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Abstract

Organizing images into semantic categories can be very useful for searching and browsing through large image repositories.
In this work, we use machine learning to associate low level colour representations of digital colour photos with their high
level semantic categories. We investigate the redundancy and performance of a number of histogram-based colour image
content representations in the context of automatic colour photo categorization using support vector machines. We use principal
component analysis to reduce the dimensionality of (high dimensional) histogram based colour descriptors and use support
vector machines to learn to classify the images into various high level categories in the histograms subspaces. We present
experimental results to demonstrate the usefulness of such an approach to organizing colour photos into semantic categories.
Our results show that the colour content descriptors constructed in di6erent ways perform quite di6erently and the performances
are data dependent hence it is di8cult to pick a “winning” descriptor. Our results demonstrate conclusively that all descriptors
studied in this paper are highly redundant and that regardless of their performances, the dimensionalities of these histogram
based colour content descriptors can be signi;cantly reduced without a6ecting their classi;cation performances.
? 2004 Pattern Recognition Society. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

Fast advancement in digital imaging technology has
resulted in the exponential increase of image data in both
professional archives and personal leisure collections. E6ec-
tively managing large image repositories and making them
easily accessible poses signi;cant technical challenges. In
the past decade, there has been signi;cant research e6ort in
content-based image retrieval (CBIR) [1]. In a CBIR sys-
tem, a user can query the image repositories with a visual
example and the system will return an ordered list of images
that are similar to the query in some visual sense. Tradi-
tionally, image similarity is measured by some forms of
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distance metrics in the feature space. However, similarity is a
subjective concept, it is therefore not surprising and perhaps
inevitable that there is a “gap” between a similarity measured
by the CBIR systems and a similarity perceived by human
observers. How to reduce this gap, often referred to as the
“semantic gap” in content-based image retrieval has received
much attention in recent years, and technologies that provide
solutions to reduce the semantic gap of CBIR are likely
to play a pivotal role in content-based image indexing and
retrieval.

One direction pursued by researchers to narrow the se-
mantic gap is based on the “learning by example” princi-
ple. Machine learning is an integral and essential part of
human e6orts to build intelligent machines, and the subject
has been studied extensively in various disciplines of scien-
ti;c and engineering pursues. In the context of CBIR, ma-
chine learning has been applied to classify collections of im-
ages into categories or classes of various descriptions [2]. In
particular, image classi;cation techniques based on various
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machine learning approaches have been shown to be partic-
ularly useful in providing relevant feedback in CBIR [1,3–
5] to boost the CBIR systems usability and performance.
The essential idea behind these approaches is to use ma-
chine learning to capture or learn the high level concept of
visual similarity (as perceived by human observers) from
examples of similar images chosen by humans. In any ma-
chine learning system, an essential issue is the numerical
(low-level) representation of the objects to be learned. Dif-
ferent representation schemes may a6ect many aspects of
a machine learning system, including computational com-
plexity and performance.

Colour is one of the most popular, and arguably the
most e6ective low-level cue for content-based image re-
trieval. Histogram based colour representations, despite
their many weaknesses, are the most often used nu-
merical representation schemes for the colour contents
of digital images and many forms of histogram-based
colour representation have been proposed in the lit-
erature [1,6–10]. However, histograms are normally
of very high dimension and are therefore compu-
tationally expensive for a CBIR system. Recently,
it has been shown that colour histograms can be signi;-
cantly compressed without a6ecting much the performance
of content-based image retrieval [8]. In this work, we in-
vestigate the redundancy and performance of a number of
histogram-based colour image content representations in
the context of automatic colour photo categorization us-
ing machine learning. Five histogram-based colour content
representations are studied. We use principal component
analysis (PCA) to reduce the dimensionality of these (high
dimensional) histogram colour descriptors. Support vector
machine (SVM) is used to learn to categorize images in
the histogram eigenspace. Our results show that a combi-
nation of low level colour descriptors and machine learning
can be quite useful in categorizing images into semantic
classes, however, they also show the inadequacy of current
technology in bridging the “semantic gap” of content-based
image retrieval in particular and the di8culty of associating
low level descriptors with high level concepts in general.
It is found that di6erent descriptors have discernible clas-
si;cation accuracy. It is also found that the categorization
performances not only are representation dependent, but
also are data dependent, thus making it di8cult the pick an
overall “winning” colour descriptor. However, it is found
conclusively that in the context of color photo categoriza-
tion, histogram-based descriptors are highly redundant and
their dimensionality can be reduced signi;cantly without
a6ecting the performances. For example, reducing the di-
mension of some descriptors by as much as 70% causes no
deterioration in performance, and reducing the dimension
of some descriptors by over 90% only causes about 2%
drop in classi;cation performance.

The organization of the paper is as follows. In Section
2, we brieOy review related work. Section 3 gives a brief
description of 5 histogram based colour image content de-

scriptors studied in this paper. Section 4 brieOy summarizes
PCA for data compression. Section 5 brieOy describes sup-
port vector machine. Section 6 presents our experiment set-
ting. Section 7 present experimental results and Section 8
concludes the paper.

2. Related work

Organizing images into semantic categories can be ex-
tremely useful for searching and browsing through large
collections of images. Recently, various methods have been
proposed for this purpose. Very high dimensional color his-
tograms and SVMs have been used to classify color pho-
tographs into various categories [2]. SVM has also been
used to perform relevant feedback in content based image
retrieval [3,4]. AdaBoost algorithm [11] has been used for
natural image retrieval [12]. Both AdaBoost learning and
SVM were used in Ref. [13] as relevant feedback mecha-
nism for natural image retrieval. The author in Ref. [14] has
presented empirical results of boosted image classi;cation.

Projecting image features onto sub spaces for classi;-
cation and recognition has been investigated by a number
of authors in various applications. In Ref. [15], subspace
method has been used for image classi;cation. PCA has been
used to project vectors onto eigenspace for face recognition
[16]. In Ref. [8] the authors have successfully applied PCA
to compress color histogram for content-based image index-
ing. PCA has been used in a feature selection technique to
reduce feature dimensionality in an SVM based face detec-
tion system [17].

In relevant feedback [28], the user interacts with the sys-
tem which has to re-learn a classi;cation model based on
the user’s feedback. It is therefore very important that the
system can perform real-time learning. One way to achieve
this is to use low dimensional feature representations to re-
duce the computational complexity. In the literature, this is a
largely ignored problem. In Ref. [2], feature vectors of 4096
components were used for image classi;cation. Feature vec-
tors of 435 components were used in Ref. [13] for relevant
feedback. The authors in Ref. [4] used color and texture
features of 144 components. Such high dimensional vectors
not only make re-learning and re-classi;cation computation-
ally expensive, more importantly, they will also make the
system su6er from the so called “peaking phenomenon” in
pattern recognition [18,19]. If the training samples used to
design the classi;er are small relative to the number of fea-
tures, the system can be easily overtrained. In order to build
good classi;ers, the size of the training samples should be
an order of magnitude larger than the dimensionality of the
feature vector. That is, if the feature vector is of 435 di-
mensional, the training sample size should at least be 4350.
In the case of relevant feedback in CBIR, the training sam-
ples are picked by the user on line at an interactive rate, and
therefore it is very unlikely a large relevant/irrelevant sam-
ples are available for training. Given that the size of training
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samples is small, the representation features should have low
dimension in order to build good classi;ers. Based on these
considerations, it is highly desirable to have representation
features of low dimensionality for relevant feedback appli-
cation in a CBIR system. This provides the motivation of the
current work: we seek to ;nd representation features of low
dimensionality without sacri;cing classi;cation accuracy.

3. Histogram-based color image content descriptors

Many image content descriptors have been proposed in
the content-based image indexing and retrieval literature
[1,6–10]. In this paper, we examine ;ve histogram-based
descriptors. This section gives a brief description of each.

3.1. Opponent color histogram

Color histogram is one of the earliest image content de-
scriptors used in content-based image indexing and retrieval
[1]. A color histogram can be constructed in a 3d color
space. However, the dimensionality of such a histogram is
often very high. Researchers have found that it is possible
to construct a 2d chromaticity histogram which will often
give equal performance to 3d ones [8].

In [8], it was shown that the red–green and blue–yellow
opponent chromaticity space decorrelates color information
well and the 2d color histograms constructed in this space are
also more uniformly distributed hence more compressible.
The opponent chromaticities of red–green (rg) and blue–
yellow (by) are de;ned in terms of r, g, b chromaticities:

(rg; by) =
(
r − g; r + g

2
− b

)
: (1)

The opponent color histogram investigated in this paper is
constructed in the rg and by space according to Eq. (1).

3.2. Color correlogram

One of the well-known problems of color histogram is
that it contains no spatial information which has greatly lim-
ited its discriminative power. Recently researchers have de-
veloped a better and more discriminative technique known
as the color correlogram (CC) [9], which has been shown
to provide signi;cant improvement over the original color
histogram approach. CC is very similar to co-occurrence
matrix developed some 20 years ago for grey scale tex-
ture classi;cation. Formally, the CC of image {Z(x; y); x=
1; 2 : : : M; y = 1; 2; : : : ; N} is de;ned as

CC(i; j; k) = Pr(Z(x1; y1)∈Ci | Z(x2; y2)∈Cj);
k = max{|x1 − x2|; |y1 − y2|}; (2)

where the original image Z(x; y) is quantized to a ;xed num-
ber of colors C1, C2; : : : ; CL and the distance between the
two pixels k = 1; 2; : : : ; K is ;xed a priori. In other words,
the CC of an image is the probability of joint occurrence

of two pixels some k distance apart that one pixel belongs
to color Ci and the other belongs to color Cj . The size of
CC is O(L2K). To reduce storage requirement, [9] concen-
trated on auto-correlogram whereby i = j and its size is
of O(LK). We also only investigate the auto-correlogram
in this paper. We used 64 colors (L = 64) and 4 distances
(K = 4 and k = {1; 3; 5; 7}) as suggested in [9] to build the
auto-correlogram. The colors, C1, C2; : : : ; C64, were obtained
via vector quantization (VQ) [20]. The training samples used
to create these colors were all pixels from two hundred and
thirty ;ve 512× 512 pixels, 24 bits/pixel true color texture
images from the MIT VisTex 2 collection. These same 64
colors were also used for layered color indexing described
in Section 3.5.

3.3. MPEG-7 color structure descriptor

The MPEG-7 color structure (CS) descriptor is a color
feature descriptor that captures both color content (similar
to a color histogram) and information about the structure
of this content [10]. Instead of considering each pixel sepa-
rately, the extraction method embeds color structure infor-
mation into the descriptor by taking into account all colors
in a structuring element of 8× 8 pixels that slides over the
image. This descriptor is more discriminative than color his-
togram because it can distinguish between two images in
which a given color is present in identical amounts but where
the structure of the groups of pixels having that color is dif-
ferent in the two images. MPEG-7 standard speci;es that
color values are represented in the double-coned HMMD
color space, which is quantized non-uniformly. In the stan-
dard [21], there are detailed descriptions of how the color
structure descriptor can be constructed and readers are re-
ferred to Ref. [10] and Ref. [21] for full details.

3.4. Colored pattern appearance histogram

The colored pattern appearance model (CPAM) which
has two channels capturing the characteristics of the chro-
matic and achromatic spatial patterns of small image regions
has been used to compile content descriptors for image re-
trieval [6]. In this method, the visual appearance of a small
image block is modeled by three components: the stimulus
strength, the spatial pattern and the color pattern. In Ref.
[6], the YCbCr space is used, and the stimulus strength S is
approximated by the local mean of the Y component. The
pixels in Y normalized by S form the achromatic spatial
pattern (ASP) vector. Because Cb and Cr have lower band-
width, they are sub-sampled. The sub-sampled pixels of Cb
and Cr are normalized by S, and then concatenated together
to form the chromatic spatial pattern (CSP) vector. Vector
quantization (VQ) [20] is used to encode the ASP and CSP
vectors. Let Qc with a codebook Cc={Cc(j); j∈M} be the

2 http://vismod.www.media.mit.edu/vismod/imagery/Vision-
Texture/vistex.htm
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VQ quantizer for the CSP vectors and QA with a codebook
CA = {CA(i); i∈N} be the VQ quantizer for the ASP vec-
tors. Typically, the sizes of the codebooks range from 64
to 256 work well. The VQ codebooks were also trained us-
ing MIT VisTex images [6]. The probabilities that the CSP
vectors are coded by the ith codeword of CC and the prob-
abilities of the ASP vectors are coded by the jth codeword
of CA, for all possible i and j form the colored pattern ap-
pearance histogram (CPAH)

CPAH = {{Pr(QA(ASP) = i);∀i};
{Pr(QC(CSP) = j); ∀j}}: (3)

Both CPAH and MPEG-7 color structure descriptors are
designed to take into account the spatial distributions of
colors. However, MPEG-7 CS only counts the colors within
a mask and how the colors are spatially distributed within
the mask is ignored. CPAH takes this one step further by
capturing the spatial chromatic and achromatic patterns of a
neighborhood of pixels, it therefore captures not only color,
but also texture characteristics of the images as well [6].

3.5. Layered color indexing

From human perception’s point of view; di6erent fre-
quency components of the visual stimulus may be treated
di6erently by the visual system. Physically, di6erent fre-
quency components of the signal may correspond to dif-
ferent objects or object parts. Consequently, di6erent fre-
quency components of the visual stimulus may not only have
di6erent perceptual signi;cance, they may also correspond
to di6erent physical objects. Incorporating such concept is
helpful to the development of more e6ective image retrieval
techniques. In Ref. [7] a layered color indexing method was
developed to represent colour contents of images. An image
is ;rst passed through a ;lter bank (each ;lter of the ;l-
ter bank covers a speci;ed spectral bandwidth). The output
of the ;lter bank is used to classify the pixels. Pixels in an
area with similar spatial frequencies are then retained on the
same layer. Each individual layer, which contains only those
pixels in areas with similar frequency distributions, is used
to form its own color index. The aggregation of the feature
indices from all the layers then forms the overall index of
the image.

Let Hk be the color histogram of layer Lk , then layered
color indexing (LCI) histogram is formed as

H (x) = {Hk}; ∀k: (4)

That is, multiple color histograms for an image, each taking
colors from pixels in areas with similar sharpness are com-
piled. This approach not only indexes the color, but also as-
sociates color distributions with their surface roughness. It
has been argued that such an association not only has per-
ceptual signi;cance, it also makes sense physically. It has
been shown that the LCI method signi;cantly enhances the
power of color indexing and at the same time retains its
simplicity and elegance.

In practice, classi;cation of the pixels into layers can be
done by thresholding the Laplacian image of the Y (achro-
matic) channel of the image. We found that dividing the
pixels into 4 layers and using 64 colors worked well [7].
The 64 colors used for this method are the same as those
used for the auto-correlogram described in Section 3.2.

4. Data compression using PCA

PCA, also known as Karhunen–Loeve Transform (KLT)
[22] is a well-known classical statistical method which has
been widely used in data analysis and compression. The ba-
sic idea of PCA is to ;nd the n linearly transformed compo-
nents {si; i = 1; 2; : : : ; n} so that they explain the maximum
amount of variance in the input data. In practice, PCA is done
by calculating the n largest eigenvectors of the (sample) co-
variance matrix � = E(xtx), where x is the m-dimensional
sample vectors.

In our current application, the basic goal in PCA is to re-
duce the dimension of the data. Thus one usually chooses
n�m. Indeed, it can be proven that the representation given
by PCA is an optimal linear dimension reduction technique
in the mean-square sense. Such a reduction in dimension has
important bene;ts. First, the computational overhead of the
subsequent processing stages is reduced. Second, noise may
be reduced, as the data not contained in the n ;rst compo-
nents may be mostly due to noise. Third, a projection into a
subspace of a very low dimension is useful for visualizing
the data.

In the literature, PCA has been successfully applied to
dimensionality reduction in many ;elds of scienti;c and en-
gineering pursuits, e.g., [8,23]. Since the dimensionality of
typical histogram descriptors are quite high which will result
in high computational cost in distance calculation, we use
PCA to reduce the dimensionality of histograms described
in the last section before they are presented to the classi;er.
Our goal is to investigate the amount of redundancy existing
in each of these descriptors so that we can develop computa-
tionally e8cient methods using lower dimensional features
without sacri;cing classi;cation accuracy performances.

At this point, it is appropriate to mention other widely
used data compression techniques, such as discrete cosine
transform (DCT) and wavelet transform (WT) [24]. Unlike
KLT, the bases of these transforms are data independent. We
argue here that these transforms are in general unsuitable
for our current tasks for the following reasons (as will also
be demonstrated in the experimental results, Section 7.3).

Firstly, in order to be useful, we want the energy of the
signal to be concentrated in as few transformation coe8-
cients as possible so that we can throw away those coe8-
cients containing little energy. A compression method such
as DCT or WT may compress the histograms very well in
terms of the number of bits it used to represent the data,
but this does not necessarily help our case if the energy of
the signal is distributed widely among the transformation
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coe8cients. Because our goal is not data compression, in-
stead our purpose is to achieve dimension reduction. These
two are not always the same.

Secondly, both DCT and WT (and similar transforms)
perform frequency analysis. One of the reasons that these
transforms are so successful in image compression is that
most image signals tend to change slowly, i.e., a pixel and its
neighbors tend to have similar values. In other words, most
of the energy is concentrated in the low-frequency coe8-
cients, we can thus throw away high-frequency coe8cients
without a6ecting too much the quality of the reconstructed
signal. In our histogram data, the neighboring bins do not
necessarily correlate as neighboring pixels do. Fig. 1 shows
the ;ve histograms of a typical image and it is seen that
there are a lot of abrupt changes from one bin to the next (al-
though treating the rg-by opponent histogram as an image
tends to make neighboring bins correlate better and render
the histogram more compressible [8]). As a result, the en-
ergy of the signal will be distributed amongst all transform
coe8cients making it di8cult to use a few of these coe8-
cients to preserve most of the energy of the original signal.

It is clear that a transform (compression technique) will
only be useful in our current application if it can concen-
trate the signal’s energy in a few coe8cients thus enabling
dimensionality reduction. As argued above, the nature of
DCT and WT, and the properties of the histogram data,
make DCT and WT unsuitable for our application (in order
to make the histograms more compressible by DCT or WT,
the histogram bins will have to be ordered in such a way that
neighboring bins correlate with each other. We will come
back to this point in Section 7.3). On the other hand, KLT
can do exactly what is required: most of the signal’s energy
is concentrated in the ;rst few of its transform coe8cients.

5. Support vector machines

Support vector machine [25,26] is an emerging machine
learning technology that has been successfully used in a
variety of pattern recognition tasks. We shall consider SVMs
in the binary classi;cation setting. We are given training
data {x1 : : : xn} that are vectors in some space x∈Rm. We
are also given their labels {y1 : : : yn} where yi ∈{−1; 1}.
SVMs perform pattern recognition for two-class problem
by ;nding the decision boundary (a hyperplane) that has
the maximum distance to the closest points in the training
set. Training instances that lie closest to the hyperplane are
called support vectors. All vectors lying on one side of the
hyperplane are labeled as −1, those on the other side are
labeled as 1. Fig. 2 illustrates a simple linearly separable
problem in 2d space.

If the data are not linearly separable in the input space,
SVMs allow us to project the data in space x to a higher
dimensional feature space F via a Mercer kernel operator
K [26]. In other words, we consider the set of classi;ers of
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Fig. 1. The ;ve histograms of a typical image. It is seen that the
neighboring data points do not necessarily correlate.

the form

f(x) =
n∑
i=1

�iK(xi; x): (5)

The SVM computes the �is that correspond to the maxi-
mal margin hyperplane in F space. By choosing di6erent
K , the SVMs can project the training data in x into F for
which hyperplanes in F correspond to more complex deci-
sion boundaries in x. For two-class problems, the decision
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Fig. 2. A simple support machine. The optimal hyperplane maxi-
mizes the distance to the closest training points. These points (1,
2, and 3) are called the support vectors (SVs). The distance � be-
tween the hyperplane and the SVs is called the margin.

is made according to: when f(x)¿ 0 we classify x as +1
(class 1); otherwise we classify x as −1 (class 2).

SVMs are designed for binary classi;cation [25,26].
When dealing with several classes, such as in image clas-
si;cation, one needs an appropriate multiclass method. Our
approach is one per class, also known as one against the
others, which compares a given class with all the others
put together [2]. In the one against the others algorithm,
N hyper planes are constructed, where N is the number of
classes. Each hyperplane separates one class from the other
classes. In this way, we get N decision functions, fk(x),
k=1; : : : ;N . The class label of a new sample x, Lx, is given
by

Lx = arg
(
max

∀k
(fk(x))

)
; (6)

i.e., the class with the largest decision function.

6. Learning image classi&cation using SVM in
histogram subspaces

We investigate the classi;cation performance and com-
pressibility of the various histogram-based image content
descriptors using a system set up as shown in Fig. 3. From
an input image, we derive its histogram descriptors, which
are then passed to the PCA module to reduce their dimen-
sionality. The compressed histogram features are then fed
to the SVM classi;ers which then output the identity of the
input image. Let  i be the ith eigenvector of the co-variance
matrix of the m-dimensional image descriptor x. Let s =
{si; i=1; : : : ; m} be the projections of x onto the eigenspace,

Input
Image

Histogram
Descriptors

PCA
Feature Compression

SVM
Classifiers

Image
Categories

Fig. 3. Image categorization experiment set up.

and si = x i. It is well known that the vector formed from
the ;rst few si, s′ = {si; i= 1; : : : ; n}, n¡m, can be used to
reconstruct an approximation to x. We can therefore use a
lower dimensional vector s′ as input to the SVMs for clas-
sifying the input images. We investigate how the selection
of n a6ects the classi;cation performances. Obviously, the
smaller the value of n, the higher the compression ratio and
the cheaper it is to compute the categories by the support
vector machine.

7. Experimental results

7.1. Data set A and results

In this ;rst test, we use 10 categories of color photographs
from the Corel color photo collection. These categories are
labeled by human. The categories are: Lions, Elephants,
Tigers, Horses, Sky scenes, Cheetahs, Eagles, Night Scene,
Sunset and Roses. Each category consists of 100 color pho-
tos. Fig. 4 shows examples of typical images from each of
these categories.

At this point, it is appropriate to make some observations
about the data and the adequacy of colour cue alone for its
content description. The images in each category represent
a particular theme—a high-level concept. For example, in
the animals categories, such as Lions, Cheetahs and Ele-
phants, each image will contain one or more of these ani-
mals. However, the animals may only occupy a small sec-
tion of the image and the background may occupy most
of the image area. The backgrounds of images within the
same category may vary signi;cantly, and to make the task
more di8cult the backgrounds of an image in one category
may be very similar to those of images in another cate-
gory. Images in the same theme category may have di6erent
colours as well. For example, in the Roses category, some
Roses are yellow and some are red. A number of di6erent
categories, such as Eagles, Sky Scenes, Elephants, Tigers,
Cheetahs all have images containing large part of blue sky
scenes. Clearly, colour alone will be inadequate to distin-
guish among these categories. To be able to represent the
images better, other low-level features, such as texture de-
scriptor, and medium/high level object shape descriptor will
be necessary. However, medium and high level descriptors
are di8cult to obtain and the topic is still being actively
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Fig. 4. Example images from the 10 categories (4 typical images from each category are shown here) used in the experiment.

researched. Even with more comprehensive low-level fea-
tures and some medium- and high-level features available,
the task of automatically classifying these images according
to the categories as perceived by humans is still an extremely
challenging task. This data set illustrates why the “semantic
gap” exists and why it is so di8cult to bridge such gaps.
To be able to close this gap, it will require much e6ort in
many ;elds, including computer vision, machine learning,
psychology and many other related ;elds. At this stage, it
is hard to see how such a gap can be completely closed.

From the above observations, it is very clear that we can-
not expect to achieve 100% correct classi;cation using the
colour descriptors of Section 3 and that a complete solu-
tion will require much more comprehensive representation

schemes and more sophisticated learning strategies than that
illustrated in Fig. 2. Our goal is instead to investigate how
the various colour content descriptors constructed in di6er-
ent ways will perform in this setting with an aim to aid
the e6ort of ;nding better solutions in the future. We also
want to investigate the redundancies that may exist in vari-
ous forms of histogram-based colour content representations
with the aim of ;nding more compact colour descriptors.

For each class, we randomly select 50 images as the train-
ing samples and use the other 50 for testing. For each of the 5
types of histograms described in Section 3, one co-variance
matrix is constructed using the 500 training samples to cal-
culate the eigenvectors for feature reduction. For each cate-
gory, we train an SVM for each type of histogram descriptor.
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Table 1
Correct classi;cation performances for di6erent descriptors trained using di6erent penalty factors (results are for training data only)

C OCH (%) CAC (%) M7CS (%) CPAH (%) LCI (%)

1 68 65 80 70 76
1.4 68 66 80 72 77
1.8 69 66 81 73 79
2.2 70 66 81 73 78

In all experiments, we used a 256d opponent color his-
togram (OCH), a 256d color auto-correlogram (CAC), a
256d MPEG-7 color structure histogram (M7CS), a 384d
colored pattern appearance histogram (CPAH) and a 256d
layered color indexing (LCI). In constructing the OCH, the
histogram bins were obtained by dividing the rg and by
axes each into 16 equal intervals. The CAC histograms were
constructed using 64 colors and 4 distances as described in
Section 2.2. In building the CPAHs, N = 256 achromatic
bin and M = 128 chromatic bins were used. The codebooks
were again trained using the two hundred and thirty ;ve
512×512 pixels, 24 bits/pixel true color texture images from
the MIT VisTex collection [6]. The M7CS histograms were
constructed by following the standard [21]. In constructing
the LCI histograms, the same 64 colors used for the CACs
were used here and 4 layers were constructed as described
in Ref. [1].

For support vector machine training, we follow John C.
Platt’s sequential minimal optimization (SMO) implemen-
tation [27]. Because we do not expect these photo cate-
gories can be completely separated by the SVMs, we train
the machines follow the imperfect separation scheme. The
penalty factor C which determines the degree of imperfec-
tion (C =∞ corresponds to a perfect separation) has to be
set manually (please see Ref. [27] for SVM implementation
details). In order to investigate how sensitive the perfor-
mances are to this parameter, we train the SVMs with di6er-
ent values of C . We measure the classi;cation performance
by the overall correct classi;cation rate (CCR) de;ned as

CCR =
Total-Number-of-Correctly-categorised-Photos

Total-number-of-Testing-Photos
:

(7)

Table 1 shows the CCR performances of various uncom-
pressed histograms when the penalty factor C was set to
various values. It is found that the correct classi;cation per-
formances do not change signi;cantly with this value. It is
also found setting C any larger do not improve the perfor-
mance. From this table, we see that M7CS gives the best
performance. It is also interesting to note that the number
of supporting vectors for this descriptor is three times as
large as those of other four descriptors. This may explain
the good performance of the M7CS descriptor. It would be
very useful and interesting to understand the signi;cance of
this correlation.
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Fig. 5. Data set A correct classi;cation rates for di6erent descriptors
for di6erent compression factors. m=the dimensionality of the raw
histogram and n=the dimensionality of its eigen subspace vector
used by the SVMs for categorization.

Now that we have an idea how large the training penalty
factor should be, we choose the one that performs well
(C = 1:8) for the rest of our experiments. We investigate
how the amount of compression a6ects the classi;cation
performances. Various factors of compression are tried, and
results are shown in Fig. 5. These results clearly demon-
strate that di6erent representations do give quite di6erent
performances and that these descriptors are all highly com-
pressible. It is found that reducing the dimension of some
descriptors by 70% does not a6ect the performance accu-
racy at all. By reducing some descriptors dimension by 90%
we only notice 2% drop in performance.

It is also seen that these curves are not entirely mono-
tonic, in some cases, fewer coe8cients resulted in slightly
better CCRs. Since the Ouctuations were quite small, we be-
lieve this was caused mainly by numerical errors. A high
compression ratio may sometimes remove noise better thus
resulting in slight better performance. The overall trend is
that, for compression ratios up to 70%, the CCR perfor-
mances changed very little. But, for compression greater
than a certain value (e.g., ¿ 90%), the CCR performances
almost dropped monotonically.
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Table 2
Summary of correct classi;cation performances of di6erent categories using di6erent histograms before compression and after compression

Histograms

OCH CAC M7CS CPAH LCI

Categories n=m = 1 n=m = 0:2 n=m = 1 n=m = 0:2 n=m = 1 n=m = 0:2 n=m = 1 n=m = 0:2 n=m = 1 n=m = 0:2

Lions 33 33 33 36 35 36 40 40 37 37
Elephants 33 33 31 32 34 34 21 20 40 39
Tigers 19 19 18 14 40 41 20 19 31 29
Horses 46 46 47 47 48 47 48 47 44 44
Sky 44 44 46 46 46 46 48 48 48 49
Cheetahs 26 24 11 11 29 29 23 23 21 18
Eagles 30 30 33 33 39 36 33 33 40 40
Night 44 41 38 38 39 39 41 41 41 42
Sunset 29 30 36 34 43 41 42 41 38 35
Roses 38 39 36 35 46 46 45 45 46 45

The ;gures are the number of correctly classi;ed images in each category (results are for testing data only).

In Appendix, we tabulate the confusion matrices for these
descriptors both before compression and after compression.
It is seen that regardless of the performances of di6erent de-
scriptors, confusion matrices for the same descriptor change
very little before and after dimension reduction, again indi-
cating the highly compressible nature of these raw descrip-
tors.

Table 2 summarizes the correct classi;cation performance
of di6erent categories when di6erent colour descriptors are
used. It is seen that for most categories, the methods actu-
ally perform quite well with very high percentage of the im-
ages being classi;ed into the correct categories. There are
two categories, Tigers and Cheetahs, that are di8cult to cat-
egorize. In the case of Tigers, M7CS descriptor works quite
well, but all other descriptors perform very poorly. For the
Cheetahs category, all representations do not perform well.
From these results, it is fair to say that the success of such
a scheme for the categorization of colour photos is mixed,
in the sense that for some categories, the performances are
quite good, whilst for other categories, the performances are
poor. Overall, we feel that such a scheme could be useful in
automatic color photo categorization.

Fig. 6 shows some typical misclassi;ed images. In fact,
all these misclassi;ed images are explainable. For example,
one Elephant image contains a large portion of sky, there-
fore classifying it into sky category cannot be regarded as
totally wrong. All these examples demonstrate once more
the di8culty of automatically associating low-level repre-
sentations with high-level concepts. This di8culty typi;es
the huge challenges for all the ;elds related to machine in-
telligence—computer vision, image understanding, pattern
recognition, machine learning, etc

7.2. Data set B and results

We have seen that for data set A, the images within a
category can be di6erent and images from di6erent cate-

gories can be similar. In this second test data set, we used
data classi;ed as similar and di6erent by human observers
to test the method. We manually classi;ed the ;rst 6400
images from the Corel collection into four groups, each
contained visually similar images, those images cannot be
put into any of these groups were thrown away. The sizes
of these four groups were 399, 354, 541 and 392 images,
respectively. The thumbnails of these four groups of images
are shown in Fig. 7 (not all images are displayed). It is seen
that the visual contents of images within the same group
are quite homogeneous and images in di6erent groups are
quite di6erent.

We constructed ;ve histogram descriptors for this data
set in exactly the same way as for data set A. We then
randomly picked 150 images from each group to develop
the classi;ers and the KLT bases and used the rest images
for testing. The experimental procedure was the same as in
Section 7.1 for data set A.

Fig. 8 shows how compression a6ects the performances.
Without any compression, all descriptors performed very
well. As can be seen from Fig. 7, images were judged sim-
ilar mainly because of their color themes are very similar.
Given that all descriptors extract color information in one
way or another, these good performance results are not en-
tirely surprising. We also see that LCI gave the best result;
OCH and CPAH performed similarly, and M7CS and CAC
did similarly well. What is also striking for this data set is
that the amount of compression can be achieved without af-
fecting the CCR performances. It is seen that compressing
LCI to only 7% of its original dimension did not a6ect its
performance at all (although not shown in Fig. 8, we noticed
that CCR started to drop gradually for compression ratios
n=m¡ 7% for the LCI method). We again see the occasional
minor Ouctuation of the CCR/compression ratio curve, we
believe this was again caused by numerical errors and can
be explained similarly as the case in Fig. 5. These results
suggested that if we want to classify images into groups of
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Fig. 6. Examples of typical mis-classi;ed photos.

similar colour themes, then the descriptors could be com-
pressed even harder.

7.3. Other compression schemes

We have implemented a WT method for reducing the di-
mensionality of our histogram features. We used the Haar
wavelet [24] and our implementation was based on the fol-
lowing pseudocode:

proc WT(H: array[0..m- 1])
H← H/

√
m

while m¿ n do:
m← m=2
for i = 0 to m− 1 do
H′[i]← (H[2i] + H[2i + 1])=

√
2

H′[m+i]← (H[2i]− H[2i + 1])=
√

2
end for
H← H′

end while
end proc

where H holds the histogram features before and after the
transform, m is the original dimensionality of H and n is the
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Fig. 7. Thumbnails of four visually similar groups of images in data set B.

reduced dimensionality. Although we should choose the n
largest elements from the transformed H for classi;cation,
it cannot easily achieve dimensionality reduction because
the largest n WT transform coe8cients may fall into di6er-
ent locations for di6erent images. In our implementation,
we simply choose H[0 : : : n − 1] as the compressed his-
togram feature for classi;cation, and for computational
convenience, we restricted n = m=2k , k is an integer.

This was so in order to perform the test meaningfully
and to be comparable to the way KLT was used in these
applications.

We performed the test on both data set A and data set B.
Results of the CCR performances are shown in Table 3. It is
seen that in general WT performed far worse than KLT. It is
also interesting to observe that the M7CS descriptor is more
compressible by the WT as compared with other four de-
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Table 3
Comparison of the overall CCR performance of KLT and WT for dimensionality reduction

Overall CCR

OCH (%) CAC (%) M7CS (%) CPAH (%) LCI (%)

Data set A KLT 61 56 79 71 76
(n=m = 25%) WT 40 41 67 54 54
Data set B KLT 96 93 95 95 97
(n=m = 12:5%) WT 79 56 92 68 60

The overall CCR of a particular method was obtained by averaging the CCRs over all the categories for the method (results are for testing
data only).
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Fig. 8. Data set B correct classi;cation rates for di6erent descriptors
for di6erent compression factors. m=the dimensionality of the raw
histogram and n=the dimensionality of its WT compressed vector
used by the SVMs for categorization.

scriptors, especially for test data set B. According to the stan-
dard [21], the 256 color bins are quantized non-uniformly as
follows: (1) the HMMD color space is divided into ;ve sub-
spaces along the di: axis by dividing the di:-axis into the
following ;ve intervals: [0,6), [6, 20), [20, 60), [60, 110)
and [110, 255]; (2) each subspace is uniformly quantized
along the hue and sum axes, where the number of quantiza-
tion levels along each axis is de;ned for each interval. The
ordering of the bin numbers is ;rst from bottom to top (par-
allel to the sum-axis), then from di:-sum plane to di:-sum
plane (around the hue-axis) staying within a subspace, and
;nally from subspace to subspace. For detailed description
of this numbering scheme, please refer to Ref. [21]. As a re-
sult, the neighboring bins were correlated and this explains
why the M7CS descriptor was more compressible by WT.
For other descriptors, the bin numbers were assigned with-
out any speci;c ordering. In order to make these descriptors
more compressible by data independent linear transforms
such as WT, the bins have to be ordered in such a way that

neighboring bins correlate with each other. The question of
how to order the bins of the histograms such that neigh-
boring bins correlate well with each other, thus making the
descriptors compressible by linear transform such as WT or
DCT, is not addressed in the current paper.

7.4. Result summary

These experimental results have demonstrated conclu-
sively that for all the descriptors studied in this paper, each
can be compressed signi;cantly by KLT (PCA) without
sacri;cing the correct categorization performances. This is
especially useful if such a scheme is used in an interac-
tive setting for relevant feedback in a CBIR system where
realtime (or very fast) online learning and reclassi;ca-
tion of results are highly desirable. From these results we
know that we can use colour descriptors that are of much
lower dimensionality than those used in the literature, e.g.
[2,4,13], by previous researchers. Indeed, one can simply
use the PCA approach in this paper to derive lower dimen-
sional descriptors for fast relevant feedback computation.
Since dimensionality reduction is what we want to achieve,
other data independent transform schemes suitable for gen-
eral data compression such as DCT and WT are in general
not suitable for this application. In order to make the his-
togram compressible by DCT or WT, the bins have to be
ordered such that neighboring ones correlate with each
other.

From these results, we can also see that, even though we
understand the limitations of color cues in CBIR and seman-
tic image categorization, they are still very powerful and
useful cues. Color cues are easy to derive and simple to use
compared to other representations. For the results of data
set A, although M7CS achieves the best performance over-
all, it is not the case for all categories. For example, for the
Night Scene category, OCH is in fact the best performer.
For data set B, LCI has a slight edge overall (although the
maximum di6erence was only 2% between di6erent descrip-
tors). Therefore, to a certain extent, the performances are
(inevitably) data dependent, which indicates the need for
the co-existence of various di6erent methods to derive color
descriptors.
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8. Concluding remarks

In this paper, we have investigated ;ve histogram-based
image descriptors for automatic digital color photo catego-
rization using support vector machines. We have shown that
di6erent descriptors have di6erent performances. The per-
formances of di6erent representations are also data depen-
dent, thus it is not easy to pick an overall winning repre-
sentation which indicates the need for the co-existence of
various di6erent colour descriptors. Despite the many lim-
itations of colour cues, our results demonstrate once again
that colour can be a very powerful cue for image classi-
;cation. A combination of colour descriptors and machine
learning can be used to build useful systems for color photo
categorization. It is also found that all these histograms are
highly redundant and can be signi;cantly compressed with-
out a6ecting the classi;cation performance. Histograms are
a descriptor used extensively in image content management

Table 4
Confusion matrix for the OCH descriptor without compression

Output categories

OCH Lions Elephants Tigers Horses Sky Cheetahs Eagles Night Sunset Roses

Input Lions 33 8 0 1 3 2 2 1 0 0
categories Elephants 3 33 1 2 4 6 0 0 0 1

Tigers 9 2 19 6 6 3 1 3 1 0
Horses 0 0 0 46 0 0 1 0 0 3
Sky 0 1 0 0 44 0 5 0 0 0
Cheetahs 6 6 3 2 4 26 2 1 0 0
Eagles 1 1 3 4 10 1 30 0 0 0
Night 0 0 0 0 0 0 0 44 4 2
Sunset 12 2 1 0 1 0 0 1 29 4
Roses 0 1 0 4 0 1 0 2 4 38

Table 5
Confusion matrix for the OCH descriptor, compression ratio (n=m) = 20%

Output categories

OCH Lions Elephants Tigers Horses Sky Cheetahs Eagles Night Sunset Roses

Input Lions 33 8 0 1 3 2 2 1 0 0
categories Elephants 3 33 0 2 4 7 0 0 0 1

Tigers 9 2 19 6 6 3 1 3 1 0
Horses 0 0 0 46 0 0 1 0 0 3
Sky 0 1 0 0 44 0 5 0 0 0
Cheetahs 6 6 3 3 4 24 2 1 1 0
Eagles 1 1 2 4 10 1 30 0 0 1
Night 0 0 0 0 0 0 0 41 3 6
Sunset 13 2 1 0 1 0 0 1 30 2
Roses 0 1 0 4 0 1 0 1 4 39

and they normally have very high dimensionality. From
the results of this study, we conjecture that there may ex-
ist lower dimensionality alternatives to the existing high
dimensional histogram-based image content descriptors, it
may well worth pursuing these lower complexity alterna-
tives. One possibility is to use the technique used in this
paper, i.e., PCA, to reduce the histograms’ dimensionality.
Other possible methods, for example, re-ordering the his-
togram bins to make neighboring ones correlate well with
each other, thus making the histograms compressible by data
independent linear transforms such as DCT and WT, may
well warrant further investigation.

Appendix

Tables 4–13, confusion matrices of test data set A, before
and after compression. All results are for testing data only.
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Table 6
Confusion matrix for the CAC descriptor without compression

Output categories

CAC Lions Elephants Tigers Horses Sky Cheetahs Eagles Night Sunset Roses

Input Lions 33 5 3 1 4 0 2 0 2 0
categories Elephants 10 31 0 2 6 1 0 0 0 0

Tigers 7 3 18 6 4 3 3 3 0 3
Horses 1 0 0 47 1 0 0 0 0 1
Sky 0 3 0 0 46 0 1 0 0 0
Cheetahs 11 3 3 11 3 11 3 1 3 1
Eagles 0 1 1 3 9 0 33 0 1 2
Night 0 0 0 0 2 0 4 38 3 3
Sunset 6 0 0 0 1 0 1 1 36 5
Roses 0 0 0 2 2 0 1 8 1 36

Table 7
Confusion matrix for the CAC descriptor, compression ratio (n=m) = 20%

Output categories

CAC Lions Elephants Tigers Horses Sky Cheetahs Eagles Night Sunset Roses

Input Lions 36 4 2 1 4 0 2 0 1 0
categories Elephants 8 32 0 3 6 0 0 0 1 0

Tigers 9 3 14 6 5 6 1 2 0 4
Horses 1 0 0 47 1 0 0 0 0 1
Sky 0 3 0 0 46 0 1 0 0 0
Cheetahs 12 4 0 13 2 11 4 1 2 1
Eagles 0 0 1 4 9 0 33 0 1 2
Night 0 0 0 0 2 0 4 38 3 3
Sunset 7 0 0 0 1 0 1 1 34 6
Roses 0 0 0 2 2 0 1 8 2 35

Table 8
Confusion matrix for the M7CS descriptor without compression

Output categories

M7CS Lions Elephants Tigers Horses Sky Cheetahs Eagles Night Sunset Roses

Input Lions 35 7 3 0 1 2 0 0 2 0
categories Elephants 7 34 4 2 2 1 0 0 0 0

Tigers 0 1 40 1 5 0 3 0 0 0
Horses 0 0 2 48 0 0 0 0 0 0
Sky 0 1 1 0 46 0 2 0 0 0
Cheetahs 3 9 2 1 2 29 2 0 1 1
Eagles 0 1 1 1 6 1 39 0 0 1
Night 0 0 0 0 1 1 1 39 6 2
Sunset 2 0 1 0 0 0 1 0 43 3
Roses 0 0 0 0 0 0 3 0 1 46
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Table 9
Confusion matrix for the M7CS descriptor, compression ratio (n=m) = 20%

Output categories

M7CS Lions Elephants Tigers Horses Sky Cheetahs Eagles Night Sunset Roses

Input Lions 36 6 3 0 1 2 0 0 2 0
categories Elephants 6 34 4 2 2 1 0 0 1 0

Tigers 0 1 41 1 3 0 4 0 0 0
Horses 0 0 3 47 0 0 0 0 0 0
Sky 0 1 1 0 46 0 2 0 0 0
Cheetahs 3 9 2 1 2 29 2 0 1 1
Eagles 0 1 3 1 7 1 36 0 0 1
Night 0 0 0 0 1 1 1 39 7 1
Sunset 4 0 0 0 0 0 0 0 41 5
Roses 0 0 0 0 0 0 3 0 1 46

Table 10
Confusion matrix for the CPAH descriptor without compression

Output categories

CPAH Lions Elephants Tigers Horses Sky Cheetahs Eagles Night Sunset Roses

Input Lions 40 2 0 2 4 1 1 0 0 0
categories Elephants 5 21 0 2 10 6 1 0 0 5

Tigers 5 0 20 10 2 5 5 3 0 0
Horses 0 0 0 48 0 0 0 0 1 1
Sky 0 0 0 0 48 0 2 0 0 0
Cheetahs 10 1 2 5 6 23 2 0 1 0
Eagles 1 0 2 4 8 0 33 0 0 2
Night 0 0 0 1 1 0 1 41 4 2
Sunset 2 0 0 0 3 0 0 2 42 1
Roses 0 0 0 2 0 0 0 0 3 45

Table 11
Confusion matrix for the CPAH descriptor, compression ratio (n=m) = 20%

Output categories

CPAH Lions Elephants Tigers Horses Sky Cheetahs Eagles Night Sunset Roses

Input Lions 40 2 0 2 5 1 0 0 0 0
categories Elephants 6 20 0 2 10 6 1 0 0 5

Tigers 6 1 19 9 2 5 5 3 0 0
Horses 0 0 0 47 0 0 1 0 1 1
Sky 0 0 0 0 48 0 2 0 0 0
Cheetahs 10 1 2 5 6 23 2 0 1 0
Eagles 1 0 2 4 8 0 33 0 0 2
Night 0 0 0 1 1 0 1 41 4 2
Sunset 2 0 0 0 4 0 0 3 41 0
Roses 0 0 0 2 0 0 0 1 2 45
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Table 12
Confusion matrix for the LCI descriptor without compression

Output categories

LCI Lions Elephants Tigers Horses Sky Cheetahs Eagles Night Sunset Roses

Input Lions 37 6 2 0 2 2 0 0 1 0
categories Elephants 5 40 0 2 2 1 0 0 0 0

Tigers 3 3 31 5 6 1 1 0 0 0
Horses 1 0 2 44 2 0 0 0 0 1
Sky 0 1 0 0 48 0 1 0 0 0
Cheetahs 7 6 5 3 1 21 5 0 1 1
Eagles 0 1 1 1 6 0 40 0 1 0
Night 0 0 0 0 1 0 2 41 3 3
Sunset 6 0 0 0 0 0 1 1 38 4
Roses 0 0 0 0 0 0 1 2 1 46

Table 13
Confusion matrix for the LCI descriptor, compression ratio (n=m) = 20%

Output categories

LCI Lions Elephants Tigers Horses Sky Cheetahs Eagles Night Sunset Roses

Input Lions 37 6 2 0 2 2 0 0 1 0
categories Elephants 5 39 0 2 3 1 0 0 0 0

Tigers 4 3 29 5 6 2 1 0 0 0
Horses 1 0 2 44 2 0 0 0 0 1
Sky 0 1 0 0 49 0 0 0 0 0
Cheetahs 8 6 5 5 1 18 4 1 1 1
Eagles 0 1 1 1 6 0 40 0 1 0
Night 0 0 0 0 1 0 2 42 2 3
Sunset 6 0 0 0 0 0 1 1 35 7
Roses 0 0 0 0 0 0 1 2 2 45
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