
Layout-Driven Hot-Carrier Degradation Minimization
Using Logic Restructuring Techniques

Chih-Wei (Jim) Chang, Kai Wang, Malgorzata Marek-Sadowska
Department of Electrical and Computer Engineering,

University of California, Santa Barbara, CA 93106, USA
Abstract
The rapid advances in semiconductor manufacturing technology
have created tough reliability problems. Failure mechanisms such
as hot-carrier effect, dielectric breakdown, electrostatic discharge
and electromigration have posed tremendous threats to the long-
term reliability of VLSI circuits. As a result, designers not only
need analysis tools to locate the problem, but also design-for-reli-
ability tools to correct it. However, these problems often surface
when the physical layout is done and relatively few logic changes
can be made. In this paper, we target the performance optimization
issues in the context of hot-carrier induced degradation. A layout
driven approach combining rewiring, discrete gate resizing, and pin
reordering is proposed. Experimental results show that rewiring-
based incremental logic restructuring is a very powerful technique
in post-layout design for reliability

1. Introduction
Design trends, such as device miniaturization, system-on-a-chip
integration (SOC), and higher operating frequencies, increase con-
cerns about circuit reliability. Hot-carrier effect (HCE) is one of the
major failure mechanisms affecting long-term reliability. As the
device dimensions shrink to the deep sub-micron ranges, the elec-
tric field in the transistor channel increases significantly. Electrons
and holes travelling in the channel may gain high enough kinetic
energy be injected into the gate oxide and cause permanent changes
in the oxide-interface charge distribution. In an NMOS transistor,
HCE leads to trans conductance degradation, shift in threshold volt-
age, and decrease in the drain current driving capability. The perfor-
mance degradation of particular devices leads to the overall circuit
performance degradation. The transistor degradation behavior is a
function of time, the amount of transitions, its fanin driving capabil-
ity, and geometric dimensions. The effects accumulate as the device
is in operation. As a result, circuits age over time.

Hot-carrier effects have been studied extensively in the past few
decades[7][13][19]. Efficient techniques for accurate transistor-
level reliability simulations are implemented in both academic[12]
and commercial tools[17]. However, transistor-level simulations of
large industrial circuits are computationally too expensive to be fea-
sible. [8] proposed a probabilistic approach to estimate the degrada-
tion effect on timing. Recently, a ratio-based gate-level degradation
model was proposed in [20] as a higher level abstraction. Each cell

from the technology library is pre-characterized for its degradation
behavior under various stress conditions. For an excellent review,
refer to [7] for more information.

Design for reliability (DfR) techniques considering hot-carrier
effects fall into two categories. One category includes such tech-
niques as transistor reordering and resizing[4], technology map-
ping[2] and technology-independent factorization[11] to minimize
the maximum hot-carrier degradation effects among all transistors
in the circuit. That is, each transistor in the circuit is labelled with a
relative degradation factor and the optimization goal is to minimize
the maximum of these factors. This goal targets improvement of the
Mean-Time-To-Failure (MTTF) under the assumption that if any
device in the circuit fails, the whole circuit fails. The other category
of techniques includes the method proposed by Li et al which per-
forms input pin reordering and gate resizing [9] to minimize the
performance degradation impact on the entire circuit. The idea is
that not all devices in the circuit are of equal importance as far as
overall performance is concerned. Devices not on the critical paths
can potentially tolerate more degradation without affecting the
overall performance.

However, all these techniques operate at the gate/transistor level
without knowing the physical layout information, which has tre-
mendous impact on device degradation. For example, input slew
rate to the transistor and effective output switching are identified as
the most important factors[6][9] determining device degradation.
Due to the resistive behavior of deep sub-micron interconnects,
slew rates estimation at the gate level is very inaccurate without
knowing the placement and routing information. Also, because of
the underlying Boolean functionality, some gates experience more
switching than the others. Without changing the logic structure of
the circuit, switching activity cannot be controlled for optimization
purposes.

Rewiring is a technique which tries to reconnect wires in a network
without changing the overall functionality. Previous works include
Redundancy Addition and Removal (RAMBO)[5], Set of Pairs of
Functions to be Distinguished (SPFD)[18] and functional symmetry
based rewiring[1]. These techniques have the advantage that only
local modifications of the netlists are made - some wires are added
and some are removed. These techniques are especially suited for
post-layout optimization since the logic can be changed while the
placement solution can be minimally perturbed.

In this paper, we propose a layout-driven hot-carrier degradation
minimization approach which combines the functional symmetry
based rewiring technique with traditional gate resizing and pin reor-
dering techniques. The whole optimization process operates on the
placed (routed) netlist. The philosophy behind this setting is that
interconnect information is very crucial in accurately determining
the hot-carrier degradation on each device. At the post-layout level,
large scale logic restructuring, such as re-factorization and re- map-
ping is not desirable since circuit elements have already been
placed. We adopt the functional symmetry based rewiring technique

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
DAC 2001, June 18-22, 2001, Las Vegas, Nevada, USA.
Copyright 2001 ACM 1-58113-297-2/01/0006...$5.00.

proposed in [1] to restructure the logic while keeping the existing
placement solution minimally perturbed.

2. Preliminaries
In this section, we first review the ratio-based degradation model
from [16][20] followed by the probabilistic switching estimation
technique from [10] and the functional symmetry based rewiring
technique of [1].

Let and be the fresh and aged pin-to-pin signal

delays. is the aged-to-fresh signal delay ratio which character-
izes the overall degradation of all transistors in the gate due to hot-
carrier effect. These variables are defined for each transition type
(rise or fall) of each signal path of the logic gates. Equation 1
shows the relationship between , and .

can be characterized by the following equation:

where n is the number of transistors in series and is the aged-to-
fresh delay ratio when only pin i is under stress. It is defined as fol-
lows:

In this equation, is the slew rate of the input pin. is the

load capacitance of the gate output. is the number of effective

switching of the input pin. By “effective” we mean that the input
pin switching leads to an output pin switching. can be viewed
as a degradation factor of the i-th transistor in series in the con-
ducting path. Conceptually, slower slew rates put transistors in
undesirable bias conditions for a longer periods of time, larger load
capacitances stress transistor longer during charging and discharg-
ing, and more effective switching stresses the transistors more
often. These all lead to more transistor wear-out. Function is
determined in the process of transistor level simulations and the
results are used to build a three-dimensional table for later refer-
ence.

Equation 2 might be worth further explanation. Essentially, it
decouples/simplifies the effect of degradation on the conducting
path into individual contributions from transistors along the path.
For example, consider the high-to-low delay of a two-input NAND
gate in Fig. 1. As a first-order simplification, transistors in series
are regarded as resistors in series. When only M1 switches in the
whole lifetime, R1 degrades to R1 with and the delay

degradation ratio α1 can be written as:

Fig. 1(c) shows the effect. Similarly, if only transistor M2
switches over the whole lifetime, α2 can be written as:.

Now, after characterizing degradation of each of the individual
transistors, the effect of both degraded transistors M1 and M2

along the conducting path can be added (see Fig. 1(e)) and the
resulting α is as follows:

This equation is for the case when n equals two. When the number
of transistors in series is n, this equation can be generalized yield-
ing Equation 2. Based on this extended pin-to-pin delay model, full
chip timing/reliability simulation is demonstrated to be 2 to 4
orders of magnitude faster[20] while accuracy is within 1% of the
transistor-level counterpart.

Najm introduced the notion of equilibrium probability and transi-
tion density for power estimation[10]. The equilibrium probability
of a signal x, denoted P(x), is the fraction of time x is evaluated to
logic 1. The transition density of x, denoted D(x), is the average
number of transitions per unit time. Under spatial and temporal
independence assumption, an efficient algorithm was introduced to
propagate the density values from the primary inputs throughout
the circuit. To see how the propagation algorithm works, recall the
concept of Boolean difference: if f is a Boolean function that
depends on x, then the Boolean difference of f with respect to x is
defined as:

Here, ⊕ represents the Boolean exclusive-or function. The Bool-
ean difference is the XOR of the positive and negative cofactors

with respect to x. Essentially, is the condition that if there is a

transition on x, there is a corresponding transition on f. For exam-
ple, let f be a two-input AND gate. i.e. . The Boolean

difference of f with respect to x1 is . So, when

, any transition at x1 will cause a corresponding transition

at f.

It is shown that under the spatial independence assumption, the
transition density at the output of a function f can be calculated by
the following equation:

Let f: { 0, 1} n → {0, 1} be a single-output completely specified

Boolean function defined on the input set X = { x0, x1,..., xn-1} .
Four cofactors can be defined with respect to two variables xi, xj

Tfresh Taged

α

Tfresh Taged α
Taged αTfresh= 1()

α

α α i

i 1…n=
∑

n 1+–= 2()

α

α i Ψ Tslew CL Nsw,,()= 3()

Tslew CL

Nsw

α

Ψ

β1 β1 1>

α1

Taged M1()
Tfresh

β1R1 R2+

R1 R2+
--------------------------= =

α2

Taged M2()
Tfresh

R1 β2R2+

R1 R2+
--------------------------= =

α
Taged

Tfresh

β1R1 β2R2+

R1 R2+
-------------------------------- α1 α2 1–+= = =

M1

M2

R1

R2

β1R1

R2

R1

β2R2

β1R1

β2R2

(a) (e)(d)(c)(b)

Fig. 1: Ratio derivation[20]

f∂
x∂

----- f
x 0=

f
x 1=

⊕=

fx fx⊕=

f∂
x∂

f x1 x2⋅=

f∂
x1∂

-------- 0 x2⊕ x2= =

x2 1=

D f() P
f∂
xi∂

 D xi()

i 1=

n

∑= 4()

∈ X. i.e. f xi xj, f xi xj, f xi xj, and f xi xj. Symmetry is defined as the
equivalence between any of the two cofactors. Among them, two
types of symmetries are of special interest and are stated below:

Definition 1: xi and xj are non-equivalence symmetric (NES) in
f(X) if and only if f xi xj = f xi xj. That is, the exchange of xi and xj
does not change f. i.e. f(..., xi,..., xj,...) = f(..., xj,..., xi,...).

Definition 2: xi and xj are equivalence symmetric (ES) in f(X) if
and only if f xi xj = f xi xj. That is, the exchange of xi and xj does not
change f. i.e. f(..., xi,..., xj,...) = f(..., xj,..., xi,...).

We now discuss the concept of implication supergate and its rela-
tionship to functional symmetry. Implication supergate was intro-
duced in [15] for Automatic Test Pattern Generation (ATPG)
applications. It was later generalized, used to identify easily detect-
able functional symmetries in a Boolean network and applied for
post-placement delay optimization[1]. Generalized implication
supergate is a set of connected gates that functionally behave like a
big AND, OR, or XOR gate. For example, the circuit in Fig. 2(a)
consists of five gates but they behave functionally the same as a
big OR gate rooted at f with some input phase inversions. To
extract all generalized implication supergates from a given netlist,
we start from the primary outputs and process each gate in a
reverse topological order. At each primary output, depending on its
gate type, either direct backward implication or XOR propagation
is attempted[1]. Multiple-fanout nodes, or nodes where backward
propagation stops, are treated as new implication supergate roots
and the propagation process continues. This procedure stops when
all primary inputs are reached. After the extraction, the network is
uniquely partitioned into AND, OR, and XOR supergates with
inverters and buffers at their pins.

The most important result developed in [1] is that wires that are
covered by the same generalized implication supergate are either
non-equivalent or equivalent symmetric and can be swapped with-
out changing the overall functionality of the circuit. This is illus-
trated in Fig. 2. Since pins h and k are covered by the same
implication supergate rooted at f, they are functionally symmetric
and can be swapped. The swap results in netlist shown in Fig. 2(b)
which is functionally equivalent to the one in Fig. 2(a). Wire swap-
ping has two major effects on circuit performance. First, it may
reduce the number of levels the critical path has to travel. For
example, if the critical path extends from k to h in Fig. 2(b), then it
is beneficial to swap the wires to achieve the result in Fig. 2(a).
Second, the interconnect loading can dramatically be reduced on
the critical path and hence improve the slew rate. Swapping also
changes the switching activity of the gates associated with the
swapping as well as gates in their fanout cones.

3. Performance Optimization for Hot Carrier
Effect

In this section, we first discuss the motivation of this work fol-
lowed by the problem formulation and the proposed algorithm.

3.1 Motivation
Even though large-scale fast yet accurate reliability simulation is
feasible, there are no systematic ways to correct the timing degra-
dation found. In [6], design for reliability considerations at circuit
level are given as a set of guidelines. In our paper, we move one
step further by considering the design for reliability issues at the
logic level guided by accurate layout information. Our main argu-
ment is that only circuit level consideration is not adequate. From
Equation 3, it is clear that degradation is affected by three vari-
ables. Namely, , , and . In a digital circuit, these

three parameters could potentially vary dramatically among differ-
ent gates. In other words, the stress is uneven. Some transistors
wear out faster than the others. For example, because of the under-
lying Boolean logic, some gates in the circuit switch much more
frequently than the others and some gates have larger loads than
the others. Circuit-level techniques simply cannot address all these
phenomena.

We now discuss the effect of gate sizing, pin reordering, and rewir-
ing on HCE and circuit performance. To improve of an

input pin, the driver of the pin can be resized up to have better
driving capability to improve the slew rate. However, a larger
driver causes larger loading on the preceding stage, which

needs to be taken into account for trade-off. Rewiring can be used
to either reduce the loading of the driver by minimizing the inter-
connect loading, or simply to replace the driver by another driver
which has better driving capability or is physically closer to the
sink pin to reduce the interconnect length. The effective switching

can be changed only by rewiring the netlist.

Another HCE effect concerning the ordering of transistors has
been observed in [6][9]. The top nMOS transistors that are directly
connected to the output node have the potential of experiencing the
most damage if they switch last. This is because the stress on
nMOS transistor is directly related to Vds (drain-to-source voltage
difference). Suppose there is an effective transition on pin xi (other
inputs have already arrived). When xi connects to the output node,
Vds is larger than Vds in the case when xi is closer to the ground.
This is due to the charge redistribution on internal nodes. Fig. 3
illustrates this situation. However, conventional timing optimiza-
tion techniques tend to put the last arriving signal closer to the out-

1

f

0

0

0

(a)

h k

1

f

0

0

0

(b)

h

k

Fig. 2: h and k are swappable Fig. 3: Pin position affects delay and reliability

(a) (b)

1

1

1

1

Tslew CL Nsw

Tslew

CL

Nsw

put node to minimize the overall arrival time. This trade-off also
needs to be considered during optimization.

3.2 Problem Formulation
Let and be the non-degraded and degraded

critical path delays of a design D. We formulate the following
problem:

Fresh Delay Constrained Aged Delay Optimization
Problem (FDCADOP):
Instance: We assume that we are given a placed and routed stan-
dard-cell design D and a hot-carrier degradation pre-characterized
standard cell library L. Let P be the family of the sets of pins that
are identified to be functionally symmetric and hence can be
swapped without changing the overall functionality of the design
D.

Configuration: Each gate g ∈ D can be resized by a functionally
equivalent while electrically different cell from L. Each function-
ally symmetric pin pair p∈ P can be swapped to change the logic
structure of D. We consider pin reordering as a special case of
functional symmetry.

Optimization: Let D’ be the new design after gate resizing and pin
swapping from the original design D. The optimization is to find a
D’ that satisfies the following goals:

Essentially, we want to minimize the performance degradation of
the aged design by redistributing the stress to logic elements that
are not on the timing critical path. However, we are not willing to
sacrifice any performance loss of the fresh design. It is to be noted
that simply optimizing (traditional delay optimization

goal) does not necessarily lead to an optimized solution of
. This is because an optimized might lead to

unfavorable stress conditions on the transistors along the critical
path. As discussed in the previous section, various trade-offs have
to be considered simultaneously, and we need a unified algorithm
taking into account both performance requirement and the aging
effect to resolve this situation. Our algorithm will be detailed in the
next section.

3.3 The Algorithm
To solve the FDCADO problem, we adopt a probabilistic approach
based on [10] to estimate the Nsw of each pin of the gate. Under the
spatial and temporal independence assumption, Nsw for a pin xi of
gate f under zero-delay model can be expressed as:

where is the per unit time transitions number of the input

pin xi, is the probability of propagating a transition from

pin xi to the output of gate g, and is the total time period. We
assume that half of the transitions Nsw are low-to-high and half are
high-to-low.

Our approach is based on the gate sizing algorithm developed in
[3] and illustrated in Fig. 4. The arrival time and required time are
first propagated in the circuit and the slack, which is defined as the
required time minus the arrival time, is calculated. Essentially, the
timing optimization problem is to maximize the minimum slack in
the whole circuit. Generalized implication supergate (GSG) extrac-
tion[1] is then applied to extract all GSGs from the input netlist.
All possible gate resizing and pin swapping choices inside a GSG
are considered as the set of possible moves for that GSG. The move
which has the best fitness value is selected as the best move of the
GSG. The fitness is defined as follows:

where and are the change of minimum slack as a

result of the move in the local neighborhood defined as gates
within a user-specified level limit from the source of the move.
The neighborhood is an effective way to quantify the benefit of
each move[3]. It has been observed that slack change outside the
neighborhood tends to be very small and can be neglected for fit-
ness calculation. For each possible move, we propagate the change
in slew rate switching activity, as well as arrival/required time in
the local neighborhood, to calculate the minimum slack change.
The upper part of the fitness function defines the situation when
the move degrades both the fresh and aged circuits. This kind of
move is not desirable and is assigned zero fitness value, which
means it will never be executed. On the other hand, the exponential
dependency on gives priority to moves

Tfresh D() Taged D()

minimize Taged D'()

s.t.

Tfresh D'() Tfresh D()≤

Tfresh D'()

Taged D'() Tfresh D'()

Nsw D xi()P
f∂
xi∂

 T=

D xi()

P
f∂
xi∂

T

Fitness
0 ∆Sfresh 0< , ∆Saged 0<

e
α∆Sfresh β∆Saged+

otherwise

=

Fig. 4: Algorithm

function FDCADO (N: placed netlist, L: technology
library)
Calculate_Slack();
Extract_Generalized_Implication_Supergate();
update ← all GSG in the circuit;
moves ← ∅ ;
loop {

old_cost ← Cost(N);
foreach GSG ∈ update {

GSG.move ← ∅;
GSG.fit ← Fitness(N);
foreach gate g ∈ L implementing GSG {

fit ← Fitness(N[GSG ← g]);
if (fit > GSG.fit) {

GSG.fit ← fit;
GSG.move ← g;

}
}
foreach swap s of GSG {

fit ← Fitness(N[GSG ← GSG(s)];
if (fit > GSG.fit) {

GSG.fit ← fit;
GSG.move ← s;

}
}

}//end of “foreach gsg ∈ update”
moved ← BestMultipleMove(N);
update ← GetPerturbedNodes(N, moved);

} until Converge(old_cost, Cost(N), moved)

∆Sfresh ∆Saged

α∆Sfresh β∆Saged+

which accelerate both the fresh and aged circuit. α is typically
chosen to be much larger than β to penalize the situation when the
fresh delay is degraded while the aged delay is improved.

Initially, the update list contains all GSGs in the circuit. In the first
phase, best move of each GSG is selected based on its fitness
value. During the second phase, the best moves of all GSGs in the
update list are sorted with respect to their fitness values. A
sequence of moves (Best Multiple Move) is then determined and
executed based on the sorted list to maximize the overall gain in
fitness. GSGs which are neighbors to the executed moves are put
into the update list (Get Perturbed Nodes) for the next round of fit-
ness calculation. These two phases iterate until either the iteration
limit is exceeded or no more improvements can be made.

It is to be noted that when designing our algorithm, we intention-
ally make no assumption about the property of the function in

Equation 3. That is, no matter how is characterized, either by
analytical equation, empirical formula, or simply a table-look-up
method, our algorithm can still apply. This further demonstrates
the robustness of our approach.

4. Experimental Results
A prototype tool has been implemented on top of the SIS 1.3 pack-
age[14] and tested on a set of benchmarks from MCNC 91 bench-
mark suite. All benchmarks are first optimized using SIS script
“script.rugged” and timing-driven technology mapped to a 0.35µm
commercial standard cell library. The library contains gates with
the number of inputs ranging from 2 to 4. Each logic type has 4
different implementations. The mapped netlist is fed to a commer-
cial timing-driven placer. Cell locations are extracted after place-
ment. To model interconnect, we use 2 pF/cm for unit capacitance
and 2.4KΩ/cm for unit resistance. All benchmarks runs are per-
formed on an AMD Athlon 650Mhz processor with 256 MB of
memory. To characterize the cell library with aging information,
we use the transistor level aging simulator BERT[12] together with
HSPICE and verified with analytical equations obtained from [7]
for an 10-year period. We only characterize the aging effect on
NMOS transistor since the degradation of a PMOS transistor is rel-
atively negligible[7] for the technology we are using.

To model the interconnect after placement, a net model is neces-
sary to estimate the delay along the interconnect. Assume all pins
have known coordinates after placement. Each net is modeled as a
star: the center of the star is the center of gravity of all its termi-
nals. A net is divided into several segments: from source to the star
center and from the star center to each sink. Each segment is mod-
eled by lumped RC. We use Elmore delay model for delay calcula-
tion. Since the distance from the star center to each sink may vary,
each sink may have different delay and slew rates from the source.
It is to be noted that our algorithm does not depend on the net
model. The optimization can also work on global or detailed
routed designs.

Three algorithms have been implemented to show their relative
strength in optimizing the aged circuit under fresh delay constraint:
1) Pin reordering, 2) Gate sizing, and 3) A hybrid approach dis-
cussed in the previous section. Experimental results are shown in
Table 1. The first column lists the name of each benchmark. The
second and third column show the fresh and aged delays of the
original circuit after placement. This fresh delay is used as the tim-
ing constraint for the aged circuit optimization. Column four is the
percentage of performance degradation due to circuit aging. Col-
umn five and six are the aged delay after pin reordering and the
corresponding degradation percentage as compared to the original
fresh delay. Columns seven and eight show the aged delay after

gate sizing and the corresponding degradation percentage. Column
nine shows the aged delay after our hybrid approach and column
ten gives the degradation percentage compared to the original fresh
delay. Column eleven, twelve, and thirteen are the CPU time in
seconds for pin reordering, gate sizing, and our approach, respec-
tively.

The results clearly show the advantage of considering logic
restructuring in combination with traditional techniques. On aver-
age, the percentage of degradation can be lowered to be within 1%
of the original fresh delay using our technique, while pin reorder-
ing and gate sizing result in 8.8% and 4.6% of degradation respec-
tively. The percentage of area change caused by gate sizing is
within 3% and is assumed to be handled by an ECO placer.

5. Conclusion and Future Work
In this paper, a timing optimizer targeting directly the circuit aging
behavior is proposed. Combining functional symmetry based on
rewiring, pin reordering, and gate sizing, our approach shows
much better results than the individual traditional approaches. The
major difference of our approach is that layout information is taken
into account while exploring the logic flexibility without perturb-
ing the existing placement solution too much. On the average, we
can minimize the impact of circuit aging to be within one percent
of the original design specification.

Our approach can further be improved in several directions, espe-
cially on the estimation of switching activities. The probability
simulation framework proposed in [8] is directly applicable. Also,
the logic restructuring approach used in this work is limited to
functional symmetries-based rewiring. Other rewiring techniques
such as [5][18] could potentially be used to explore another degree
of freedom during optimization. Buffer insertion can also be used
to improve the signal slew rate for better degradation control.

Due to the continuing shrinking of device feature sizes, various
physical effects pose serious threats to circuit performance and
reliability. These effects often emerge after the physical layout is
generated and hence relatively few logic changes can be made. We
have demonstrated the use of functional symmetry based rewiring
to minimize the effect of hot-carrier induced circuit aging at post-
layout level. In the deep sub-micron era, the ability to perform
incremental logic restructuring is of paramount importance. Tech-
niques presented in this paper serve as an essential step to cope
with these physical effects.

Acknowledgments

This work is sponsored in part by Semiconductor Research Corpo-
ration under grant 98-DJ-619 and National Science Foundation
under grant CCR9. The authors would like to thank Dr. Tan-Li
Chou from the Strategic CAD Labs of Intel Corporation for his
motivation at the early stage of this work.

References

[1] C.-W. Chang, C.-K. Cheng, P. Suaris, and M. Marek-Sad-
owska, “Fast Post-placement Rewiring Using Easily Detect-
able Functional Symmetries”, pp. 286-289, Design Automation
Conference, 2000

[2] Z. Chen and I. Koren, “Technology Mapping for Hot-Carrier
Reliability Enhancement”, Proc. of the SPIE - The Interna-
tional Society for Optical Engineering, vol.3216, pp. 42-50,
1997

[3] O. Coudert, “Gate Sizing for Constrained Delay/Power/Area
Optimization”, in IEEE Trans. on VLSI, pp. 465-472, Dec.
1997

Ψ
Ψ

[4] A. Dasgupta and Ramesh Karri, “Hot-Carrier Reliability
Enhancement via Input Reordering and Transistor Sizing”,
Proc. of Design Automation Conference, pp. 819-824, 1996

[5] L. A. Entrena, K. -T. Cheng, “Combinational and Sequential
Logic Optimization by Redundancy Addition and Removal”,
IEEE Trans. on Computer-Aided Design, 1995, pp. 909-916

[6] Y. Leblebici, “Design Considerations for CMOS Digital Cir-
cuits with Improved Hot-Carrier Reliability”, IEEE Journal of
Solid-State Circuits”, vol. 31, No. 7, pp. 1014-1024, 1996

[7] Y. Leblebici and S.-M. Kang “Hot-Carrier Reliability of MOS
VLSI circuits”, Kluwer Academic Publishers, 1993

[8] P.-C. Li, G. I. Stamoulis, and I. N. Hajj, “A Probabilistic Tim-
ing Approach to Hot-Carrier Effect Estimation”, IEEE Trans.
on Computer-Aided Design, vol. 13, No. 10, Oct. 1994

[9] P.-C. Li, and I. N. Hajj, “Computer-Aided Redesign of VLSI
Circuits for Hot-Carrier Reliability”, IEEE Trans. on Com-
puter-Aided Design, vol. 15, No. 5, May 1996

[10]F. N. Najm, “Transition Density: A New Measure of Activity
in Digital Circuits”, IEEE Transactions on Computer-Aided
Design, vol. 12, no. 2, Feb, 1993, pp. 310-323

[11]K. Roy and S. Prasad, “Logic Synthesis for Reliability: An
Early Start to Controlling Electromigration & Hot-Carrier
Effects”, IEEE Trans. on Reliability, vol. 44, No. 2, 1995

[12]R. H. Tu et al, “Berkeley Reliability Tools - BERT”, IEEE
Trans. on Computer-Aided Design of Integrated Circuits and
Systems, vol 12, No. 10. Oct. 1993

[13]C. Hu et al, “Hot-Electron-Induced MOSFET Degradation -
Model, Monitor, and Improvement”, IEEE. Trans. on Electron
Devices, vol. ED-32, No. 2. Feb. 1985

[14]SIS: A System for Sequential Circuit Synthesis”, Report M92/
41, University of California, Berkeley, May, 1992

[15]K.-H. Tsai, R. Tompson, J. Rajski, and M. Marek-Sadowska,
“STAR-ATPG: a high speed test pattern generator for large
scan designs”, Proceedings of International Test Conference
1999, pp. 1021-1030

[16]L. Wu et al, “Glacier: A Hot Carrier Gate Level Circuit Char-
acterization and Simulation System for VLSI Design”, Intl.
Symposium on Quality Electronic Design, pp. 73-79, 2000

[17]BTA Technology, http://www.btat.com
[18]S. Yamashita, H. Sawada and A. Nagoya, “SPFD: A new

method to express functional flexibility”, IEEE Trans. of Com-
puter -Aided Design of Integrated Circuits and Systems, Aug,
2000

[19]P. Yang, and J.-H. Chern, “Design for reliability: the major
challenge for VLSI”, Proceedings of the IEEE, vol.81, (no.5),
May 1993. p.730-44

[20]H. Yonezawa et al, “Ratio Based Hot-Carrier Degradation
Modeling for Aged Timing Simulation of Millions of Transis-
tors Digital Circuits”, Intl. Electron Devices Meeting, pp. 93-

96, 1998

TABLE 1. Experimental Result

Circuit
Tfresh

(D)
Taged
(D) %

Taged
(D’)
PR

%
PR

Taged
(D’)
GS

%
GS

Taged
(D’)
Ours

%
Ours

CPU
PR

CPU
GS

CPU
Ours

C432 11.0 12.1 -10.4 12.1 -10.2 11.3 -2.6 11.00 0.0 1.0 1.4 6.3

C499 6.4 7.2 -11.8 7.2 -11.5 6.8 -5.4 6.6 -2.1 3.2 6.4 17.1

C880 10.7 11.3 -6.1 11.1 -4.6 11.0 -2.7 10.7 -0.2 1.5 4.5 6.0

C1355 6.3 7.1 -12.0 7.1 -11.4 6.7 -5.5 6.5 -2.4 3.2 6.8 16.9

C1908 10.4 10.9 -5.1 10.9 -5.1 10.8 -4.4 10.4 0.0 2.6 3.8 15.4

C3540 14.2 16.0 -12.2 15.8 -11.3 15.0 -5.4 14.5 -2.1 13.2 19.0 47.5

C5315 10.2 11.2 -9.8 11.0 -8.4 10.5 -3.2 10.3 -1.5 6.8 12.0 29.1

C6288 40.4 44.7 -10.5 44.5 -9.9 44.2 -9.3 40.5 -0.2 18.2 36.4 104.6

C7552 10.7 11.5 -7.7 11.5 -7.1 11.0 -2.9 10.7 -0.4 7.8 10.4 21.3

average -9.5 -8.8 -4.6 -1.0

