programming experts to exploit the parallelization opportunities to utilize available

parallel resources and navigate various levels of synchronization scope of an

implementation platform.

In Automatic Speech Recognition (ASR) inference engine development, appli-

cation domain knowledge includes topics such as: pruning heuristics to reduce

required computation while maintaining recognition accuracy, and recognition-

network construction techniques to handle periods of silence between word utter-

ances. Advanced programming techniques include designing data structures for

efficient vector processing, constructing program flows to minimize expensive

synchronizations, and efficiently utilizing the atomic-operations supported on the

implementation platform.

With the increasing complexity of parallel systems, domain experts often must

make application level design trade-offs without the full view of parallel perfor-

mance implications. On the other hand, parallel programming expert may not

be aware of application-level design alternatives to optimize computations and

synchronizations away from the performance bottlenecks they discover.

With Our Pattern Language, an application domain expert can quickly gain

insights into potential parallel performance implications of a design by architecting

it using the structural and computational patterns and becoming aware of the trade-

offs governing these patterns. For the most commonly reoccurring composition

of patterns in a domain, we can construct application frameworks pre-optimized

for various parallel platforms. An example of such an application framework is

proposed for the ASR application domain in Fig. 4.10. The application framework is

based on an efficient parallel implementation of large vocabulary continuous

speech recognition that achieved over 11x speedup over an optimized sequential

implementation on CPU [21].

The application framework for ASR is hierarchical, with the top-level containing

Feature Extractor and Inference Engine as fixed components (Fig. 4.10(a)). User

can customize input format, intermediate data format, recognition network format,

and output format according to a specific end-user usage model. The Feature

Extractor component is a pipe-and-filter pattern-based-framework where the filters

can be customized according to the end application needs (Fig. 4.10(b)). The

Inference Engine component contains an Inference Engine Framework where

there is a fixed structure of sequential steps wrapped in an iterative loop implement-

ing the Viterbi algorithm (Fig. 4.10(c)). The computation within each step can be

customized to incorporate many variations of the application.
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For application domain experts, an application framework serves to restrict

implementations to a software architecture that is known to be efficient while

providing a plethora of opportunities for user customizations. Different user custo-

mizations can result in a whole class of applications in an application domain.

For parallel programming experts, the application framework serves to accentuate

critical performance bottlenecks in a class of applications, where performance

improvements in these bottlenecks can lead to performance improvement of

the whole class of applications. We demonstrated the effectiveness of our ASR

application framework by introducing it to a Matlab/Java programmer. She enabled

Fig. 4.10 Application framework for the ASR application
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lip-reading in speech recognition by extending the audio-only speech recognition

application framework to an audio-video speech recognition application. She was

able to achieved 20x speedup in her application by implementing only plug-in

modules for the Observation Probability Computation (Fig. 4.10(c)) and file input/

output modules on the underlying manycore platform.

An application framework captures an efficient software architecture that imple-

ments a common reoccurring composition of patterns for an application domain.

It creates a productive interface between application domain experts and parallel

programming experts.

4.4.2 Programming Frameworks

4.4.2.1 Efficiency & Portability Through Programming Frameworks

While application frameworks help application developers to create new and

interesting applications within a specific architecture, application domain research-

ers and application framework developers need more flexibility to create the tools

they need. It is essential to provide frameworks that will help them take advantage

of the hardware scalability from parallelism while still being shielded from the

particular platform details. We believe programming frameworks provide this

abstraction. It might be tempting to assume that programming frameworks should

be completely agnostic about the application domain. In practice, programming

frameworks need to support specific application domains so that they can take

advantage of data structures and transformations that are specific to a particular

domain. In other words, in order to ensure good performance it is necessary to tailor

the optimizations performed to a particular domain.

Application domains like computer vision and machine learning heavily employ

regular data structures (dense matrices, vectors, structured sparse matrices etc.).

In these cases the important optimizations that need to be performed are figuring out

how much concurrency in the application needs to be exposed, and how to map this

efficiently onto the hardware. In particular, modern parallel processors have several

levels of parallelism – at the SIMD level, at the thread level, at the core level etc.

Hardware and programming model restrictions may or may not allow us to exploit

all these levels efficiently.

In addition, programming frameworks can also handle optimizations that are

specific to particular architectures. For instance, the limited physical memory of

current many-core architectures like CUDA-capable GPUs and the high cost of data

transfer between the CPU and GPU mean memory management through efficient

scheduling is important. Programming frameworks can help the application frame-

work developers by performing high quality task and data transfer scheduling to

ensure low overheads and better efficiency [33].
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4.4.2.2 Copperhead

During our work investigating application parallelization, we discovered that the

Data Parallelism, Strict Data Parallelism, and SIMD patterns predominate in many

important computations. The Data Parallel pattern involves finding parallelism

in a computation by examining independent data elements in the computation.

The Strict Data Parallelism pattern is an implementation pattern where the pro-

grammer exploits available data parallelism by mapping independent threads over

independent data elements, and the SIMD pattern is an execution pattern where

the programmer utilizes Single Instruction, Multiple Data hardware to efficiently

execute operations over vectors.

In our opinion, Data Parallelism seems to be increasingly important, since it

provides abundant, scalable parallelism for finely-grained parallel architectures,

towards which the industry is headed. Accordingly, we decided to build a frame-

work to enable more productive exploitation of Data Parallelism. This framework

is called Copperhead.

Copperhead is a functional subset of the Python programming language,

designed for expressing compositions of data-parallel operations, such as map,

reduce, scan, sort, split, join, scatter, gather, and so forth. Parallelism in Copperhead

arises entirely from mapping functions over independent data elements, and

synchronization also arises entirely from joining independent arrays, or accessing

non-local data.

The specifics of high-performance data-parallel programming often depend

critically on the particular composition of data-parallel operations. For example,

when parallelism is nested, the compiler can choose to turn parallel map invoca-

tions into sequential iterations, but the choice of whether a particular map is

executed in parallel depends on its composition into the rest of the computation,

as well as the particulars of the parallel platform being targeted. Consequently,

Copperhead makes use of Selective, Embedded, Just-In-Time Specialization [34] to

use information from the computation being performed in order to specialize the

resulting code to the platform being targeted. When a data-parallel function call is

invoked, the runtime examines the composition of data-parallel operations, and

compiles it into parallel C, which is then dispatched on the parallel platform.

Copperhead is designed to support aggressive restructuring of data-parallel

computations in order to map well to parallel hardware, with the goal of minimizing

synchronization and data movement, which are the enemies of successful parallel

computing. By specializing Copperhead programs to Nvidia Graphics Processors,

we achieved 45-100% of the performance with about four times fewer lines of code

when compared to hand-tuned CUDA Cþþ code on sparse matrix vector multipli-

cation, preconditioned conjugate gradient linear solver, and support vector machine

training routines. Our goal is to develop Copperhead to the point that it can provide

full support of implementing the computations we have been investigating in

Computer Vision and Machine Learning, providing useful performance as well as

high productivity [35].
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4.5 Conclusions

Our goal is to enable the productive development of efficient parallel applications

by domain experts, not just parallel programming experts. As the world of comput-

ing becomes more specialized, we believe that understanding particular domains,

such as computer vision, will be challenging enough, and domain experts will not

have the time or inclination to become expert programmers of parallel processors as

well. Thus if domain experts are to benefit from computing advances in parallel

processors, new programming environments tailored for domain experts will need

to be provided. We believe that the key to the design of parallel programs is

software architecture, and the key to their efficient implementation is software

frameworks. In our approach, the basis of both is design patterns and a pattern

language. Further, we believe that patterns can empower software developers to

effectively communicate, integrate, and explore software designs.

To test our beliefs we have explored eight applications from a wide variety of

domains. In particular, we have successfully applied patterns to architect software

systems for content-based image retrieval, optical flow, video background subtrac-

tion, compressed-sensing MRI, automatic speech recognition, and value-at-risk

analysis in quantitative finance. We are in process of applying patterns to architect

software systems for computer games and machine translation. Altogether these

applications show very diverse computational characteristics and nearly cover the

entire range of computational patterns in our pattern language. In our explorations

we have demonstrated how patterns can serve as the basic vocabulary for the

description of the architecture of these applications. We have also shown how the

choice of patterns in which to describe an architecture naturally explores a set of

known trade-offs that helps to inform software developers of potential bottlenecks

in a design. These known trade-offs help software developers identify key design

decisions impacting the performance of an application. In this process we have

indeed convinced ourselves that patterns were not only useful in helping to concep-

tualize the architecture of a software system and communicate it to others, but

patterns are also useful in achieving efficient software implementations. In the

process of creating parallel implementations of this wide variety of applications

we also gained some general insights about speeding up applications on parallel

processors and we have reported those here as well.

We are also investigating how architectures based on patterns may be used to

define application and programming frameworks. We define a (pattern-oriented)

framework as a software environment in which all user customization must be in

harmony with the underlying architecture. An application framework is a domain-

specific framework that solves application-level problems like speech recognition

and a programming framework is a framework that solves an programming imple-

mentation level problem like the implementation of data parallelism. The applica-

tion frameworks provide an efficient reference implementation in an application

domain along with a set of extension points to allow customization of functions in

selected modules without jeopardizing the efficiency of the underlying efficient
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infrastructures. The programming frameworks provide a set of flexible tools to take

advantage of parallel scalability in hardware without the burden of particular

platform details. We motivate the need for these two types of frameworks and

illustrate how they can be used. There are many open questions about the relative

merit of application and programming frameworks versus alternative approaches to

software implementation such as domain-specific languages. We are in the process

of clarifying the advantages and disadvantages of these two approaches.

4.6 Appendices

4.6.1 Structural Patterns

l Pipe-and-filter: A structure of a fixed sequence of filters that take input data from

preceding filters, carry out computations on that data, and then pass the output to

the next filter. The filters are side-effect free; i.e., the result of their action is only

to transform input data into output data.
l Iterative refinement: A structure of an initialization followed by refinement

through a collection of steps repeatedly until a termination condition is met.
l Map-reduce: A structure of two phases: (1) a map phase where items from an

“input data set” are mapped onto a “generated data set”, and (2) a reduction

phase where the generated data set is reduced or otherwise summarized to

generate the final result.
l Puppeteer: A structure of a puppeteer encapsulates and controls references of the

puppets by delegating operations to the puppets and collecting return data from

the puppets.

4.6.2 Computational Patterns

l Dense linear algebra: A computation is organized as a sequence of arithmetic

expressions acting on dense arrays of data. The operations and data access

patterns are well defined mathematically so data can be pre-fetched and CPUs

can execute close to their theoretically allowed peak performance. Applica-

tions of this pattern typically use standard building blocks defined in terms of

the dimensions of the dense arrays with vectors (BLAS level 1), matrix-vector

(BLAS level 2), and matrix-matrix (BLAS level 3) operations.
l Graph algorithm: A computation which can be abstracted into operations

on vertices and edges, with vertices represent objects, and edges represent

relationship among objects.
l Monte Carlo: A computation that estimate a solution of a problem by statistical

sampling its solution space with a set of experiments using different parameter

settings.
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l Dynamic Programming: A computation that exhibits the properties of over-

lapping subproblem and optimal substructure. Overlapping subproblem means

a problem can be solved by smaller overlapping subproblems recursively.

Optimal substructure means the optimal solution of a problem can be obtained

by combining the optimal solutions of the subproblems properly.

4.6.3 Parallel Algorithm Strategy Patterns

l Data Parallelism: An algorithm is organized as operations applied concurrently

to the elements of a set of data structures. The concurrency is in the data. This

pattern can be generalized by defining an index space. The data structures within

a problem are aligned to this index space and concurrency is introduced by

applying a stream of operations for each point in the index space.
l Geometric decomposition: An algorithm is organized by (1) dividing the key

data structures within a problem into regular chunks, and (2) updating each

chunk in parallel. Typically, communication occurs at chunk boundaries so

an algorithm breaks down into three components: (1) exchange boundary data,

(2) update the interiors or each chunk, and (3) update boundary regions. The size

of the chunks is dictated by the properties of the memory hierarchy to maximize

reuse of data from local memory/cache.
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Chapter 5

The Case for Message Passing

on Many-Core Chips

Rakesh Kumar, Timothy G. Mattson, Gilles Pokam,

and Rob Van Der Wijngaart

The debate over shared memory vs. message passing programming models has

raged for decades, with cogent arguments on both sides. In this paper, we revisit this

debate for multicore chips and argue that message passing programming models are

often more suitable than shared memory models for addressing the problems

presented by the many-core era.

The many-core era is different. The nature of programmers, the nature of

applications, and the nature of the computing substrate are different for multicore

chips than the traditional parallel machines that drove parallel programming devel-

opments in the past. For example, while traditional parallel computers were pro-

grammed by highly trained computational scientists, multicore chips will be

programmed by mainstream programmers with little or no background in parallel

algorithms, optimizing software for specific parallel hardware features, or the

theoretical foundations of concurrency. Hence, multicore programming models

must place a premium on productivity and must make parallel programming

accessible to the typical programmer. Similarly, although the history of parallel

computing is dominated by highly specialized scientific applications, multicore

processors will need to run the full range of general purpose applications. This

implies a drastically increased diversity in the nature of applications and an

expanded range of optimization goals. This will heavily impact the choice of the

programming model for multicore chips. The programming models for multicore

architectures should also be capable of adapting to and exploiting asymmetry

(by design and accident) in processing cores. We argue that the above goals are

often better served by a message passing programming model than programming

models based on a shared address space.
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5.1 Metrics for Comparing Parallel Programming Models

To compare shared memory models and message passing models, we could take

the familiar approach of defining a series of benchmarks, thereby turning this into a

quantitative performance effort. However, it is difficult to distinguish the relative

impact of the programming models from the relative quality of the implementations

of the underlying runtime systems in such a comparison. A true comparison should

deal with qualitative “human factors” and how they impact the programming

process. We believe that a fair comparison of programming models must consider

the end-to-end cost of the full lifecycle of a parallel program. The full lifecycle can

be summarized as:

l Write the parallel program
l Debug the program and validate that it is correct
l Optimize the program
l Maintain the program by fixing bugs, porting to new platforms, adding features, etc.

A head-to-head comparison of the programming models for different stages

of the program lifecycle will allow us to make qualitative conclusions about the

relative efficacy of the programming models. We modified the cognitive dimen-

sions from [3] to define a set of concrete metrics for our comparisons:

Generality: The ability to express in the programming model any parallel

algorithm, such that a comparable level of concurrency as embodied by the

algorithm materializes on the execution platform.

Expressiveness: Does the programming model help programmers express the

concurrency in their problem succinctly, safely, and clearly for the classes of

parallel algorithms for which the model was designed? An expressive programming

model provides concise abstractions that help a programmer identify concurrent

tasks and specify how data is shared (or decomposed) between tasks. Expressive-

ness does not imply generality.

Viscosity: Does the programming model let a programmer make incremental

changes to a working program? If not, the risk of adopting the programming model

is high. Viscosity includes the following aspects:

l Is it possible to gradually introduce concurrency into an original serial version of

a program? Usually, this is not the case if the model implies a new language.
l How much effort is required to add or change functionality of an existing

parallel code?

Composition: Does the programming model provide the isolation and modular-

ization needed to support programming by composing parallel modules?

Validation (correctness): Is it easy to introduce cognitive slips when creating a

program thereby introducing errors into the code? Can the program’s correctness be

reasonably validated? How difficult is it to find and remove bugs? Bugs that do not

manifest themselves each time a code is run are difficult to find and remove. Such

bugs can be due to nondeterminism, or to the fact that there may be a big gap

between formal specification and implementation of the programming model.
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Portability: Does the programming model let a programmer write a single

program that can be recompiled and mapped efficiently onto all systems that are

relevant to the target user community? This includes the potential for support of

heterogeneous systems.

Of these metrics, composition and validation will be particularly important as

many core chips become ubiquitous. Composition, the ability to build complex

applications by composing smaller modules, is the cornerstone of modern software

development. It must be supported in parallel software if we hope to migrate our

software onto multicore systems.

As for validation, these costs often exceed system acquisition and software

creation costs, a situation that will only worsen as more and more software being

produced exploits parallelism. Anecdotal evidence of the difficulty of validating

parallel software abounds, we merely cite a single source [8]:

“We wrote regression tests that achieved 100 percent code coverage. The nightly build and

regression tests ran on a two processor SMP machine, . . . No problems were observed until

the code deadlocked on April 26, 2004, four years later.”

Section 5.3 discusses how message passing programming models fare against

shared memory models for the above metrics.

5.2 Comparison Framework

To evaluate different parallel programming models, we need to define a framework

that captures a programming model’s impact on the design and implementation of

the most common parallel algorithms. Our comparison framework consists of

different categories of parallel algorithms strategies and different algorithm pat-

terns within each category. Following [2], we define the following three distinct

strategies for parallel algorithm design:

l Agenda parallelism: Parallelism is expressed directly in terms of a set of tasks
l Result parallelism: Parallelism is expressed in terms of the elements of the data

structures generated in the course of the computation.
l Specialist parallelism: Parallelism is expressed in terms of a collection of tasks

each of which is specialized to a distinct function. In other words, data flows

between a set of specialized tasks that execute concurrently.

This provides the top level structure of our framework. In Table 5.1, we show

some of the more common patterns [10] associated with these algorithm strategies.

These patterns are well known by experienced parallel programmers (details are

available in [6, 9]). The framework is not complete, but we submit that it covers the

broad cross-section of the most important algorithms.

Using these patterns combined with our earlier metrics, we can turn our intuition

about a programming model into specific (and testable) hypothesis about why

different programming models dominate.
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5.3 Comparing Message Passing and Shared Memory

We start with two generalizations concerning message passing vs. shared memory

programming models. These concern validation and composition. To compose

software modules, you must assure isolation of the modules. Interaction can only

be allowed to occur through well-defined interfaces. To validate a program, you

must assure that every legal way the operations in all active threads can interleave

produce a correct answer. Both of these metrics are compromised by a shared

address space. Message passing by design provides a mechanism of isolation since

the threads or processes in a computation by definition execute in their own address

spaces. As for validation, the message passing programmer only needs to check the

allowed orderings of distinct message passing events. In a shared address space

programming model where all threads access a single address space, proving a

program to be race free has been shown to be an NP complete problem [7]. Hence,

regardless of the type of parallelism involved, we assert that message passing has a

strong advantage in terms of the ease with which a program can be validated and the

ability to support software composition (Table 5.1).

In the remainder of this section, we will work through the algorithm design

patterns described in Sect. 5.2 using the metrics we defined in Sect. 5.1 to compare

shared memory and message passing models based on software features and actions

required of programmers. The results are summarized in Table 5.2.

5.3.1 Agenda Parallelism

Design patterns associated with the “agenda parallelism strategy” are expressed

directly in terms of tasks. The two cases differ in how the tasks are created; either

directly as a countable set (task parallelism) or through a recursive scheme (Divide

and conquer).

For the task parallelism pattern, both the message passing and the shared address

space programming models are highly expressive and are general enough to cover

most algorithms associated with this pattern. The message passing programming

model is particularly well suited since data decomposition is typically a straightfor-

ward extension of the decomposition of the problem into a set of tasks. This means

that the ease of validation common to distributed memory environments is easy to

exploit with message passing, task parallelism problems.

Table 5.1 Brief taxonomy of parallel algorithms

Parallel algorithm strategies Algorithm design patterns

Agenda parallelism Task parallelism Divide and conquer

Result parallelism Geometric decomposition Data parallelism

Specialist parallelism Producer/consumer (pipeline) Event-based coordination
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The divide and conquer design pattern can be mapped onto message passing and

shared address space models. These algorithms, however, are difficult to express

with a message passing model. The problem is that as a task is recursively divided

into a number of smaller tasks, the data associated with the individual tasks must be

analogously decomposed. Programming models that require explicit data decom-

position are difficult to apply when tasks are created so dynamically. Shared

address space programming models, however, avoid this problem altogether since

all threads have access to the shared data space. Furthermore, a key feature of

implementations of divide and conquer algorithms is the need to dynamically

balance the load among units of execution. For example, if tasks are managed in

queues, it is possible that one unit of execution will run out of work. If it only needs

to steal work descriptors from a neighboring queue without the need to move data,

these work-stealing algorithms are natural to express. This is clearly the case for

shared address space models, but not for message passing models.

Overall, both models are well suited for the Agenda parallelism strategy. The

task parallelism design pattern works well for both types of programming model,

but it slightly prefers the message passing model. For the divide and conquer

pattern, however, the shared address space model is substantially better suited.

5.3.2 Result Parallelism

Design patterns associated with the result parallelism strategy center on how data is

decomposed among the processing elements of a system. In most cases, the

decomposition is well suited to a static decomposition or if dynamic, the dynamic

structure is well defined algebraically and well suited to explicit data management

schemes. Hence, these algorithms work well with message passing and shared

address space programming models.

The classic “result parallelism” pattern is geometric decomposition. Message

passing models have been used extensively with this pattern. The sharing of data is

Table 5.2 Comparing message passing (Msg) and shared memory (Shar) programming models

for design patterns from Table 5.1

Metrics

Agenda parallelism Result parallelism

Specialist

parallelism

Task

parallel

Divide and

conquer

Geometric

decomp

Data

parallel Pipeline Events

Generality ¼ Shar + ¼ Shar+ Msg + Msg +

Expressiveness ¼ Shar + ¼ Shar + Msg + Msg +

Viscosity Shar + Shar + Shar + Shar + Msg + ¼
Composition Msg + Msg + Msg + Msg+ Msg + Msg +

Validation Msg + Shar + Msg + Msg + Msg + ¼
Portablity Msg + Msg + Msg + Msg + Msg + Msg +

A “+” indicates when a model dominates for a given case. An “¼” indicates that the two models

are roughly equivalent for that particular case
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explicit through messages, making geometric decomposition programs that utilize a

message passing programming model both robust and easy to validate. Shared

address space programming models work well also, but since race conditions are

possible due to the fact that data is “shared by default,” these programs can be

difficult to validate.

Message passing program with geometric decomposition patterns are also highly

portable. Since it is natural in these problems to define how data is shared between

processes, the programming models are highly portable, allowing easy movement

between shared memory and distributed memory systems.

Data parallel algorithms follow a similar analysis. They work well with message

passing and shared address space model. Shared address space models, however,

have a slight edge over message passing, however, because they do not require

complicated data movement operations when collective operations are encoun-

tered. This is only a slight advantage, however, since the most common collectives

are included in message passing libraries,

Overall, both models work well for three algorithm strategies. The message

passing model, however, has a slight edge due to the greater ease of validating a

program once written.

5.3.3 Specialist Parallelism

These algorithms can be challenging for message passing and shared address space

programming models. The essential characteristic of the design patterns associated

with the specialist parallelism strategy is that data needs to flow between

specialized tasks.

For the pipeline algorithms, both models work, but the message passing provides

more disciplined movement of data between stages. Messages are a natural way to

represent the flow between stages in the pipeline making message passing program-

ming models both expressive and robust. Shared address space programming

models work, but they require error-prone synchronization to safely move data

between stages. For an API that lacks point-to-point synchronization (such as

OpenMP), this can lead to the need to build complicated synchronization protocols

that depend on the details of how a flush works. Even expert OpenMP programmers

find flush challenging to deal within all but the most trivial cases [4].

These problems are even worse for the event-based coordination algorithms.

Message passing models work but robustness is compromised since the event

models require anonymous and unpredictable flow of messages between processes.

This compromises the robustness and validation properties and creates one of the

few situations, where race conditions can be introduced in a message passing

program. The key is to use a higher level model to apply discipline to how messages

are used in these algorithms. For example, an actors model maps well onto event-

based coordination algorithms. Actors is by its nature a message passing model.

It can be implemented in a shared address space, but it requires complex
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synchronization protocols and can lead to programs that are difficult to validate.

The table below summarizes how the two models fare against each other for

different metrics.

5.4 Architectural Implications

Programming models place requirements on hardware that supports them. A shared

memory programming model, to run efficiently, requires hardware support. In

practice, this comes down to the question of hardware supported cache coherence.

As the number of cores and the complexity of the on-chip networks grow,

overhead in service of the hardware cache coherency protocol limits scalability.

This is obvious for snooping protocols, but it is also the case for more scalable

directory based protocols. For example, each directory entry will be at least

128 bytes long for a 1024 core processor supporting fully mapped directory-based

cache coherence. This may often be larger than the size of the cache-line that a

directory entry is expected to track. As another example, writes in a sequentially

consistent shared memory processor may not proceed until all the shared lines have

been invalidated, even the ones residing in cores that may be 10’s of hops away.

Hence, as the number of cores increases, the overhead associated with the cache

coherency protocol grows, often superlinearly. In particular, the additional cost due

to the cache coherency protocol as each core is added to a many core chip grows.

This increasing cost per core means that as the core counts grow, a “cache

coherency wall” eventually limits the ability of a program to extract increased

performance from the system.

Compare this to the situation for a many core chip that does not support cache

coherency; a chip optimized to support message passing. Without cache coherency

protocols, there is no fundamental overhead that grows as cores are added to

the chip. As an example of a processor designed for message passing, consider

the 48-core SCC processor [5]. The SCC processor consists of 24 tiles connected by

a 6 � 4 two-dimensional mesh. This is a large chip with 1.3 Billion transistors

manufactured with a 45 nm high K CMOS technology. The power for this chip is

variable (under programmer control) and ranges from 25 to 125 W. Each tile in the

SCC processor contains a pair of second generation Pentium® cores (the P54c [1]).

Each core has its own L1 and L2 caches and implements the standard memory

model associated with the P54c processor. The cores share a connection to mesh

interface unit, which connects to a router on the on-die network. The tile also

contains a 16-kilobyte memory region called a “message passing buffer.” The

message passing buffers on each tile combine to provide an on-die shared memory.

This shared memory, however, lacks any hardware support for cache coherence

between cores and therefore does not add overhead that grows as the number of

cores grows.

The SCC processor contains four DDR3 memory controllers providing the

processor with 16–64 Gigabytes of DRAM. This DRAM can be dynamically
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configured under programmer control as private memory (coherent with the L1 and

L2 caches on an individual core) or as shared memory. While this memory is

shared, however, there is no cache coherence maintained between multiple cores

for this shared DRAM. In addition, a router is connected to an off-package FPGA to

translate the mesh protocol into the PCI express protocol allowing the chip to

interact with a PC serving as a management console.

The SCC processor was designed with message passing in mind. The message

passing protocol is one-sided; a core “puts” an L1 cache line into the message

passing buffer, and another core “gets” that cache line and pulls it into its own L1

cache. Using this mechanism, cores implement message passing by explicitly

moving L1 cache lines around the chip.

For a chip utilizing the SCC architecture, as cores are added, the overheads

associated with memory accesses do not fundamentally grow. Since there are no

directories or broadcasts to maintain the state of a shared cache line, as cores are

added with the SCC processor, the base overhead remains fixed. As cores interact,

communication overheads obviously are present. But they are fixed (for nearest

neighbor communication patterns) or they grow as the square root of the number of

cores for communication between cores at opposite corners of the 2D mesh. Even

this worse-case scenario presents a much slower rate of growth in the communica-

tion overhead compared to that found on chips based on a cache coherent shared

address space. Hence, a many core processor designed around the needs of a

message passing programming model avoids the “coherency wall” allowing these

many core chips to scale to much larger numbers of cores.

5.5 Discussion and Conclusion

Table 5.2 summarizes our comparisons of shared memory and message passing

programming models. We consider a range of design patterns for each of our

metrics.

As we indicated earlier, message passing programming models have distinct

advantages due to the relative ease of validation and the fact they support the

isolation required for composition.. Furthermore, as we pointed out in the previous

section, a message passing programming model is more portable as well due to the

fact the model places fewer constraints on the hardware to support the model. The

other metrics present a more mixed picture with sometimes message passing and

other times shared memory models coming out ahead. So why is message passing

perceived as unsuitable for mainstream programmers and therefore largely

neglected for many core chips?

We believe this arises from the fact that most comparisons of programming

models center on the initial steps in writing a program; i.e., how expressive and

general a programming model is. We see in Table 5.2 that for the most common

parallel algorithm classes (Agenda Parallelism and Result Parallelism) shared

memory programming models have an advantage. In some cases, these advantages
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can be quite stark. This often leads to disqualification of message passing upfront,

since the most salient first impression that programmers have of a programming

model is its expressiveness. Higher expressiveness is often associated with higher

programmer productivity. However, validation and composition constitute a very

large portion of the downstream cost of an application’s lifecycle. The shared

memory programmer trying to validate a program and understand its composition

with other software modules must understand the underlying memory model of the

system; a task that even challenges experts in the field. This makes those costs much

greater for shared memory models than a message passing model.

When you look at the full software lifecycle and the full range of metrics (not

just expressiveness), we submit that message passing models are more suitable than

shared memory models for a large class of applications. Hence, message passing

models are an important, if not the only alternative for programming multicore and

manycore chips. The benefits only increase as the number of cores and the com-

plexity of the network on a processor chip increase.
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Diana Göhringer, Michael H€ubner, and J€urgen Becker

Abstract The requirements for a processor, in terms of its characteristics such as

RISC (Reduced Instruction Set Computer), CISC (Complex Instruction Set

Computer), bitwidth, instruction set, and for the communication and memory

bandwidth differ for each application to be implemented. Furthermore, the required

characteristic can be different at runtime, because the application has to react to the

demands of the environment. Image processing is a good example for this scenario,

because this application domain needs to adapt, depending on the content of the

camera frames. Integrated, e.g., in a robot, the time variant requirements for the

image processing applications are obvious. Sometimes gestures, obstacles, moving

targets, etc. need to be detected within a high-resolution picture obtained by one or

more cameras. For such applications, a novel Runtime Adaptive Multi-Processor

System-on-Chip (RAMPSoC) was invented to provide an adaptive hardware archi-

tecture at design- and at runtime. This way, new degrees of freedom in system

design and runtime support are provided. To program such a flexible multiproces-

sor system, an efficient design methodology is of high importance to hide the

complexity of the underlying hardware. In addition, a runtime operating system is

needed to handle the resource management and the runtime scheduling of the

applications. In this chapter, the hardware architecture, the design methodology,

and the runtime operating system of RAMPSoC are described. Furthermore, a brief

overview about reconfigurable computing and dynamic and partial reconfiguration

are given.
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6.1 Introduction

High-performance computing applications, such as image processing or bioinfor-

matics applications, are still limited due to insufficient processing power. In former

times, the approach was to increase the clock rate of a processor. This resulted in the

disadvantage of higher power consumption. Nowadays, the approach has shifted

toward increasing the number of processors while keeping the clock rate stable or

even reducing it. Thisway, the power consumptiondoes not increase that dramatically.

Most algorithms used in high-performance computing have a high inherent

parallelism, which can be exploited by such a multiprocessor system. The disad-

vantage is that the hardware architecture of the multiprocessor system is fixed at

design and at runtime. This means that the processor architecture and the commu-

nication infrastructure as well as the memory architecture are mostly optimized for

one application scenario. Therefore, the user has to carefully choose an appropriate

multiprocessor system for its application. And then the user needs to partition the

application for the chosen multiprocessor system. This application integration has

to follow the given hardware architecture of the multiprocessor system, which often

leads to an inefficient task allocation and therefore an unequal workload. Especially, if

versatile algorithms are used as in image processing, some will map better and others

will map worse on the chosen architecture. Besides homogeneous (also called general

purpose) multiprocessor systems (see [23] and [21], there exist also heterogeneous

multiprocessor systems (for some examples, see [29]). Due to their heterogeneity, they

achieve a good performance/power tradeoff for their target applications, but other

applications can only be mapped suboptimal. In general, the limitation of all

multiprocessor systems is the lack of adaptivity at design and at runtime.

Another option to exploit this parallelism and therefore increase the computing

power is the pure hardware implementation using an Application Specific

Integrated Circuit (ASIC) or a Field Programmable Gate Array (FPGA). This

way an even finer parallelism compared to a processor array can be exploited and

a good performance with low power consumption can be achieved. While the ASIC

implementation achieves the best performance/power tradeoff, it is very costly due

to the mask process and also very inflexible due to the fixed hardware architecture.

FPGAs offer a more flexible solution, because they can be reconfigured with a new

functionality and can therefore be reused for a different application. Furthermore,

some FPGA vendors, such as Xilinx offer a special feature called dynamic and

partial reconfiguration. This means a part of the FPGA hardware can be modified at

runtime, while the other parts stay operative and are not disturbed. This is useful if,

for example, an image processing filter on an FPGA needs to be exchanged, but the

connection with the camera and a monitor must be preserved. If the whole FPGA

would be reconfigured, frames from the camera would be lost. Using partial

dynamic reconfiguration instead assures that the frames of the camera will not be

lost, because the camera interface module on the FPGA stays operative, while only

the image processing module is reconfigured. Therefore, FPGAs with this dynamic

and partial reconfiguration feature are extremely flexible. This way, they offer a
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new degree of freedom called computing in time and space [19]. Another benefit is

that only the currently needed functionality has to be implemented at a given point

in time. This way a smaller FPGA can be used and the overall power consumption

can be decreased. Their disadvantage is the programmability. While it is already

difficult to program multiprocessor systems, the programming of an FPGA is even

more difficult, because to achieve a maximum of performance hardware description

languages, such as VHDL or Verilog, have to be used. There exist some ESL

(Electronic System Level) design tools that ease the programmability by offering

special C-to-Gates or Matlab-to-VHDL tool flows. But this is still a wide research

topic and so far the power of these tools is limited and the input language has often

several constraints and requires special pragmas. For most engineers with software

or an application background, it is more comfortable and less time-consuming to use

a software implementation or to try to program amultiprocessor system even though

the achieved performance/power is worse compared to an FPGA implementation.

In this chapter, a new runtime adaptive multiprocessor system-on-chip called

RAMPSoC [12] is presented, which tries to overcome the mentioned challenges by

combining the best of both worlds: the reconfigurable computing and the multipro-

cessor world. The RAMPSoC approach consists of an FPGA-based heterogeneous

network of processors with distributed memory and closely coupled hardware

accelerators. It supports a faster designflow than a pure FPGA-based hardware

implementation, because parts or even the complete algorithms can be implemented

in software. Additionally, it is more flexible than the state-of-the-art multiprocessor

systems, because it supports runtime and design-time adaptivity of the hardware

architecture through exploitation of the dynamic and partial reconfiguration feature

of the FPGA. Furthermore, a combination of processors and closely coupled

hardware accelerators is used to map the control flow onto the processors and the

dataflow intensive parts of the algorithm onto the hardware accelerators. This way

high performance can be achieved by keeping the power consumption low. This

extension of the multiprocessor methodology leads to a “Meet-in-the-Middle”-

approach at design- and at runtime, because both the application software and the

hardware architecture can be adapted to fulfill the requirements of the application.

This way, a new degree of freedom is provided for the system design as well as for

the efficient task allocation onto the runtime adaptive processing elements.

This chapter is organized as follows: In Sect. 2, background information about

reconfigurable hardware is provided. Related work in the field of reconfigurable

multiprocessor systems is provided in Sect. 3. Section 4 gives an overview about the

RAMPSoC approach. In Sect. 5, the hardware architecture of RAMPSoC together

with a novel Network-on-Chip (NoC) called Star-Wheels NoC is presented. The novel

design methodology of the RAMPSoC approach is presented in Sect. 6. Section 7

shows the special purpose operating system called CAP-OS (Configuration Access

Port – Operating System), which is responsible for the runtime application scheduling,

task allocation, resource management, and configuration of the complete RAMPSoC.

Finally, the chapter is summarized by presenting the conclusions and an outlook for

future improvements in Sect. 8.
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6.2 Background: Introduction to Reconfigurable Hardware

Today, field programmable gate-arrays are used for a wide sector of applications.

The usage in former times was focused on rapid-prototyping systems for integrating

test systems. After the test-phase, an ASIC often replaced these chips for mass

production. Decreasing prizes for FPGAs and increasing mask-costs for ASIC

design, but also lower power-consumption of novel reconfigurable hardware and

high flexibility opened a market for industry and a wide research area for scientific

work. Particularly, the possibility of runtime reconfiguration, which is supported by

some state-of-the-art FPGA architectures, enables to introduce novel ideas for

adaptive hardware. FPGAs can be reconfigured many times for different applica-

tions as long as they are SRAM- or FLASH-based. Modern state-of-the-art FPGA

devices such as Xilinx Virtex FPGAs additionally support a partial dynamic

runtime reconfiguration, which reveals new aspects for the designer, who wants

to develop future applications demanding an adaptive and flexible hardware. The

idea here is to provide the required hardware function for an application, when data

have to be processed. The idea to bring the function to the data stands in opposite to

the traditional von Neumann approach, where a program counter points to the

current instruction and induces the data to flow to the related function. Here, a

data counter points to the next data-packet, which has to be processed (see [1]). The

required function is provided on demand and at runtime to enable the required data

processing. New approaches to create systems, which are able to manage configura-

tion, are runtime adaptive systems. These systems use the flexibility of an FPGA by

changing the configuration partially.Only the necessary functions are configured in the

chip’s configuration memory. On demand a function can be substituted by another

while used parts stay operative as described in [28]. These system approaches include

a controller-based module to schedule the reconfiguration and data transfer to the

respective substitutable functional element. Additionally, this module controls the

on-chip intercommunication bus to prevent an overhead of bus controller functionality

as additional module. In the following subsections, a closer view to the basic

methodologies and terminology of reconfigurable computing will be described.

6.2.1 Basic Concept of Runtime Reconfiguration

Reconfigurable hardware allows the introduction of a further degree of freedom for

the design of embedded electronic systems. The flexibility of microprocessor-based

systems lies in the adaptability of program code within the program memory. This

approach of adaptation for different kind of applications can now be extended by

adaptation of the hardware architecture of a chip. This feature was former exploited

in some industrial applications to update the system without having high costs of

ASIC redesign in case of a required hardware improvement. Especially, the high

mask costs of modern ASIC production include a high risk of a possible redesign,

which is sometimes not acceptable. The increasing complexity of the circuits and
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the demand of flexibility of electronic systems with a simultaneously increased

requirement of performance forces to use reconfigurable hardware for current and

future target platforms.

The approach mentioned above, which exploits reconfigurability, is extended by

the usage of runtime reconfigurable hardware architectures. The flexibility through

adaptation of the architecture is therefore shifted from the design-time to the

runtime. Through this a new degree of freedom is achieved and can be clarified

with the terminology “Computing in Time and Space.” The coordinate system with

the time axis, which describes the runtime or processing time of a system, is

extended by the dimension of parallelism. This parallelism is directly derived

from the configurable area of the target platform (here the FPGA).

Figure 6.1 shows this parallelism exemplarily with two running tasks. This

attribute alone would not separate a hardware reconfigurable architecture from a

microprocessor-based system approach, since modern processors can run more than

one task in parallel due to the availability of more than one arithmetic logic unit

(ALU). Regarding the nonsequential data processing of algorithms and functions

realized as hardware, the parallelization in time and space enables the benefit of

performance enhancement in these two dimensions.

Runtime reconfigurable hardware now enables the introduction of another dimen-

sion for a certain application, which needs to be implemented. Concerning the con-

figurable chip area as a physicalmedium for integration of algorithms and functions at

runtime, Fig. 6.2 shows the distribution of the tasks to different positions on the chip

area. In the picture, the two axes X and Y represents the dimension of the chip area. In

the example task 2 requires a larger amount of chip area than task 1. Furthermore, the

two points in time t1 and t2 and the related cuts through the graphic parallel to the XY-
plane can show the task distribution on the reconfigurable area. Figures 6.3 and 6.4

visualize these cuts, which represents the reconfigurable area of the target chip.

Time

P
arallelism Task 1

Task 2

Fig. 6.1 Parallel task

processing

Time

P
arallelism

x

y

Task1 Task3

Task4
Task2

t1 t2

Fig. 6.2 Parallel task processing in time and space
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As shown with this simple example, the chip area can be used to contain different

tasks at different points in time and positions. The tasks can be started and terminated

at different points of time and the area can be reused for other processes. This reuse

now can be used for systems, whose data processing occur “on-demand,” which

means that the data processing will be initiated from either external trigger

or internal requirements, e.g., forced by an operating system. This trigger initiates

then the configuration of a task on the reconfigurable area of the architecture.

For this purpose, dynamic and partial reconfigurable FPGA architecture (e.g.,

Xilinx) will be used. These architectures provide the necessary runtime adaptivity

capabilities, which are exploited by this system approach. One benefit by introduc-

tion of this system approach lies in the reduction of chip size, because only

currently required functions are utilizing the reconfigurable area, while idle tasks

are loadable on-demand from an external memory.

6.2.2 Basic Concept of Runtime Reconfiguration
and Classification of Configurable Granularity

In the year 1960, the basic and fundamental idea of exchangeable hardware was

described. The idea published by Gerald Estrin [11], which nowadays has the name

reconfigurable hardware, could not be realized due to restrictions in technology.

Initially, around 30 years later, in the year 1989 a first prototype was presented by

Bertin et al. [3]. The analysis for exploitability of the flexibility and adaptivity of

y

x

Task 1

Task 2

Fig. 6.3 Cut parallel to the

XY-plane at time point t1

y

x

Task 4

Task 3

Fig. 6.4 Cut parallel to the

XY-plane at time point t2
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reconfigurable hardware architectures provides since then a distinctive field of

research. The “Anti-Machine Paradigm” introduced by Reiner Hartenstein, which

describes a datastream-based paradigm in opposite of the controlflow-based para-

digm of traditional von Neumann architectures, shows the possibility of the novel

approach [18]. The parallel processing of operation or tasks on the hardware and the

option to move the operations to the data stands in opposite to the von Neumann

approach, where data needs to be moved to the hardware operation. This novel

option, the reconfigurable computing, is the basis of forward looking architectures in

both the academic and the industrial world. A small example should point this out.

Figure 6.5 shows a simple dataflow graph for an arithmetic function of several

operations. Through the oval shaped forms within the picture, a possible clustering

and scheduling of the operations within this areas in parallel at one point of time is

suggested. Respectively, one cluster of different operations can be processed in one

time-step. In a sequential (processor-based) processing architecture, the data, which

need to be processed, have to be allocated to the ALU one after another. For this

purpose, additionally control cycles to adjust the ALU to the required operation are

necessary.

Table 6.1 shows the comparison of the different realizations for the example

dataflow graph in Fig. 6.5 with sequential and parallel processed data. The “kk”
symbol indicates that the operations are parallelized, until the next “;” symbol. It is

obvious that the parallel realized dataflow graph in comparison with the sequential

realized graph calculates the result in less time-steps. In this example, the parallel

realized algorithm delivers the result in four time-steps, whereas the sequential flow

+ - x

/

A B C D E F

+x

-

Data-Flow Graph

Result = (A+B)/(C - D)+E*F - (A+B)/(C - D)+E*F;

Fig. 6.5 Example data flow graph with spatial clustering (parallelization)
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delivers the data in seven time-steps (excluding additional time-steps for processor

control). With this small example, a rough estimate of the performance improve-

ment of 1.75 can be done, which shows the capability of parallelizing algorithms.

Since the first introduction of reconfigurable hardware, a steady process of

optimization and specialization of COTS (Commercial off-the-shelf) chips can be

monitored. Optimizations occur in the field of the integrated logic cells (configur-

able logic blocks), the routing resources and the reduction of power dissipation.

Especially, the latter topic is a challenge for the manufacturers of reconfigurable

architectures. This stands directly in relation to the competition with ASIC produc-

tion, which is until now more efficient in power consumption. The goal here is to

enter more and more markets, for example the market of mobile communication.

To specify the terminology of granularity, an introduction of the classification of

the characteristics of reconfigurable hardware follows.

The terminology of granularity describes the size of the bitwidth of the smallest

addressable unit within the reconfigurable architecture. Important in this case is that

the size does not only apply to the size of the logic blocks. Also, the routing

(connection) between the logic blocks has to be taken into account. The bitwidth,

which can be adjusted, is first the bitwidth of the input signals of the smallest logic

block and therefore the complexity of the functionality and second, the bitwidth of

the connective structure between those logic blocks. It can be differentiated

between three types of architecture: Coarse-grained, middle-grained, and fine-

grained reconfigurable architectures (see [10] and [25]). However, the separation

between those classes is not defined exactly. It can happen that a selected architec-

ture cannot be classified into a single type of granularity.

Table 6.2 shows a rough guideline for a classification of the architectures. It is

obvious, which difficulties occur, if the size of the interconnect width differs with

the size of the bitwidth from the logic blocks. Also, this kind of architecture is

described in academic work (see [27]).

In general, it can be noticed that the degree of granularity is in direct relation to

its flexibility and ubiquitous application. This is the result of the possibility to

influence the routing and content of the logic blocks at the bit level. Due to this

purpose, fine-grained reconfigurable architectures are suited properly for integra-

tion of algorithms which process data at the bit level.

Basically, it is possible to integrate every logic and algorithmic function on

fine-grained reconfigurable architectures. However, it has to be considered that

Table 6.1 Comparison of sequential and parallel data processing

Sequential data processing Parallel data processing

tmp_1 ¼ A þ B; tmp_1 ¼ A þ B kk
tmp_2 ¼ C – D; tmp_2 ¼ C – D kk
tmp_3 ¼ E*F; tmp_3 ¼ E*F;

tmp_4 ¼ tmp_1/tmp_2; tmp_4 ¼ tmp_1/tmp_2;

tmp_5 ¼ tmp_1*tmp_4; tmp_5 ¼ tmp_1*tmp_4 kk
tmp_6 ¼ tmp_4 þ tmp_3; tmp_6 ¼ tmp_4 þ tmp_3;

Result ¼ tmp_5-tmp_6; Result ¼ tmp_5-tmp_6;

Result ¼ (A þ B)/(C – D) þ E*F – (A þ B)/(C – D) þ E*F
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fine-grained reconfigurable architecture might have a high amount of hardware

overhead and therefore costs in term or area and power consumption. Operations

whose bitwidth exceeds the size of the selected architecture must be realized by

connecting more than one logic block, which leads to an increased complexity for

wiring. This increased complexity causes an inefficient exploitation of the chip area

and an increased delay for communication and power consumption.

In comparison, coarse-grained reconfigurable architectures can handle a higher

number of bits, which leads in the best case to an avoidance for the necessity of

connecting other logic blocks. However, operations with a bitwidth smaller than the

provided size need to be processed with the full size of available bits, which leads to

an inefficient exploitation of the architecture and an increased power consumption.

The described set of problems shows that the choice of the granularity in relation to

the operation, which needs to be implemented, has a strong impact on the efficiency

of the complete realization. Further details and examples for reconfigurable hard-

ware with different granularity can be found in Hauck and DeHon [20].

6.3 Related Work

The resources on reconfigurable architectures such as the FPGAs from Xilinx and

Altera have been increased a lot during the last years. Nowadays, not only logic

blocks, but also DSP (Digital Signal Processing) cores, on-chip memory blocks and

even some hard-IP processor cores are available. This way, complex systems, such

as a MPSoC consisting of 20 or more cores on a single FPGA, are possible. A

famous example for such a system is the research accelerator for multiple proces-

sors (RAMP) [6], which consists of several Berkeley emulation engine 2 (BEE 2)

Boards [8] with each five big Xilinx Virtex-5 FPGAs. On each FPGA several 32-bit

RISC processors, called Xilinx MicroBlaze,1 are implemented to build a homoge-

neous manycore system. This system is used to investigate different application

mapping strategies for future manycore systems. Due to the power consumption of

these multiple FPGA boards, it cannot be used for embedded high-performance

systems. Also, a runtime adaptation of the system is not supported so far.

Several research labs investigate reconfigurable MPSoCs. For example,

Paulsson et al. [24] presented a system consisting of several Xilinx MicroBlazes,

which supports the reconfiguration of the instruction memories.

Table 6.2 Classification of

reconfigurable hardware in

terms of bitwidth

Bitwidth Classification to architecture class

<4 Bit Fine-grained

�8 Bit Middle-grained

>8 Bit Coarse-grained

1 “Xilinx MicroBlaze Reference Guide”; Available at http://www.xilinx.com.
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Claus et al. [9] and Bobda et al. [4] also developed FPGA-based multiprocessor

systems. In both works, the processors are fixed, but the accelerators can be

reconfigured using dynamic and partial reconfiguration. An additional example

for such a multiprocessor system is the MORPHEUS chip [26], which consists of

an ARM processor and three reconfigurable accelerators. Each accelerator has a

different reconfigurable granularity, this means one is fine-, the other medium- and

the third one is a coarse-grained reconfigurable device.

A different approach is the XiRisc reconfigurable processor [7], which consists

of a VLIW (Very Large Instruction Word) RISC core with a runtime reconfigurable

data path, called Pipelined Configurable Gate-Array (PiCoGA). By reconfiguring

the PiCoGA, which is within the data path of the processor, the instruction set of the

processor and therefore the instruction stream are reconfigurable. An additional

example for such a VLIW processor with a runtime reconfigurable data path is the

ADRES architecture [2].

In summary, the here mentioned multiprocessor systems are either completely

static or only support the reconfiguration of either the instruction memory or the

accelerators, while the processors themselves and the communication infrastructure

are fixed and cannot be modified at runtime. Similarly, the here presented reconfi-

gurable VLIW processors are single processors with a reconfigurable datapath, but

additional processors cannot be added.

To the best of our knowledge, no other such holistic approach as RAMPSoC

exists, which provides a higher degree of freedom by supporting the design-time

and runtime adaptation of the communication infrastructure, the number and types

of processors, the instruction memory of the processors, and the accelerators. This

way, requirements such as performance and power consumption can be fulfilled

more efficiently. Furthermore, the RAMPSoC approach provides the user with a

design methodology and a runtime operating system, which both hide the complex-

ity of the underlying hardware from the user.

6.4 The RAMPSoC Approach

The RAMPSoC approach combines the benefits of multiprocessor systems and

reconfigurable architectures. Figure 6.6 shows the resulting Meet-in-the-Middle

approach of RAMPSoC. This Meet-in-the-Middle approach extends the typical top-

down tool supported application partitioning of state-of-the-art MPSoCs with a

bottom-up hardware adaptation approach supported by state-of-the-art reconfigur-

able architectures such as Xilinx FPGAs. This is the first approach, which combines

the simpler programming paradigm of MPSoCs with the runtime hardware adap-

tivity of reconfigurable architectures. This way the application partitioning and

the definition of a starting MPSoC architecture are developed at design-time. Due to

the configurability of FPGAs, an optimized MPSoC architecture for a given appli-

cation can be defined at design time. Furthermore, by exploiting runtime reconfig-

uration, which is supported, e.g., by Xilinx FPGAs, the hardware of the MPSoC can
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be adapted at runtime to achieve a good performance per Watt ratio for the

application.

The RAMPSoC approach supports the runtime adaptation of the following hardware

components:

l Number and type of processors
l Number and kind of accelerators
l Communication infrastructure

Of course, also the software executable files can be exchanged at runtime either by

sending the new software tasks over the communication infrastructure or by using

dynamic and partial reconfiguration to override the instruction and the data memory

of a given processor.

Defining such an optimal multiprocessor system for a given set of applications is

a multi-dimensional optimization problem. Even though the programming para-

digm of multiprocessor systems is simpler than the one of reconfigurable architec-

tures the programming of such a runtime adaptive MPSoC is very complex.

Therefore, the complexity of the underlying hardware has to be abstracted using a

novel design methodology, which guides the application programmer. Therefore,

the following four abstraction layers shown in Fig. 6.7 have been introduced:

l MPSoC-Level
l Communication-Level
l Processor-Level
l Physical-Level

The abstraction layers are used for both the hardware system architecture and the

design methodology of RAMPSoC.
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approach of RAMPSoC
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The MPSoC-Level is the highest level of abstraction. It is used by the user, who

knows that his/her architecture will be mapped on an FPGA-based multiprocessor

system, but details such as the processor types, the type of communication infra-

structure, or the number and types of accelerators are hidden from the user. On the

side of the design methodology, this layer represents the user application, which is

given in C, Cþþ, or C with MPI and which is transformed automatically into a task

graph by the design methodology.

The Communication-Level represents from the hardware point of view a library

of communication infrastructure such as buses, NoCs, Point-to-Point connections,

or a combination of those. The design methodology selects on this abstraction level

the required set of communication infrastructures for the given application based on

the adjacency matrix. The adjacency matrix is the result of the partitioning of the

task graph and shows the communication requirements of tasks, which are mapped

on different processors.

The Processor-Level is a library of supported processors and accelerators. At this

level, the design methodology explores the tasks of each processor and suggests

appropriate processors and accelerators.

The processor-, accelerator-, and the communication infrastructure libraries can be

extended, if needed. Currently, the following processors are supported: XilinxMicro-

Blaze, IBM PowerPC405, Leon Sparc, and Xilinx PicoBlaze. For the communication

infrastructure, it can be chosen between the Fast Simplex Links (FSLs) from Xilinx,

Peripheral Local Bus (PLB), On-Chip Peripheral Bus (OPB), Circuit-Switched

Runtime Adaptive Network-on-Chip (CSRA-NOC) [5], and the novel Star-Wheels

MPSoC-Level

Communication-Level

Processor-Level

Hardware System Architecture Software Toolchain

BUS

NoC Point-to-Point

Processors

Accelerator

Micro-
Processor

Micro-
Processor

Accelerator Accelerator

Accelerator

Micro-
Processor

Accelerator

Taskgraph

Adjacent Matrix

Dataflowgraph

MPSoC Switch

Micro-
Processor

Micro-
Processor

Micro-
Processor

Micro-
Processor

Switch

Switch Switch

Micro-
Processor

Micro-
Processor

Switch

Switch MPSoC-Level

Communication-Level

Processor-Level

BUS

NoC Point-to-Point

BUS

NoC Point-to-Point

Processors

Accelerator

Micro-
Processor

Micro-
Processor

Accelerator Accelerator

Accelerator

Micro-
Processor

Accelerator

Taskgraph

Adjacent Matrix

Dataflowgraph

MPSoC Switch

Micro-
Processor

Micro-
Processor

Micro-
Processor

Micro-
Processor

Switch

Switch Switch

Micro-
Processor

Micro-
Processor

Switch

Switch

Physical Level (FPGA)

Adjacency Matrix
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Network-on-Chip [16]. Several image processing accelerators such as Gauss, Sobel,

Median, SumofAbsoluteDifferences (SAD),Normalized SquaredCross Correlation,

Hotspot and Coldspot are supported. Furthermore, the design methodology supports

the use of commercial C-to-FPGA tools (e.g., ImpulseC or CatapultC) to generate

hardware accelerators for the computation intensive functions or loops of a task.

6.5 Hardware Architecture of RAMPSoC

In Fig. 6.8, a RAMPSoC system at one point in time connected over an incomplete

version of the Star-Wheels Network-on-Chip is shown. As can be seen, the

RAMPSoC is a heterogeneous MPSoC supporting different types of processors.

Each processor can have several closely coupled accelerators. Instead of a complete

processor, a Finite State Machine (FSM) combined with a hardware function can be

used. For connecting sensors and actors, such as cameras and displays and also for a

PCI connection with a hostPC with the communication infrastructure of the

MPSoC, a component called Virtual-IO was developed. Virtual-IO further supports

the splitting of incoming data, e.g., an image, into several tiles for different

processors and also collecting the results from several processors before forwarding

them to the display or the hostPC via PCI.

RAMPSoC uses a distributed memory approach to achieve a maximum speedup.

Therefore, the software executables for each processor have to be small enough to

fit in local on-chip memory, which can be accessed within a single cycle. If this is
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not feasible, a restricted number of processors can have access to external memory.

Due to the longer latency and the limited external memory on commercial FPGA

boards, this should be an exception, because it will reduce the achievable speedup.

As already mentioned, different communication infrastructures are supported.

Figure 6.9 gives an overview of the different topologies supported by the Star-

Wheels Network-on-Chip. The Star-Wheels NoC supports three different types of

switches to achieve a good performance per area tradeoff. The smallest switch is the

subswitch. It is used to connect the processing elements of the MPSoC to the NoC.

The neighboring subswitches can directly communicate with each other. Non-

neighboring subswitches use the superswitch to communicate with each other.

Seven subswitches and one superswitch form a subnet, in which the communicating

partners are closely connected with each other. To communicate between different

subnets the rootswitch is required, which supports a limited number of communi-

cation links between different subnets. The Star-Wheels NoC is named after its

heterogeneous topology consisting of up to four subnets using the novel Wheel

topology, which are connected over a rootswitch using a Star topology as shown

in Fig. 6.9f).

To provide a low latency and therefore a high throughput, as it is required for

high performance computing applications such as image processing, the Star-

Wheels NoC uses a synergy of circuit- and packet-switching communication

protocol. Each switch has separate ports for circuit- and packet-switching.

Packet-switching is used for control purposes and for establishing and freeing a

communication channel between two processing elements. For exchanging data

over the communication channels, the circuit-switching protocol is used. The

network is self-adaptive and each switch recognizes at runtime, if a neighboring

switch or PE has been removed, added, or exchanged. The Star-Wheels NoC is

scalable and area efficient for FPGAs. Different clock domains are supported,

which is an important feature for MPSoCs, due to the possibility of Dynamic

Frequency Scaling. In [16], it was proven that the Star-Wheels NoC is deadlock

free. Like the Virtual-IO and other components of RAMPSoC, the Star-Wheels

NoC has been integrated into the high level design tool from Xilinx called Embed-

ded Development Kit (EDK).

6.6 Design Methodology of RAMPSoC

To program such flexible hardware architecture, a novel design methodology is

needed, which hides the complexity of the underlying hardware from the user by

following the four abstraction layers of RAMPSoC. Figure 6.10 gives an overview

of the RAMPSoC design methodology consisting of three phases:

l Phase 1: Software/Software Partitioning
l Phase 2: Hardware/Software Partitioning
l Phase 3: Implementation
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In its current version, the design methodology is semiautomatic and uses a combi-

nation of commercial and custom tools as well as some minor manual steps. It can

be used for user applications written in C, Cþþ without MPI or C with MPI.

In phase 1, the user applications are analyzed. Using a commercial profiling tool

such as the AMD CodeAnalyst, the runtime of each function is measured. The call

graph is generated and the communication between the different functions is

analyzed. For this, two custom tools have been developed. The communication

analysis tool currently supports C programs with/without MPI and is described in

detail in [14]. The support of Cþþ programs is currently under development.

The benefit of this tool is that it generates the call graph and automatically analyzes

the communication requirements for both function calls and MPI commands. For

these applications, the tracing library tool is not required. The tracing library is only

needed for Cþþ applications, as these are not yet supported by the communication

analysis tool. To analyze the communication requirements of Cþþ applications,

either the novel neighborhood relation heuristic [13] can be used, or the communi-

cation requirements have to be analyzed manually. The timing results of the

profiling, the call graph and the communication requirements are then used as

parameters for the cost function of the Software/Software Partitioning tool. The

Software/Software Partitioning is based on a heuristic approach using the hierar-

chical clustering algorithm. As shown in Fig. 6.11, hierarchical clustering is a

multistep algorithm and generates a partitioning hierarchy. Each level of the

hierarchy can be mapped to a specific number of processor, which is equal to the

Commercial Tools Custom tools Manual steps

Key

Profiling

C/C++ Program with/without MPI

Profiling

Tracing

SW / SW Partitioning

HW / SW Partitioning

System-
architecture

HW-Synthesis Compiler

SW code

C-to-FPGA
Compiler

A
na

ly
si

s

HW code

Phase 1

Phase 2

Iteration

Phase 3

Results:

• Suggested partitioning for the 
application 

• Suggested MPSoC architecture 
(number of processors, 
communication infrastructure)

Results:

• Identified hotspots for each 
processor 

Results:

• Partitioned application

• FPGA  bitstream for the 
complete MPSoC(number of 
processors, communication 
infrastructure, hardware 
accelerators) including software 
executables for each processor

Communication
Analysis

Inter-Processor
Communication

System integration: GenerateRCS

Fig. 6.10 Design methodology of RAMPSoC
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number of clusters. If the desired number of processors is known, the hierarchical

clustering algorithm can be stopped at that specific step.

Figure 6.12 shows the closeness function, which is used to evaluate the

clustering of two functions/clusters for the hierarchical clustering. For the cluster-

ing, it is differentiated between MPI-based communication (MPI_COM) and com-

munication costs of function calls (Call_COM). Both types are weighted differently

using oMPI � oCall, where oMPI þ oCall ¼ 1 and oMPI � oCall.

oCall is greater or equaloMPI, because two functions communicating over the call

graph should be more likely clustered. The reason for this lies in the basic principles

of MPI, which is a programming model that is used to exchange data between

different processors. If the programmer therefore uses MPI to exchange information

between two functions, this indicates that these two functions should be placed on

different processors. The application programmer can adapt these weights depend-

ing on the needs of his/her application. If a normal C, Cþþ application without

MPI is used, then oMPI should be set to 0 and oCall should be set to 1.

1 Processor

2 Processors

3 Processors

4 Processors

5 Processors

Step 4

Step 3

Step 2

Step 1

f1 f2 f3 f4 f5

fx: Function x, (Task Granularity used for the Hierarchical Clustering)

Fig. 6.11 Partitioning hierarchy of the hierarchical clustering algorithm and how this maps to

MPSoC architectures

Closeness Function:

+

, if MPI_COM, Call_COM unknown
T (x, y)

NH (x, y)
T (x, y) T (x, y)

MPI_COM (x, y) Call_COM (x, y)

C(x,y) =
wMPI wCall

T(x, y): Sum of the profiled runtimes of the two
tasks to be clustered 

MPI_COM (x, y): Communication costs between two tasks
communicating via MPI  

Call_COM(x, y): Communication costs between two tasks in
the call graph  

NH(x, y): Proximity of two tasks based on the call
Graph  

ωMPI: Weighting factor for MPI communication 
ωCall: Weighting factor for call graph

communication 

Fig. 6.12 Closeness function used to decide at each step of the hierarchical clustering about the

clustering of two functions
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If MPI_COM and Call_COM are unknown, the clustering can still be done by

using our custom proximity heuristic NH(x, y) [13].
As a result, the SW/SW Partitioning, based on the hierarchical clustering,

suggests both an application partitioning and a system architecture for the user.

In phase 2, each cluster for each processor of the final system is profiled on a

line-by-line basis, using a commercial profiling tool, such as AMD CodeAnalyst, to

identify possible computation intensive code segments. The report generated by the

profiler is then sent to a custom developed tool called Profile Analyzer. The Profile

Analyzer calculates the timing for each function and loop and also the relation

between the required execution time of the loops and their corresponding functions.

It graphically shows the user this relationship and generates a text file with hotspots

that could be outsourced into hardware accelerators. Figure 6.13 shows the different

views and results of the Profile Analyzer tool. In Fig. 6.13a, a screenshot of the

Profile Analyzer and the extracted timing analysis values for the loops and

the functions are shown. One exemplary timing diagram showing the runtime of

the loops relative to the total runtime of the corresponding function is shown in

Fig. 6.13b. Finally, Fig. 6.13c shows the summary file listing all extracted hotspots.

Phase 3 is the integration and implementation phase of the design methodology.

Based on the results of the previous phases, each cluster is separated into software and

hardware code for the found hotspots. The code for the found hotspots has to be

manually modified depending on the requirements/restrictions of the chosen C-to-

FPGA tool such as ImpulseC. These modifications are minor and only at the C/Cþþ

******************************************************************
*  Source File   :  masktracker.cpp
*  Analyse File  :  0_input_masktracker.cpp.ALL.csv
*  Threshold :  4.63647
******************************************************************

+ + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ H O T S P O T   1
+
+ Hotspot ID    LoopNo.  29
+ FctMember :    

:    

:    

:    

:    
MaskTracker::createSegments

+
+ CodeLine [822]  ->  [823]
+ ExecLines :    2
+
+ HSp Timing :    20.000000
+ FctTiming  
+    Ratio      
+
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + +

One of the timing diagrams Hotspot summary file 

Screenshot of a Analysis-Filea

b c

38.305099
52 %

Fig. 6.13 Different screenshots and results of the Profile Analyzer tool
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level, e.g., specific pragmas have to be inserted, etc. Of course, if the chosen accelera-

tor is already available in an existing hardware IP library, a C-to-FPGA tool is not

required and the existing IP could be used directly. After this the commercial tools of

the FPGA vendor, e.g., Xilinx, are used to synthesize the hardware. On the software

side, the inter-processor communication is handled automatically for MPI-based

applications by including the RAMPSoC MPI implementation library (see [14] for

details). If the chosen software application does not use MPI, the interprocessor

communication has to be added manually, which can be done easily, due to available

API-libraries for the different communication infrastructures. The software is then

compiled using an off-the-shelf compiler such as GNU gcc. The software executables

and the netlists of the hardware architecture are then given to the custom system

integration tool called GenerateRCS [17], which provides the user with a graphical

interface and eases the generation of the full and partial configuration bitstreams for

the FPGA by calling the appropriate Xilinx tools.

Now the design methodology is fully executed and the system can be tested on

the FPGA. If the achieved results are not sufficient, the user can return to phase 1 or

2 to stop, for example, at a different hierarchy in the hierarchical clustering or to

select a different/additional hotspot, iteratively to fulfill his/her envisioned design

goals. Another reason to go back to the previous phases would be if in phase 2 most

of the code fragment is mapped to the processor’s accelerators, which is then most

of the time idle. So the designer could go back to phase 1 to initiate a different

partitioning and to move parts of the tasks, which were originally mapped to other

processors now to this processor. The result could be in this case a reduced number

of utilized processor cores.

The modular structure of the design methodology makes it very flexible and

independent from the target architecture as well as from the available commercial

tools. It therefore does not matter to the overall design methodology, which

commercial tool is used for profiling or for generating the hardware accelerators.

The difference may only be in the manual effort, e.g., some C-to-FPGA tools have

more restrictions on the input C, Cþþ language as others. Furthermore, each of the

three phases is independent of the others and can be reused also for other target

architectures. Phase 1 can be used to analyze the applications and to suggest a

partitioning for other MPSoC architectures, while phase 2 can be reused to analyze

applications for the generation of single processors with FPGA-based accelerators.

Finally, the GenerateRCS tool can be used stand-alone to graphically display

VHDL files and to generate partial and full bitstreams for Xilinx FPGAs by calling

the Early Access Partial Reconfiguration Flow from Xilinx [22].

6.7 CAP-OS: Configuration Access Port-Operating

System for RAMPSoC

To schedule the applications, to allocate the application tasks and to manage

the hardware resources and the access to the single internal configuration access
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port (ICAP), a special purpose operating system called Configuration Access

Port-Operating System (CAP-OS) [15] was developed. CAP-OS has to assure that

the different applications running on RAMPSoCmeet their real-time constraints. At

the same time, because RAMPSoC is an embedded system, CAP-OS needs to

assure that the utilization of hardware resources and therefore the overall power

consumption is kept low.

CAP-OS is running on one of the RAMPSoC processors, as can be seen in

Fig. 6.8. In its current version, CAP-OS is running on top of the Xilkernel real-

time operating system (RTOS).2 Xilkernel is managing the resources on this single

RAMPSoC processor, while CAP-OS is managing the resources for the complete

RAMPSoC. CAP-OS is programmed as a multithreading application and there-

fore uses the multithreading capabilities of the Xilkernel RTOS. This processor will

be called CAP-OS processor in the following.

Like the design methodology, CAP-OS also hides the complexity of the under-

lying RAMPSoC hardware from the user, as can be seen in Fig. 6.14.

The highest layer of abstraction is the Applications layer. Here, CAP-OS

receives the output of the design methodology. This means the task graph descrip-

tion of the applications, the software executables and the partial configuration

bitstreams. Furthermore, it can receive task requests from other RAMPSoC pro-

cessors.
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Fig. 6.14 Abstraction levels of the CAP-OS

2 “Xilkernel v3_00_a”; EDK 9.1i, December 12, 2006. Available at http://www.xilinx.com.
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The second level represents the three major tasks of CAP-OS:

l Runtime scheduling of the applications
l Allocation of the application tasks to resources by trying to reuse already

existing resources
l Managing the configuration of the device and therefore the access to the ICAP

interface

Below CAP-OS, the Xilkernel RTOS is running, which schedules the execution

of the CAP-OS threads. Moreover, it provides the hardware drivers, so that

the CAP-OS can access peripherals, such as external memory, the FSL-ICAP, the

UART, and the communication interfaces to the other processors.

The fourth level is the RAMPSoC Hardware Architecture, which represents the

CAP-OS processor, all other processors, accelerators, the communication infra-

structure, and the memories of the system.

Finally, the lowest layer of abstraction is the FPGA Hardware Architecture, e.g.,

ICAP, LUTs (Look-Up Tables), BRAMs (Block Random Access Memories), DSPs

and I/Os (Input/Outputs).

The user only sees the highest level of abstraction: the Applications level. All

other layers are hidden from the user. The CAP-OS level is hidden by the design

methodology, which configures the CAP-OS parameters and the hardware archi-

tecture. The CAP-OS itself then hides at runtime the lower three level from the user

by automatically managing the hardware architecture.

For the runtime scheduling, CAP-OS uses a preemptive scheduling approach

allowing the termination of a configuration. For the scheduling, a combination of a

static list scheduling and a novel dynamic scheduling approach are used.

The static list scheduling algorithm has the benefits that it is a priority-based

algorithm and that it considers resource constraints. Therefore, it is used to roughly

assign priorities to the application tasks using the information of the task graph

description, which has been received from the design methodology of RAMPSoC.

For calculating the priority with the list scheduling algorithm, first the As Soon As

Possible (ASAP) and the As Late As Possible (ALAP) start time for each task are

calculated. By subtracting the ASAP start time from the ALAP start time, a

mobility can be calculated for each task, which is used to assign a priority to each

task, where tasks with a small mobility get a higher priority. For the scheduling

resource constraints, e.g., single ICAP, maximal number of possible processing

elements, as well as other constraints, e.g., reconfiguration time and communication

costs of the tasks are considered.

Based on the results of the static list scheduling, a novel dynamic scheduling

approach is used, which evaluates the current ready tasks. Ready tasks, are tasks,

which either do not have any predecessors or whose predecessors have already been

reconfigured. Here, a differentiation happens between tasks of an application task

graph with hard real-time constraints and such with soft real-time constraints. The

tasks with soft real-time constraints become a lower priority and will be reconfigured

after the ones with hard real-time constraints, even if they had a higher priority based

on the static list scheduling. Additionally, the novel scheduling algorithm tries to reuse
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existing resources, if they are already reconfigured. This way, the time needed for

reconfiguring the task can be saved. An additional feature of this novel scheduling

approach is that the clock frequency of processing elements can be increased/

decreased on demand at runtime to speed up the execution of the current task to

free a processing element faster so that the next task can be mapped onto this

processing element. This way, the processing element could be reused and no new

processing element needs to be configured onto the device, which results in saving

reconfiguration time and also in keeping the power consumption low. If on the other

hand the task can finish easily, the clock rate could be decreased to reduce the

dynamic power consumption and to achieve a good tradeoff between power con-

sumption and performance. Hereby, it is assumed that the execution time stays in

strong relation to the clock frequency. Another reason for increasing the clock

frequency occurs, if a task otherwise cannot finish its execution before its ALAP

time. Furthermore, the termination of a current reconfiguration is possible if a task

with a higher priority urgently needs to be reconfigured.

The current version of CAP-OS is implemented using the following six threads:

1. Test_main: Initial thread that launches the following five threads

2. Init_proc: Generates a list with all possible processors and their attributes. This

thread is only executed once at the startup.

3. Task_graph: Based on the information obtained by the design methodology, this

thread initializes all tasks and generates the task graphs. It further calculates the

start time and the mobility of each task using the ALAP and the ASAP algo-

rithms. Finally, it analyzes the requirements of each task, e.g., specific hardware

constraints or type of algorithm, and searches for tasks with similar require-

ments. Tasks with equal requirements are marked, because this allows reusing

the existing resources by several tasks.

4. Schedule: This thread schedules the currently ready tasks. Ready tasks are tasks

which predecessors have been already configured on the device. Furthermore,

this thread also searches for available processing elements for these tasks.

5. Configure: This thread is responsible for managing the configuration of new or

existing processing elements. Furthermore, it is responsible for transferring the

software executables to existing processing elements, either via the ICAP or via

the communication infrastructure. It also sends the new configured task the

required information about the location of its predecessors and successors tasks.

6. Contr_Exit_Task: It controls the currently executing tasks and if one task

finishes its execution it frees the corresponding processor element.

The last three threads: Schedule, Configure, and Contr_Exit_Task have the same

priority and continue with their execution until the complete task graph is executed.

They share the CAP-OS processor, while threads 1–3 are only executed once at the

beginning. Currently, an extension of CAP-OS is under development, which sup-

ports the processing of requests from processing elements and also further runtime

requests from the user to load additional applications at runtime. Requests from

processing elements can be, for example, the addition or exchange of a hardware

accelerator depending on the data to be processed.
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6.8 Conclusions and Outlook

After introducing reconfigurable architectures and several reconfigurable VLIW

and MPSoC architectures, the holistic approach of RAMPSoC was presented.

RAMPSoC combines the benefits of MPSoCs and FPGAs, resulting in a very

flexible hardware architecture, which achieves a good performance per Watt

ratio, because it can adapt to the requirements of the application. The RAMPSoC

hardware architecture supports the design-time and runtime adaptation of the type

and number of processors, the communication infrastructure and the closely cou-

pled hardware accelerators. To hide the complexity of the RAMPSoC hardware, a

novel design methodology is provided that aids the user in partitioning his/her

application and generating an appropriate RAMPSoC hardware architecture. The

design methodology can be used without any knowledge of hardware description

languages such as VHDL or Verilog. The configuration files and the software

executables together with a task graph descriptions are also generated by the design

methodology. These files are then passed on to CAP-OS, which is a special purpose

operating system that hides the complexity of the runtime adaptation of RAMPSoC

from the user. CAP-OS is responsible for scheduling the applications based on the

task graph descriptions, for allocating tasks to processing elements, and for manag-

ing the hardware resources and for configuring the overall system using dynamic

and partial reconfiguration.

Future steps will be the evaluation of the complete RAMPSoC approach with

several high-performance computing applications from the image processing

domain. Based on this evaluation, the hardware architecture, the design methodol-

ogy, and CAP-OS will be improved to further ease the programming of the

RAMPSoC architecture and to support a greater library of processing elements,

communication infrastructures and hardware accelerators.
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Part III

“Physical Design
of Multiprocessor Systems”



Chapter 7

Design Tools and Methods for Chip

Physical Design

Ricardo Reis

Abstract This chapter presents a new approach for the physical design of integrated

systems, as the MPSoCs, where all logic cells are designed on the fly, without the

limitations that a physical designer faces when using a cell library (number of func-

tions, number of transistors, transistor sizing, area, and power consumption). Many

functional blocks compose MPSoCs and several of them are composed by random

logic.So, it is important tooptimize these randomlogic blocksbyusingonly theneeded

transistors and using the right sizing. Then there is demand of EDA to cope with this

goal. A basic tool to minimize the number of transistors is the one that provides

degeneration of any logical function using the optimal number of transistors. A cell

generator allows the automatic design of cells composed by any transistor network

(using simple gates or static CMOS complex gates – SCCG) and having any transistor

sizing. When the size of the transistor should be bigger than the cell height, the tool is

able to do transistor folding.As the designer is free from the limitations of a cell library,

it is possible to do a deep logic minimization where all needed logic cells will be

generated on the fly. This allows a reduction in the number of needed transistors to

implement a circuit. As a consequence, the static power consumption will also be

reduced. The cell generator provides cells with a compacted layout, allowing a signifi-

cant transistor density. It is presented some physical design automation strategies

related to transistor topologies, management of routing in all layers, VCC and Ground

distribution, clock distribution, contacts and viasmanagement, body tiesmanagement,

transistor sizing and folding, and the how these strategies can improve the layout

optimization. Some results are compared with the ones obtained with traditional

standard cells tools (vendor’s tools), showing the gain in area, delay, and power

consumption. The flexibility of the approach can also let the designers to define the

layout parameters to cope with problems such as tolerance to transient effects, yield

improvement, printability, etc.Thedesigner can alsomanage the sizingof transistors to

reduce power consumption, without compromising the clock frequency.
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7.1 Introduction

The research and development of the design automation of integrated circuits

started at the layout level and evolved to higher levels of abstraction. The physical

design of integrated circuits was done by hand till the end of years 1970s. The

computer was used as a tool for drawing the layout, but there was no tool for the

physical design automation of ICs. As the number of components was increasing, it

appeared a strong need for physical design automation. The first solution was the

use of some regular blocks that were more viable to automate their design. The

Motorola 68000 was an example of the starting of using regular blocks such as

ROMs and PLAs [1]. It is possible to see that the control part of the original 68000

uses two levels of ROMs and many PLAs. To improve performance and area, in

years 90, many circuits such as the Intel 486 start to use the standard cell (SC)

approach, mainly in their control part. The traditional SC approach is used till

today, and it is still okay for many designs. So, if the SC approach is okay in many

cases, do we need to search for a new approach? Yes, if we want to optimize the

physical design for power reduction, area reduction and performance increase. Is

the SC approach an automated one? It is a partial automated approach, because at

the same time that placement and routing are automated steps, the design of each

cell is not. The cells are already designed and taken from a cell library. As the

design of a cell library represents an important cost, the number of different

functions that we can find in a typical cell library is limited (in general we can

find something like 150 different logic functions) and the sizing of the cells is also

limited. In general, we can find about three different sizing for each function, one

for power, one for performance, and one for area. These limitations do not allow

reaching an optimization of the circuit at the physical design level. One of the big

advantages to use SC in the past was that the cell characterization was sufficient to

estimate the delay. This is anymore the case if we consider recent technologies,

where the delay is mainly due to the connections. So, we should find a way to

reduce the wire lengths, as the connections are the central problem to reduce the

delay of a circuit. We can claim that the SC approach is far from minimization of

power consumption, number of transistors, delay, wirelength and area. So, if we

want to do a physical design optimization we need to do a change on the design

paradigm and to search for new physical design approaches. We are proposing a

new approach where the cells are designed on the fly, during the physical design

step, considering fan-in and fan-out, and an optimization of the number of transis-

tors. This new approach also means a change in the level of abstraction of the

physical design step, because it is not anymore just a placement and routing of logic

cells, but a placement and routing of a network of transistors.
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7.2 Use of MOS Complex Gates

One way to reduce the amount of transistors is to use static CMOS complex gates

(SCCGs), where functions with several inputs can be implemented using only one

gate. In Fig. 7.1, it is shown an example where a same function can be implemented

using basic gates or using just a complex gate (SCCG). It is clear in the example that

the option using complex gates uses a minimum number of transistors.

Table 7.1 [2] shows the number of functions that are possible to realize using a

maximum number of stacked P and stacked N transistors. It is possible to see, for

example, that if it is chosen a limit of maximum four stacked P and four stacked N

transistors, the possible number of logical functions is 3,503. So, this number of

functions is much higher than the number that we can find in a typical cell library. As

it is not feasible to implement cell libraries with all possible functions, a solution is to

use an approach where the cells are designed on the fly, during the physical design.

An automatic cell generation approach gives much more freedom for the logical

minimization step, because there is no more need to bias the logical minimization

by the functions available in the cell library. Any function provided at the logical

14 Transistors 8 Transistors

Fig. 7.1 Two different options for the design of a same function

Table 7.1 Number of possible different functions using a limited number of stacked P and

stacked N transistors
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synthesis step can be implemented during the layout synthesis. It is also important

to remark that when doing the generation of cells on the fly, we can also generate

transistors with any size, by using folding of transistors.

7.3 Wirelength Reduction

One challenge in modern integrated circuit design is to reduce the wire length.

The possibility to use any logic function gives the opportunity to reduce significantly

the number of transistors. As the reduction in the number of transistors will reduce

the number of wires, this also will reduce the wire length, contributing to reduce the

delay of a circuit. The wire length is also reduced by the area reduction of the circuit

due to the reduction in the number of transistors. An important point is that there is still

a space to improve the placement and routing algorithms. This claim is presented in

[3], where the authors showed that placement algorithms are 1.43–2.38 times the

optimal solutions considering wire length.

7.4 Power Reduction

The reduction in the number of transistors is becoming more and more important in

recent technologies. The main reason for that is the static power consumption.

Leakage current is increasing more and more as the features of the transistors are

being reduced. As a consequence, the static power is in some cases bigger than the

dynamic power. This static power consumption is due to the leakage current that is

significant in recent technologies. So, a way to reduce the static power consumption

is to reduce the amount of transistors, as it is also proportional to the amount of

transistors.

7.5 Layout Strategies

The layout of a cell depends on decisions related to the different issues present in

the design of a cell layout, such as:

– Transistor topologies,

– VCC and Ground distribution,

– Clock distribution,

– Management of contacts and vias,

– Management of routing layers,

– Body ties management, and

– Transistor sizing.
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The decision taken in each issue has effects on the other ones. For example,

a decision related to the VCC and Ground distribution defined some restrictions to

the placement of some vias. If it is used toomany parameters to do each decision, the

algorithms will be too complex and the runtime will be prohibitive. Basic possible

transistor topologies are, for example, horizontal, vertical, transistor with doglegs,

transistor folding. But if we consider doglegs, they could be done in many different

locations, but depending on the position of contacts and vias. If we consider folding,

the number of transistor segments can vary a lot, especially when they are drives.

Figure 7.2 shows a folding of a transistor in two segments. So, the use of transistor

folding also increases the layout choices to be done when we have to do the design of

a logic cell. The routing management has to define the priority for routing in each

layer, the priority for routing in each track of a strip (a strip is the region between two

power lines, VCC and ground), and the routing directions in each layer. The

management of routing priorities in a strip can avoid the need to route a signal

using several tracks.

The VCC and ground can be implemented in the borders of a strip, in the middle

of a strip (between P and N planes), or over the transistors. Figure 7.3 shows a

layout where the power lines run over the transistors.

The contact and vias management is becoming more and more important, as the

tower of vias crossing several layers can impose important restrictions to the routing

step. In [4], it is described an approach where the vias are placed in one or two tracks

Fig. 7.2 Transistor folding in two segments
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between P and N planes. Then the routing in the upper layer can be done using a

channel router approach. As a consequence, the routing step will be speeded up.

So, the challenge is to develop algorithms that can provide quality results but

with a short runtime.

7.6 Layout as a Network of Transistors

In the new proposed approach, a circuit is viewed as a network of transistors. The tools

are designed to generate automatically any network of transistors, even with a

different number of P and N transistors. In this approach, there is a change in the

level of abstraction of the layout synthesis in relation to the traditional SC approach. In

place of the synthesis of a layout using a set of predesigned cells, it is done a placement

and routing of transistors. The transistors can have any size. If theWof the transistor is

bigger than the height of the respective diffusion region, it is done a transistor folding.

This is very useful when doing the design of a driver. Figure 7.4 shows the layout of a

circuit done using the Parrot tool set. The circuit layout was generated automatically

and all the transistors were completely designed on the fly.

Figure 7.5 shows the evolution of the approach showing the results for an ISCAS

C1355 benchmark using Tropic tool set [5] and Parrot tool set [6]. It is possible to see

a nice evolution in density and an important reduction in the delay. Both tools have

the power to generate in one shot the full layout a functional block with thousands of

gates (the number of gates depends on the machine where the tool is running).

One alternate approach we are working on is to do first the automatic generation

of the cells that a specific circuit will need, using the right sizing. This approach is

used in a new tool named automatic synthesis of transistor networks (ASTRAN)

that is able to generate the layout of cells with a set of tens of transistors. The first

results were published in [7].

Fig. 7.3 Layout with power lines over the transistors
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Fig. 7.4 Layout generated with the Parrot Suite

Fig. 7.5 Comparison between layouts generated with Tropic and Parrot tools for an ISCAS C1355

benchmark
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Figure 7.6 shows the layout of a JK FF with 34 transistors generated automati-

cally. It is possible to see that the tool can manage to route polysilicon and

metal using doglegs. It is also possible to see that it can generate transistors with

different sizes.

Some other cells generated with ASTRAN are presented in Fig 7.7. It is possible

to verify that the cell density is quite good. The density is mainly improved because

the tool is able to provide automatically an internal routing using polysilicon and

metal wires with doglegs.

Figure 7.8 shows the layout of a 4�4 multiplier generated using two approaches.

The first one was generated using a traditional SC approach provided by a vendor

tool set. The second one was generated using ASTRAN and a Cell Assembly Tool

using a Data Path approach. It is evident that the second solution presents a smaller

layout. Observing Table 7.2 that show the data of both implementations, it is clear

that the second solution presents an important reduction in the number of transistors

(634 against 376) due mainly to the use of complex gates. The second solution

using ASTRAN presents also a nice reduction on delay and an important reduction

on power consumption (almost 40% power reduction).

As ASTRAN tool can support transistor folding, transistor sizing, and other

layout parameters, it can be used to experiment different layout solutions that can

cope with many issues, such as tolerance to radiation effects and variability. Here,

there is a lot of experiments and research to explore these possibilities.

7.7 Using ASTRAN to Help in the Synthesis of Analog Modules

The MPSoCs can also include analog modules. The ASTRAN tool can also help in

the synthesis of some kinds of analog modules. There is an interesting space to work

in a version of ASTRAN, dedicate to generate some kinds of analog circuits.

Fig. 7.6 A JK FF using 34 transistors generated automatically
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Fig. 7.7 A set of cells generated with ASTRAN

Fig. 7.8 A 4�4 multiplier generated using ASTRAN and a cell assembly tool
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Figure 7.9 [8] shows an example of an analog circuit generated with ASTRAN

that is a current generator using a 350 nm technology. Another example is presented

in Fig. 7.10 [9, 10], which shows the layout of an aging sensor using an industrial

65 nm technology and mixing analog and digital components.

Fig. 7.9 Current generator layout using a 65 nm technology

Table 7.2 Comparison between results using a standard cell approach and ASTRAN, our

automatic layout tool

Standard cell Cell compiler Gain (%)

Number of cells 52 28 46

Number of transistors 634 376 59.3

Area (mm2) 6,716 5,070 24.50

Delay (ps) 2,174 1,896 12.8

Power (mW) 6.45 3.97 61.55
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7.8 Conclusions

It was presented a new approach for the physical synthesis of integrated circuits

willing to optimize area, power consumption, and performance. The tool can also

be used to generate modules of an MPSoC. The methodology is based on the

synthesis of a transistor network where the layout is designed automatically on

the fly during the design of the circuit. The possibility of implementing any logic

function provides a reduction in the number of transistors. As a consequence, there

is a reduction in area, wire length, delay, and power consumption. As the cells are

designed on the fly and the transistors can have any size, it lets the designer to

explore several layout strategies to improve delay, power consumption, tolerance to

radiation effects, and variability.
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Chapter 8

Power‐Aware Multicore SoC and NoC Design

Miltos D. Grammatikakis, George Kornaros, and Marcello Coppola

Abstract This chapter examines system-level design of power-efficient

systems-on-chip. It starts by examining the sources of power consumption, con-

sidering high-level techniques for power-efficient processing, storage and on-chip

communication. It also discusses algorithmic- and architecture-driven software

transformations and application embedding for power-efficient embedded software.

Then, it provides a glimpse at research and development of computer-aided design

tools for effective multicore SoC power estimation, analysis and optimization at

different abstraction levels and especially system-level modeling, including efforts

towards standardization of power formats to enable tool interoperability. Finally, it

considers state-of-the-art runtime power management and optimization techniques,

including dynamic voltage scaling (DVS), frequency scaling (DFS) and other

NoC-based power saving mechanisms. This chapter concludes by briefly outlining

future trends towards true system-level power-aware design, providing a large list

of references for further study.

8.1 Introduction

As CMOS technology is continuously scaling, single chip systems integrating a

large number of processors, on-chip memories, and custom intellectual property

(IP) cores have become a reality [1]. Most major chip manufacturers have already

delivered or announced plans for large-scale chip multiprocessors (CMPs). Multi-

threaded workloads that execute on such processors experience high on-chip

communication latencies and dissipate significant power; hence, the need for

adaptive chip architectures and corresponding design techniques that can dynami-

cally accommodate the full range of workloads, from intensive computation- to

memory- or communication-bound applications.
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Low-power design techniques have been employed for more than 25 years,

particularly in mobile consumer devices, such as watch circuits, cellular phone,

gaming and calculators. Nowadays, small time-to-market, low cost, high perfor-

mance, and low energy are mandated by the increasingly complex software appli-

cations, e.g. new power-efficiency MIPS/mW (or similar) metrics start to appear in

communication and control systems in everyday life or portable battery-powered

consumer electronic appliances. Major applications targeted by this new power-

aware design methodology include not only mobile multimedia terminals and

digital cellular telephony, but also next generation networks, laptop, set-top-box/

digital TV design, and devices for emerging applications, e.g. ambient intelligence

and sensor networks in surveillance systems.

The immense interest in today’s energy-efficient microelectronics systems stems

from increase of clock frequency, design complexity (in number of transistors), and

leakage power in SoCs for deep submicron (DSM) technology (below 65nm),

environmental laws, ethical reasons, energy delivery cost for stationary systems,

extended battery life for portable systems with data intensive applications and

thermal heat dissipation management to avoid heating that could make chip opera-

tion unfeasible or impractical [2].

Power profiling is needed to identify opportunities for optimizing power-critical

parts for different applications, e.g., through built-in device-specific power man-

agement based on different operating voltages and reduced-power states that may

be offered by the technology. For power profiling, analysis, estimation, and optimi-

zation of entire SoCs, five different abstraction levels have been considered (from

the most abstract down to the most concrete level): application software (including

software design, high level synthesis, and compilation), transaction, behavioral,

gate (RTL synthesis), and transistor (or layout).

The choice of an abstraction level affects power estimation accuracy, execution

speed of the model, and the time required to develop it. Until recently, RTL has

been considered as the entry point in the design flow. For gate and transistor levels,

many EDA vendors provide accurate probabilistic or simulation-based power

estimation and optimization tools that often take prohibitively large time. Although

modeling at this level is accurate, the scope for design exploration is reduced and

significant changes are very costly to implement. In contrast, high-level power

estimation based on component models with power state abstractions, analytical

equations or lookup tables is at its infancy; it is difficult and inaccurate, since design

characteristics and typical switching activity and application test-benches of hard-

ware resources are unavailable, unknown, not well documented or partially known

during the early design phases.

Nevertheless, over the last few years, high-level power estimation has been

gaining momentum in the industry, as the new entry point in the design flow.

System-level power estimation methodology, e.g., based on a bit- and cycle-accurate

SystemC2.0 þ transaction- or behavioral-level models separating communication

and computation functionality, can be orders of magnitude faster than RTL simula-

tion, yet sufficiently (near RTL) accurate to achieve considerable power savings

during design space exploration, HW-SW partitioning, and component selection.
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During early phases of design space exploration, absolute and accurate power esti-

mation is not as important as relative accuracy, since it is enough that qualitative

power metrics correlate with the final implementation ensuring that early design

decisions are appropriate.

System power is computed by summing the power consumed by all resources,

interactions, and the environment. Consumed power can be classified into four

components: short-circuit, dynamic, static and leakage.

Short circuit power dissipation is caused by a short-circuit current that flows

directly to ground during the nonzero interval (idle time) between fall and rise

time in CMOS circuits when both the p- and n-device of a gate are conducting, i.e.

during switching activity [3]. This power is wasted and never collected by output

capacitances.

Dynamic power can be partitioned into internal consumption by the cell and

energy for driving the load, including wiring and fan-out capacitance. Dynamic

power consumption of CMOS circuits can be described as: P=0.5afCV2, where f is

the clock frequency, a is the switching activity that refers to bit transitions in gates

per clock cycle, i.e. charging and discharging of output capacitance, C is the total

load capacitance which is roughly proportional to the chip area, and V is the supply

voltage level. The total capacitance is the sum of the input capacitance of fan-out

gates, wiring capacitance and parasitic capacitance. While f and V are directly

defined by the designer, C is determined by the system architecture, and a depends

on data representation, application, mapping and architecture.

Static power is proportional to switching activity and several technology-related

parameters. Since its contribution is usually below 20%, it is either ignored at the

higher levels or captured as part of dynamic power estimation.

With traditional technologies, approximately 80–90% of all dissipated power in

a circuit is due to switching activity and 90% of this is due to dynamic power.

However, for deep submicron (below 65nm), wiring capacitance is the dominant

component, but difficult to estimate and control at system-level. The standby power

consumption due to subthreshold leakage current can be represented in the form:

Pleak=Vdd Ioff K, where Ioff is the current that flows between the supply rails in the

absence of switching and K is a factor that accounts for the distribution/sizing of

P and N devices, the stacking effect, the idleness of the device, and the design style

used.

Dynamic power management (DPM) consists of various runtime techniques

employed to achieve energy-efficient processing at requested QoS constraints by

minimizing the number of active system components, and therefore, total power

consumption.When the workload of a power-manageable component (e.g. processor,

memory or peripheral) is low, certain circuits can be turned off. In addition, a number

of effective techniques are available for minimizing dynamic power consumption,

by reducing f, a, C or V at transistor-, gate-, RT- or system-level:

l For example, we can influence dynamic power using technology-driven low

power design, e.g., by employing architecture-driven scale reduction in ultra-

low power CMOS technologies which also affects short-circuit power, reducing
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load capacitance through silicon on insulator junctions and low-k dielectrics

constants and routing high-frequency signals on the least capacitive upper

layers.
l Similarly, at architecture-level, we can increase data parallelism or employ

globally asynchronous locally synchronous channel design (GALS) which

allows independent clocking and reduce clock frequency and/or the supply

voltage level to provide a promising quadratic reduction on consumption [4].

Reducing the clock frequency, shortening the logical depth, or adding pipeline

registers also reduces power due to glitches, i.e. delay-dependent transitions at

gates due to signal delay imbalances in combinational logic (before the correct

logical value becomes stable); this is very effective for data-path components,

such as multipliers and parity trees. Glitches cause spurious, resulting in

dynamic power dissipation. However, reducing frequency extends program

execution time. Since energy consumption is a product of execution latency

and power consumption, scaling down frequency saves dynamic power, but is

ineffective in providing energy savings [5]; moreover, due to long delays,

connected peripheral SoC devices, e.g. display, may consume more energy.
l Different design methodologies are available for reducing dynamic power at

system/application software,mostly by decreasing switching activity. For example,

in order to reduce overall signal switching activity, we can invoke improved

routing techniques and smart data representations or modify our data or resource

allocation scheme or the scheduling algorithm to minimize the number of basic

data flow operations or increase correlation between successive input patterns of

functional blocks. We can even change our programming paradigm, e.g. the

object-oriented paradigm is known to introduce a significant performance and

power penalty due to increased instruction count, larger code size and increased

number of memory accesses [6]. Latency hiding techniques, e.g. using cache to

explore data locality, multithreading or prefetching are also helpful in reducing

capacitance by minimizing global communication over long wires with high

capacitance load [7].

Static power management applies at design time. Static power as a fraction of

total power increases as clock frequency drops. Static power can be controlled

using a number of techniques:

l Scaling down transistor size through lowering the threshold voltage affects

leakage power;
l Different choices of gate oxide thickness affect performance and change the

balance between dynamic vs. static power consumption.
l Power gating (also called multi-threshold CMOS design) scales down the supply

and scales up the threshold voltage to provide different power vs. performance

tradeoffs for each macro-level block or standard cell. Since scaling down

threshold voltage, exponentially increases subthreshold leakage, so called

sleep transistors with high threshold voltage are inserted to function units or

gates. Sleep transistors are turned off during the sleep mode, which can signifi-

cantly reduce the leakage.
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Next, we examine power-efficient design methodologies, including advanced

application-driven adaptive strategies for energy-aware computing. We concentrate

more on system-level design techniques for computation, storage, and communica-

tion, while only briefly considering energy-efficient gate-level, logic and physical

chip design [8] Notice that system-level power estimation models use low-level

simulation data on instruction execution, e.g. transistor state-transitions or technology

data from an RT-synthesizable HDL for soft cores, netlist for firm cores and layout

for hard cores to better estimate system metrics.

More specifically, in Section 2, we address the sources of power consumption,

i.e. computation, communication and storage. We consider power estimation mod-

els, considering processor, memory and on-chip interconnect components, includ-

ing system-level approaches towards NoC power estimation. We also discuss

algorithmic- and architecture-driven software transformations and application

embedding for power-efficient embedded software, and provide a glimpse at

research efforts towards computer-aided design tools developed for effective multi-

core SoC power estimation, analysis and optimization at different abstraction levels

from modeling to implementation, focusing on system-level. Finally, we identify

current standardization efforts on power formats that enable tool interoperability.

Then, in Section 3, we explain state-of-the-art runtime power management and

optimization techniques, including dynamic voltage scaling (DVS) and frequency

scaling (DFS) and other Network-on-Chip-based power saving mechanisms.

Finally, in Section 4, we briefly outline future trends towards power-aware systems.

We conclude this chapter with a list of references and bibliography.

8.2 Power Estimation Models: From Spreadsheets to Power

State Machines

Total energy dissipation for the execution of a system or application task on the

target architecture is obtained by summing respective energies of all system

components. Total energy consumption per component is further analyzed as the

accumulation of the power dissipation for all transitions in the state machine(s) of

the component during application execution. The dynamic and static power dissi-

pation for each possible transition of a hardware component constitutes its power

state model; notice that a number of basic operations may be executed during each

state transition, e.g., read, write, and wait operations.

The power state model can be abstracted using equations involving entropy,

computed using low-level technological (structural and functional) parameters of

hardware blocks (e.g., accelerators and interconnect) or approximately evaluated

using cycle-accurate system-level simulation combined with a macro-modeling

(C/Cþþ or SystemC) library containing datasheet information providing an energy

view, e.g., for memory or general purpose processor.
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For different target architectures and application-specific workloads, system-level

power macro-modeling does not provide a high degree of absolute accuracy or fine

granularity, e.g., exact instantaneous amplitude of power peaks, since design details

are unavailable at the behavior or algorithm level. However, it features generality and

flexibility, efficient and relatively accurate analysis of system power management,

required cooling and performance, or quality of service requirements and a much

shortermodeling time, therefore leading to significantly improved design and time-to-

market. It also enables cycle-accurate SystemCmodels for virtual platforms including

finite states machines (control), data path components, memory, and processors.

For systems with few data dependencies, e.g. in mathematical software with

regular or fixed activity patterns, we can estimate static activity and use a static

spreadsheet model to estimate power consumption of memory accesses, data path,

control path, and interconnect functions. This model is simple and common, espe-

cially for early phase “back-of-the-envelope” calculations, resolving bottlenecks and

facilitating rapid exploration of design partitioning. For example, Powerplay has a

web-based spreadsheet interface based on a library of power models at several

accuracy levels to model constant to complex activity-sensitive systems [9].

For complex data-dependent conditionals, branches and loops, dynamic spread-

sheet models using regression-based approximations or dynamic profiling techni-

ques are slower but more accurate than static spreadsheets. These models work by

computing transition probabilities using theoretical analysis or gathering switching

activity statistics using experimental behavioural-level simulation. As input, they

also require typical variations in user-supplied input vectors and operating modes;

semiconductor technology parameters, e.g. basic energy costs: per gate transition,

instruction or bus transaction and circuit complexity metrics. A few examples are

given next.

An RTL cycle-based power analysis tool called SPA is based on activity

profiling of design entities and signals in the data path, control path (FSM), memory

and interconnect for typical instruction and data inputs [10–12].

The power estimation tool ESP [13] which targets a RISC processor using a

fixed-activity power model which has a part proportional to the number of bit

transitions in the input vector.

Similarly, instruction-level power estimation models for embedded, general-

purpose and DSP processors execute an instruction loop on the target processor [14].

Average power consumption for different instructions can be stored in a lookup table

with axes specifying averages of input signal probability and number of (zero delay)

input/ouput transitions per cycle. Themodel can consider pipeline stalls, cachemisses

and inter-instruction effects due to additional power consumption during state

changes between executing pairs of instructions, but not hazards or glitches.

For arithmetic operations, the dual bit type model (DBT), used in Sente’s

commercial tool WattWatcher/Architect [15], provides an analytical structure-

based activity model for the data path. This technique is based on the observation

that fixed-point, two’s-complement data streams are characterized by two

distinct activity regions, resulting in two distinct effective capacitance coefficients;

least-significant data bits exhibit activity similar to uniformly distributed white
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noise, while most-significant sign bits depend on the sign transition probability,

which is related to the temporal correlation of data streams.

The Power Factor Approximation (or PFA) method experimentally models

power of RTL functional blocks based on word length, hardware complexity and

activation frequency parameters [16].

Power state machines (PSMs) are fine grain FSM-like graph structures. For each

block, they contain abstract states representing different operating modes with

power dissipation annotations, and edges representing state transitions through a

sequence of operational states also annotated with power costs and transition

delays. State transitions are driven by external stimuli (events) coming from the

environment. PSMs capture system power consumption through executable speci-

fications describing components, interaction among components and workload

behavior. They can be specified in HDLs or SystemC and avoid limitations of

spreadsheets in estimating system power [17]. They are now parts of evolving

standards in power models and power management, e.g. Advanced Configuration

and Power Interface (ACPI) for PCs [18] and are extensively used for DPM.

8.2.1 Power Models of Processors

Maximum power consumption for a processor tends to increase by a factor of a little

more than two every four years. Application-specific CISC or DSP processors

offer substantial energy savings and performance gains using energy-aware com-

piler optimization and code generation based on a clean instruction set architecture

offering enhanced parallelism with several different functional units and register

files. Power savings are obtained through instruction reordering, smart data alloca-

tion to memory banks or register files and packing instructions [19–21].

RISC processors can be optimized for low power using different techniques.

l Static or dynamic supply voltage downscaling that adapts its voltage or frequency

to the workload [22]. Many processor families have low power versions with

reduced voltage.
l Clock gating and operand isolation to avoid useless switching activity in idle

units. CPU energy values can be deduced from datasheets or measured at

physical-level per groups of instructions and operating mode, e.g., normal,

voltage/frequency scaling or halt, which turns off on-chip components [23].
l Specialized instruction sets for a specific workload, e.g., parallel SSE3 instruc-

tions, special addressing modes, or native multiply-accumulate instructions.

Execution of program instructions translates to switching activity at the proces-

sor circuitry causing charging or discharging of node capacitances, resulting in

dynamic power dissipation [24–25]. The two basic components of an instruction

power model therefore are:

– Base energy costs associated with instruction execution. This cost is esti-

mated by executing a loop with several instances of this instruction, [26] for
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different input signal probabilities and number of (zero delay) input/ouput

transitions per cycle.

– Energy consumption overhead costs due to switching activity in the proces-

sor circuitry caused by the execution of adjacent instructions. This cost is

estimated by executing a loop based on a sequence of alternating instructions,

but not hazards or glitches. This cost is estimated by executing a loop based

on a sequence of alternating instructions. Pipeline stalls or cache misses can

be treated in a similar way.

As an example, Fig. 8.1 illustrates an FSM example of PXA270-based power-

aware resource management of the MIPS32. The power state machine of Marvell’s

(formerly Intel) PXA270 application processor family [27] includes several DVFS

modes, e.g. Turbo and Half-turbo, and several dynamic power management (DPM)

modes with different switching latencies, e.g. Deep Idle. The best configuration is

normally selected based on task execution time.

8.2.2 Power Models of Memory

Storage is required to support computation. Accurate prediction of memory per-

formance (access time, bandwidth) and power consumption are key challenges

in system design, especially for emerging data intensive applications. Memory

systems (including cache) in multicore SoCs often consume most of the total

energy. This claim is even more substantiated with multicore SoC, where memory

occupies most of the chip area.

Memory power dissipation is associated with the energy cost of accessing

instructions or data and depends on memory size, organization, and access patterns

or replacement policies. A memory system consists of the cell array, the decoders,

and the control circuit, i.e., sense amplifiers. Memory power corresponds to static

and dynamic power consumed when interacting with these components. For write

Turbo
a=1; b=1

Consumption:
925 mW

Half-Turbo 
a=1; b=2 

Consumption: 
390 mW 

Deep Idle
a=0; b=1

Consumption:
64 mW

1 us

1 us 3 us

2 us

3 us

2 us

Fig. 8.1 FSM modeling DVFS and DPM modes for the MIPS32 processor
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operations, power consumption depends on the Hamming distance between the old

and the new value, while for read access, it depends on the Hamming distance

between the current value and literal 0�00. Notice that DRAM power is also

consumed during idle periods and read operations at the cell array, due to refresh-

ing. Power dissipation at the decoders can be expressed in terms of the Hamming

distance between the current address and the previous one. Power dissipation at the

control circuitry is represented by a constant value, unique for each kind of

operation (Write, Read, Idle).

Designers have considered dynamic tuning, circuit design and automated syn-

thesis of power-efficient application-specific hierarchical multi-bank memory

systems each with its own clock and refresh signals [28]. They have also considered

implementing DPM techniques, e.g. clock and power gating (or no refreshes) based

on different operating modes, dynamic voltage or frequency scaling, efficient data

representation through encoding or compression and software transformations that

optimize data allocation and reduce the code size, the number of memory accesses,

or data switching activity in intensive array processing applications. For example,

refer to Data Transfer and Storage Exploration (DTSE) methodology[29].

8.2.3 Power Models of On-Chip Interconnects

On-chip communication design methodology must adapt to the challenging

performance, power consumption, and reliability demands placed by DSM technology.

In this context, since communication, rather than computation, emerges as a more

significant power and performance constraint, it is necessary to leverage on-chip inter-

connect properties at system-level, shifting existingpower reduction techniques from the

era of single microprocessors to modern multicore architectures, where joint optimiza-

tion across multiple design variables at multiple abstraction levels is necessary.

One of the greatest performance bottlenecks of future Systems-on-Chip is the

high cost of on-chip communication through global wires. Innovative multicore

architectures that allow different cores to communicate to each other via the

Network-on-Chip (NoC) paradigm have emerged as a promising alternative to

traditional bus-based approaches. By eliminating global wires, NoC-based multi-

core systems provide scalability and predictability, while facilitating design reuse.

Nowadays, power consumption has also emerged as a first-order design metric

and wires contribute up to 50% of total chip power in some processors. Together

with power consumption, thermal constraints appear to dominate other physical

constraints, such as pin-bandwidth and silicon area.

The relative impact of communication performance and power consumption on

multicore SoC design has steadily increased with new technology. Communication

layering based on distributed network technology, data and address encoding,

packetization multiple clock domains with self-timed circuits, and dynamic voltage

and frequency scaling for efficient task mapping, routing path allocation or link

8 Power‐Aware Multicore SoC and NoC Design 175



speed assignment are fundamental techniques that reduce power. Energy-efficient

channel design has focused on all layers, especially the physical and data link layer.

At the physical layer, technology characteristics of interconnect wires, trans-

mitters and receivers, as well as modulation and communication channel coding

and signalling are important. At this level, performance and energy optimizations

can be based on low swing differential signaling [30], distributed synchronization

and self-timed asynchronous protocols which resolve system clock-generation/

distribution and provide modularity and robustness. We can also reduce power

consumption by decreasing frequency and especially (quadratically by decreasing

voltage (below 1V) on high-capacitance, shared long wires; the effective capaci-

tance for such wires is much larger than that of local wires, since several computa-

tions and storage communicate over the same channel. In fact, technology

parameter variations in future power-efficient multicore systems-on-chip compose

a multi-disciplinary research area, requiring also careful placement and routing [31]

and hierarchical and segmented bus architectures [32].

At the data link and network layer, or so called flit level for on-chip networks,

the physical characteristics of the communication channel and the transmitter/

receiver architecture are abstracted. This layer heavily influences communication

energy.

At this level, clock gating is a popular power saving technique used in many

synchronous circuits. It inserts extra control logic into the design (usually manu-

ally) to control enable conditions attached to registers and prune the clock tree, thus

disabling portions of the on-chip network components, such as network interface or

router sub-blocks. Then, corresponding flip-flops do not change state, their dynamic

power consumption is reduced to zero and essentially only leakage dissipation is

incurred. Moreover, chip area is reduced, since a large number of multiplexers is

replaced with clock gating logic. As the granularity of clock gating approaches

zero, power consumption of the synchronous circuit approaches that of an asyn-

chronous circuit, i.e. the circuit would generate logic transitions only when it is

actively computing. Although asynchronous circuits by definition do not have a

“clock”, the term perfect clock gating is used to illustrate how different clock gating

techniques are simply approximations of the data-dependent behavior exhibited by

asynchronous circuitry.

Moreover, redundant (signal) data encodings schemes for error detection and

retransmission or power-hungry error correction protocols also help minimize

switching activity by exploiting temporal data correlation through extra network

control wires that specify how data has been encoded and improve compatibility

and communication reliability [33]. Notice that a reduced switching activity does

not immediately translate into power savings, since the power consumed by

encoder and decoder circuits has to be taken into account. A large number of

variations combining data bus invert techniques with address bus encodings have

been recently proposed, including applications to partitioned bus architectures and

adaptive encoding in special-purpose application data streams.

The transport layer optimizes network resources and control flow for providing

end-to-end quality of service. Connection-oriented protocols can be energy
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inefficient under heavy traffic conditions due to retransmissions and additional

computation energy spent at destination nodes. In addition, network flow control

techniques reduce throughput to avoid network contention and congestion by

regulating the amount of data that enters the network; this has been observed in

wireless networks [34–35].

By focusing on channel design, buses are generally considered non scalable

interconnects, since when bus size increases, contention and arbitration time

increase superlinearly [36]. Buses are also less energy-efficient than distributed

on-chip communication architectures, since data is either broadcast from one

initiator to one target or multicast to a small subset of targets [37–38]. Moreover,

packet-switching is better than circuit-switching for irregular and non-stationary

communication patterns; notice that hybrid solutions are also possible.

Power consumption of on-chip interconnect can dominate total chip power

consumption for large packet sizes [39]. Moreover, for a large number of nodes,

power consumption for on-chip communication networks is estimated to be smaller

than that of a similar performance non-partitioned on-chip bus or segmented bus

design [40]. A fair comparison between bus and NoC approach requires actual

layout experiments on a real application, as well as a consideration of power

management techniques for different subsystems, including clock or power gating

and layer-by-layer GALS paradigm that allows a subsystem to run at the lowest

frequency compatible with application requirements. Nevertheless, a NoC allows

for distributed arbitration and improved floorplanning by accommodating smaller

wire length and associated capacitance load compared to a bus that fans outs its

wires to all targets. A high-level dynamic NoC power estimation model defines the

total energy consumed for transmitting a single bit within the NoC, from ingress to

egress point, to energy consumed in intermediate routers, internal buffers, and

interconnect wires [41].

8.2.4 Power Models for Embedded Software

System and application software play a major role in managing component service

levels and corresponding power consumption. Although low-power software

libraries and primitives are usually application specific (e.g., for graphics, visuali-

zation, multimedia or arithmetic), certain general principles for power reduction are

common.

Storage of application or system programs and data consumes power due to

memory refresh operations in DRAM or static power consumption in SRAM.

Power consumption due to instruction and data storage can be reduced by

shortening the instruction length, e.g., through recoding, or compressing the object

code with automatic on-the-fly decompression and execution.

Moreover, profiling techniques for several architectures indicate that OS, system

software, batch or interactive application software, and compiler can all affect

energy consumption due to different computation, communication and
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synchronization tasks that cause different power consumption on the underlying

hardware structures. While OS-based power reduction focuses on power hungry

tasks, such as context switching, system and application software examine empiri-

cal source code rewriting by exploring regular activity patterns and locality or

compiler-based code transformation based on automatic code generation technol-

ogy and high-level synthesis. Although traditional compilers attempt to optimize

code for high performance and short compilation time (e.g., using speculative

execution), multicore SoC compilers must focus on high performance and

energy-efficiency at the expense of longer compilation time.

Algorithmic- and architecture-specific source-level compiler transformations

(called specializations) optimize control and data flow (including memory access)

in data-intensive applications, such as multi-dimensional array processing in multi-

media and signal processing. Several efforts try to quantify the effects of hardware-

software partitioning and advanced compiler transformations on power and energy,

often using processor simulation and power analysis tools operating at RTL or

instruction-level. These methods include (see [17, 42, 43]):

l analysis of source code or manipulation of an equivalent symbolic control-data

flow graph model of the application for sending clock gating, and voltage or

frequency downscaling directives at the entry points of non critical delay paths;

notice that dynamic scaling sets the voltage level for each individual loop using

linear programming techniques.
l instruction selection using dynamic programming, e.g. in register vs. memory

access;
l multiple instruction packing or out-of-order instruction scheduling to reduce

inter-instruction effects causing high data transition activity,
l data allocation in memory banks for scheduling efficiently array operations

using proper allocation of SoC registers, buffers or multi-banked hierarchical

memory arrays based on common patterns or collected traces (called memory

access dependency graphs). This includes techniques that raise the concurrency

level, such as pre-fetching, software or hardware caching to improve instruc-

tion or program locality, replacing storage with redundant computation, and

performing data flow transformations, such as conditional branch pre-computation

for reducing the number of loads or stores and enabling clock gating in idle

functional units and rewriting arithmetic operations using shifts, data reordering

based on associative/distributive properties, and small integer calculation. In

respect to control flow, loop transformations and parallel memory array access

have been examined performance-wise in detail in high-performance paralleliz-

ing compilers. These techniques move loop invariants, loop unrolling, loop

distribution and tiling, loop fusion and nested loop permutation to reduce

cache miss ratio, affecting also power-efficiency.

Previous research efforts have also considered application embedding in sym-

metric NoC topologies, studying different routing algorithms, buffer size alloca-

tion, and switch arbitration policies. Hu and Marculescu examined power-efficient

mapping of a heterogeneous 16-core task graph representing a multimedia
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application into a Mesh NoC topology [44–46], while Murali and DeMicheli used a

custom tool (called Sunmap) to map a heterogeneous 12-core task graph represent-

ing a video object plane decoder and a 6-core DSP filter application into a Mesh or

torus NoC topology using different routing algorithms [47–48]. The proprietary

Sunmap tool, proposed by Stanford and Bologna University, performs NoC

topology exploration by minimizing area and power consumption requirements

and maximizing performance characteristics for different routing algorithms. The

Xpipes compiler can eventually extract efficient synthesizable SystemC code for all

network components, i.e. routers, links, network interfaces and interconnect, at the

cycle- and bit accurate level.

Another study focuses on extending and parameterizing existing open-source

partitioning tools from parallel processing, as well as evaluating the embedding

quality through bit- and cycle-accurate OMNeT++ (C++-like) simulation models.

By considering mapping common tree-like synthetic task graphs (representing

master-slave communication) and an mpeg4 decoder application on conventional

NoC topologies, e.g. mesh and torus, as well as low-cost circulant graphs, such as

the Spidergon STNoC, the study concludes that for realistic network sizes (below

64 nodes), Spidergon is more cost-efficient than traditional topologies [49].

Finally, another important publication focuses on application traffic. Communi-

cation weighted application models consider communication aspects (CWM),

while communication dependence and computation models (CDCM) simulta-

neously consider both application aspects. For current technologies, CDCM

model embedding into regular NoCs results in average reductions of 40% in NoC

execution delay and 20% in dynamic energy consumption [50].

8.2.5 Power Estimation, Analysis, and Optimization Tools

Electronic design automation tools for accurate and efficient power modeling,

analysis, and optimization of multicore systems are fundamental for low-power

and power-aware design. Increasingly aggressive power optimization is especially

helpful for portable consumer electronic devices with long battery life and small

weight, and systems with environmental concerns, e.g. energy star compliant

systems.

Power analysis and verification tools are needed at every abstraction level of the

design flow (from transistor-, to gate-, RT-and behavior-level) to ensure that power

specifications along with cost, size, performance, and time to market constraints are

never violated. In fact, this is known as feed-forward design: a design does not

progress to lower abstraction levels (e.g. synthesis or subsequent layout) until the

architecture satisfies all specifications. Thus, power analysis tools focus on addres-

sing large consumers of power dissipation, such as improving the SoC architecture,

optimizing the mapping, modifying the data representation or rewriting the appli-

cation software through low power and power-aware algorithm design and imple-

mentation.
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Traditional power estimation tools concentrate on power-driven synthesis.

Low-level power estimation tools, such as SPICE derivatives or Mentor Graphics’s

Lsim at transistor-level and Synopsys Power Compiler or Cadence’s InCyte Chip

Estimator at gate-level, take advantage of floor-planning information to provide

increased accuracy. Moreover, a variety of power reduction techniques (e.g. clock,

voltage and frequency scaling on less critical paths of the circuit) and semiconductor

fabrication technology variations are able to support low voltage.

While low-level power estimation is useful for design validation or late optimi-

zation, there is now an increasing trend towards applying abstract power estimation

methods based on system-level modeling using C/C++ or SystemC. Numerous

emerging tools from Academic research, start-up companies and SMEs perform

system-level power estimation using behavioral synthesis of C/C++ or SystemC

executable specifications of hardware modules, thus enabling early design deci-

sions without relying on hardware synthesis. Some tools provide not only the total

energy consumption at the end of the simulation, but also evolution of power

consumption with time. Since a direct top-down translation from C/C++ or

SystemC TLM to silicon design flow methodology is not currently possible, power

estimation macro-models use spreadsheets or back annotation from structural or

behavioral RTL which may not always be available.

l ChipVision’s Orinoco is a system-level design space exploration tool chain

estimating performance and power for running different algorithms (specified

in ANSI-C or SystemC) on different architectures [51–52]. The algorithm com-

piles to a hierarchical control data flow graph (CDFG) describing the expected

circuit architecture without resorting to complete synthesis. CDFG nodes repre-

sent power-characterized operations, edges represent control and data depen-

dencies among operations, and nested procedure calls correspond to transitions

between successive hierarchy levels. Compositional rules compute the total cost

of a complex CDFG depending on the implementation. Components are instru-

mented with area, dataflow and switching activity using a standard power library

for the target technology, consisting of functional units, such as adders, sub-

tractors, multipliers, and registers.
l Synopsys Innovator is a SystemC-based integrated development environ-

ment for virtual platform developers to efficiently integrate, analyze and verify

transaction-level models [53]. Early estimates from RTL simulation can be back

annotated through a graphical user interface into system-level virtual platform

models created in the recently announced Synopsys Innovator environment to

estimate power consumption and develop power management software.
l HyPE is a high-level simulation tool that uses analytical power macromodels for

fast and accurate power estimation of programmable systems consisting of

datapath and memory components [54].
l Web-based JouleTrack estimates power of an instruction-level model specified

in C for commercial StrogARM SA 1100 and Hitachi SH-4 processors [55].

SoftExplorer is similar to Jouletrack, but focuses on commercial DSP proces-

sors [56]. Other similar tools providing power models for processor with an
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Instruction Set Simulator (ISS) are Simunic [57] and Avalanche [58], while

Lajolo [59] uses RTL simulation and can be linked to Avalanche for hardware-

software co-simulation.
l Alike Lajolo, Powerchecker [60] uses slower RTL simulation incorporating

power estimation model for hardware components. BullDast’s PowerChecker

works on a mixed RT-gate level description obtained through source HDL

analysis, elaboration and hardware inferencing [61]. Design objects are anno-

tated with real switching activities obtained through RTL simulation.
l BlueSpec [62]. PowerSC [63] and Power-Kernel [64] are frameworks built

by adding C++ classes on top of SystemC for power-aware characterization,

modeling and estimation in multiple levels of abstraction. Unlike other tools,

Power-Kernel is open source. It provides an efficient object-oriented library for

SystemC 2.0, which allows simple introduction of a SystemC power macro

model at RT-level of a complex design [64]. PK achieves much higher simula-

tion speed than lower-level power analysis tools. Power instrumentation is based

on a SystemC class that uses advanced dynamic monitoring and storage of I/O

signal activity of SoC blocks through put_activity and get_activity functions [65].

Both constant power models and more accurate regression-based models with a

linear dependence on clock frequency, gate and flip-flop switching activity are

used. As an example, dynamic energy estimation of the AMBA AHB bus is

decomposed into arbiter, decoder and multiplexing logic for read and write

operations (master to/from slave). The latter operations are estimated to control

over 84% of the total dynamic power consumption. Similar power instrumentation

techniques for synthesizable SystemC code at RTL level are described in [66].

8.2.6 Standardization and Power Formats

The influence of power formats to SoC design opens the possibility to thoroughly

examine and propose new power modeling, analysis and optimization requirements

within future power format standardization efforts. Moreover, it is beneficial for the

industry to provide a common definition, estimation, analysis and optimization

methodology for static and dynamic power reduction, and set (as much as possible)

common conditions (and computational interfaces) for power labeling in different

embedded SoC platforms.

While clock gating can be expressed adequately in HDLs today, the same is not

true for power distribution, power modeling and power gating through switches and

supply nets. Existing EDA industry initiatives toward standardizing power formats

addresses rising concerns on low power and power-aware systems in a holistic

approach toward power management. EDA vendors have already created two

initiatives, Common Power Format (CPF) and Unified Power Format (UPF), that

try to express and communicate power intent in a consistent way throughout the

RTL-to-GDSII design flow, verification and implementation. CPF, initially devel-

oped by Cadence, is now being taken forward by the Silicon Integration Initiative
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(Si2), while UPF, initially supported by Synopsys, Mentor Graphics and Magma

Design Automation, is now IEEE standard P1801 (UPF2.0) [67]. Both formats are

being successfully deployed, easing low-power and power-aware design and verifi-

cation challenges, although designers are often caught in the middle of a standards

war between two competing formats. Despite that the two formats have not yet

converged into a single standard, designers expect them to do so soon, due to the

need for flexibility, portability, and interoperability of tools. However, it is not clear

yet how soon these two camps will find common ground for agreement.

Power tool designers and multicore SoC architects must equally contribute their

requirements to standardization of power methodology and data, especially in terms

of higher levels of automation, such as analog and mixed signal design, system-

level multicore SoC design and verification, extended power domains, and new

power state models for embedded software development for a full-fledged system-

level support of power management. These contributions can realize significant

improvements in productivity and quality of results by having a single, open, and

portable file format with which a designer can easily and consistently specify,

modify, extend, and maintain complex power model behavior and design data in

different EDA tools. This effort could enable end-user support from leading EDA

vendors and customers for industry-wide adoption of interoperable low-power and

power-aware methodology.

8.3 Power Management

Dynamic power management (DPM) is a widely used strategy for reducing system

energy consumption while a chip is powered and tasks are running [68]. The key

idea underlying all DPM-based approaches is to put part of a system into a low-

power (and low performance) state to save energy when that subsystem is not

working during a suitably long time-period determined by the shutdown and

wakeup overhead of the subsystem.

Recent research efforts usually focus on power or energy reduction during

execution using dynamic voltage/frequency scaling (DVFS) techniques, which

control the supply voltage and clock frequency depending on each task’s computa-

tional requirements. Since dynamic power consumption in a CMOS circuit scales

quadratically with the supply voltage and linearly with the frequency, significant

power gains are expected by using DVFS techniques.

Nowadays, power-efficient techniques need to shift from the era of single

microprocessors to modern multicore SoC architectures. As CMOS technology is

continuously scaling, single chip systems integrating a large number of processors,

on-chip memories and custom intellectual property cores (IP cores) have become a

reality [69–70]. In fact, most major chip manufacturers have already announced

plans for large-scale chip multiprocessors (CMPs) [71–72]. Innovative architectures

that allow different cores to communicate to each other via the NoC paradigm have
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emerged as a promising alternative to traditional bus-based approaches [73]. By

eliminating global wires, the NoC approach provides the needed scalability and

predictability, while facilitating design reuse (refer also to the end of Section 8.2.3).

With communication and synchronization posing critical and complex power

and performance constraints than computation, it is necessary to understand and

leverage the properties of the interconnect fabric at a higher level. More specifi-

cally, one of the greatest bottlenecks to performance in future systems-on-chip is

the high cost of on-chip communication through global wires [74]. Moreover,

power consumption has emerged as a first order design metric, with wires con-

tributing up to 50% of total chip power for certain processors [75]. Therefore,

multithreaded workloads executing on multicore processors dissipate significant

power in the on-chip interconnect and experience high on-chip communication

latencies, as well as network bandwidth and scalability problems.

In addition, thermal constraints appear to dominate other physical constraints

like pin-bandwidth, bisection bandwidth and silicon area. Together with power

consumption, clock distribution and (technology) parameter variation problems in

future multiprocessor systems-on-chip, they compose a multi-disciplinary equation,

whereas joint optimization across multiple design metrics from different areas is

necessary. For this reason, the design of efficient adaptive multicore SoC architec-

tures that can dynamically accommodate computation-, memory- and communica-

tion-bound workloads is envisioned.

Since application traffic has varying characteristics and is often unpredictable at

the time of SoC development, researchers argue that online management is neces-

sary. Ideally, power estimation, analysis and optimization tools and models should

be relatively accurate and cost-effective in respect to hardware and software

architecture requirements. Low level power tools operating on the circuit and

RTL level, such as Synopsys PowerMill and Mentor Graphics’ QuickPower,

provide excellent accuracy, but are not practical for design space exploration and

corresponding system architecture decisions. In addition, as discussed in Section 2,

power models are used to evaluate the energy-efficiency of proposed architectures,

both during development (offline), and more aggressively during system execution

(online). Online power models used in dynamic power management policies, for

which speed is a first-class constraint, cannot rely on detailed simulation. Thus,

instead of simulated activity counts or complex analytically calculated energy

functions, real-time system events are used to resolve this drawback.

At the task level, since a modern chip is divided into regular tiles, whereas each

tile can be a general-purpose processor, a DSP, a memory subsystem, etc, the

application is divided into a graph of concurrent tasks and the system designer

must decide on which task must be mapped on each core, so as to optimize an

objective function. By considering different NoC topologies and generic design

methodologies mostly based on using simulated annealing, we can achieve power-

efficientmappings for regular architectures and different static routing schemes [45, 76]

(see also Section 2.3). However, non-deterministic workloads require dynamic

adaptation of system parameters, such as voltage and frequency or throttling and

thread migration. Thus, tasks with inherent dynamic behavior may incur situations
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which are not always observable with offline profiling. Moreover, these cases must

be treated by specialized architectural system attributes e.g. dynamic routing pro-

tocols and shared IP cores for processors with different time-varying behavior.

8.3.1 Categorization of Management Techniques

Different online management techniques have been explored acting either pro-

actively or reactively, i.e. only when emergency situations appear. These meth-

odologies can be categorized as follows.

l DPM techniques focus on mechanisms to scale the voltage or frequency level or

even shut-down links. Network statistics, such as buffer utilization, can be used to

drive the communication link on/off decision policy depending on the current

traffic [77]. However, at the same time, path diversity is reduced, potentially

harming NoC connectivity. Thus, based on a power-performance connectivity

graph, a deadlock-free routing (or alternatively, complex deadlock recovery)

algorithm is needed to ensure packet delivery irrespective of the total number of

link candidates that are off during network operation. Such techniques can work in

conjunction with power-aware buffer mechanisms, proposed for supplementary

power savings in interconnection networks when links are on and operational [78].
l Dynamic throttling of the workload reduces power consumption under specific

energy or thermal constraints. In particular, reducing bandwidth (e.g. for mem-

ory accesses), or throttling communication link traffic are complementary poli-

cies to achieve dynamic system power management.
l Dynamic management of data transmission via encoding techniques reduces

switching activity and/or tackles signal integrity (crosstalk) effects. By detecting

bit transition patterns on a communication link, encoding hardware converts data

into a low-transition form before transmission. Use of special coding to reduce

crosstalk between wires and avoid adversarial switching patterns on the bus has

been examined [79–82]. Alternative techniques, such as serialized low energy

transmission coding for on-chip interconnect networks (SILENT), aim at reducing

the switching activity in the serial link by employing differential encoding [83].

Combinations of both serialization of data and encoding schemes have also been

proposed to deal with energy-efficient link transmission [84].
l Dynamic activation of recovery policies can tackle the effect of voltage or

frequency scaling for different fault rates. For instance, Razor describes support

for adaptive failure rate monitoring for timing faults [85].

8.3.2 Dynamic Monitoring for Power and Thermal Management

Monitoring techniques are increasingly employed at the integration level of modern

SoCs. Dynamic management for temperature, power, clock jitter, supply noise,
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process variation and performance behavior are becoming an integral part of

today’s SoCs. For instance, the IBM Power6 processor employs 24 critical path

monitors (CPMs) distributed across the chip which guarantee correct circuit opera-

tion under different process, voltage and temperature conditions [86]. These moni-

tors not only identify perturbations of process variation, supply noise effects, aging

effects, clock instability, but also provide corrective actions in order to prevent

circuit failures.

As system operating frequencies increase and power supply voltages are

reduced, transient faults start to occur causing increasing device soft error rates at

the macro-architecture level. Dynamic management has been employed for the

detection of soft errors in processor core logic. Backward recovery through check-

point and rollback is a popular approach used in modern processors to recover from

these types of transient faults. Also, with the dual modular redundancy technique,

two redundant processors execute simultaneously, with an execution error in one

processor manifesting itself as a deviation in the behavior of the two processors.

This deviation is evaluated using a “fingerprint” comparison of the states of the

two processors at regular checkpoint intervals. A checkpoint of a program state

consists of a snapshot of the registers and memory at a specific point of time.

A checkpoint interval is the time between two successive checkpoints. A fingerprint

is a hash value that summarizes the states of the processors after every instruction in

the checkpoint interval. If the fingerprints for both processors agree at the end of

the checkpoint interval, all instructions executed during the interval are known to be

correct. If the fingerprints disagree, then, the processor must be rolled back to

the last correct state of execution, which is the checkpoint at the beginning of the

current interval.

Industrial examples of on-chip dynamic monitoring, such as Intel’s Itanium

processor, utilize voltage, thermal and power sensors [87]. The integrated feedback

control monitor, referred to as Foxton technology, utilizes on-chip sensors to

measure power and temperature. To optimize performance under power and tem-

perature constraints a microcontroller modulates both voltage and frequency, so

that processor cores perform computations at optimal power efficiency.

OMAP2420 is another industrial processor from TI demonstrating a SoC parti-

tioned into several power managed IPs [88]. Each IP’s power control interface is

connected to a global power manager which is controlled by software. Different

power saving modes are implemented, including idle (clock stopped), retention for

low leakage and fast re-start, and power-off mode for ultra low leakage. Power

switches are used to connect each local IP to a global power plane. If a particular

domain is off the local plane drifts to a potential near ground. As reported in [88] the

design exhibits a 2 to 2.4 leakage reduction for voltage scaling and 3.4 to 4

reduction for SRAMs in retention compared to the active mode. When all power

domains are in off-mode a 40 leakage reduction is achieved versus active leakage at

room temperature.

On-chip thermal sensor implementations that exploit the temperature coefficient

of a forward biased diode voltage have been proposed, while also ring oscillator

based temperature sensors are widely employed; these exploit the linear
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dependence on junction temperature to achieve a controlled oscillation frequency

which is indicative of the temperature inside the chip. Researchers have also

presented cascade current mirror-based frequency output thermal sensors and low

area overhead differential temperature sensors [89] or process variation tolerant

thermal sensor designs with active compensation circuitry [90].

The joint optimization of performance with controlled temperature and power

requires intelligent policies, especially as multicore SoCs are emerging. Such a

monitoring system that allows collaboration between a processing and thermal

monitor is demonstrated in [91]. The processing monitor evaluates whether the

processor is operating within expected parameters, by comparing the results of an

offline analysis of the system binary to runtime information obtained from the

processor core. Temperature information from the ring-based oscillator thermal

monitor is correlated with monitoring graphs representing the application running

on the processing monitor to allow for more robust evaluation.

More recently, as NoC gains importance as a viable alternative to on-chip buses

due to better scalability and power-performance, monitors also emerge as a service

layer, but pose several additional challenges that must be addressed:

l The number and location of the monitors. Due to the increased number of cores,

the number of monitors must also follow this trend.
l The type of the monitors. General purpose monitors are either too complicated or

cost-ineffective because of the diversity of the monitoring process.
l Throughput requirements and circuit resources. Differences in monitoring for

functions present diverse requirements which are also affected by NoC size.
l Interface and interactions with existing NoC. Monitoring functions can be

implemented as services over the existing links of a NoC, or as separate

monitoring cores using a private, secondary, network on chip.

Monitoring mechanisms in power and thermal management are generally nec-

essary to measure NoC parameters at runtime and improve traffic attributes,

enhance quality-of-service, predict deadlock or livelock, and avoid congestion or

unfair use of resources. Monitoring of NoC communication parameters can be

performed at any of the communication layers of NoC protocol stacks. However,

since monitoring mechanisms need to function at least at the speed of each

considered NoC layer, in order to capture accurate statistics of the NoC traffic,

they are often supported by hardware monitoring agents. On the contrary, operating

conditions are relaxed when monitoring temperature fluctuations which are mod-

eled at wire speed.

DVFS algorithms are typically implemented in the operating system. Thus, the

operating system scheduler is enhanced in order to monitor the application phases,

and request for core power mode transitions occurring (when necessary) at the

millisecond time scale. Isci et.al. have recognized the importance of monitoring

application phase activity at finer time scales and have proposed using a global

power manager framework to reevaluate DVFS decisions at intervals on the order

of hundreds of microseconds [92]. However, most proposed state-of-the-art DVFS-

based power management schemes incur a large transition delay for voltage and
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frequency in order to achieve the target power mode. The voltage transition delay,

which is on the order of tens of microseconds, is due to off-chip voltage regulators

that limit how quickly voltage can change; the frequency transition delay results

from PLL relock times. These transition delays fundamentally limit re-evaluation

of application behavior and re-mapping core voltages and frequencies at finer time

scales. In contrast, micro-architectural events, such as cache misses introduce

application variability at nanosecond granularities. In addition, micro-architectural

reactive techniques in the form of clock gating or power saving pipelines and

throttling provide for dynamic management in the order of nanoseconds.

The concept of NoC-based voltage island architecture focuses on minimizing

power consumption using fixed supply assignment based on application traffic

patterns available at design time [93–94].

A DVFS-enabled island organization is depicted in Fig. 8.2. Local network

conditions in each island can be adaptively adjusted by a DVFS monitor, which

collects network information on separate, narrow links from each of the switches in

the island. The island voltage is the output of a voltage regulator, and the frequency

is determined by one PLL. The configuration of the voltage regulator and PLL is set

by the DVFS monitor from a discrete number of voltage and frequency pairs.

Between the islands, FIFOs are needed to interface different frequency domains.

Constant increase of the size of NoC-based architectures raises the need for a

scalable approach when designing run-time monitoring services, supported con-

trollers and communication among them. Physically separate networks significantly

reduce switching and arbitration complexity in the communication fabric which

provides energy efficiency but costs more wiring overhead. It allows the maximal

flexibility in configuring the networks adaptively based on the monitoring traffics

on different architectural levels. Virtual channels are another alternative to decou-

ple monitoring information from data traffic, while reservation of bandwidth is an

effective method to achieve predictable and guaranteed average latency.

Communication monitoring is most of the times a priority class and thus needs to

be treated with guaranteed services, decoupled from the data traffic. Emergencies

DVFS DVFS
PLLPLL

Fig. 8.2 A NoC-based voltage/frequency island architecture
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must be immediately identified raising the need for monitor packets which should

have high priority and routed over very fast connection paths. Distributed monitor

architectures and filtering of information are often required. However, scaling to

large NoCs in order to reduce the bandwidth requirements of monitoring commu-

nication and avoid energy overheads is also important.

8.4 Future Trends

Power-efficiency is an important concern in emerging complex, energy-aware

applications in deep submicron multicore SoC designs due to increased power

dissipation and thermal heat dissipation which increase packaging and cooling

costs and reduce reliability.

A low-power and power-aware future of electronic devices is currently driven by

advances in device manufacturing, multicore SoC architecture, system and appli-

cation software, algorithm design and EDA methodology and tools focusing on

monitoring, estimation, analysis, and optimization is forthcoming. For example,

new technological breakthroughs low power true-single-phase clocked (TSPC) flip-

flops and latches, circuits that can return excess energy to the supply, limited-swing

circuits, optical interconnects based on wavelength division multiplexing and

parallel or asynchronous systems-on-chip are examined.

Moreover, new system-level tools, frameworks and methodologies based on

power macro-models or instruction-level models can support efficient low power

or power-aware design space exploration and easy technology migration of existing

IPs beyond the RT level. As shown in Fig. 8.3, as we progress from high to low

level design, tools become more accurate, but also about an order of magnitude

slower, thus being able to handle much smaller circuits. Since performance and

software power are addressed very early in the design, benefits for early software

development and product differentiation are expected to be large, while equivalent

Behavioral
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Fig. 8.3 Cost, simulation efficiency and accuracy of power estimation at various abstraction levels
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RTL models are not necessary. Moreover, by exploring innovative algorithmic,

architectural and technology-related features we can perform:

l accurate and efficient variation-aware power analysis by focusing on the distri-

bution of several metrics of key system components rather than a single deter-

ministic and absolute metric, and
l promising performance and power prediction during technology migration.

Thus, system-level power methodology and tools must exploit several concepts,

such as code-rewriting, lightweight system monitoring threads and power instru-

mentation, targeting power estimation, analysis and optimization at sufficient

accuracy and improved performance, power consumption, and productivity com-

pared to RTL design flow. Despite a sacrifice in power estimation accuracy due to

unavailable low-level (physical and structural) information, efficient, entry-level

dynamic power estimation models can be based on bit- and cycle-accurate transac-

tion-level SystemC macro-models. For example, switching activity is usually

computed by multiplying transactions and/or bit transitions for all gate signals in

all components with appropriate bit energy coefficients. Notice that for absolute

power estimation results, calibration against current technologies can be based on

statistical experiments and linear regression. The computations can also be

grouped, e.g. as shown below:

l at input/output interface ports, including registers and local signal drivers,
l memory, by capturing read, write and idle transactions and bit transitions at row/

column decoders and cell array, and
l FSM and data path components represented as binary decision diagrams (nodes

corresponding to gates), by evaluating bit transitions at input and output signals,

as well as at the output of each individual gate.
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Chapter 9

Embedded Multicore Systems: Design

Challenges and Opportunities

Dac Pham, Jim Holt, and Sanjay Deshpande

Abstract Embedded systems have evolved into sophisticated on-chip collections

of processor cores, on-demand acceleration, and input/output interfaces. These

systems enable increased performance in terms of system throughput and better

overall efficiency than ever before. Yet, this power comes at the cost of increased

complexity for system designers as well as for system programmers. This chapter

explores in depth the opportunities that multicore systems provide for the embed-

ded application space, and the challenges associated with multicore systems design

as well as several innovative approaches to dealing with those challenges.

Keywords Embedded Multicore Systems � Multicore Systems Design � Multi-

core Systems Performance �Multicore Interconnect �Multicore Software Standards

9.1 Introduction

Over the last decade, technology scaling has dramatically increased leakage power

in CMOS circuits. With gate dielectrics and other device features fast approaching

fundamental limits, a continuation of historical trends would see passive power

surpassing active power within the next few years. Furthermore, the conventional

techniques for improving single thread performance (e.g., increased frequency and

deeper/wider processor pipelines) have reached the point of diminishing returns

when power is taken into consideration [1–3]. In the face of this power/performance

wall, increased system efficiency becomes essential.

With each technology node system designers have significantly more transistors

at their disposal. This opens new avenues for innovation to extend system integra-

tion and achieve performance and efficiency improvements. Thus, the advent of

multicore SoC created great opportunities to increase overall system performance
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M. Hübner and J. Becker (eds.), Multiprocessor System-on-Chip: Hardware Design
and Tool Integration, DOI 10.1007/978-1-4419-6460-1_9,
# Springer Science+Business Media, LLC 2011

197



while keeping power in check. As shown in Fig. 9.1, designers continue to leverage

system integration through advancement in technology and are starting to take a

right hand turn for performance “scale out” instead of frequency “scale up.”

While this high degree of system integration (e.g., utilizing multiple processor

cores, specialized hardware acceleration units, and numerous I/O interfaces) pro-

vides continuing opportunity for performance improvement, it also creates new

design challenges that must be overcome. We explore the “real world” require-

ments that are driving current and future multicore SoC and discuss the challenges

and opportunities associated with designing and using these multicore SoC chips.

9.2 “Real World” Requirements

Multicore SoC chips have a number of intrinsic characteristics which simultaneously

distinguish them from previous generations of chips and enable them to provide new

levels of system efficiency. These characteristics arise as a result of requirements from

a world that is rapidly changing. At the heart of this rapid change are two important

technology trends that span application domains: (a) the demand for higher perfor-

mance at constant power and (b) the demand for higher levels of system integration.

Combined with these technology trends, a few important historical and future market

trends are fuelingmassive industry growth.We examine themost important of these in

more detail below.

9.2.1 Continuing Demand for Higher Performance
at Constant Power Envelope

The challenge of doubling performance every 2 years used to drive superscalar

processor design with more functional units running concurrently or deeper pipe-

lines racing to achieve the highest possible frequency at the cost of higher power.

However, this ever-increasing application performance requirement can no longer

Power

Tx 

Scale up

Scale out

Frequency

Fig. 9.1 Processor design challenges
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be sustained without leveraging multicore and on-demand acceleration (Fig. 9.2).

For example, the expanding demand for richer, higher definition, higher fidelity

content will require networks that are more responsive, more interactive, and lower

cost [4]. Furthermore, the requirement of connectivity anywhere and anytime with

stringent security will create monumental performance demands on infrastructure

and access systems. An answer to these increasing performance demands is a

multicore processing approach.

9.2.2 Demand for Higher System Integration

Market pressures coupled with the availability of billions of transistors in today’s

45 nm SoCs are driving Multicore SoC to take on many of the functions typically

associated with larger systems [5–8]. These pressures span a range of applications

from high-performance down to deeply embedded.

Network infrastructure providers, for example, are driven to reduce the cost of

running their operations by integrating functionality from several rack blades into a

single blade. This in turn drives silicon providers to achieve higher levels of system

integration on a single chip. A typical SoC in the networking domain now encom-

passes functions of the management processor, control plane processors, data plane

processors, and offload and acceleration.

Similarly, today’s automotive Multicore SoC combines adaptive engine control

to meet emissions and fuel-economy standards, advanced diagnostics for repair,

new safety features, and new comfort and convenience features. This higher system

integration not only increases system performance and throughput but also reduces

overall system cost.
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Fig. 9.2 The ever-increasing demand for performance
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9.3 Industry Growth Drivers and Sustainable Megatrends

Across the industry, multicore is being driven by ever-increasing demands for

computational power; these computational demands come especially from

emerging application domains that (a) exploit interactivity and connectivity and

(b) make the world a safer place by augmenting our ability to manage complexity in

a fast-paced environment. These trends unfortunately expose end-users to security

and privacy risks, ultimately requiring additional bandwidth and computational

power to mitigate exposure. Thus, the shape of future multicore SoC will be

determined not only by historical trends (Fig. 9.3) but also by a few sustainable
megatrends encompassing many emerging application domains. In the following

sections, we discuss important historical trends and identify three important mega-

trends: the Interactive World, the Connected World, and the Safer World.

9.3.1 Interactive World

As our world becomes more interactive, the demand for systems capable of creating

“virtual immersion” through sensory computing also increases, and the user

becomes part of this virtual world. Gamers, and filmmakers are a few pioneers in

this area, see Fig. 9.4.

Fig. 9.3 Historical growth drivers
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9.3.2 Connected World

With billions of smart connected devices, the network is converging from multiple

formats to packet processing. This unified network, with wireless leading the way,

is driving the exponential demand for computing power. Social networks on-line

merchants, etc., are, etc driving the need for a trusted and secure network (Fig. 9.5).

9.3.3 Safer World

Automotive and health care are other examples of drivers for embedded multi-core

systems. In automotive, more and more active and predictive safety measures will

be standard in tomorrow’s vehicles (Fig. 9.6). The ability to do lane detection

warning and obstacle detection are examples of applications that will drive com-

puting power from image processing, pattern recognition, etc.

9.4 Distinguishing Multicore SoC Features

Multicore systems have evolved under pressures from two forces: (1) CMOS techno-

logy scaling is providing the ability to produce ever higher levels of integration of

cores, hardware accelerators, and input/output devices into a single cost-effective

Fig. 9.4 Computing demand from an ever-increasing interactive world
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Fig. 9.5 Computing demand from an ever-increasing connected world

Fig. 9.6 Computing demand from an ever increasing safer world
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package, and (2) customers want to save component costs and power consumption

while achieving increased systemperformance. Two important features of the systems

designed to meet these demands are support for virtualization and the heterogeneous

system that this allows.

9.4.1 Virtualization

Problems can occur when no single operating system image is in control of

all the resources in a Multicore SoC. This can be solved with the introduction

of virtualization. A virtualized Multicore SoC is divided into a set of partitions, with

each partition being considered a virtual machine (VM). Software running within

each virtual machine appears to be running on its own hardware machine. A VM

may not be aware that there are other VMs running on the same device.

Virtualization is enabled by an additional layer of software called a hypervisor

which is inserted between the hardware and the VMs (see Fig. 9.7). The hypervisor

software has the responsibility to ensure that each virtual machine has access to

required resources without any contention or security issues from other virtual

machines. Successfully enabling virtualization requires support in the processor

core aswell as system-level support. Processor coresmust have an additional privilege

state (the hypervisor state) which supercedes the system level that operating systems

run in. Interrupts and timersmust also be virtualized to be delivered to the right virtual

Fig. 9.7 Virtualization – abstraction of underlying hardware
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machine. At the system level, virtualized memory protection mechanisms must be

added to ensure that memory accesses from input/output devices obey the partitioning

of memory that the hypervisor software has done.

The addition of virtualization solves not only the problem of allowing multiple

operating systems to share resources effectively, it also enables other advanced

capabilities such as rolling upgrades of software (by allowing an older version of an

operating system to run alongside a newer version), or partitioning of the system for

high security, availability, or quality of service. Such features will be a mainstay of

future embedded Multicore SoC.

9.4.2 Heterogeneous Multicore System

Today’s Multicore SoC are highly integrated dices that integrate processor cores,

memory controllers, input/output devices and on-demand acceleration engines (see

Fig. 9.8). These features are complemented with virtualization technologies

to allow much flexibility in software configurations chosen for the system. The

selection of which components to integrate is a complex systems engineering task

that requires expertise in many hardware protocols, broad application knowledge,

performance engineering methods, and sophisticated verification and validation

methodologies. Each generation of such a Multicore SoC will strive to incorporate

more features, enhance performance, and maintain power envelopes. These things

are required in order to respond to the rapidly increasing demands for computa-

tional power and bandwidth in modern system applications.

Fig. 9.8 A highly integrated multicore communication platform
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9.5 Multicore Design: Key Considerations

Multicore SoC design is an incredibly complex undertaking. A successful design

effort must look beyond merely creating a functional device. Competition among

silicon providers is fierce and the costs associated with masksets and manufacturing

are considerable. Therefore, designers must ensure that system performance, area,

and power goals are met.

But multicore also presents new challenges to programmers, including finding

and implementing parallelism, debugging deadlocks and race conditions, and elim-

inating performance bottlenecks [9]. It will take time for most programmers and

enabling software technologies to catch up. This is because concurrent analysis,

programming, debugging, and optimization are significantly different in concept

from their sequential counterparts, and because heterogeneous multicore program-

ming is impractical using standards defined for Symmetric Multi-Processing (SMP)

system contexts or for networked collections of computers. To remedy the situation,

multicore SoC creators must also address programmer’s needs with a multicore

programming model and debugging and optimization paradigms that support that

programming model.

Below we discuss key aspects of technology scaling, performance, power and

area, interconnect, and software in multicore SoC design. This is followed by a brief

discussion of the trend toward heterogeneous manycore SoC in the near future and

how it might impact these key considerations for multicore design.

Fig. 9.9 Technologyscaling
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9.6 Performance

Even in multicore SoC the processor core matters. For example, a core with high

single thread performance is well suited for a mixed control and data plane processor.

This is because the processor core is able to offload repetitive and compute intensive

data plane operations to on-demand acceleration blocks, opening up processing cycles

for control plane work, or headroom for new services and applications. As shown in

Fig. 9.10, another key consideration is the continuing trend to move larger and faster

memories closer to the processing core. Given this trend, and after careful consider-

ation of application memory demands, a new three-level memory hierarchy is intro-

duced in this Multicore Communications Platform (MCP): 32KB of Level 1 (L1)

instruction and data caches are included in the processor core, while a private Level

2 (L2) cache is attached to the core in a back-side implementation. This backside L2

cache is connected directly to the CPU, enabling extremely high application perfor-

mance for most workloads. This technique allows the cache to match the full speed of

the CPU, resulting in significant latency improvements compared to a typical shared

front side L2 cache.

There are some tasks for which a shared cache is desirable, such as interprocessor

communication and operating on shared data structures. For those instances, a Level 3

(L3), multiple-way shared front side cache is used. This shared cache maximizes hit-

rates while providing low-latency memory for I/O and accelerator blocks.

9.7 System Bandwidth

The next-generation MCP requires a highly scalable and modular coherent fabric

rather than an intercore bus as the interconnecting medium among the cores, memory,

and on-chip peripherals (see Fig. 9.8). This fabric eliminates the bus contention issues

that other multicore architectures face as more traffic is introduced into the system.

AMP – Shared Code Private Data
Symmetric

Multiprocess-
ing (SMP)

AMP

SMP OS

Memory for Data Path & Intercore Communication

Shared code

core private memory AMP
OS

Fig. 9.10 Memory sharing/access Control Example
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Inherently scalable, the coherent fabric, such as CoreNet in Fig. 9.8, enables coherent,

concurrent, low-latency connectivity among cores – easily expanding to accommo-

date more cores. CoreNet also provides the option of heterogeneous clustering.

Therefore, to support this rich scalability and flexibility, the CoreNet fabric works

in concert with the caching hierarchy to enable coherent and concurrent accesses

through a highly scalable, low-latency implementation.

9.8 Software Complexity

While multicore architectures hold promise for new performance levels, multicore

applications software and enablement development is still in the early stages.

Clearly, multicore systems will only be as effective as the software’s ability to

take advantage of concurrency, and the pure processing potential of multicore

platforms today is not yet being fully tapped. Another significant challenge is the

fact that the majority of the installed base is still operating on a large body of legacy

software traditionally deployed on single-core systems. Software developers have

the enormous challenge of migrating this large installed base of software code to

multicore architectures to take advantage of all the benefits that a true concurrent

system can provide. As shown in Fig. 9.11, any combination of SMP and Asym-

metric Multi-Processing (AMP) with flexible choice of operating system (OS) can

be supported on this MCP.

9.9 SoC Integration

One of the key design challenges for integrating large multicore SoC is control-

ling the variation between cores in terms of timing and power due to variation

in device critical dimension, threshold voltage, doping fluctuation, layout

D

D
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Fig. 9.11 Flexible multicore OS model – any combination of SMP/AMP
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matching for strained Si, etc. To minimize these within-chip variations, designers

need to design with appropriate margins, using on die sensors to monitor varia-

tions, and using asynchronous interfaces to reduce dependencies on the slowest

core(s).

Next, to design such a complex system, a concurrent analysis and optimization

design methodology is needed for converging functional, power, and timing aspects

of the design. A common design database, where all tools can be integrated on a

single platform and can be optimized concurrently, is essential to improve design

quality, reduce overall effort, and improve schedule predictability.
Other key technology challenges include yield improvement for arrays with

separate array supplies, array repairs, Error Correcting Code (ECC), etc. On-demand

performance while controlling power can be accomplished with Dynamic Voltage

Frequency Scaling (DVFS). In some applications, it is crucial to shut down leakage

when not in operation. Multi-voltage domains, sleep device, etc. can be used to

manage this. Finally, overall Power Frequency Limited Yield (PFLY) can by accom-

plished through personalizing operating voltage per device with the usage of Voltage

ID (VID).

9.9.1 Area and Power

Most of the opportunities for application of embedded SoCs are accompanied by

strict power dissipation limits based on enclosures in which these chips find

themselves. As processing power demand has increased, the number of cores and

other hardware devices incorporated in these SoCs has gone up to match the

demand. This has led to a steady increase in transistor count, which has led to a

potential of higher power dissipation in the chips. Chip designers employ multiple

techniques to overcome the challenge of growing power ranging from architectural

to silicon device design. As discussed earlier, performance is achieved by adding

parallelism of multiple cores instead of running fewer cores at higher frequency.

These larger number of cores can be run at lower frequency to achieve the same

performance. Maximum switching speed of a transistor is inversely proportional to

its threshold voltage (VT). Thus core that can be run at a lower frequency, can be

built using more higher VT transistors where timing is not critical. However, the

higher a transistor’s threshold voltage, the lower its static leakage current. Thus a

slower core can be built to dissipate lower static leakage power using a higher

percentage of higher VT transistors.

Dynamic power associated with switching of the clock is a large portion of

dynamic power dissipated by flip-flops in the system. If this switching can be turned

off, it can lead to significant reduction in SoC power dissipation. A clock edge is

necessary to change the value held by a flip-flop. If the value of a flip-flop is not

going to change, the clock edge is unnecessary. Logic techniques that detect if the

value of the flip-flop will change and gate off the clock if it will not are now

commonly used in the design to limit an SoC’s power profile.
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Circuits that are supplied with power dissipate at least static power. As device

geometries have gotten smaller, this portion of the overall power dissipation has

grown steadily. To deal with this, SoCs are also designed with multiple power

domains or power islands, each either supported by its own set of power supply pins

isolated from other power supply pins in the SoC, or controlled by an on-chip power

regulator. For SoCs that are designed with multiple personalities, the disabled

portions of the chip can also be left unconnected to the power supply. This helps

save even static power that would otherwise be dissipated in those portions of the

chip. Power domains that have their own power regulators can similarly be powered

down by controlling the regulator either via fuses or via other on-chip means of

configuration, in a technique referred to as on-chip power gating.

Power domains controlled by either on- or off-chip power regulators can also be

put under software control. Thus when the portion of the chip such as a core is not

utilized, it can be powered down dynamically, thereby leading to substantial power

savings. This energy saving technique is useful for dynamic power reduction during

times of low demand when many of the cores in the chip might be idle. As the

demand changes, the software can dynamically adapt the performance and power

profile of the SoC.

Maximum switching speed of a transistor is proportional to the supply voltage

(VDD) applied to it. But the higher this voltage becomes, the higher will be the static

leakage dissipation and the dynamic power spent in switching the transistor’s state.

Thus VDD has a big impact on the overall power dissipated in the chip in general

and in a core in particular. Many SoC therefore specify different VDD for different

voltage islands in order to optimize power for a given performance level.

Dynamic change in power profile can be achieved in certain applications at a

much finer granularity. In the technique known as Dynamic Voltage and

Frequency Scaling (DVFS), based on the current processing demand, the software

adjusts the frequency of the cores to match the system’s performance. This leads to

savings in dynamic power. But as the frequency is lowered, the supply voltage of

the core can also be adjusted down opportunistically to save static power as well.

9.9.2 The Critical Role of Interconnect

Multicore systems are characterized by high traffic levels from multiple sources,

including processor cores and other hardware assets. Therefore, robustness of the

system’s interconnect is often critical to the overall performance of the system.

There are a number of considerations that come into play when choosing an

interconnection for a multicore system. This section examines some of the more

important ones.

The choice of an interconnection for a multicore system is primarily dictated by

communication requirements of the applications running in the system.

Processes running in a multicore system could communicate with each other via

Shared memory or via Message Passing.
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In a shared memory model of interaction, the communicating devices can access

a common system address region. Interprocessor communication is achieved via the

basic Read and Write operations with low overhead. As a result, shared memory is

often the primary method of choice for intercore communication. The key perfor-

mance parameters for a shared memory system are the latency of Read operations

and peak and sustained bandwidths available for Read and Write operations.

In the message passing model, different communicating cores do not share a

common address space. Since most current popular processor Instruction Set

Architectures lack native extensions to provide message passing primitives at the

instruction level, general purpose use of message passing typically involves prohi-

bitively large software overheads. Because of these high overheads, message

passing is typically limited to infrequent activity or as door bells between proces-

sors with bulk data communication being still carried out via shared memory.

Amulticore systemmay be constructed with a centralized memory organization or

it could be distributed. In the centralized organization, all memory is equidistant from

all cores and all the data accesses nominally have equal latency. Such a memory

organization is called Uniform Memory Architecture (UMA). The UMA model

greatly simplifies the task of the software by not having to worry about data placement

to achieve efficiency and performance goals. In a distributed organization, not all

memory is equidistant from a processor and is therefore referred to as Non-Uniform

Memory Architecture (NUMA). In a NUMA system, the performance of the applica-

tion can be very sensitive to placement of data, which in turn increases the complexity

of software. The UMA model, while being physically impractical for large systems

with tens of processors, often is employed for small to medium-sized systems.

Producer–consumer is a fundamental model of cooperation between concurrent

processes. Storage operation ordering is essential for a pair of producer and

consumer processes to work together correctly. Support for enforcing these seman-

tics across the interconnection is essential for multiple cores to cooperate with each

other. Coherency is an agreement achieved in the system among various entities

regarding the apparent order of values observed to have been stored at a given

location. In the presence of caches, hardware-maintained coherency relieves the

software of flushing the caches to drive updated data to the memory for other

entities to see. Thus, support for operation ordering and coherency is an essential

aspect of any interconnection network for modern multicore systems.

9.9.3 Choice of Interconnection Topologies

There is a wide range of topologies available to choose from, each differing in cost,

capabilities, and performance [10, 11]. Some are more amenable to implementation

on a single die than the other and are therefore more practicable. We discuss a few

of these fabric-oriented options and their capabilities and properties.

The primary problem with a standard broadcast bus is the frequency it can be run

at, which decreases as the number of devices attached to it increases. Thus, as the
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demand for bandwidth increases, the available bandwidth decreases. This has an

adverse effect on system performance as the system scales in size [12].

This problem with a broadcast bus can be alleviated by pipelining the bus. Thus,

an electrical broadcast of signals within a single cycle is no more longe required.

Pipelining the bus increases the latency of transactions, but that increase usually is

more than compensated by the increase in bandwidth of the interconnection.

Instead of a single bus, multiple buses might be used and transactions distributed

among them. Multiple buses allow the traffic to be partitioned. If the number of

buses is B, the cost of de-multiplexers at each device will be proportional to logB. If

these multiple buses are pipelined, the cost of the interconnection will grow

proportional to B*N*logN, where N is the number of devices attached to the bus.

In a ring topology, the devices form nodes and are connected in the form of a ring

with point to point wires connections between neighboring devices. For example, a

ring topology is used in IBM’s Cell processor [8]. In a ring topology, transactions

flow around the ring from device to device. Because the propagation of signals is

limited to be between neighboring devices, the ring can be operated at a high

frequency. However, the latency is not uniform to all devices; some are farther

than others, with average being N/2, where N is the number of devices connected in

the ring. The cost of ring interconnection grows proportional to N.
In a crossbar topology, during any cycle, there can be N simultaneous pairwise

connections active from any of the N devices to any other device. This enables high

throughput across the interconnection. Depending on the construction, the inter-

connection can also support broadcast or multicast functionality. The biggest

drawback of a crossbar is its cost, which grows proportional to N2, where N is the

number of devices. However, for small values of N, cost could be acceptable.

Depending on implementation, a crossbar can be amenable to partitioning.

A Crossbar supports the UMA model.

In a mesh topology, a device sits at every grid point of the mesh. A mesh is a

two-dimensional topology well suited for implementing on a die. The cost of a

mesh is proportional to N, where N is the number of devices in the system. Like the

ring, the latency is not uniform, average being proportional to √N. Because of high
latency, a mesh is more suitable for a NUMAmodel with the core at each grid point

carrying its own local memory unit. A mesh also exhibits high throughput capabil-

ity. Because of its properties, a mesh is an attractive choice for a scalable intercon-

nection to support a system with large number of cores.

9.9.4 Software

With highly integrated systems comes a need to produce new software that takes

advantage of system resources efficiently. Often legacy software will not run

efficiently since it will not have been written to take advantage of new on-demand

acceleration features. While virtualization is a key enabler for Multicore software

systems, it alone does not alleviate the programmer of the burden of creating

software that exploits the capabilities of the system.
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With Multicore systems the programmer has to keep in mind that the work of N
cores does not necessarily equal N times the work of a single core, especially for

software that was not written properly. Care must be taken to achieve maximum

software scalability using such techniques as minimizing software synchronization

and serialization, as well as avoiding deadlocks and race conditions. To aid the

programmer in this task it is essential that SoC creators take into consideration how

programmers will create software, how they will debug it, and how they will

optimize it. Multicore SoC systems must provide hardware hooks to enable

these capabilities, and optimized system software must be provided to speed the

customer’s time-to-market.

9.9.5 Heterogeneous Manycore

With the ability to integrate so many things on a Multicore SoC it is inevitable that

these systems will be heterogeneous in multiple dimensions, including operating

system, instruction sets, and memory uniformity (see Fig. 9.12). This poses an

opportunity for system designers working in specialized application domains, while

at the same time posing additional challenges for Multicore design and systems

programming. The design and programming challenges will be explored in follow-

ing sections.

If the challenges can be conquered, heterogeneous systems are likely to provide

an almost ideal set of features for a given application domain. Examples of things

that are commonly integrated onto a single die include general purpose cores,

digital signal processing (DSP) cores, and graphics processing units (GPUs).

These may be complemented by a specialized memory hierarchy that supports

partial concurrency (e.g., shared vs. private memory regions), as well as distribution

of memory in space and size that is appropriate for the given application. Such rich

combinations of features can be shaped by many different application spaces.

Fig. 9.12 Heterogeneous Manycore
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9.10 Multicore Design: Challenges and Opportunities

Multicore design presents some major challenges, with associated opportunities.

We discuss important examples of these below, including methods for meeting

performance goals, standards-based multicore programming models, and advanced

debugging and optimization techniques.

9.10.1 Meeting Performance Goals

Because of the complexities of heterogeneous multicore SoC designs and the cost

of mask sets and manufacturing, performance verification before final tapeout is

critical [13]. Presilicon performance verification focuses on ensuring that the

system meets performance criteria for complex, real-world applications, in contrast

Fig. 9.13 The cost of scaling
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to verifying that models of the system can accurately predict performance, or that

subsystems of the design meet latency or timing requirements, or that the manu-

factured parts meet performance criteria. Furthermore, formal techniques are not yet

ready for efficient use by industry. For these reasons, we concentrate on performance

verification using full-system applications that reasonablymodel the workloads used

by customers, while meeting the constraints of presilicon environments.

Three factors affect a successful outcome: metrics, infrastructure, and method-

ology. Metrics set the goals of the effort and guide development of infrastructure

and workloads. Infrastructure helps to manage complexities of running workloads,

collecting metrics, and analyzing results. Methodology must support separation of

concerns leading to a structured breakdown of the problem space with confidence in

the data being produced. While these are important for functional verification,

performance verification has critical differences. Careful coordination can reduce

inefficiencies.

We have successfully used a performance methodology that is divided between

bottom-up and top-down phases (Fig. 9.14). The bottom-up phase, consisting of

micro-benchmarking using an Hardware Definition Language (HDL) simulator, is

executed first to provide early exposure of negative performance indicators. This

verifies acceptable best case performance of various system-level transaction types.

The top-down phase employs macro-benchmarks using hardware emulation.

This phase explores whether resource contention will degrade system-level perfor-

mance by measuring and tuning representative applications. Emulation is required

to reasonably provide the number of cycles required for workloads to reach steady

state for performance measurement.

Bottom-up workloads target memory subsystem latency and bandwidth. There-

fore, multiple scenarios are executed for one to N cores reading small buffers of

data using nonoverlapped strides. Each core is assigned a different memory region

(for example, Core0: 0–8K, Core1 8K-16K, etc.) The core and off-chip memory are

then configured using a predefined set of frequencies, ratios, etc. This allows

engineers to execute multiple performance scenarios, for example one processor

L3 hit, one processor L3 miss, eight processor L3 hit, eight processor L3 miss, etc.

Three performance classes are targeted: unloaded latency, single device through-
put, and multi-device throughput.

Unloaded latency stimulus involves a single requestor, a single target, and a

single outstanding transaction. Scenarios may include various combinations of

(a) requestors (i.e., core, various hardware accelerators, various I/O devices, etc.),

(b) targets (cores, caches, memory, hardware accelerators, etc.), (c) target hit/miss

Single 
transaction 

stimulus

HDL 
simulation

Signals
(waves)

System-
level 

stimulus

Hardware
Emulation Metrics

a b

Fig. 9.14 High-level methodology; (a) Bottom-up, and (b) Top-down
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types (memory page open, memory page closed, cache and directory hit/miss, cache

conflict, etc.), (d) coherency attributes, and (e) operation type (read, write, etc.)

Combinations of parameters are executed, with expected results provided as timing

diagrams by the logic team.

Single-device throughput stimuli comprises transactions from a single requestor

to a single or interleaved target. Transactions included reads of varying buffer sizes,

with varying strides and different paging/interleaving. We visually inspect waves to

establish a baseline. This verifies turnaround times, reveals unnecessary bus utili-

zation gaps, and exposes needless extra cycles of latency.

Multidevice throughput stimuli are applied to all ports of a particular type (for

example, all N cores). Addresses are varied to produce interference scenarios, such

as memory paging and various arbitration algorithms. The goal is to identify

bottlenecks and validate fairness as resources became saturated.

Executing the top-down methodology is challenging because system-level per-

formance verification work typically must be done concurrently with functional

verification activities. Furthermore, the functional verification methodology used

for an SoC may not satisfy critical performance verification needs, such as how to

partition and debug workloads and how to measure system responses.

Top-down workloads typically include core-to-memory latency/bandwidth as

well as domain-specific applications such as network packet forwarding. The work-

loads must be partitioned for structured bring-up since they are significantly more

complex than the bottom-up scenarios. The approach used is to first run stimulus

only involving cores and memory, then test driver code to exercise core-to-acceler-

ator communication, then single-core full system scenarios, and finally full system

scenarios with multiple cores.

The top-down phase requires more complex testbenches, longer simulation

times, and is exceptionally challenging for two additional reasons. First, it is

important to ensure that top-down workloads are functionally correct before run-

ning them on emulation. Second, the workloads must be “emulator friendly.”

Correct workloads are essential because debugging on emulation is difficult. This

can be mitigated by using a functional simulator for workload development, although

this cannot fully prevent latent timing and coherency issues in the workloads.

Emulation-friendly workloads must avoid file I/O, must not require an OS, and

must be scalable to allow orderly bring-up and debug. Scalable versions must be

created to (a) bypass or utilize hardware acceleration, (b) run on one, three, . . ., up toN
cores, (c) allow configuration to employ features of the design or work around them in

software (to make it easier to remove components that are not fully functionally

verified), and (d) work with various memory size and location constraints.

Multicore SoC pre-silicon performance verification requires broad knowledge of

complex integrated components and real-world workloads. Yet, the effort is well

spent because everywhere a team looks they will find potential performance

defects. Through such efforts, we often identify enhancements for future designs,

and gain invaluable experience and insight into debugging and optimizing perfor-

mance for our post-silicon customers. A fortunate side-effect is the discovery of

many functional defects along the way.
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There are many other side benefits of pre-silicon performance verification. For

example, the ability to measure performance of the system allows for customer

benchmarks to be run pre-silicon with high confidence, and it allows last minute

confidence for design adjustments to make timing closure.

9.10.2 Standards-Based Programming Models

A programming model comprises a set of software technologies that allow

programmers to express algorithms and map applications to underlying computing

systems. Sequential programming models do so in terms of serial programming

steps which occur in a strict order, with no notion of concurrency. Universities have

taught this programming model for decades. Outside of a few specialized areas,

such as distributed systems, scientific applications, and signal processing applica-

tions, the sequential programming model permeates the design and implementation

of software [14–16].

But there is no widely accepted multicore programming model outside the possi-

bility of those that were defined for symmetric shared-memory architectures exhibited

by workstations and personal computers, or those that were designed for very specific

embedded application domains, such as media processing [17, 18]. While these

programming models work well for certain kinds of applications, many multicore

applications cannot take advantage of them. Standards that require uniform shared

memory are not always suitable because multicore systems display a wide variety of

nonuniform architectures including combinations of general purpose cores, digital

signal processors, and hardware accelerators. And domain-specific standards do not

cover the breadth of application domains that multicore encompasses.

The lack of a flexible, general purpose multicore programming model limits the

ability of programmers to transition from sequential programming to multicore

programming. It forces companies to create custom software for their chips.

It prevents toolchain providers from maximally leveraging their engineering, forc-

ing them to repeatedly produce custom solutions. It requires end-users to craft

custom infrastructure to support their programming needs. Furthermore, time-to-

market pressures often force multicore solutions to target narrow vertical markets,

which limits the viable market to fewer application domains and also prevents

efficient reuse of software.

In SMP, multicore programmers can use existing standards, such as POSIX®
threads (Pthreads) or OpenMP for their needs [18, 19]. In other contexts, the

programmer may have the option of using existing standards for distributed or

parallel computing, such as sockets, CORBA, or MPI [20, 21]. Yet, primarily due to

two factors, there are many contexts in which these standards are unsuitable: (1)

heterogeneity of hardware and software, and (2) constraints on code size and

execution time overhead.

For heterogeneous multicore contexts, it is impractical to use any standard that

makes an implicit assumption about underlying homogeneity. For example,
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Pthreads is insufficient for interactions with offload engines, with cores that do not

share a memory domain, or with cores that are not running a shared SMP

OS instance. Furthermore, implementers of other standards such as OpenMP

use Pthreads as an underlying Applications Programming Interface (API). Until

more suitable and widely applicable multicore APIs become available, these

layered standards will also have limited applicability.

Systems with heterogeneous cores, ISAs, and memory architectures have

programming characteristics similar to those of distributed or scientific computing.

A variety of standards exist for this system context including sockets, CORBA, and

MPI. However, there are fundamental differences between interconnected computer

systems (common in distributed and scientific computing) and multicore computers.

This limits the scalability of these standards into the embedded world. At issue is the

overhead required to support features that are not required in the multicore system

context. For example, sockets are designed to support lossy packet transmission,

which is unnecessary with reliable interconnect, CORBA requires data marshalling

that may not be optimal between any particular set of communicators, and MPI

defines a process/group model not always appropriate for heterogeneous systems.

These concerns justify a set of complementary multicore standards that will:

(1) embrace both homogeneous and heterogeneous multicore hardware and software,

(2) provide a widely applicable API suitable for application-level programming as

well as for layering of higher level tools, (3) allow implementations to scale effi-

ciently within embedded system contexts, and (4) not preclude use of other standards

within a multicore system.

A roadmap for producing a generalized multicore programming model has been

published by the companies working together in the Multicore Association (MCA)

[22]. Because it is a fundamental capability for multicore programming, intercore

communications was deemed a top priority feature of this roadmap. The consor-

tium’s working group completed the Multicore Communications API (MCAPI)

specification in March 2008 [23].

The MCAPI specification defines three communication types (Fig. 9.15), as

follows:

messages – connection-less datagrams

packets – connection-oriented, arbitrary size, unidirectional, FIFO streams

scalars – connection-oriented, fixed size, uni-directional, FIFO streams

Messages support flexible payloads and support dynamically changing receivers

and priorities, incurring only a slight performance penalty in return for these

features. Packets also support flexible payloads, but utilize connected channels to

provide higher performance at the expense of slightly more setup code. Scalars are
intended to be the highest performance, exploiting connected channels and a set of

fixed payload sizes. For programming flexibility and performance opportunities,

MCAPI messages and packets also support nonblocking sends and receives to allow

for overlapping of communications and computations.

Communications in MCAPI occurs between nodes, which can be mapped to

many entities, including but not limited to: a process, a thread, an instance of an OS,
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a hardware accelerator, or a processor core. A given MCAPI implementation will

specify what defines a node.

MCAPI nodes communicate via socket-like communication termination points

called endpoints. These are identified by a topology-global unique identifier (a tuple
of <node, port>). An MCAPI node can have multiple endpoints. MCAPI channels

provide point-to-point FIFO connections between a pair of endpoints.

Additional features include the ability to test or wait for completion of a non-

blocking communications operation, the ability to cancel in-progress operations,

and support for buffer management, priorities, and back-pressure mechanisms to

control the management of data between producers and consumers.

Scalable performance is a critical feature of any multicore programming model.

Figure 9.16 illustrates performance of an MCAPI echo benchmark for 64 byte data

size. This data was collected from a dual core Freescale evaluation system.

The results are normalized to the performance of a Berkeley sockets-based version

of echo. The other data series in the graph compare the sockets baseline to a unix

pipes version of echo and an MCAPI message-based version of echo. For distances
of eight or less hops, MCAPI outperforms both pipes and sockets. It is important

to emphasize that these results were collected on a dual core processor with a user-

level implementation of MCAPI. This means that sockets and pipes had the advan-

tage of kernel support for task preemption on blocking calls, whereas the example

MCAPI implementation uses polling. Despite these disadvantages, the example

MCAPI implementation performed quite well, and we expect optimized versions

to exhibit better performance characteristics.

The MCAPI specification does not complete the multicore programming model,

but it provides an important piece. Programmers can find enough capability

in MCAPI to implement significant multicore applications. We know of four
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Fig. 9.15 The Three MCAPI communications types
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MCAPI implementations at the time of this writing, which should help foster

adoption of the standard.

The MCA roadmap continues to be pursued by additional active workgroups,

notably the Multicore Resource Management API (MRAPI), and Hypervisor work-

ing groups.

MRAPI will be a standard for synchronization primitives, memory management,

and metadata. The desire is for MRAPI to be complementary in form and goals to

MCAPI. While the targeted features are typically provided by OS, there is a need

for a standard that can provide a unified API to these capabilities in a wider variety

of multicore system contexts.

The Hypervisor working group is seeking to unify the software interface for

paravirtualized OS. Such a standard would allow OS vendors to better support

multiple hypervisors and thus more multicore chips with a faster time to market.

We believe that multicore programmingmodel standards can provide a foundation

for higher levels of functionality. For example,we can envisionOpenMP residing atop

a generalized multicore programming model, language extensions for C/Cþþ to

express concurrency, and compilers that target multicore standards to implement

that concurrency. Another natural evolution to programming models, languages, and

compilers would be debug and optimization tools providing higher levels of abstrac-

tion than we have today. With MCAPI, it may be possible for creators of debug and

optimization tools to begin considering how to exploit the standard.

9.10.3 Advanced Debugging and Optimization

As with the multicore programming model, no high level multicore debug standard

exists. There are standards for the “plumbing” that is required in hardware to make
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multicore debug work; and debug and optimization tools exist for multicore work-

stations and personal computers. Toolchain providers have created multicore debug

and optimization software tools, but these have been custom tailored to each

specific chip. This situation leaves many programmers lacking tool support.

We learned decades ago that source-level debugging tied to the programming

language provided efficient debugging techniques to the programmer, such as visual

examination of complex data structures and stepping through stack backtraces. Rais-

ing the abstraction of multicore debugging is another natural evolutionary step. In a

multicore system context, the programmer creates a set of software tasks which are

then allocated to the various processor cores in the system. The programmer would

benefit from monitoring task lifecycles and from seeing how tasks interact via com-

munications and resource sharing. However, the lack of standards means that debug

and optimization for most multicore chips is an art, not a science. This is especially

troubling because concurrent programming introduces new functional and perfor-

mance pitfalls including deadlocks, race conditions, false sharing, unbalanced task

schedules, and many more.

9.11 Conclusions

The vision of “networking where every connection matters” is the driving force

behind this next generation MCP, setting a new performance standard by exploiting

parallelism through multiple Out-of-Order Superscalar Power ArchitectureTM cores

with Hypervisor support, multiple application-specific accelerators, innovative

memory hierarchies, and advanced interconnect via the CoreNet coherency fabric.

In this chapter, several key considerations for the design were discussed as well as

the opportunities that multicore System-on-Chip provided. This MCP is clearly

designed for reliability, security, scalability, and broad bandwidth with virtualized

resources supporting concurrent activities.

Multicore is being driven by the power wall and by ever increasing demands for

computational power; these computational demands come especially from

emerging application domains that (1) exploit interactivity and connectivity and

(2) make the world a safer place by augmenting our ability to manage complexity in

a fast-paced environment. These trends unfortunately expose end-users to security

and privacy risks, thus requiring additional bandwidth and computational power to

mitigate their exposure.

Successful multicore SoC chips must allow end users to leverage the benefits of

performance scaling through increased concurrency and bandwidth, but this must

not come at the expense of power. Thus, designers must pay careful attention to

system designs that make appropriate power/performance tradeoffs; additional

techniques that must be leveraged are appropriate technology scaling and high

degrees of system integration with specialized hardware acceleration units and

numerous I/O interfaces. This introduces complexity in managing shared system

resources, and we mitigate this with virtualization techniques. In short, multicore
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SoC has a number of intrinsic characteristics which both distinguishes them from

previous generations of chips and enables them to provide new levels of system

performance.

Finally, with the increased integration and parallel compute power of Multicore

SoC comes an increased need for tools to aid in programming, debugging, and

optimizing software. We believe emerging standards for multicore software will

mitigate some of this need.
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Chapter 10

High-Performance Multiprocessor System

on Chip: Trends in Chip Architecture

for the Mass Market

Rob Aitken, Krisztian Flautner, and John Goodacre

10.1 Introduction

10.1.1 Mass Markets and High Performance

The proliferation of embedded processors in recent years is astonishing. The most

obvious example is mobile phones, with annual sales of over a billion units. Such

volumes clearly form a “mass market,” but other businesses also involve huge unit

processor volumes as well. These include microcontrollers, enterprise (e.g., disk

drive controllers), home entertainment (HDTV), automotive, and more. Histori-

cally, most of these have been single processor systems, or collections of single

processor subsystems, rather than true multiprocessor systems, and as such are not

of direct relevance to the topic of this book, but the same trends that are driving the

move to multiprocessing in other domains are at work in these mass markets as

well. To see why, let us look in more detail at the example of a mobile phone.

Classically, mobile phones have consisted of three main functions: radio commu-

nication, user interface, and digital processing. The digital processing portion is

usually confined to a single chip, with additional memory around it. Cost, size, and

reliability all drive a single chip digital processing solution. However, as circuit

density has increased, the amount of functionality achievable with a single chip has

also risen. So while a 1998 vintage phone (Fig. 10.1) was limited to simple number

lookup and textmessaging using its digital chip, a 2008 generation smart phone is able

to perform numerous other functions, including email, web surfing, video player and

camera, music player, digital camera, video game player, mapping/GPS, and more.

Traditionally, this added functionality has been achieved in three ways: (1)

silicon scaling; (2) increasing microarchitecture complexity to extract instruction

level parallelism (ILP); and (3) adding more cache to reduce the effect of off-chip

access. CMOS scaling historically provides for lower power consumption and
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increasing frequency to provide more performance, while reducing area. Because

the goal of a single digital processing System-on-Chip (SoC) had already been

achieved, scaling was also used to provide for increased functionality while main-

taining area and power, leading to more complex SoCs, with embedded graphics

and video, for example. Recently, scaling has run into trouble, however, leading to a

situation where increasing frequency past a design-optimal point has significant and

exponential effect on power, increased microarchitecture complexity is failing to

extract more ILP and exponentially increases power and area, typical embedded

software working-set can fit within on-chip caches, and, finally, process geometry

reduction is failing to provide expected power benefits.

Just as power issues drove high-performance wired CPUs to multicore solutions,

the need to use energy wisely is driving high-performance mobile processing to

multicore. A quick scan of current mobile application processors shows that many

already include multiple processors, including the TI OMAP 44x, Qualcomm

Snapdragon, nVidia Tegra, and Samsung S3C6400. Figure 10.2 shows one exam-

ple. More such designs are likely in the future, and new technologies, such as

3D-IC, inherently support multicore approaches.

Fig. 10.1 Mobile phones from 1998 (top) and 2008 (bottom). Source: Nokia
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In fact, it is possible to view an entire SoC as a heterogeneous multicore

processing system. The graphics and video processing units complement the appli-

cations processor, similarly, audio codecs are power management units are a form

of specialized processor (Fig. 10.3).

10.2 Scaling and Consumer Expectations

Moore’s law follows from CMOS device scaling, but the phenomenon is not strictly

technological. Consumer expectations have become tightly linked to scaling, as

every new device does more than its predecessor. Consider two handheld video

games from Nintendo, the GameBoy and the DSi (see Fig. 10.4). When it was

introduced in 1989, the GameBoy was an innovative toy. It was based around a Z80

CPU running at 1.05 MHz. It featured a 160 � 144 pixel black and white LCD

screen and allowed up to four players to play together with a serial cable. On the

other hand, the DSi, introduced 20 years later in 2009, features two CPUs: an

ARM9 running at 133 MHz and an ARM7 running at 33 MHz. It has two screens,

each 256 � 192 pixel color LCDs, as well as AAC audio, two VGA cameras,

256 Mb of flash memory and Wifi connectivity including a browser.

Clearly, the DSi is a substantially more powerful device, with at least 1,000� the

computing power of the original GameBoy. The DSi was introduced at a price point

of $169. The GameBoy, in 2009 dollars, was essentially the same price. This trend is

not uncommon in technology. PC prices have been declining in recent years in real

Fig. 10.2 Example Multicore baseband system. Source: Mindspeed
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dollars, even as their capabilities increase. Similarly, the trend in portable music

players is to increase storage capacity while retaining a largely fixed price point.

Collectively, these observations point to a larger truth. Consumers have come to

expect continuing technology improvements in performance and capability, and are

unwilling to pay extra for these, and will even demand price decreases if advances

are not fast enough. Competitive pressures within the electronics industry have

certainly contributed to this state of affairs, but it is ingrained within consumer

expectations as well.

10.2.1 Scaling Limitations

The basics of CMOS scaling, as outlined in the classic paper by Bob Dennard of

IBM, are as follows:

Parameter (Scale factor ¼ a) Dennard scaling Scaling now

Dimensions 1/a �1/a
Oxide thickness 1/a 1

Voltage 1/a 1

Drive current 1/a 1/a
Capacitance 1/a 1/a < C < 1

Power/circuit 1/a2 1/a
Power density 1 a
Delay/circuit 1/a �1

Fig. 10.3 Example Multicore mobile system. Source: ST Ericsson
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This scaling served the semiconductor industry well for nearly 30 years, but

physical limitations have slowed conventional scaling. First of all, voltage scaling

slowed and stopped at around 1V. As can be seen in the table, not scaling voltage

stops delay scaling. It also lowers power dissipation per circuit, which results in

power density increasing, rather than staying constant. Oxide thickness was next to

slow down – as oxides shrunk to single digits of atoms thick, additional shrinking

was simply not possible. However, economic pressure to continue scaling did not

abate, and so alternative approaches were required.

Fig. 10.4 Top: GameBoy

original (1989), bottom:
GameBoy DSi (2009).

Source: Nintendo
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Some of these are new materials. For example, high-k metal gate (HKMG)

transistors provide for the benefits previously obtained by scaling gate oxide even

when the oxide does not scale. Other such techniques include providing for multiple

dopant concentrations and strain engineering in the silicon. See [Bohr 2009] for

more information.

Additionally, even though device dimensions continue to scale, the mechanics of

doing so has become increasingly complex. The wavelength of light used for

photolithography has stopped scaling at 193 nm even as feature sizes continue to

shrink. Printing at subwavelength dimensions is complex (it can be thought of as

trying to draw lines significantly narrower than the width of the pen tip being used)

and expensive. Resolution enhancement technologies (RETs) now include adjust-

ments to masks, light sources, exposures, and even the light transmission medium

(which has changed from air to water to improve optical capability). The added

complexity of the photolithography and mask making process has led to more

complex design rules, meaning that the simple pattern shrinking envisaged by

Dennard has been impossible since the 90 nm silicon generation (�2002).

Even with all of the technical fixes being used in the process of fabricating

circuits, consumer demands for scaling can no longer be achieved without design

changes. Significant standard cell and memory architecture changes are made at

each process node to squeeze additional performance, area, or power out of devices

that are increasingly reluctant to provide the gains. The additional complexity is

reflected in the increasing cost of developing each node.

Finally, shrinking dimensions, increasing numbers of devices, and processes that

increasingly bump up against physical walls has led to increasing concern about

variability. Once solely a concern of analog designers, device variability has hit

mainstream digital design as well. The interested reader is referred to [Bernstein

2006] for more details, but variability is now omnipresent: individual transistors vary

in their dimensions and performance, within chips and among chips, by 10% in

dimension and 50% in performance. Wire capacitances and resistances can easily

vary by 30% or more between chips and even between adjacent metal layers. On-

chip variation in voltage and temperature can further exacerbate these problems. The

standard solution to this variation is to add margin to a design, which further limits its

ability to scale. High-performance design teams need to quantify and account for

margins to get the gains that design teams 15 years ago could achieve simply by

switching to a new process.

10.3 CPU Trends

Until very recently, the differentiating factor in desktop processor design was

simple; speed. Companies such as Intel and AMD were single-minded in their

approach to processor design, with determined to both develop and release higher

frequency processors before the other.
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The race to release the world’s first GHz processor was hotly contested with

AMD emerging as the eventual winner. During this time both organizations were

focused on their quest and slowly the industry became aware of the increased

hardware complexity associated with higher MHz processors. The industry also

realized that the MHz-only route could not go on indefinitely and other approaches

were needed. In addition to improvement in processor efficiency, raising total

performance through supporting thread-level parallelism presented themselves

through Multiprocessor (MP) and Multithreading (MT) technologies.

Intel introduced an MT technology known as “Hyper-Threading,” while AMD

positioned themselves for what clearly became the dual core race, with both seeking

to be the first to offer a true MP solution to the home computing market. What

has caused this paradigm shift from two prominent semiconductor companies

toward MP?

More recently, this shift to multiprocessing is imposing many of the software

paradigms growing in popularity on the desktop also toward embedded designs. For

many years, embedded designers have leveraged the advantage that by including

multiple processors in their design, they can better provide the required computa-

tional performance within their limited power budgets. The real change now

affecting the embedded market is that the application software is also being asked

to view the general purpose processor element using a multiprocessing paradigm so

that this processor can also benefit from the promises of higher performance and

low power. Although MP and MT both assert this multiprocessing complexity to

the software developer, all is not equal when the costs and complexity tradeoffs

between the two are considered. As a result, MP systems are increasingly common.

[Goodacre 2006].

10.3.1 Power

When designing a high performance SoC for a high volume market, power is

invariably a key consideration. This is obviously the case for battery powered

applications, but applies in wireline products as well: excess power consumption

creates excess heat, and this in turn requires expensive cooling solutions. Adding a

fan to a $29 printer is an expensive proposition, after all.

Let us consider another specific example: a pair of Nokia phones separated by a

decade (Fig. 10.6). In 1998, the Nokia 5110 was a reasonably advanced mobile phone.

Among its features were a 47� 84 B/W display, 64 K RAM, 1 MB Flash, 16 buttons,

and built-in entertainment such as the “Snake” game. All of this was powered by a

900 mAh battery. Ten years later, the Nokia N96 smart phone was significantly more

powerful, featuring a 240 � 320 24-bit color display, 256 MB RAM, 16 GB Flash,

touch screen input, a 5-megapixel camera (480p encode), 2D/3D graphics acceleration,

stereo speakers with 3D audio and significantly more impressive video games than

Snake.However, all of thiswas powered by a 950mAhbattery – barely 5%better than a

decade earlier, but expected to provide energy to a significantly more powerful device.
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Again, this exemplifies a common trend. Battery technology is not advancing

nearly as quickly as performance or memory capacity – there is no Moore’s Law for

batteries. As a result, power (or more precisely, energy) management remains an

essential driver for high performance mobile devices, and this in turn has led to a

need for multiprocessor solutions.

Desktop processor scaling switched from single processors to multiprocessors

starting in around 2005 in part because the energy dissipation trend was unsustain-

able (Fig. 10.5). To see why, consider the energy equation below

E¼CVdd fdt þVdd ileak:

Increasing frequency directly increases energy consumption. In addition, the

transistors needed to produce the extra frequency also climbs close to exponen-

tially, leading to increased capacitance and increased leakage. Adding processors

allows more tasks to be performed at a lower frequency, while avoiding the

exponential transistor count increase and leading to reduced capacitance and

leakage, even considering the extra processor.

10.3.2 Dark Silicon

The combination of challenging but feasible scaling in area and performance

together with reduced or lack of scaling in power leads to an interesting situation
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of unexploitable silicon area, or what has been referred to as “dark silicon.” To see

how this works, consider the following example (shown graphically in Fig. 10.7).

Consider a design implemented at the 45 nm node with area A45, frequency F45,

and power P45. Scaling factors between process generations are open to some

Fig. 10.6 Phone comparison 1998 versus 2008

Fig. 10.7 Dark Silicon
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debate, but we will use the ones from the ITRS roadmap for purposes of this

discussion. Scaling this design through two generations to the 22 nm node results

in essentially Dennard scaling of area and some frequency improvement, giving

A22 ¼ 0:25 � A45

F22 ¼ 1:6 � F45:

There are two possibilities for power. If frequency is fixed, then we have

P22;fixed ¼ 0:6 � P45:

On the other hand, if the scaled frequency is used, this results in

P22;fast ¼ P45:

As we have discussed already, power is often the key limitation for a given

design. On the other hand, in previous generations it has usually been desirable to

keep overall die area roughly constant and use scaling to offer expanded function-

ality with the “extra” silicon. This becomes challenging as the design is scaled

beyond 45 nm – if the power for the 22 nm design is meant to be the same as the

45 nm design, the exploitable chip area is much less than it was originally. In the

“fast” case, where frequency is scaled, only 25% of the 45 nm area is available (no

functionality change). In the constant frequency case, the situation is somewhat

improved, but still only 42% of the original area is available (an additional 67%

functionality could be added).

The situation is expected to get worse over time. As scaling continues to the

11 nm node, the equations become

A11 ¼ 0:07 � A45

F11 ¼ 2:4 � F45;

which again lead to two power situations:

P11;fixed ¼ 0:3 � P45

P11;fast ¼ 0:6 � P45:

In this case, the resulting usable areas are 23% for the fixed frequency case and

only 11% for the scaled frequency case. The functionality improvements are

significant (230% and 67% respectively), but still leave a lot of unused area.

This utilization challenge means that there will be plenty of room in a fixed area

design for added functionality, but there will be no way to power it up, hence the
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term “dark” silicon. The question of what to do with or about this dark silicon is

key to the discussion of high volume, high performance multiprocessor systems.

10.3.3 What to do with Dark Silicon

Power scaling has lagged other types of scaling for a few generations, so the dark

silicon problem is not entirely new. In the past, three approaches to using extra

silicon area have been commonly used in high performance, low power SoCs.

1. Add more memory

2. Shrink the die

3. Change the power equation

The first of these, adding more memory, has been most prevalent. Increasing

cache size has been common, but as was noted earlier, no longer provides perfor-

mance improvement once the standard application run set can be located entirely

within the cache. Furthermore, it is no longer feasible to ignore SRAM leakage

when considering overall chip power, so adding memory is not free from a power

perspective.

Shrinking the die has also been common. This provides for cost savings, but care

must be taken to ensure that the design does not become I/O bound (the number of

I/Os available increases only linearly with scaling, while the number of transistors

increases quadratically). Also, consumer expectations require ever-increasing func-

tionality and ignoring those expectations can result in failing products, or products

that must compete in a commodity market and are unable to attract any sort of price

premium.

The third approach is conceptually the best. By changing the rules of the design,

it is possible to change the overall power consumption. A simple example is clock

gating. By restricting clocking to only those portions of a design actively involved

in an operation, dynamic power can be dramatically reduced. Similarly, reducing

the leakage of noncritical gates by using higher VT transistors or longer gate

lengths is another common “rule changing” approach that adds extra power reduc-

tion beyond scaling. Voltage scaling, frequency scaling, and combinations of the

two also reduce power. These can be static, dynamic, or adaptive in nature. Also,

power gating can be used to shut off large blocks of unused circuitry. For more

details on these methods, please see Keating et al [Keating 2007].

As we continue, it is important to remember that there is more to a system on

chip than the processor, but processing elements tend to be where performance and

power constraints are the greatest. There is no shortage of challenges in modern

SoC design, but we will concentrate on power.

While all systems-on-chip are different, there are some common components

that we can consider to be part of a “typical” SoC. These include a CPU subsystem,

containing one or more processors, and local cache. These are connected through a
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bus to other blocks, such as a graphics unit, a video system, additional system

memory, mixed signal components, off-chip interfaces to DRAM, Flash, etc., as

well as other components that are often lumped together as “random logic.”

A typical example is shown in Fig. 10.8.

The trends discussed previously also apply to these other SoC components.

For example, all processing elements, whether CPU, GPU, or specialized proces-

sors, face scaling challenges in terms of processing performance and power con-

sumption. Similarly, SRAM-based memory must confront leakage issues and

minimum operating voltage difficulties. Lower-performance logic must balance

area and leakage while not missing performance targets.

Expanding such a system to a multiprocessor adds new challenges.

Multiprocessing essentially uses a “divide and conquer” approach using modular

design principles where a single (multi)processor is created by bringing multiple

processing units together each capable of running a separate concurrent thread.

Ideally, a multiprocessor architecture should enable a “plug-and-play” solution,

where systems designers can simply plug in additional processors as needed, rather

than using a complex multithreading approach.

In addition to the hardware-focused discussion here, software and operating system

compatibility need to be considered. Additional discussion is available at in [Adve 1996

and Patterson 2009].

Fig. 10.8 Typical System-on-Chip
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A challenge that is often placed against multiprocessing and the duplication of

L1 across each of the processors is that for shared data held by one of the other

processors, software needs to actively compensate and take care regards the addi-

tional access latencies and penalties. In traditional SMP multichip designs, where

any chip to chip sharing of data passed across a much slower board level backplane,

this was true. However, when MP is on chip, these cost quickly become negligible.

For example, an on-chip ARM-based system can resolve a cache miss, or access to

shared data around 60% faster than a processor could otherwise resolve data from a

shared Level 2 cache [Goodacre 2006].

Once the decision is made to go with a multiprocessor system, the question

arises “how many cores are needed”? Dual core systems are now the norm in

desktop systems, quad core and more are increasingly common.

The complexities of scaling and choosing a multiprocessor architecture mean that

Moore’s law goal becomes a question of achieving the highest performance with

limited power at given cost. Beyond a certain performance level, this can only be

achieved with a multiprocessor, as shown by Fig. 10.5 on the computation density of

processors. It is simply impractical to push performance at reasonable power cost

without increasing the number of cores. The serial instruction stream limits parallel-

ism, and power consumption limits performance. The result in high-volume mobile

computing space is multiprocessor systems such as that shown in Fig. 10.9.

So the question becomes, where does this lead? One problem in answering the

question is that it seems that everything depends on everything else. As an example,

consider the challenge of reducing leakage power. A partial list of things influen-

cing leakage includes:

Fig. 10.9 Multicore System Today (Courtesy Texas Instruments)
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l Operating System with Software Policies

– Managing the entry and exit to and from system sleep states
l Power Supply Management

– External power supply control, power supply tolerances, etc.
l System Level Control IP

– Architectural design partitioning, hardware control

– Sleep transition protocol management
l Library Level Support

– Low power cells (e.g., level shifters, gating cells, retention flops)

– Low power memory (architecture, sleep states)
l EDA Software

– Support for chosen techniques
l Process Technology

– Tradeoff between high performance and low leakage process nodes

So what is to be done? Clearly, a systems approach is called for. For example, a

combination of a low power process, together with a multivoltage setup where low

activity circuits always run at reduced voltage is one solution. In another approach,

it might be desirable to include operating system features that enable sleep states,

controlled by carefully placed power gates around modules, and architectural

features that support known entry into and exit from sleep states. Any number of

other approaches are possible, but they must be considered as part of an overall

system, rather than simply adopting techniques piecemeal.

This same approach extends to other aspects of multiprocessor SoCs. As addi-

tional performance is needed, it is not enough to simply have more powerful

“smarter” processors, since single CPUs run out of gas for power/performance

reasons. Similarly, adding more CPUs is not in an itself a solution either. The costs

of additional cores need to be justified by additional benefits, and this requires

consideration of the memory system, interconnect, power delivery system, and all

levels of software. As a result, integration is key to system design. Since not all

integration approaches are equal, architecture becomes a question of integrating the

right stuff the right way.

As an example, consider memory bandwidth for a display system. It can be seen

from Fig. 10.10. that theMoore’s law scaling trends affect display bandwidth, just as

they do other aspects of SoC. To develop an architecture, it is first necessary to

analyze traffic patterns. This involves identifying the bandwidths from the masters.

This in turn drives the selection of DRAM technology and architecture and deter-

mines the average latency in the system. The next step is to identify the latency

tolerance characteristics of the masters. This drives the arbitration policy – including

“time-out” characteristics. Next, it is necessary to determine the interconnect struc-

ture. A hierarchical structure has the advantage of allowing each interface speed to

be selected to support peak bandwidth for master or slave, taking into account

latency and throughput considerations. Further, hierarchical interconnect uses traffic

combination to minimize interconnect size, which enables scaling of complexity

(e.g., power and/size). The result is a system that allows the balancing of pipeline
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latencywith synthesis frequency and gate-count, andmay be considered to be a form

of Network-on-Chip (NoC) that is independent of the interface protocol.

Similar approaches may be used for the remainder of the SoC. This brings us

back to trends. So what will happen with regards to scaling?

While there is always concern that some challenge on the scaling roadmap will

prove insurmountable, it is reasonable to expect that device scaling will continue

uninterrupted below the 20 nm node as the semiconductor industry works to feed

customer demand for more and more in the way of electronic products.

Nonetheless, SoC design will take place in an increasingly constrained environ-

ment: Power limitations require clever approaches (e.g., power gating, adaptive

voltage scaling, etc.). Standardization of interfaces, sub-blocks, and even micro-

architectures is increasingly needed to limit costs, and proliferate solutions widely.

At the same time, differentiation is needed for visibility, branding. In every case,

high volume is needed to justify both customization and the high fixed costs

involved in SoC development.

For an IP provider, the keys to serving this market are flexibility, innovation, and

establishing community. For designers limited by scaling, one avenue to solutions

lies with pushing scaling by changing the rules. For example, if the rules require a

constant voltage per chip, choose an adaptive approach (environmentally aware

power), where voltage is set per chip and adjusted as the environment or workload

changes. Alternately, if the rules mandate that computation never produce errors,

choose an approach with error tolerance (e.g., numerically insignificant errors are

allowed [Breuer 2008]) or with speculative execution (e.g., Razor [Das 2006],

where errors may occur, but the design is self-monitoring and able to recover and

redo the computation in an error-free fashion. Or, if the rules require DRAM for

volatile storage and Flash for nonvolatile, adopt an emerging memory (e.g., high

performance nonvolatile such as STT-MRAM [Huai 2008]).

Let us look in detail at one of these examples, the Razor approach. As shown in

Fig. 10.11. conventional voltage and frequency scaling is limited by a variety of
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margins designed to ensure that the system never produces an error. However,

power efficiency (energy per operation) continues to improve past the point where

errors occur, and the conditions that limit error-free high frequency operation do not

occur with every operation. If a design is sufficiently self-aware to recognize when

an error occurs, and is able to rapidly reconfigure itself into a safe operating mode,

both voltage and frequency can be pushed into realms beyond the margin region

that improve energy per operation without sacrificing error-free operation. The

result is a design that is able to adapt itself to slowly changing conditions (temper-

ature, global workload) while surviving rapidly changing issues (instantaneous IR

drop, clock jitter, etc.). For more details, see [Bull 2010]

10.4 Conclusion

As we look to trends, it is clear that the future will contain more multicore systems.

For now these are confined to higher performance mobile and stationary

systems, but, if history is any guide, future low cost systems will look increasingly

like today’s high performance versions. What will these systems contain? If they

follow current trends, they will feature improved cache architectures, with perfor-

mance optimized interconnect fabrics. The chips will include heterogeneous pro-

cessing elements (CPU, GPU, video, etc.) and will incorporate in-package DRAM

and flash, possibly using 3D-IC techniques. However, it is also likely that winning

solutions will change the rules, incorporating speculative execution (e.g., Razor),

fault/error tolerance, or other innovative approaches that allow the performance/

power/yield equation to be altered.

Fig. 10.11 Classes of Margin
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Chapter 11

Invasive Computing: An Overview

J€urgen Teich, Jörg Henkel, Andreas Herkersdorf, Doris Schmitt-Landsiedel,

Wolfgang Schröder-Preikschat, and Gregor Snelting

Abstract Anovel paradigm for designing and programming future parallel computing

systems called invasive computing is proposed. The main idea and novelty of invasive

computing is to introduce resource-aware programming support in the sense that a

given program gets the ability to explore and dynamically spread its computations to

neighbour processors in a phase called invasion, then to execute portions of code of

high parallelism degree in parallel based on the available invasible region on a given

multi-processor architecture. Afterwards, once the program terminates or if the

degree of parallelism should be lower again, the program may enter a retreat

phase, deallocate resources and resume execution again, for example, sequentially

on a single processor. To support this idea of self-adaptive and resource-aware

programming, not only new programming concepts, languages, compilers and

operating systems are necessary but also revolutionary architectural changes in the

design of Multi-Processor Systems-on-a-Chip must be provided so to efficiently

support invasion, infection and retreat operations involving concepts for dynamic

processor, interconnect and memory reconfiguration. This contribution reveals the

main ideas, potential benefits and challenges for supporting invasive computing at

the architectural, programming and compiler level in the future. It serves to give an

overview of required research topics rather than being able to present mature

solutions yet.
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M. Hübner and J. Becker (eds.), Multiprocessor System-on-Chip: Hardware Design
and Tool Integration, DOI 10.1007/978-1-4419-6460-1_11,
# Springer Science+Business Media, LLC 2011

241



11.1 Introduction

Decreasing feature sizes have already led to a rethinking of how to designmulti-million

transistor system-on-a-chip architectures envisioning dramatically increasing rates

of temporary and permanent faults as well as feature variations. The major question

will thus be how to deal with this imperfect world [1] in which components will

become more and more unreliable. As we can foresee SoCs with 1,000 or more

processors on a single chip in the year 2020, static and central management concepts

to control the execution of all resources might have met their limits long before and

are therefore not appropriate. Invasion might provide the required self-organising

behaviour to conventional programs for being able not only to tolerate certain types

of faults and cope with feature variations, but also to provide scalability, higher

resource utilisation numbers and, hopefully, also performance gains by adjusting the

amount of allocated resources to the temporal needs of a running application. This

thought might open a new way of thinking about parallel algorithm design as well.

Based on algorithms utilising invasion and negotiating resources with others, we can

imagine that corresponding programs become personalised objects, competing with

other applications running simultaneously on a Multi-Processor System-on-a-Chip

(MPSoC).

11.1.1 Parallel Processing Has Become Mainstream

Miniaturisation in the nano era makes it possible already now to implement billions

of transistors, and hence, massively parallel computers on a single chip with

typically 100s of processing elements.

Whereas parallel computing tended to be only possible in huge high perfor-

mance computing centres some years ago, we see parallel processor technology

already in home PCs, but interestingly also in domain-specific products, such as

computer graphics and gaming devices. In the following description, we picked out

just four representative instances out of many domain-specific examples of mas-

sively parallel computing devices usingMPSoC technology that have already found

their way into our homes:

l Visual Computing and Computer Graphics: As an example, the Fermi CUDA

architecture [2], as it is implemented on NVIDIA graphics processing units

(GPUs) is equipped with theoretically upto 512 thread processors which provide

more computing power than 1 TFLOPS as well as 6 GB GDDR5 (Graphics

Double Data Rate, version 5) RAM. To enable flexible, programmable graphics

and high-performance computing, NVIDIA has developed the CUDA scalable

unified graphics and parallel computing architecture [3]. Its scalable parallel

array of processors is massively multi-threaded and programmable in C or via

graphics APIs. Another platform originally targeting visual computing is Intel’s

Larrabee [4]. Although Intel will not ship Larrabee chips, their new Many

Integrated Core (MIC) architecture is based on Larrabee’s architecture and

is focused on high-performance computing. The release of the first Intel MIC
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chips codenamed Knights Corner is planned for 2011 and brings a new may-core

programming model using multiple in-order x86 CPU cores that are enhanced by

a wide vector processor unit, as well as several fixed function logic blocks. This

provides dramatically higher performance per Watt and per unit of area than out-

of-order CPUs in case of highly parallel workloads. It also greatly increases the

flexibility and programmability of the architecture as compared to standardGPUs.

A coherent on-die 2nd level cache allows efficient inter-processor communication

and high-bandwidth local data access by CPU cores.

Task scheduling is performed entirely with software in Knights Corner, rather

than in fixed function logic.
l Gaming: The Cell processor [5] such as part of Sony’s PLAYSTATION 3

consists of a 64-bit Power Architecture processor coupled with multiple syner-

gistic processors, a flexible I/O interface and a memory interface controller that

supports multiple operating systems. This multi-core SoC, implemented in 65

nm Silicon On Insulator (SOI) technology, achieves a high clock rate by max-

imising custom circuit design while maintaining reasonable complexity through

design modularity and reuse.
l Signal Processing: Application-specific tightly-coupled processor arrays

(TCPAs). For applications such as 1D or 2D signal processing, linear algebra

and image processing tasks, Fig. 11.1 shows an example of an MPSoC

Fig. 11.1 Architecture of a 8�3 processor MPSoC customised for image filtering type of opera-

tions. Technology: CMOS 1.0 V supply voltage, 9 metal layers, 90 nm standard cell design. VLIW

memory/PE: 16 times 128, FUs/PE: 2 times Add, 2 times Mul, 1 times Shift, 1 times DPU.

Registers/PE: 15. Register file/PE: 11 read and 12 write ports. Configuration Memory: 1024 times

32 ¼ 4 kByte. Operating frequency: 200 MHz. Peak Performance: 24 GOPS. Power consumption:

132.7 mW@ 200MHz (hybrid clock gating). Power efficiency: 0.6 mW/MHz. Chair of Hardware/

Software Co‐Design, Erlangen, 2009
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integrating 24 VLIW processors designed in Erlangen with more than one

million transistors on a single chip of size about 2 mm2. Contrary to the previous

architectures, this architecture is customisable with respect to instruction set,

processor types and interconnect [6, 7]. For such applications, the overhead and

bottlenecks of program and data memory including caches can often be avoided

giving more chip area for computations than for storage and management

functions. Due to the fact that the instruction set, word precisions, number of

functional units and many other parameters of the architecture may be custo-

mised for a set of dedicated application programs to run, we call such architec-

tures weakly-programmable. It is unique that the inter-processor interconnect

topology may be reconfigured at run-time within a few clock cycles time by

means of hardware reconfiguration. Also, the chip features ultra-low power

consumption of about 130 mW when operating at 200 MHz.
l NoC: In [8], Intel demonstrates the feasibility of packing 80 tile processors on a

single chip by introducing a 275 mm2 network-on-a-chip (NoC) architecture

where each tile processor is arranged as a 10� 8 2D array of floating-point cores

and packet-switched routers, operating at 4 GHz. The design employs meso-

chronous clocking, fine-grained clock gating, dynamic sleep transistors and

body-bias techniques. The 65 nm 100 M transistor die is designed to achieve a

peak performance of 1.0 TFLOPS at 1 V while dissipating 98 W. Very recently,

Intel introduced a successor chip, called Single-chip Cloud Computer (SCC),

with 48 fully programmable processing cores manufactured in 45 nm technology.

In contrast to the 80 core prototype, Intel plans to build 100 or more experimental

SCC chips for use by industrial and academic research collaborators.

Note that there exists a multitude of other typically domain-specific massively

parallel MPSoCs that cannot be listed here. Different domains of applications have

also brought up completely different types of architectures. One major distinguish-

ing factor is that concurrency is typically exploited at different levels of granularity

and levels of architectural parallelism as shown, for example, in Fig. 11.2. Starting

with process- and thread-level applications running on high performance comput-

ing (HPC) machines or heterogeneous Multi-Processor System-on-a-Chip architec-

tures (MPSoCs) down to the loop-level for which TCPAs match well, and finally

instruction and bit-level type of operations.

11.1.2 Obstacles and Pitfalls in the Years 2020 and Beyond

Already now can be foreseen that MPSoCs in the years 2020 and beyond will allow

to incorporate about 1,000 and more processors on a single chip. However, we can

anticipate several major bottlenecks and shortcomings when obeying existing and

common principles of designing and programming MPSoCs. The challenges

related to these problems have motivated our idea of invasive computing:

l Programmability: How to map algorithms and programs to 1,000 processors or

more in space and time to benefit from the massive parallelism available and by
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tolerating defects and manufacturing variations concerning memory, communi-

cation and processor resources properly?
l Adaptivity: The computing requirements of emerging applications to run on an

MPSoC may not be known at compile-time. Furthermore, there is the problem of

how to dynamically control and distribute resources among different applica-

tions running on a single chip, to satisfy high resource utilisation and high

performance constraints. How and to what degree should MPSoCs therefore

be equipped with support for adaptivity, for example, reconfigurability, and to

what degree (hardware/software, bit, word, loop, thread, process-level)? Which

gains in resource utilisation may be expected through run-time adaptivity and

temporary resource occupancy?
l Scalability: How to specify algorithms and programs and generate executable

programs that run efficiently without change on either 1, 2, or N processors? Is

this possible at all?
l Physical Constraints: Heat dissipation will be another bottleneck. We need

sophisticated methods and architectural support to run algorithms at different

speeds, to exploit parallelism for power reduction and to manage the chip area in

a decentralised manner.
l Reliability and Fault-Tolerance: The continuous decrease of feature sizes will

not only inevitably lead to higher variances of physical parameters, but also

FOR i=0 TO N DO

MUL R4, R1, $4
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Core
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Fig. 11.2 Levels of parallelism including process-level, thread-level, loop-level, instruction-level

as well as word-level and bit-level. The architectural correspondence is shown on the right side

including parallel computers, heterogeneous MPSoCs and tightly-coupled processor array archi-

tectures, finally VLIW and bit-level parallel computing. Invasive computing shall be investigated

on all shown levels
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affect reliability, which is impaired by degradation effects [1]. In consequence,

techniques must be developed to compensate and tolerate such variations as well

as temporal and permanent faults, that is, the execution of applications shall be

immune against these. Hence, conventional and centralised control will fall off

this requirement, see, for example, [1]. Furthermore, the control of such a

parallel computer with 100s–1,000s of processors would also become a major

performance bottleneck if centrally controlled.

Finally, whereas for a single application the optimal mapping onto a set of

processors may be computed and optimised often at compile-time which holds in

particular for loop-level parallelism and corresponding programs [6, 9, 10], a static

mapping might not be feasible for execution at run-time because of time-variant

resource constraints or dynamic load changes. Ideally, the interconnect structure

should be flexible enough to dynamically reconfigure different topologies between

components with little reconfiguration and area overheads.

With the above problems in mind, we propose a new programming paradigm

called invasive computing. In order for this kind of resource-aware programming

concept to become reality and main stream, new processor, interconnect and

memory architectures, exploiting dynamic hardware reconfiguration will be

required. Invasive computing distinguishes itself from common mainstream prin-

ciples of algorithm and architecture design in industry on multiple (e.g., dual,

quadruple) and many-core architectures, as these will still be programmed more

or less using conventional languages and programming concepts. To increase the

scope and applicability, however, we do require that legacy programs shall still be

executable within an invasive processor architecture. To achieve this, a migration

path from traditional programming to the new invasive programming paradigm

needs to be established.

11.1.3 Principles and Challenges of Invasive Computing

In vision of the above capabilities of todays hardware technology, we would like to

propose a completely new paradigm of parallel computing called invasive comput-

ing in the following.

One way of how to manage the control of parallel execution in MPSoCs with

100s of processors in the future would obviously be to give the power to manage

resources, that is, link configurations and processing elements to the programs

themselves and thus, have the running programs manage and coordinate the proces-

sing resources themselves to a certain degree and in context of the state of the

underlying compute hardware. This cries for the notion of a self-organising parallel

program behaviour called invasive programming.

Definition: Invasive Programming denotes the capability of a program running on a

parallel computer to request and temporarily claim processor, communication and memory

resources in the neighbourhood of its actual computing environment, to then execute in
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parallel the given program using these claimed resources, and to be capable to subsequently

free these resources again.

We shall show next what challenges will need to be solved to support invasive

computing on the architectural, on the notational and on the algorithmic and

programming language sides.

11.1.4 Architectural Challenges for the Support of Invasive
Computing

Figure 11.3 shows how a generic invasive multi-processor architecture including

loosely-coupled processors as well as tightly-coupled co-processor arrays may

look like.

To present the possible operational principles of invasive computing, we shall

provide an example scenario each for (a) TCPAs, (b) loosely-coupled, heteroge-

neous systems and (c) HPC systems.

An example of how invasion might operate at the level of loop programs for a

TCPA as part of a heterogeneous architecture shown in Fig. 11.3 is demonstrated in
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Fig. 11.3 Generic invasive multi-processor architecture including several loosely-coupled pro-

cessors (standard RISC CPUs and invasive cores, so-called i-Cores) as well as tightly-coupled

processor arrays (TCPAs)
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Fig. 11.4. There, two programs A1 and A2 are running in parallel and a third

program A3 starting its execution on a single processor in the upper right corner.

In a phase of invasion, A3 tries to claim all of its neighbour processors to the

west to contribute their resources (memory, wiring harness and processing ele-

ments) to a joint parallel execution. Once having reached borders of invasion, for

example, given by resources allocated already to running applications, or, in case

the degree of invasion is optimally matching the degree of available parallelism, the

invasive program starts to copy its own or a different program into all claimed cells

and then starts executing in parallel, see, for example, Fig. 11.5.

In case the program terminates or does not need all acquired resources any more,

the program could collectively execute a retreat operation and free all processor

resources again. An example of a retreat phase is shown in Fig. 11.6. Please note

that invade and retreat phases may evolve concurrently in a massively parallel

system, either iteratively or recursively.
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Fig. 11.4 Case study showing a signal processing application (A3) invading a tightly-coupled

processor array (TCPA) on which the two programs A1 and A2 are already executing. Program A3

invades its neighbour processors to the west, infects claimed resources by implanting its program

into these claimed cells and then executes in parallel until termination. Subsequently, it may free

used resources again (retreat) by allowing other neighbour cells to invade
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Technically speaking, at least three basic operations to support invasive program-

ming will be needed, namely invade, infect and retreat. It will be explained next that

these can be implemented with very little overhead on reconfigurable MPSoC

architectures such as a TCPA like a WPPA [7] or the AMURHA [11] architecture

in a few steps by issuing reconfiguration commands that are able to reconfigure

subdomains of interconnect and cell programs collectively in just a few clock cycles,

hence with very low overhead. In [6], for example, we have presented a masking

scheme such that a single processor program of size L can be copied in O(L) clock

cycles into an arbitrarily sized rectangular processor region of size N �M.

Hence, the time overhead for an infection phase, comparable to the infection of a

cell of a living being by a virus, can be implemented in linear time with respect to

the size of a given binary program memory image L. In case of a tightly-coupled

processor array running typically in a clock-synchronous manner, we intend to

prove that invasion requires only O(max{N,M}) clock cycles where N �M denotes
the maximally claimable or claimed rectangular processor region. Before subsequent
cell infection, an invasion hardware flag might be introduced to signal that a cell is
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Fig. 11.5 TCPA hosting a signal processing application (A3) together with two other programs

A1 and A2 (after invasion)

11 Invasive Computing: An Overview 249



immune against subsequent invasion requests until this flag is reset in the retreat
phase. In contrast to the initial invasion phase, the retreat phase serves to free
claimed resources after parallel execution. As for invasion, we intend to show that
retreat can be performed decentrally in time O(max{N,M}) [12].

The principles of invasion apply similarly to heterogeneous MPSoC architec-

tures, as shown in Fig. 11.2. Here, invasion might be explored at the thread-level

and implemented, for example, by using an agent-based approach that distributes

programs or program threads over processor resources of different kinds.

At this level, dynamic load-balancing techniques might be applied to implement

invasion. For example, diffusion-based load balancingmethods [13–15] are a simple

and robust distributed approach for this purpose. Even centralised algorithms based

on global prioritisation can be made scalable using distributed priority queues [16].

Very good load balancing can be achieved by a combination of randomisation and

redundancy, using fully distributed and fast algorithms (e.g., [17]).

Figure 11.7 shows by example how invasive computing for loosely-coupled

multi-core architectures consisting of standard RISC processors could work. These

cores may – together with local memory blocks or hardware accelerators (not

shown in the figure) – be clustered in compute tiles, which are connected through

a flexible high-speed NoC interconnect. In general, an operating system is expected

W
PPE

W
PPE

W
PPE

W
PPE

W
PPE

W
PPE

W
PPE

W
PPE

W
PPE

W
PPE

W
PPE

W
PPE

W
PPE

W
PPE

W
PPE

W
PPE

W
PPE

W
PPE

W
PPE

W
PPE

W
PPE

W
PPE

W
PPE

W
PPE

W
PPE

W
PPE

W
PPE

W
PPE

W
PPE

W
PPE

W
PPE

W
PPE

W
PPE

W
PPE

W
PPE

W
PPE

I/O I/O I/O

I/O I/O I/O

I/O
I/O

I/O

I/O
I/O

I/O

retreat(NORTH) invade(ALL_DIRECTIONS)

invade(EAST)

Fig. 11.6 Options for invasion (uni- vs. multi-directional) and retreat phases

250 J. Teich et al.



to run in a distributed or multi-instance way on several cores and may be supported

by a run-time environment.

To enable invasive computing on such MPSoCs, an efficient, dynamic assign-

ment of processing requests to processor cores is required. Time constants for

starting processing on newly claimed CPUs is expected to be considerably longer

than in the case of tightly-coupled processors. Therefore, we envision the

corresponding mechanisms to be implemented in a hardware-based support infra-

structure using dynamic Many-Core i-let1 Controllers (CIC), which help to limit the

impairments of any overhead associated with the invasion/infection process.

Invasive operating and run-time support services invade processing resources

when new processing requirements have to be fulfilled. The invasion process

considers monitoring information on the status of the hardware platform received

via the CICs, which are contained in each compute and I/O tile. As a result of

invasion, CICs are configured for the appropriate forwarding of the associated

processing requests. This forwarding actually corresponds to the infection of the

invaded processor cores. The final assignment may be based on a set of rules that

implement an overall optimisation strategy given by the invasive operating system.

Criteria to be taken into account in this context may, for example, be the load

situation of processing or communication resources, the reliability profiles of the

cores or the temperature profile of the die.
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Fig. 11.7 Invasive computing on a loosely-coupled MPSoC architecture

1 For the explanation of the i-let concept, see paragraph “units of invasion” below.
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The CICs dynamically map processing requests to processor cores under the

control of the operating system and the run-time environment (iRTSS). These

requests may either be generated when

l An application wants to spawn additional parallel processes or threads, for

example, depending on interim processing results (shown in the right part of

Fig. 11.7, dashed-dotted line), or when
l Data arriving via external interfaces (e.g., sensor or video data, network pack-

ets), which represent processing requests, have to be distributed to the appropri-

ate processing resources (shown in the left part of Fig. 11.7, straight and dashed

arrows)

In the first case, a so-called i-let will be created for a new thread to be spawned and

sent towards the invaded resource. The CIC in the target compute tile will distribute

the i-let to one of the cores depending on the rules given by the operating system/

iRTSS, which take into account the actual load situation and other status informa-

tion. In case there is not enough processing capacity available locally, the rules may

also indicate to forward the i-let to the CIC of a compute tile with free resources in

the neighbourhood, as shown in Fig. 11.7 for the bottom right compute tile.

For the second case, if more traffic arrives from external senders than can be

processed by the left compute tile, the invasive operating system or even the CIC

itself – if authorised by the operating system – shall invade a further CPU cluster. In

case of success, the CIC rules would be updated and in consequence excess requests

(designated as i-data – invasive data – in Fig. 11.7) would be distributed to the

newly invaded resources to cope with the increased processing requirements. To

avoid latencies in the invasion triggered by the operating system, resources may

already have been invaded earlier, for example, when a threshold below the

acceptable load is exceeded.

In this way, MPSoCs built out of legacy IP cores can be enabled for invasion and

thus provide applications with the required processing resources at system run-time,

which helps to meet performance requirements and at the same time to facilitate

efficient concurrent use of the platform. As applications can expand and contract on

the MPSoC dynamically, we also expect that less resources are required in total to

provide the same performance as would be needed if resource assignment is done at

compile-time.

Finally, the paradigm of invasion offers even a new perspective for program-

ming large-scale HPC computers according to Fig. 11.2 with respect to the problem

classes of space partitioning and adaptive resource management.

Today, resource management on large-scale parallel systems is done using space

partitioning: The available processors and memories are statically partitioned

among parallel jobs. Once a job is started on these resources, it has exclusive access

for its entire life-time. This strategy becomes inadequate if more and more paral-

lelism has to be exploited to obtain high performance on future petascale systems.

As the cores will most likely not be getting much faster (in terms of clock rates) in

the future, applications will benefit from a maximum number of processors only
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during certain phases of their life-time, and can run efficiently during the rest of

their life-time using a smaller number of processors.

Moreover, there exist applications that have inherently variable requirements for

resources. For example, multi-grid applications work onmultiple grid levels ranging

from fine to coarse grids. On fine grids, many processors can work efficiently in

parallel while only a few are able to do so on coarse grids. Thus, processors can be

freed during coarse grid computation and assigned to other jobs. Another class of

applications is that of adaptive grid applications, where the grid is dynamically

refined according to the current solution. Applications may also proceed through

different phases in which different amount of parallelism might be available. For

example, while in one phase, a pipeline structure with four stages can be used, two

different functions can be computed in parallel in another phase.

11.1.5 Notational Issues for the Support of Invasive Computing

Obviously, to enable a program to distribute its computations for parallel execution

through the concept of invasion, we need to establish a new programming paradigm

and program notation to express the mentioned phases of (a) invasion, (b) infection

and (c) retreat. Either existing parallel program notations and languages might be

extended or pragma and special compiler modifications might be established to

allow the specification of invasive programs.

In the following, we propose a minimal set of required commands to support

resource-aware programming, independent of the level of concurrency and archi-

tectural abstraction. This informal and minimal notation only serves to give an idea

of what kind of basic commands will be needed to support invasive programming

and how such programs could be structured.

Invade. To explore and claim resources in the (logical) neighbourhood of a

processor running a given program, the invade instruction is needed. This com-

mand could have the following syntax:

P ¼ invade ðsender id;direction; constraintsÞ

where sender_id is the identifier, for example, coordinate of the processor starting

the invasion, and direction encodes the direction on the MPSoC to invade, for

example, North, South, West, East or All in which case the invasion is carried

out in all directions of its neighbourhood. For heterogeneous MPSoC architectures,

the neighbourhood could be defined differently, for example, by the number of hops

in a NoC. Other parameters not shown here are constraints that could specify

whether and how not only program memory, but also data memory and interconnect

structures should be claimed during invasion. Further, invasion might be restricted

to certain types of processors and resources. During invasion, each claimed

resource is immediately immunised against invasion by other applications and
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until they are freed explicitly in the final retreat phase. Hence, the operational

semantics of the invade command is resource reservation.

Now, a typical behaviour of an invasive program could be to claim as many

resources in its neighbourhood as possible. Using the invade command, a program

could determine the largest set of resources to run on in a fully decentralised

manner. The return parameter P could, for example, encode either the number of

processors or the size of the region it was able to successfully invade. Another

variant of invade could be to claim only a fixed number of processors in each

direction. For example, Fig. 11.4 illustrates the case of a signal processing applica-

tion A3 running concurrently with the two applications A1 and A2. Here, the signal

processing application is issuing an invade command to all processors to its west.

Figure 11.5 shows the running algorithm A3 after successful invasion.

Infect. Once the borders of invasion are determined and corresponding resources

reserved, the initial single-processor program could issue an infect command that

copies the program like a virus into all claimed processors. In case of a TCPA

architecture, we anticipate to be able to show how to implement this operation for a

rectangular domain of processors in time O(L), where L is the size of the initial

program. Also, the interconnect reconfiguration may be initialised for subsequent

parallel execution. As for the invade command, infect could have several more

parameters considering modifications to apply to the copied programs such as

parameter settings, and of course also the reconfiguration of interconnect and

memory resource settings. Note that the infect command in its most general form

might also allow a program to copy not only its own, but also foreign code to other

processors. After infection, the parallel execution of the initial and all infected

resources may start.

Retreat. Once the parallel execution is finished, each program may terminate or

just allow the invasion of its invaded resources by other programs. Using a special

command called retreat, a processor can, for example, in the simplest case just

initiate to reset flags that subsequently would allow other invaders to succeed.

Again, this retreat procedure may hold for interconnect as well as processing and

memory resources and is therefore typically parametrised. Different possible

options of typical invade and retreat commands for TCPAs are shown in Fig. 11.6.

11.1.6 Algorithmic and Language Challenges for the Support
of Invasive Computing

We have stated that resource-awareness will be central to invasive computing.

Accordingly, not only the programmer, but already the algorithm designers should

reflect and incorporate this idea that algorithms may interact and react to the temporal

availability and state of processing resources and possible external conditions.

However, this invasive computing paradigm raises interesting questions for

algorithm design and complexity analysis. It will also generate questions
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concerning programming languages, such as semantic properties of a core invasive

language with explicit resource-awareness.

We would like to mention, however, that the idea of invasion is not tightly

related or restricted to a certain programming notation or language. We plan to

define fundamental language constructs for invasion and resource-awareness, and

then embed these constructs into existing languages, such as Cþþ or X10. In fact,

according to preliminary studies it seems that X10 [18] is the only available parallel

language which already offers a fundamental concept necessary for invasive com-

puting: X10 supports distributed, heterogeneous processor/memory architectures.

Also, we would like to show how invasion can be supported in current program-

ming models, such as OpenMP and MPI.

What is essential and novel in the presented idea of invasive algorithms is that to

support the concept of invasion properly, a program must be able to issue instruc-

tions, commands, statements, function calls or process creation and termination

commands that allow itself to explore and claim hardware resources. There is a

need to study architectural changes with respect to existing MPSoC architectures to

support these concepts properly.

Resource-aware Programming. Invade, infect and retreat constitute the basic

operations that shall help a programmer to manipulate the execution behaviour of

a program on the underlying parallel hardware platform.

On the other hand, invasive computing shall provide and help the programmer to

decide whether to invade at a certain point of program execution in dependence of

the state of the underlying machine. For example, such a decision might be

influenced by the local temperature profile of a processor, by the current load, by

certain permissions to invade resources and, most importantly, also by the correct

functioning of the resources. Taking into account such information from the

hardware up to the application-level provides an interesting feedback-loop as

shown in Fig. 11.8 that enables resource-aware programming.

For example, the decision to invade a set of processors may be taken condition-

ally at a certain point within a given invasive program depending on whether the

temperature of a processor is exceeding 85�C and if there are processors around

with permission to be invaded and average load under 50%. More complex scenar-

ios may be defined as well.

Such information provided from the hardware to the application program could

thus lead to program executions that take the dynamic situation of the underlying

hardware platform into account and permits to dynamically exploit the major

benefits of invasive computing, namely increase of fault-tolerance, performance,

utilisation and reliability.

Units of Invasion. In the following, a piece of program subjected to invasive

parallel execution is referred to as an “invasive-let”: in short, i-let.2 An i-let is the

2 This conception goes back to the notion of a “servlet”, which is a (Java) application program

snippet targeted for execution within a web server.
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fundamental abstraction of a program section being aware of potential concurrent

execution. Potential because of the semantics of an invade command, which may

indicate allocation of only one processing unit, for example, although plenty of

these might have been requested. Concurrent, instead of parallel, because of the

possibility that an allocated processing element will have to be multiplexed (in

time) amongst several threads of control to make available the grade of “parallel-

ism” as demanded by the respective application.

Such an abstraction becomes indispensable as a consequence of resource-aware

programming, in which the program structure and organisation must allow for

execution patterns independently of the actual number of processing elements

available at a time. By matching the result of an invade command, an i-let “entity”

will then be handed over to infect to deploy the program snippet to be run

concurrently. Similarly, retreat cleans processing elements up from the i-let

entities that have been setup by infect.

Depending on the considered level of abstraction, different i-let entities are

distinguished: candidate, instance, incarnation and execution. An i-let candidate

represents an occurrence of a parallel program section that might result in different

samples. These samples discriminate in the grade of parallelism as, for example,

specified by a set of algorithms given the same problem to be solved. In such a

Fig. 11.8 Resource-aware programming is a main feature of invasive computing. By providing a

feedback-loop between application and underlying hardware platform, an application program/

thread, called i-let, may decide if and which resources to invade, infect, or retreat at run-time;

depending on the current state of the underlying parallel hardware platform. Examples of proper-

ties that need to be exploited are permissions, speed/performance as well as utilisation monitor

information, but also power and temperature information and, most importantly, also information

about faults and errors
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setting, each of these algorithms is considered to be optimal only for a certain range

in the exploration space.

In general, i-let candidates will be identified at compilation-time based on

dedicated concepts/constructs of the programming language (e.g., async in X10

[18]), assisted by the programmer. Technically, a candidate is made up of a specific

composition of code and data. This composition is dealt with as a single unit of

potential concurrent processing. Each of these unit descriptions is referred to as an

i-let instance. Given that an i-let candidate possibly comes in different samples, as

explained above, within a single invasive-parallel program, the existence of differ-

ent i-let instances will be a logical consequence. However, this is not confined to a

categorically one-to-one mapping between i-let candidate and instance. A one-to-

many mapping is conceivable as well. Cases of the latter are, for example, invasive-

parallel program patterns whose i-let candidates arrange for different granularity in

terms of program text and data sections, depending on the characteristics of the

hardware resources (logically, virtually) available for parallel processing. Each of

these will then make up an i-let instance. Options include, for a single i-let

candidate, a set of i-let instances likewise tailor-made for a TCPA, ASIP, dual-,

quad-, hexa-, octa- and even many-core RISC or CISC.

An i-let instance will be the actual parameter to the infect command. Upon

execution of infect, the specified instance becomes an i-let incarnation; that is, an

i-let entity bound to (physical) resources and set ready for execution. Depending on

these resources as well as on the operating mode subjected to a particular processing

element, an i-let incarnation technically represents a thread of control of a different

“weight class”. In case of a TCPA, for example, each of these incarnations will hold its

own processing elements. In contrast, several incarnations of the same or different i-let

instancesmay share a single processing element in case of a conventional (multi-core)

processor. The latter mode of operation typically assumes the implementation of a

thread concept as a technical means for processor multiplexing. The need for proces-

sor multiplexing may be a temporary demand, depending on the actual load of the

computing machine and the respective user profile of an application program.

To be able to abstract from the actual mode of operation of some processing

element, an i-let incarnation does not yet make assumptions about a specific

“medium of activity”, but it only knows about the type of its dedicated processing

element. It will be the occurrence as an i-let execution that manifests that very

medium. Thus, at different points in time, an i-let incarnation for the same proces-

sing element may result in different sorts of i-let executions: The binding between

incarnation and execution of the same i-let may be dynamic and may change

between periods of dispatching.

Behind this approach stands the idea of an integrated cooperation of different

domains at different levels of abstraction. At the bottom, the operating system takes

care of i-let incarnation/execution management; in the middle, the language-level

run-time system does so for i-let instances; and at the top, the compiler, assisted by

the programmers, provides for the i-let candidates. Altogether, this establishes an

application-centric environment for resource-aware programming and invasive-

parallel execution of concurrent processes.
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11.1.7 Operating System Issues of Invasive Computing

The concept of resource-aware programming calls for operating-system functions

by means of which the use of hardware as well as software resources becomes

possible in a way that allows applications to make controlled progress depending on

the actual state of the underlying machine. Resources must be related to invading

execution threads in an application-oriented manner. If necessary, a certain

resource needs to be bound, for example, exclusively to a particular thread or it

has to be shareable by a specific group of threads, physically or virtually. Option-

ally, the binding may be static or dynamic, possibly accompanied by a signalling

mechanism, likewise to asynchronously communicate resource-related events (e.g.,

demand, release, consumption, or contention) from system to user level.

To support resource-aware execution of invasive-parallel programs as indicated

above, two fundamental operating system abstractions are being considered: the

claim and the team. A claim represents a particular set of hardware resources made

available to an invading application. Typically, a claim is a set of (tightly- or

loosely coupled) processing elements, but it may also describe memory or commu-

nication resources. Claims are hierarchically structured as (1) each of its constitu-

ents is already a (single-element) claim and (2) a claim consists of a set of claims.

This shall allow for the marshalling of homogeneous or heterogeneous clusters of

processing elements. More specifically, a claim of processing elements also pro-

vides means for implementing a place, which is the concept of the programming

language X10 [18] to support a partitioned global address space. However, unlike

places, claims do not only define a shared memory domain but also aim at providing

a distributed-memory dimension.

In contrast, a team is the means of abstraction from a specific use of a particular

claim to model some run-time behaviour as intended by a given application. Similar

to conventional computing, where a process represents a program in execution, a

team represents an invasive-parallel program in execution. More specifically, a

team is a set of i-let entities and may be hierarchically structured as well: (1) every

i-let already makes up a (single-element) team and (2) a team consists of a set of

teams. Teams provide means for the clustering or arrangement of interrelated

threads of execution of an invasive-parallel program. In this setting, an execution

thread may characterise an i-let instance, incarnation, or execution, depending on

whether that thread has been marshalled only, already deployed, or dispatched.

Application-oriented Run-Time Executive. A team needs to be made fit to its claim.

Reconsidering the three fundamental primitives for invasive computing, invade

allocates and returns a claim, which, in addition to a team, will be handed over to

infect to deploy i-let instances in accordance with the claim properties. For

deallocation (invade unaccompanied by infect) or depollution (invade accom-

panied by infect), retreat is provided with the claim (set-out by invade) to be

released or cleaned up, respectively.

Asserting a claim using invade will entail local and global resource allocation

decisions to be made by the operating system. Depending on the invading
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application, different criteria with respect to performance and efficiency need to be

taken into account and brought in line. In such a setting of possibly conflicting

resource allocation demands, teams are considered as the kind of mechanism that

enables the operating system to let the computing machine work for applications in

a flexible and optimal manner. Teams will be dispatched on their claims according

to a schedule that aims at satisfying the application demands. To improve applica-

tion performance, for example, this may result in a team schedule that prevents or

avoids contention in case a particular claim is being multiplexed by otherwise

unrelated teams. As a consequence – and to come full circle – resource-aware

programming also means to pass (statically or dynamically derived) a priori

knowledge about prospective run-time behaviour from user to system level to aid

or direct the operating system in the process of conflict resolution and negotiating

compromises.

Integrated Cooperative Execution. To achieve high performance and efficiency in

the execution of thread-parallel invasive programs, various functions related to

different levels of abstractions of the computing system need to cooperate. Figure

11.9 exemplifies such an interaction by roughly sketching major activities asso-

ciated with the release and execution of invade, infect and retreat. As in

conventional computing systems, developers are free to choose the proper level of

abstraction for application programming and thus may directly employ invade,

infect and retreat in their programs. One of the ideas of invasive computing,

however, is to also let a compiler (semi-) automatically derive these primitives from

programs written in a problem-oriented programming language. The displayed

nuance of abstraction interrelates a problem-oriented programming language

level (application, X10), an assembly level (compiler, run-time system), a machine

programming level (run-time support system, operating system) and the hardware

level. In Fig. 11.9, these levels are vertically arranged, in terms of columns from left

to right. In this setting, the hardware level implements the real machine of the

computing system, while the other three levels implement abstract machines. The

functions (i.e., operations) provided by each of these machines are dedicated to the

purpose of supporting invasive-parallel resource-aware programming.

11.2 Examples of Invasive Programs

To illustrate resource-aware programming and invasive computing, we shall pres-

ent four preliminary, but representative examples of invasive programs. Note that

these examples are pseudocode and are designed to demonstrate fundamental

invasive techniques. They should not be interpreted as examples for a new invasive

programming language.

The first example (Fig. 11.10) is a simple invasive ray tracer. Note that the goal

of this fragment of an invasive ray tracer is not ultimate performance, but maximal

flexibility and portability of code between different platforms. In the figure, the

lower implementation of the function shade() belongs to an invasive ray tracer
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which first tries to obtain an SIMD array of processors for the computation of the

shadow rays and, if successful, runs all intersect computations in parallel on the

invaded and then infected array. Note how the invade command specifies the

processor type and the number of processors, and the infect command uses higher-

order programming3 by providing a method name as parameter, which is to be

applied to all elements of the second parameter, namely the array of data. In case

an SIMD processor cannot be obtained, the algorithm tries to obtain another ordinary

processor, and uses it for the intersection computation. If this fails also, a sequential

loop is executed on the current processor. Note that resource-aware programming

here means that the application asks for the availability of processors of a specific

type. For the reflected rays, a similar resource-aware computation is shown.

Parallel Execution

Allocation

Deallocation

Application / X10 Compiler / RTS iRTSS Hardware

PlaceFactory.create()

invade

claimPlace

Code-Analysis

Team Attributes

Attributes

async

Place

i-let
Candidate

assort

execute in
parallel

infect

i-let execution

finish }

await

Place.destroy

claim

team

i-let instance

i-let incarnation

Claim Attributes

Place claim retreat

Fig. 11.9 Possible levels (“columns”) of abstraction for achieving an integrated cooperative

execution of invasive-parallel programs. The activity diagram sketches the flow of control in the

use of invade, infect and retreat and shows three different phases of processing:

resource allocation, parallel execution and resource deallocation

3Actually a map construct.
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// common code:
trace(Ray ray)
{

// shoot ray
hit = ray.intersect();
// determine color for hitpoint
return shade(hit);

}

// shade() without invasion:
shade(Hit hit)
{

// determine shadow rays
Ray shadowRays[] = computeShadowRays();
boolean occluded[];
for (int i = 0; i < shadowRays.length; i++)

occluded[i] = shadowRays[i].intersect();
// determine reflected rays
Ray reflRays[] = computeReflRays();
Color refl[];

for (int i = 0; i < reflRays.length; i++)
refl[i] = reflRays[i].trace();

// determine colors
return avgOcclusion(occlusion)

*avgColor(refl);
}

// shade() using invasion:
shade(Hit hit)
{

// shadow rays: coherent computation
Ray shadowRays[] = computeShadowRays();
boolean occluded[];
// try to do it SIMD-style
if ((ret = invade(SIMD,shadowRays.length))

== success)
occluded = infect(intersect,shadowRays);

// otherwise give me an extra core ?
else if ((ret = invade(MIMD,1)) == success)

occluded = infect(intersect,shadowRays);
// otherwise, I must do it on my own
else

for (int i = 0; i < shadowRays.length; i++)
occluded[i] = shadowRays[i].intersect();

// reflection rays: non coherent,
// SIMD doesn’t make sense
Ray reflRays[] = computeReflRays();
Color refl[];
// potentially we can use
// nrOfReflectionRays processors
ret = invade(MIMD,reflRays.length);
if (ret == success)

refl[] = infect(trace,reflRays);
else

// do it on my own
for (int i = 0; i < reflRays.length; i++)

refl[i] = reflRays[i].trace();
return avgOcclusion(occlusion)*avgColor(refl);

}

Fig. 11.10 Pseudocode for

an invasive ray tracer. The

upper code of the shader

shows a simple sequential

code. The lower code is

invasive and relies on

resource-aware programming
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The second example (Fig. 11.11) goes one step further into resource-aware

programming. The example is a traversal of a quadtree, where the coordinates of

the current cell’s vertices are parameters to a standard recursive tree traversal

method. Leafs, that is, the last recursions are always processed on the current

processor. If, however, the tree is “big enough,” the first three recursive calls are

done in parallel, if processors are available. If not enough processors can be

infected, recursive calls are done on the current processor.

Note that the algorithm adapts dynamically to its own workload, as well as to the

available resources. Whether a tree is “big enough” to make invasion useful, not

only depends on the tree size, but also on the system parameters such as cost of

invasion or communication overhead. Resource-aware programming must take

such overhead into account when deciding about invasions. Notably, invasion

also adds flexibility and fault-tolerance.

The next example is an invasive version of the Shearsort algorithm (Fig. 11.12).

Shearsort is a parallel sorting algorithm that works on n � m-grids, for any n

(width) and m (height). It performs (n þ m)·(dlog me þ 1) steps. An invasive

implementation will try to invade an n � m grid of processors, but will not

necessarily obtain all these processors. If it gets an n0 � m0-grid, n0 � n, m0 � m,

it adapts to these values. Most significantly, it may choose to use the received grid

as an m0 � n0-grid, rather than an n0 � m0-grid.
The pseudocode thus uses invade to obtain an initial row of m0 processors, and

for each row processor a column of n0 additional processors. Note that the invade

command specifies the direction of invasion: in the example, SOUTH and EAST.

For coarse-grained invasion such as in case of the ray-tracing example, the direction

quadtreeTraversal(v1, v2, v3, v4) {
if (isQuadtreeLeaf(v1, v2, v3, v4}) {

processLeaf(v1, v2, v3, v4);
} else {

if (isSmallTree(v1,v2,v3,v4))
numCores = 0

else {
claim = invade(3);
numCores = claim.length;

}
vctr = (v1+v2+v3+v4)/4;

// last recursive call is
// always on current processor
// other recursive calls infect,
// if processors available
// and tree big enough

if (numCores>0) {
infect(claim[1], quadTreeTraversal(

(v1+v2)/2, v2, (v2+v3)/3, vctr));
numCores--;

}
else quadTreeTraversal((v1+v2)/2, v2,

(v2+v3)/3, vctr);
if (numCores>0) {

infect(claim[2], quadTreeTraversal(
vctr, (v2+v3)/2, v3, (v3+v4)/2));

numCores--;
}
else quadTreeTraversal(vctr, (v2+v3)/2,

v3, (v3+v4)/2);
if (numCores>0) {

infect(claim[3], quadTreeTraversal(
(v3+v4)/2, vctr, (v1+v4)/2, v4));

numCores--;
}
else quadTreeTraversal((v3+v4)/2, vctr,

(v1+v4)/2, v4);

quadTreeTraversal(v1, (v1+v4)/2,
vctr, (v1+v2)/2);

}
}

Fig. 11.11 Invasive quadtree traversal. The algorithm dynamically adapts to the available

resources and the subtree size
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of invasion is usually irrelevant, but for medium-grained or loop-level invasion, it

may be very relevant. Thus, a so-called invasive command space needs to be

defined and include a variety of options for invade and infect.

Next, the rows are infected with a transposition sort algorithm, which is used to

do a parallel sort in the rows first and then a parallel sort in the columns. These row

and column sort phases constitute a round. Rounds are performed log m0 þ1 times,

and an appropriate subspace of the key space is sorted in parallel in each sequential

iteration. In this example, invasion is more fine-grained than in the previous one;

here, resource-awareness means that the algorithm adapts to the available grid size,

where the initial invasion is based on the problem size.

Invasion cannot only be used to receive the n0 � m0-grid. It is also possible to

check after every loop execution, i.e., after every round whether the resources

requested in the beginning became available in the meantime such that by a further

invasion phase the execution can be speeded up, as noted in the pseudocode of

Fig. 11.12.

While the previous examples demonstrated coarse-grained and medium-grained

invasion, the last example (Fig. 11.13) demonstrates fine-grained invasion at the

Shearsort:
– determine optimal values for n and m;

(estimation of free resources)
– Invasion to the south n;
– obtain n processing elements (PE);
– Invasion from every PE to the east m;
– obtain minimal number of m PEs;
– unused PEs are freed;
– PEs will handle a total of

n ·m (n ·m keys;
– if n > m

then
do Shearsort on the m ×n grid

else
do Shearsort on the n ×m grid

program InvasiveShearSorter
/* Variable declarations */
int Pinv[M];
int N prime, M prime;
int keys[N*M];
/* Parameter declarations */
parameter M;
parameter N;
/* Program blocks */
M prime = invade(PE(1,1), SOUTH,

M);
seq {

par (i >= 1 and i <= M prime)
{

Pinv[i] = invade(PE(i,1),
EAST, N);

}
N prime

= MIN[1 <= i <= M]
Pinv[i];

/* Free PEs again such that all
arrays have

same size N prime */
par (i >= 1 and i <= M) {

retreat(PE(i,1), N prime+1,
Pinv[i]);

}
if N prime > M prime

swap(N prime, M prime)
infect columns and rows with Odd-Even

Transposition Sort
repeat log M prime +1 times
{
par (i >= 1 and i <= M prime) {

if odd(i) {
sort in row i the keys

2*N prime*(i-1)+1, ...,
2*N prime*i

into ascending order }
else {

sort in row i the keys
2*N prime*(i-1)+1, ...,

2*N prime*i
into descending order }

}

par (j >= 1 and j <= N prime) {
sort in column j the keys
j, j+2*N prime, j+4*N prime, j+6*N prime ...

into ascending order }
par (j >= 1 and j <= N prime) {

sort in column j the keys
N prime+j, j+3*N prime, j+5*N prime,

j+7*N prime ...
into ascending order }

}/* Here, more invasion is possible:
Check

whether more resources are available in
the meanwhile and act appropriately */

}
}

/

Fig. 11.12 Pseudocode for invasive Shearsort
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loop level. For every iteration of a parallelised loop, a separate processor element

may be invaded. To avoid the overhead of i-let incarnation, there is just one

controller i-let, which synchronises all the invaded processor elements of a TCPA

at a maximal invasion speed of a single clock cycle/processor. Each processor

element is infected with “code 2” (Fig. 11.13, right column) and executes the initial

loop program in parallel. This kind of invasion is particularly suited for a myriad of

nested loop algorithms (loop-level parallelism).

All examples follow a more generic scheme and are presented here to give a

better idea of the invasive process (cf. Fig. 11.14). In particular, invade, infect

and retreat operate on sets of resources and processes, called “claims” and

“teams.”

This example also demonstrates the optional integration of exception handling

concepts by means of which resource-aware application programs are enabled to

reflect on the outcome of claim and team assembly. Handling an “invasion excep-

tion” may result in reissuing invade with alternate parameter values. Similar

concepts hold with respect to the marshalling of a team (i.e., assembly of code

and data sections) to fit a selected claim. Note that further origins of invasion

exceptions may be the implementations of invade, infect and retreat. At the

level of abstraction assumed in Fig. 11.14, this eventually implies that the operating

system will be in charge of raising exceptions. Adequate linguistic support for

robust resource-aware programming like this comes with the exception handling

concept of X10 [18].

Sequential C code:
for (i=0; i<T; i++)

for (j=0; j<N; j++)
y[i] += a[j] * u[i-j];

Code 1 (sequential assembler code):
; write input to feedback FIFO of
depth N
1: mov ffo, in0
; set the number of Taps
2: mov r0, N
3: mov r2, 0
; filter coefficient a
4: mul r1, ffo, a
5: add r2, r2, r1
; decrement the tap
6: sub r0, r0,1
; loop N times
7: if zeroflag!=true jmp 4
; get the output
8: mov out1, r2
9: jmp 1

Control code (pseudo notation):
while (stop!=1) do

P = invade(N)
if (P>0) then

// execute code on P processors
infect(P, ProgID)
for (i=0; i<T; i++) do

Code 2
end for
retreat()

else
// execute code on one processor
for (i=0; i<T; i++) do

Code 1
end for

end if
end while

Code 2 (VLIW program):
add out1 r0 in1, mul r0 in0 a, mov out0 in0

Fig. 11.13 FIR filter exploiting loop-level invasion. Sequential C and assembler code is shown

left. To the right, the i-let code controlling an invaded TCPA is shown, as well as the assembler

code (VLIW) executed on each invaded processing element
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Let us conclude with the important remark that true resource-aware program-

ming will not just check the availability of processors. A resource-aware applica-

tion in general will first of all determine its own needs based on the dynamic work

load, then check for available resources of a specific kind and finally infect the

obtained resources. The “kind of resource” may include parameters such as per-

mission, speed or even processor temperature. In the background, the operating

system and the reconfigurable hardware cooperate to give the application its desired

resources in the most efficient and appropriate way.

11.3 Expected Impact and Risks

In the following, we summarise the expected benefits and impact factors we see for

a broad and multi-disciplinary research in invasive computing but also potential

risks.

Impact. We have motivated invasive computing as a means to cope with the

exploding complexity of future massively parallel MPSoCs with the major call to

provide scalability, higher resource utilisation, higher efficiency, and also higher

speed as compared to applications with statically partitioned allocation of

resources. We intend to achieve these goals on the basis of resource-aware pro-

gramming and new reconfigurable MPSoC architecture inventions. Both revolu-

tionary architectures as well as new programming concepts in synergy shall provide

a boost in efficiency and usability of future MPSoC platforms that are expected to

contain 1,000 and more processors.

The areas in which research in invasive computing might create a substantial

impact are summarized as follows:

l Processor Architecture of Future Multi-Core Systems: Even if we will not be able

to compete in our design concepts and demonstrators with high-end

claim = invade(type, quantity, properties);
if (!useful(claim)) /* unrealisable claim request */

raise(IMPROPER_CLAIM);

team = assort(claim, code, data);
if (!viable(team)) /* inadmissible team assembly */

raise(UNVIABLE_TEAM);

infect(claim, team); /* employ resource(s) */
retreat(claim); /* clean-up of resource(s) */

Fig. 11.14 Pattern of invasive programming (in the programming language C) by adopting an

operating systemmachine level of abstraction. Imagine requests ofinvade,infect andretreat
as “system calls” to an abstract machine, for example, an operating system, while all other primitives

execute as part of a run-time system or even an application program by using that machine
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processor designs as developed by teams of 100 and more designers at processor

companies such as Intel and AMD, we believe that some of our architectural

inventions will influence their way of how to design large processor systems in

the future. For example, without research and inventions on previously non-

common RISC architectures performed at universities such as by Hennessy and

Patterson, the chip design companies might still produce other types of processors.
l Design Environments for Programming Parallel Many-Processor Systems: Similarly,

our paradigm of invasive programs and resource-aware programming will have

an impact on future programming languages and programming environments for

the development of parallel programs.
l Design of Parallel Algorithms: Even more, the idea of invasive algorithm design

will influence the development of parallel algorithms as well. Never before

algorithm designers had the opportunity to dynamically adapt an algorithm’s

behaviour and parallelism to the dynamic workload and the dynamic availability

of resources.

Risks. Nevertheless, we do not conceal that our challenging goals might also hide

some risks:

l Acceptance of Resource-aware Programming: At a first look, resource-aware pro-

gramming seems questionable and counter-productive when looking at modern

software-technological principles: High-level languages as well as operating

systems have, for good reason, more and more abstracted away from specific

hardware details or resource politics. Instead of offering progress, resource-

aware programming thus sounds contradictory and a step back into the past

when looking at the achievements of modern programming languages, which

abstract away from specific architectural details.
l Cost in Terms of Time and Area: Increasing the non-determinism by self-organised

algorithm execution when allowing programs to control hardware resources

directly might naturally lead to cases with lower performance and worse

resource utilisation than statically mapped and scheduled applications, of course

as the time to invade and retreat from resource occupations produces overhead.

Any comparison of cost and speed-up against a statically mapped non-invasive

algorithm must therefore be done carefully and, to be fair, consider the case of

overload situations: Here, due to invasion, resources will be freed which enables

other applications to dynamically claim more resources than in a statically

partitioned case between several competing applications. If the degree of paral-

lelism of considered applications is varying in time, also speed-up will result

naturally over static processor partitions apart from higher resource utilisation,

savings of power and fault-tolerance. A natural scenario of invasive computing

is therefore that not only one but several programs are simultaneously trying to

invade a common pool of resources.

In summary, it is evident that there is a price to pay to exploit the benefits of

invasive computing. Therefore, it needs to be investigated carefully where the

border of centralised control versus invasive control reaches its greatest benefit
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and how a maximum of abstraction can be maintained even for resource-aware

computing. The goal of this survey was to give an overview into the fascinating

emerging paradigm of invasive computing that might solve many problems of MP-

SoC architectures and their programming with more than 1,000 cores for the years

2020 and beyond. Here, only the basic principles and fields of required research

could be drafted.

Acknowledgements We thank the following people for their support (in alphabetical order):

Dr. TamimAsfour, Dr. Lars Bauer, Prof. J€urgenBecker, Prof. Hans-JoachimBungartz, Prof. R€udiger
Dillmann, Prof. Michael Gerndt, Dr. Frank Hannig, Sebastian Harl, Dr. Michael H€ubner, Dr. Daniel
Lohmann, Prof. Peter Sanders, Prof. Ulf Schlichtmann, Prof. Marc Stamminger, Prof. Walter

Stechele, Prof. Rolf Wanka, Dr. Thomas Wild and all of their scientific staff members. Finally, we

would like to express our sincere gratitude to the German Research Foundation (DFG) to establish its

collaborative research center TCRC89 on the topic of invasive computing, see http://www.invasic.de

References

1. Rabaey, J.M., Malik, S.: Challenges and solutions for late- and post-silicon design. IEEE

Design and Test of Computers 25(4), 296–302 (2008). DOI http://dx.doi.org/10.1109/MDT.

2008.91. URL http://dx.doi.org/10.1109/MDT.2008.91

2. Corporation, N.: NVIDIA Whitepaper: NVIDIA’s Next Generation CUDA Compute Archi-

tecture: Fermi. http://www.nvidia.com/content/PDF/fermi_white_papers/NVIDIA_Fermi_-

Compute_Architecture_Whitepaper.pdf (2009)

3. Lindholm, E., Nickolls, J., Oberman, S., Montrym, J.: NVIDIA Tesla: A Unified Graphics and

Computing Architecture. IEEE Micro 28, 39–55 (2008)

4. Seiler, L., Carmean, D., Sprangle, E., Forsyth, T., Abrash, M., Dubey, P., Junkins, S., Lake,

A., Sugerman, J., Cavin, R., Espasa, R., Grochowski, E., Juan, T., Hanrahan, P.: Larrabee: A

Many-Core x86 Architecture for Visual Computing. ACM Transactions on Graphics 27(3),

1–15 (2008). DOI http://doi.acm.org/10.1145/1360612.1360617

5. Pham, D., Aipperspach, T., Boerstler, D., Bolliger, M., Chaudhry, R., Cox, D., Harvey, P.,

Harvey, P., Hofstee, H., Johns, C., et al.: Overview of the Architecture, Circuit Design, and

Physical Implementation of a First-Generation Cell Processor. IEEE Journal of Solid-State

Circuits 41(1), 179–196 (2006)

6. Hannig, F., Dutta, H., Teich, J.: Mapping a Class of Dependence Algorithms to Coarse-

grained Reconfigurable Arrays: Architectural Parameters and Methodology. International

Journal of Embedded Systems 2(1/2), 114–127 (2006)

7. Kissler, D., Hannig, F., Kupriyanov, A., Teich, J.: A Highly Parameterizable Parallel Proces-

sor Array Architecture. In: Proceedings of the IEEE International Conference on Field

Programmable Technology (FPT), pp. 105–112. Bangkok, Thailand (2006)

8. Vangal, S., Howard, J., Ruhl, G., Dighe, S., Wilson, H., Tschanz, J., Finan, D., Iyer, P., Singh,

A., Jacob, T., et al.: An 80-Tile 1.28 TFLOPS Network-on-Chip in 65nm CMOS. In:

SolidState Circuits Conference, 2007. ISSCC 2007. Digest of Technical Papers. IEEE

International, pp. 98–589 (2007)

9. Feautrier, P.: Automatic Parallelization in the Polytope Model. Tech. Rep. 8, Laboratoire
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