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ABSTRACT

The challenge in designing relay beamforming in two-way
relaying systems is the non-convex nature of the correspond-
ing optimization problem. In this work, we concentrate on
the mathematical issues of such design for the cases when
the max-min rate and proportional fairness are used as the
design criteria. We show that the corresponding optimiza-
tion problems belong to the class of difference-of-convex
functions (DC) programming problems. Due to the spe-
cific structure of the corresponding DC problems, they can
be efficiently addressed by using the polynomial-time DC
(POTDC) algorithm which guarantees to find the Karush-
Kuhn-Tucker (KKT) optimal point in polynomial-time. We
have also shown earlier that the question of global optimality
of the POTDC algorithm boils down to a simple numerical
convexity check for a certain one-dimensional optimal value
function.

Index Terms— Difference-of-convex functions optimiza-
tion, Max-min rate fairness, Proportional fairness, Two-way
relaying.

1. INTRODUCTION

Two-way relaying (TWR) is a certain realization of the net-
work coding [1] in which both terminals transmit their signals
to the relay simultaneously through a multiple access channel
(MAC) [2]. After receiving the transmitted signals corrupted
by the additive noise, relay processes the mixture and then
broadcasts it to the terminals. The most common relaying
protocols are amplify-and-forward (AF) [3] and decode-and-
forward (DF) [4]. In this work, it is assumed that the relay
uses the AF relaying protocol which is more practical com-
pared to other protocols in terms of the processing delay and
processing energy consumption.

One fundamental problem associated with TWR systems
is the relay beamforming design based on the available chan-
nel state information (CSI) [5]–[12]. It is usually designed so
that a specific performance criterion is optimized under con-
straints on the available resources and/or quality of service
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(QoS) requirements. The optimization criterion for most of
the relay beamforming methods is the sum-rate [5]-[10].

The importance of the user fairness in asymmetric TWR
systems has been recently demonstrated in [2], [11] and [12].
The authors of [2] study the optimal power allocation problem
for single antenna users and single antenna relay where the
sum-rate is maximized under the fairness constraint. Relay
beamforming and optimal power allocation for a pair of single
antenna users and several single antenna relays based on max-
min signal-to-noise ratio (data rate) has been also considered
in [11] and [12].

The main difficultly of the relay beamforming design in
TWR system is the non-convex nature of the correspond-
ing optimization problem. In this work, we study the relay
beamforming for two single antenna users and one AF multi-
antenna (multiple-input multiple-output (MIMO)) relay when
the max-min rate and proportional fairness are used as the de-
sign criteria. It is shown that the corresponding optimization
problems can be recast as difference-of-convex functions
(DC) programming problems. Although DC problems do
not generally have polynomial-time solution, we handle the
corresponding optimization problems using the so-called
polynomial-time DC (POTDC) algorithm, which guarantees
to find the Karush-Kuhn-Tucker (KKT) optimal point in poly-
nomial time. Moreover, the global optimality can be checked
by a simple numerical test.

2. SYSTEM MODEL

Consider two single antenna terminals that communicate
via a MIMO AF relay equipped with MR antennas through
frequency-flat quasi-static block fading channels. Every data
transmission between the terminals takes place in two phases.
In the first phase, both terminals transmit their signals to the
relay simultaneously. Then the received signal at the relay,
which is a combination of both transmitted signals, can be
expressed as

r = h1x1 + h2x2 + nR (1)

where hi = [hi,1, . . . , hi,MR
]T ∈ C

MR denotes the chan-
nel vector between terminal i and the relay, xi is the trans-
mitted symbol from terminal i, nR ∈ C

MR is the additive
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noise at the relay, and (·)T stands for the transpose. Let
PT,i , E{|xi|

2} and RN,R , E{nRnH
R } denote the aver-

age transmit power of terminal i and noise covariance ma-
trix at the relay, respectively, where E{·} and (·)H stand for
the mathematical expectation and the Hermitian transpose, re-
spectively.

In the second phase, relay amplifies the received signal
through multiplying it by the relay beamforming matrix G ∈
C

MR×MR as r̄ = Gr, and then retransmits it to the terminals.
The signals received by the terminals can be expressed as

y1 = h
(e)
1,1x1 + h

(e)
1,2x2 + ñ1 (2)

y2 = h
(e)
2,2x2 + h

(e)
2,1x1 + ñ2 (3)

where h
(e)
i,j = hT

i Ghj denotes the effective channel from
terminal j to terminal i for i, j = 1, 2 and ñi = hT

i GnR +ni

is the effective noise at terminal i which contains the termi-
nal’s own noise and the noise forwarded by the relay. The
self-interference can be subtracted by each terminal since
its own transmitted signal is known. After canceling the
self-interference, the TWR system is decoupled into two
parallel single-user single-input single-output (SISO) sys-
tems. Then the rate of terminal i can be expressed as ri =

(1/2) · ln
(

1 + PR,i/P̃N,i

)

, where PR,1 , E

{

∣

∣

∣
h

(e)
1,2x2

∣

∣

∣

2
}

,

PR,2 , E

{

∣

∣

∣
h

(e)
2,1x1

∣

∣

∣

2
}

, and P̃N,i , E
{

|ñi|
2
}

are the pow-

ers of the desired signals and the effective noise term at
terminal i. Note that the factor 1/2 results from the two time
slots needed for the bidirectional transmission.

Using the vectorization of the relay beamforming matrix,
i.e., introducing g = vec{G}, where vec{·} denotes the vec-
torization operator, the powers of the desired signals at the ter-
minals, the relay transmission power and the power of effec-
tive noise term at the terminals can be equivalently expressed
as the following quadratic forms of g [9]:

PR,1 = gHK2,1gPT,2, PR,2 = gHK1,2gPT,1 (4)

E{‖r̄‖2
2} = gHQg, P̃N,i = gHJig + PN,i (5)

where Ki,j ,
[(

hih
H
i

)

⊗
(

hjh
H
j

)]T
, Q , RT

R ⊗ IMR
,

Ji ,
[

RN,R ⊗
(

hih
H
i

)]T
, ⊗ denotes the Kronecker prod-

uct, IMR
is the identity matrix, and RR , E{rrH} is the

covariance matrix of the received signal at the multi-antenna
relay, which can be derived as

RR = h1h
H
1 PT,1 + h2h

H
2 PT,2 + RN,R. (6)

3. MAIN RESULTS

Proportional Fairness : Proportional fairness has been
initially introduced and applied in game theory [13]. In ap-
plication to the resource allocation problem, it is known to
provide a good trade-off between the maximum sum-rate and

the user fairness [14]. It is also well-known that a proportion-
ally fair resource allocation/beamformer maximizes the sum
of the logarithmic average sum-rate [15]. The relay beam-
forming problem based on the proportional fairness criterion
and subject to the total power constraint of the relay can be
expressed as the following optimization problem:

gopt = arg max
gHQg≤PT,R

1

4
ln

(

1 +
PR,1

P̃N,1

)

ln
(

1 +
PR,2

P̃N,2

)

(7)

where PT,R denotes the total transmit power of the relay and
the rate is measured in nats per second. Using the fact that
the received signal-to-noise ratio (SNR) of both terminals is
an increasing function of the norm of g in a fixed direction
of g [9], the inequality constraint of the optimization problem
(7) must be satisfied with equality at optimality. Based on the
latter fact and also replacing PN,i in the definition of P̃N,i (5)
by (PN,i/PT,R) ·gHQg, the optimization problem (7) can be
expressed as the following homogeneous problem

gopt = arg max
g

ln

(

gHA1g

gHB1g

)

ln

(

gHA2g

gHB2g

)

(8)

where Bi , Ji +
PN,i

PT,R
Q, A1 , K2,1PT,2 + B1, and A2 ,

K1,2PT,1 + B2. We recall that a function is referred to as
0−homogenous or shortly as homogenous if the value of the
function at any arbitrary point is independent of any positive
scaling [16]. Note that since the objective function in (8) is
homogeneous, the equality constraint can be dropped. More-
over, since logarithm is a strictly increasing function and the
objective function of the optimization problem (7) or, equiva-
lently, (8) is positive, by taking logarithm of (8), the problem
can be equivalently recast as

gopt=arg max
g

ln

(

ln
(gHA1g

gHB1g

)

)

+ln

(

ln
(gHA2g

gHB2g

)

)

. (9)

Using the fact that the problem (9) is homogeneous and
defining additional variables α and β, (9) can be equivalently
rewritten as

max
g,α,β

ln
(

ln(gHA1g)
)

+ ln
(

ln(α) − ln(β)
)

s.t. gHB1g = 1, gHA2g = α, gHB2g = β. (10)

Defining the matrix X , ggH and using the semidefinite
relaxation (SDR), i.e., dropping the rank one constraint, the
problem (10) can be further expressed as

max
X,α,β

ln

(

ln
(

tr(A1X)
)

)

+ ln
(

ln(α) − ln(β)
)

s.t. tr(B1X) = 1, tr(A2X) = α, tr(B2X) = β. (11)

The optimal solution of the problem (10) can be easily ex-
tracted from the optimal solution of the problem (11) using
rank reduction techniques (see [9] and [17]).

Defining the additional variable γ, the problem (11) can
be finally recast as
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max
X,α,β,γ

ln

(

ln
(

tr(A1X)
)

)

+ ln
(

ln(α) − γ
)

s.t. tr(B1X) = 1, tr(A2X) = α

tr(B2X) = β, ln(β) ≤ γ. (12)

This is a DC programming problem and it has similar math-
ematical structure to the problem that we addressed in [9].
It can be easily handled using the POTDC algorithm. In-
deed, the objective function of (12) is concave and all the con-
straints except the last one are convex where the last one is a
DC constraint. The POTDC algorithm finds the KKT optimal
point for such type of DC programming problems [9]. More-
over, the global optimality of the POTDC algorithm reduces
to the question of convexity of a certain one-dimensional op-
timal value function (see [18] for details). Such convexity can
be easily checked numerically by using the convexity on lines
property of the convex functions. The corresponding numeri-
cal test then can be viewed as a simple global optimality test.

Max-Min Rate Fairness: The max-min rate fair resource
allocation/beamformer aims at maximizing the minimum re-
ceived rate for each terminal subject to the total power con-
straint at the relay. The corresponding optimization problem
can be expressed as

gopt=arg max min
gHQg≤PT,R

{

1

2
ln

(

1+
PR,1

P̃N,1

)

,
1

2
ln

(

1+
PR,2

P̃N,2

)

}

. (13)

Similar to the proportional fairness beamforming problem (7),
this problem can be equivalently expressed as the following
homogeneous problem

gopt=arg max
g

min

{

ln

(

gHA1g

gHB1g

)

, ln

(

gHA2g

gHB2g

)

}

. (14)

Defining the additional variables α and β and using the fact
that the problem (14) is homogeneous, (14) can be equiva-
lently recast as

max
α,β

max
g

min
{

ln
(

gHA1g
)

, ln(α)−ln(β)
}

s.t. gHB1g = 1,gHA2g = α,gHB2g = β. (15)

Exchanging the order of maximum and minimum in the ob-
jective of (15) can simplify this problem significantly so that
the POTDC algorithm can then be directly applied to it. The
following lemma considers the possibility of such exchange
in the order of maximum and minimum.

Lemma 1: For fixed values of α and β, the follow-
ing optimization problems have the same optimal values, i.e.,
p1 = p2,

p1 , max
g

min
{

ln( gHA1g ), ln(α) − ln(β)
}

s.t. gHB1g = 1,gHA2g = α,gHB2g = β (16)

and

p2 , min
{

max
g

ln( gHA1g ), ln(α) − ln(β)
}

s.t. gHB1g = 1, gHA2g = α

gHB2g = β. (17)

Proof. We define first the feasible set of the optimization
problems (16) and (17) as

S={g | gHB1g = 1, gHA2g = α, gHB2g = β}.

Two different cases are possible. If for every g ∈ S,
ln( gHA1g ) ≤ ln(α) − ln(β), then it can be easily ver-
ified that

p1 = max
g∈S

ln( gHA1g ). (18)

Furthermore, since for g∈ S, ln(gHA1g)≤ ln(α) − ln(β),
it is also true that maxg∈S ln( gHA1g ) ≤ ln(α)− ln(β) and
therefore

p2 = max
g∈S

ln( gHA1g). (19)

Hence, trivially p1 = p2.
In the other case, let D denote the set of all vectors g ∈ S
such that ln( gHA1g ) > ln(α) − ln(β) and let D̃ denote
its complement. Considering the inner minimization problem
of the problem (16), it can be simply concluded that p1 is the
maximum of the following function over g ∈ S

k(g) ,

{

ln(α) − ln(β), g ∈ D

ln( gHA1g ), g ∈ D̃.
(20)

Since for g ∈ D̃, k(g) = ln( gHA1g ) ≤ ln(α) − ln(β), it
is resulted that p1 = ln(α) − ln(β).

Moreover, since for g∈D, ln( gHA1g) > ln(α)− ln(β),
it is also true that maxg∈S ln( gHA1g ) > ln(α) − ln(β).
Therefore p2 = ln(α) − ln(β) that completes the proof.

Using Lemma 1, the optimization problem (15) can be
equivalently rewritten as

max
α,β

min

{

max
g

ln( gHA1g ), ln(α) − ln(β)

}

s.t. gHB1g = 1, gHA2g = α

gHB2g = β. (21)

In terms of the matrix X , ggH and using SDR, the problem
(21) can be further expressed as

max
α,β

min
{

max
X

ln( tr(A1X) ), ln(α) − ln(β)
}

s.t. tr(B1X) = 1, tr(A2X) = α

tr(B2X) = β (22)

where the optimal solution of the problem (21) can be ex-
tracted form the optimal solution of the problem (22) as it
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Fig. 1. Fairness index versus σ−2.

has been shown in [9]. Therefore, these two problems are
equivalent. Eventually, defining the additional variable t, the
problem (22) can be recast as

max
α,β,X,t

t

s.t. tr(B1X) = 1, tr(A2X) = α

tr(B2X) = β, ln( tr(A1X) ) ≥ t

ln(α) − ln(β) ≥ t. (23)

The objective function is concave and all the constraints of
the problem (23) except the last constraint are convex. The
last constraint is the DC constraint. Thus, the problem (23)
can be addressed using the POTDC algorithm [9] as well.

4. SIMULATION RESULTS

Two single antenna users are communicating through an AF
MIMO relay equipped with MR = 3 antennas. The transmit
power of the users and the total transmit power of the relay are
all equal to 1. All the channels are modeled as Rayleigh fad-
ing with variances equal to 4. The noise power for all the an-
tenna elements is assumed to be the same, and it is denoted as
σ2 except the second user whose noise power is 20 dB larger
than for the rest of the noises. The difference in noise power is
used for modeling the asymmetric environmental conditions
for the users. In order to generate each point in the simula-
tions, 50 independent simulation runs are used.

We compare the proposed proportional fairness and the
max-min fairness beamforming methods with other relay
beamforming methods in terms of the fairness index defined
as (r2

1 + r2
2)/(2 · (r1 + r2)

2) [19], [20] and the minimum user
data rate, respectively. The methods used for performance
comparison are the sum-rate maximization based relay beam-
forming of [9], the algebraic norm-maximizing (ANOMAX)
transmit strategy of [21], and the discrete Fourier transform
(DFT) beamforming. The latter is used as a bench mark
which does not use any CSI [21]. Furthermore, the proposed
relay beamforming methods are compared with the global
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Fig. 2. Minimum data rate versus σ−2.

optima of the optimization problems (7) and (13) found us-
ing exhaustive search. Fig. 1 shows the fairness index for
the proportional fairness beamforming method in compari-
son to that of the other methods tested versus σ−2. Fig. 2
shows the minimum data rate of the max-min fairness beam-
former in comparison to that of the other aforementioned
methods also versus σ−2. From these figures, it can be seen
that the proposed methods outperform the other state-of-art
relay beamforming methods in the scenario with the noise
power asymmetry at the terminals. Moreover, the POTDC
algorithm is able to find global optima of the corresponding
optimization problems.

5. CONCLUSION

The relay beamforming design problem for AF TWR based
on the max-min rate and proportional fairness criteria has
been studied. It is shown that these design problems can be
recast as DC programming problems which can be efficiently
addressed using the POTDC algorithm. The POTDC algo-
rithm is guaranteed to find the KKT optimal point. More-
over, its global optimality in each specific case can be easily
checked by the means of a simple numerical global optimal-
ity test that aims at ensuring that a certain one-dimensional
optimal value function is convex.

6. RELATION TO PRIOR WORK

We have recently shown in [9] and [10] that the relay beam-
forming design problem in AF TWR systems based on the
sum-rate maximization criterion belongs to the class of DC
programming problems. Although, DC problems are NP-hard
in general, we have developed the so-called POTDC algo-
rithm for addressing such problems. This work is an exten-
sion of the aforementioned contributions for the cases when
the max-min rate and proportional fairness are used as the de-
sign criteria. The importance of the fairness in TWR systems
has been recently highlighted in [2], [11] and [12].
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