
COMMUNICATIONS OPC WITH ECOSIMPRO

Jesús María Zamarreño Cosme
Dpto. Ingeniería de Sistemas y Automática (Fac. Ciencias) Universidad de Valladolid, jm@autom.uva.es

Abstract

This paper shows how to perform the integration of
OPC with an EcosimPro simulation. The purpose is
to obtain an OPC server that provides standard
access to the simulation variables in real-time from
any OPC-compliant application.

Keywords: OPC, Simulation in real-time,
Integration, Communication.

1 INTRODUCTION

Usually, when anybody builds a simulation of any
particular process in EcosimPro (or any other
language), different objectives may exist like: design,
trials in critical situations, tuning of controllers, etc.
In all these areas, it is possible to perform the tasks
through experiments from the same simulation
environment. Nevertheless, a more flexible and open
solution would be to use specific external tools that
communicate in certain way with the simulation. For
being able to do this, it is necessary to provide the
simulation with some communication protocol. If the
simulation code does not support any communication
protocol, it is necessary to access the generated code
and modify it. In this sense, one of the main
advantages of EcosimPro is the possibility of using
the generated C++ classes for integration with the
communication protocol selected.

There are several choices for communicating the
simulator with other applications (like HMI, SCADA,
controllers, custom applications, etc), and the most
common ones are data files, sockets, DDE; but, in
any case, the result is usually very specific and not
general enough for other cases. Another possibility is
to use OPC (OLE for Process Control). OPC is an
industrial standard designed for applications that need
to interchange and share data in a control
environment.

In the following sections, we show the steps that must
be performed to come up with this integration, and,
thus, converting any simulation in an OPC server
accessible by any OPC client. First of all, some
concepts of OPC will be provided, next, we will
revise the possibilities of the C++ classes generated

by EcosimPro, and, finally, we will describe the
integration of the simulation into the OPC server.

2 OPC

OPC means OLE for Process Control. It is based on
OLE/COM/DCOM Microsoft technology and it is an
industrial standard that provides a common interface
for communication that allows individual software
components to interact and share data. OPC
communication is performed in a client/server way.
The OPC server is a data source (like a hardware
device at the plant floor, but in our case, it will be a
simulation) and any OPC-compliant application (the
client) will have access to the server to read/write any
variable served by the latter (Figure 1). One of the
advantages of providing OPC capability to a
simulation is that any OPC product acting as a client
can access the simulation variables. Variables can be
browsed and selected easily using natural names or
tags.

Applications that
use data

(OPC Client)

Data sources,
read/write

(OPC Server)

HMI/SCADA

High-level
controller,
e.g. MBPC

Display or
Report

Application

Data
Acquisition

Board

Simulator SCADA

DCS

Process Process

PLC

Process

Figure 1: OPC communication between applications

Variables provided by an OPC server are structured
in a hierarchical way. In first place, the OPC server
can be located in a different node (i.e., computer)
than the client. Thus, the root of an OPC server is
specified as the node and the name of the server.
Variables (or items) are included in a hierarchical
namespace from the root. Clients classifies these item
in groups, so the specification of any variable would
be:

ü Node
ü Server_Name
ü Path_through_namespace
ü Item (it contains value, quality and timestamp)

The namespace is an important element in any OPC
server since it allows the client to browse and find the
desired variables. Figure 2 shows a particular
example.

Figure 2: example of namespace

One limitation of OPC is that only runs on Microsoft
platforms; specifically, Windows NT is
recommended, though it can be installed on Windows
95 with DCOM extension, Windows 98, ME and now
in recent Windows 2000.

Several tools exist for programming an OPC
application; most of them consist in that they provide
classes in C++ that facilitates the development of the
application. This allows and facilitates a perfect
integration with the C++ classes generated by
EcosimPro.

3 C++ GENERATION BY ECOSIMPRO

C++ classes generated by EcosimPro allows its
reusing for other tasks. The possibilities that provide
are equal or even superior to that of the experiment
concept in EcosimPro. Anything possible in an
experiment can be done from a C++ program.

3.1 AUTOMATICALLY GENERATED
CLASSES BY ECOSIMPRO

When an experiment is compiled, two C++ classes
are automatically generated:

1. One partition class. It is coded in two files with
name COMPONENT.PARTITION and
extensions h and cpp.

2. One experiment class. It is coded in two files
with name COMPONENT.PARTITION.EX-
PERIMENT and extensions h and cpp.

It will be necessary to use the INTEG_mt.lib library
(provided by EcosimPro), that contains in particular
the integration algorithms. It will also be necessary to
make use of the definition files ecosim.h and
MDL_common.h.

3.2 POSSIBILITIES FROM C++

3.2.1 Initialisation of the experiment

The first step is, from our C++ program, declaring an
experiment object and making an initialisation:

model_simul_exp expe;
initEcosim(&expe);

From this point, the expe object can be utilized to
perform any function allowed in an experiment.

3.2.2 Integration of the experiment (simulation)

In particular, it will be interesting to perform an
integration of the model, so the system is simulated
through time. This can be done in C++ through the
INTEG_CINT() method of the experiment, that
performs the integration during one communication
interval defined in the CINT attribute of the
experiment (we will assume that is given in hours). If
we want that the simulation rate runs in real time, the
code could be like the following (below). It is
obvious that it is necessary that the integration time
must be shorter than real time, so the rest of the time
can be used for waiting (idle time). It is possible to
make the simulation faster than real time introducing
a new parameter acf (acceleration factor).

UINT ThreadExpe (LPVOID lparam)
{
 LARGE_INTEGER tbegin, tend, frec;
 double factor;

// 'factor' is the ration between the
// communication interval and calculation
// time

 expe.INTEG_CINT();
// first integration

 while(true)
{
QueryPerformanceCounter(&tbegin);
if (expe.INTEG_CINT() == INTEG_END)

break;
QueryPerformanceCounter(&tend);

QueryPerformanceFrequency(&frec);
t_calculo = (double) (tend.QuadPart -

tbegin.QuadPart) / (double)
frec.QuadPart;

factor = (expe.CINT)*3600.0/t_calculo;
lmaxac = (lmaxac < factor) ? lmaxac : factor;

if (factor>1)
Sleep((unsigned long)((factor -

1)*t_calculo*1000/acf));
}
return 1;

}

3.2.3 Accessing the variables

Another interesting point is to access the simulation
variables for being able to read values and

transferring them to other modules, as well as being
able to write new values as desired. For performing
the reading, the getValueReal method can be used. It
must carry an argument: the name of the variable in
EcosimPro. For example, for reading the Ca variable
from the experiment, the code would be:

value = expe.getValueReal("Ca");

For writing a value in any variable, it can be done
through the setValueReal method. The arguments are
the name of the variable in EcosimPro and the value
that we want to store:

expe.setValueReal("Fl",value);

These are the main aspects of manipulation of the
experiment from C++ and provide us with a direct
and easy access to the EcosimPro model.

4 INTEGRATION OF OPC AND
ECOSIMPRO

Once OPC principles and how to employ the
EcosimPro model from C++ have been explained, let
show how to integrate both elements. For this
purpose, in first place, it is convenient to have a
“frame” written in C++ with all the functionality of
an OPC server, but without the variables of the
simulation neither the simulation. C++ classes
generated by EcosimPro must be included within this
frame and you must make proper calls and add some
code at proper points in the program. For example,
when the server starts, at the same time, you should
declare the experiment object and make the
initialisation as shown before. Other task would be to
build the namespace depending on the variables of
the simulation. Finally, and also important, is to
establish how reading/writing is performed whenever
any OPC client requires it. This is done using the
methods seen at 3.2.3 section in the routine that
manages communication requests from the clients.

Figure 3 shows a scheme of the steps that must be
followed to build this OPC server.

Write the
simulation
code in
EcosimPro

Experiment
classes in
C++

OPC Server
frame in
C++

Simulation
OPC Server

Integrate:
• Begin simulation
• Namespace
• Accessing variables

OPC Client
(SCADA)

OPC Client
(Controller)

OPC Client
(Supervision)

OPC Client
(VBA in Excel)

Figure 3: Procedure for generating an OPC server based on an EcosimPro simulation

5 INDUSTRIAL APPLICABILITY

OPC is today a real standard in data exchanging
and sharing in the industrial field. Because of this,
practically all of the present SCADAs are able to,
acting like a client, acquire data through OPC. As
explained in [1], one possible application is to
perform the design and configuration of the
SCADA without the need of the plant to exist,
using the OPC server-simulator as the data source
to make the design as well as checking the correct

operation. Experiments in simulation with the
SCADA may suggest a change in the parameters of
the plant at an early stage. Once everything is
working in simulation as desired, and the plant is
physically built, only a reassignment of tags is
necessary so they come, for example, from a data
acquisition board (of course, with an OPC server).

(syncronous or
change-driven)

(per request)

OPC
Client

SCADA OPC
Server

SIMULATOR
(real-time progress,

but can be
accelerated if

desired)

write

read

Figure 4: OPC link between an SCADA and the
simulation

6 CONCLUSIONS

This paper has shown how to convert any
EcosimPro model into an OPC server that contains
the simulation running in real time. In this way, the
simulation become open to communication requests
from any program in a standard and flexible way. If
the design is based on a standard OPC server frame,
including the EcosimPro model into the project is a
matter of hours following the procedure outlined in
this paper.

Acknowledgement

The author express his gratitude for the support of
the CICYT through the FEDER project
“Supervisión y Control Optimizado de Procesos
(TAP 1FD97-1690)”.

References

[1] Acebes, L.F., Zamarreño J.M. (2001) “Diseño
de un SCADA para una planta piloto usando
un simulador OPC”, Automática e
Instrumentación, 316, pp. 76-80.

[2] Opc Task Force, (1998) “OPC Overview”,
OPC Foundation.

[3] Softing, (1999) “OPC Server Toolkit
Programming Guide”.

[4] Zamarreño, J.M., Acebes, L.F., Alvés, R.
(2000) “OPC-based real time simulator:
architecture and practical example”, 41st SIMS
Simulation Conference.

