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Abstract 

 

In this paper, we demonstrate that genetic algorithms may provide an alternative solution for 

optimal investment allocation decision in defined contribution pension schemes. Most of the 

previous research papers attempt to solve the problem analytically. The problem with 

analytical solutions is that they make numerous restricting assumptions such as lognormal 

distributions, time-invariant covariance matrices, or short selling restrictions that are not (or, 

rather, that cannot be) incorporated into the model for the sake of mathematical tractability. 

Although some of these restricting assumptions can be relaxed, as previously demonstrated by 

relaxing the assumption of time- invariant covariance matrix, such improvements come at the 

expense of increased mathematical complexity. Genetic algorithms provide numerical 

solutions that are not bound by such restricting assumptions. For instance, asset returns can be 

simulated via a bootstrap method so that the genetic algorithm can work with any distribution 

and not just with lognormal distribution. Similarly, short selling restrictions can easily be 

incorporated in the genetic algorithm. This study focuses on the relative performance of 
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genetic algorithms in solving the asset allocation problem for defined contribution pension 

schemes. In particular, we compare the simulation results from a standard analytical model 

with results from a genetic algorithm for analyzing the effect of short selling restrictions. This 

comparison also sheds light on the degree of suboptimality due to restricting assumptions 

used in analytical models. 

 

Keywords: Defined Contribution Pension Scheme, Genetic Algorithms, Simulation Approach, 

Life Insurance Mathematics, Stochastic Processes. 

 

 

1. Introduction and Related Research 

 

Optimal investment allocation decision in defined contribution pension schemes is quite a 

different problem compared to other portfolio management problems. The Markowitz 

portfolio theory, or the so called modern portfolio theory, attempts to minimize the variance 

of the portfolio return given an expected portfolio return or attempts to maximize the expected 

portfolio return given the variance of the portfolio return in a single period. In defined 

contribution pension schemes, the problem is defined as the minimization of a given cost 

function which reflects the difference between a target fund level and actual fund level for 

each year. Hence, the problem is attempted to be solved at each point in time given the target 

and actual fund levels for the previous period. 

 

Vigna and Haberman (2001) apply dynamic programming techniques to find an optimal 

investment strategy for the scheme member. They consider a defined contribution pension 

scheme where the fund can be invested in two assets with different levels of risk. This paper 

simplifies the problem by assuming that the asset returns are independently distributed. Their 

results suggest the appropriateness of the lifestyle strategy, where the fund is predominantly 

invested in higher risk instruments, namely equities, when the member is young and it is 

gradually switched into lower risk instruments, namely bonds and cash, as the member 

approaches retirement. 

 

Haberman and Vigna (2002) extend the analysis in their previous paper to n assets where the 

asset returns may be correlated. They again confirm that the optimal strategy for a risk-averse 

scheme member is the lifestyle strategy. They find that the member switches into lower risk 
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assets sooner as risk aversion increases and the switch gets realized later as the time to 

retirement gets longer. They find no evidence of a significant impact of correlation between 

asset returns on simulation results. They utilize three different risk measures, namely 

probability of failing the target, mean short fall, and the 5th percentile to analyze the final net 

replacement ratio. These different risk measures provide different and contradictory results. 

Also, in this paper, they impose the constraint that short selling is not allowed. Hence, for the 

case of two assets, when the portfolio weight of a certain asset is greater than 1, it is truncated 

to 1, and the other portfolio weight which is de facto less than 0 (since sum of portfolio 

weights is equal to 1) is set equal to 0. This approach, which may yield suboptimal results, is 

adopted for the sake of mathematical tractability. 

 

Senel and Tuncer (2003) test alternative investment strategies for defined contribution 

pension schemes when asset returns and salary growth rates are not independent. Their results 

suggest that the assumption of zero correlation among asset returns and salary growth rates 

may considerably affect the optimal portfolio selection process. Besides, the net replacement 

ratio, which is considered to be the single most important indicator for the success of a 

retirement fund, is overestimated for most cases with the assumption of zero correlation. 

 

Tuncer and Senel (2004) develop a model for the optimal investment allocation decision in a 

defined contribution pension scheme whose funds are invested in n different assets with a 

time-varying covariance matrix. They employ a GARCH (1, 1) model to incorporate the 

dynamic nature of asset risk. By relaxing the assumption of a time- invariant covariance 

matrix for asset returns, they test for the effects of time-varying risk on investment allocation 

decisions. In general, they conclude that failing to recognize the time-varying risk structure of 

asset returns may lead to suboptimal investment allocation decisions. The degree of bias 

depends on the magnitude of GARCH effects. They base their conclusions on three different 

risk measures suggested by Haberman and Vigna (2002), i.e. probability of failing the target, 

mean shortfall, and 5th percentile of the simulated distribution of the net replacement ratio. In 

this study, they also consider the effect of correlations between asset returns on investment 

allocation decisions, which they have found to be potentially significant for the time- invariant 

case in Senel and Tuncer (2003). They observe that the case for the effect of correlations is 

stronger with the assumption of a time-varying risk structure. 
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Most of the previous research papers attempt to solve the problem analytically. The problem 

with analytical solutions is that they make numerous restricting assumptions such as 

lognormal distributions, time- invariant covariance matrices, or short selling restrictions that 

are not (or, rather, that cannot be) incorporated into the model for the sake of mathematical 

tractability. Although some of these restricting assumptions can be relaxed, as Tuncer and 

Senel (2004) have previously demonstrated by relaxing the assumption of time- invariant 

covariance matrix, such improvements come at the expense of increased mathematical 

complexity. Genetic algorithms provide numerical solutions that are not bound by such 

restricting assumptions. For instance, asset returns can be simulated via a bootstrap method so 

that the genetic algorithm can work with any distribution and not just with lognormal 

distribution. Similarly, short selling restrictions can easily be incorporated in the genetic 

algorithm. This study focuses on the relative performance of genetic algorithms in solving the 

asset allocation problem for defined contribution pension schemes. In particular, we compare 

the simulation results from a standard analytical model with results from a genetic algorithm 

for analyzing the effect of short selling restrictions. This comparison also sheds light on the 

degree of suboptimality due to restricting assumptions used in analytical models. 

 

 

2. Genetic Algorithms 

 

Genetic algorithms (or sometimes called evolutionary algorithms) were introduced by 

Holland (1975) as a method to perform randomized global search in a solution space. As 

McNelis (2005) indicates, the usefulness of classical optimization techniques such as Newton-

based optimization (including backpropagation) and simulated annealing crucially depend on 

how good the initial parameter guess is. Hence, these techniques are vulnerable to the 

possibility of getting trapped at local minima. On the other hand, the likelihood of landing in a 

local minimum is greatly reduced with a genetic algorithm. The genetic algorithm does not 

require the approximation of Hessian matrices as in the case of Newton-based optimization. 

Hence, it is a statistical search process like simulated annealing. Yet, the term statistical does 

not suffice to describe the genetic algorithm, since the process is also evolutionary. Hence, the 

genetic algorithm is better termed as evolutionary stochastic search. 
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There are many different versions of the genetic algorithm which utilize different operators. 

The following algorithm due to McNelis (2005) is a brief description of just one version, 

which has also been used in the simulations of this study. 

 

The method starts with N (population size) random solution vectors, the elements of which 

correspond to the input variables of the function to be optimized.1 This phase of the algorithm 

is called “population creation”. 

 

In the “selection” phase, four solution vectors are randomly picked with replacement to form 

two pairs. Through a simple fitness tournament, the members of each pair are compared with 

respect to the fitness function, the function to be optimized, to select the winner of each pair. 

The winners, or the so called parents, are retained for breeding purposes. Though it is not 

always used, the “selection” phase has been demonstrated to speed up the convergence of the 

genetic algorithm. 

 

In the “crossover” phase, the two parents breed two children according to a crossover method, 

which may be shuffle crossover, arithmetic crossover, or single-point crossover. For instance, 

in the shuffle crossover method, the corresponding elements of the parent vectors are swapped 

with a predetermined probability. The swap probability for each element is independent of the 

swap probabilities for the other elements. 

 

In the “mutation” phase, each element of the two children is exposed to mutation with a small 

probability which decreases through time. 

 

In the “election tournament” phase, the fitness of the parents and the children are evaluated 

and the two vectors with the best fitness score are elected for the next generation. The election 

operator is due to Arifovic (1996), who indicates that the election operator endogenously 

controls the realized rate of mutation in the genetic search process. 

 

The phases “selection” through “election tournament” are repeated until the next generation is 

populated with N vectors. An optional phase after the next generation is born is called 

                                        
1 See, for instance, McNelis (2005) for a description of genetic algorithms. 
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“elitism” which requires the best member of the previous generation to replace the worst 

member of the new generation if the former is fitter than the latter. 

 

The genetic algorithm terminates after a prespecified maximum number of generations, when 

it hopefully converges to a solution; i.e., no improvement is observed in the fitness score of 

the best member of each generation for several generations. 

 

The downside to the genetic algorithm is that it can be extremely slow. This phenomenon is 

an example of the well-known curse of dimensionality in nonlinear optimization. One solution 

to overcome this problem could be the employment of a hybrid approach, where optimization 

starts with the genetic algorithm and continues with the gradient-descent or simulated 

annealing methods. Another possible solution can be the use of parallel algorithms with the 

advent of parallel processors. In particular, the repetition of “selection” through “election 

tournament” for the formation of next generation is very suitable for the utilization of a 

parallel algorithm. 

 

Shapiro (2002) reviews genetic algorithms and soft computing techniques in general in the 

field of insurance. He mentions a number of studies with genetic algorithms, such as Frick et 

al. (1996), Lee and Kim (1999), Wendt (1995), and Jackson (1997). The studies by Wendt 

(1995) and Jackson (1997) investigate asset allocation. Wendt (1995) compares the portfolio 

efficient frontier of a genetic algorithm to that of a sophisticated non- linear optimizer, 

whereas Jackson (1997) investigates the performance of a genetic algorithm as a function of 

discontinuities in the search space. 

 

 

3. The Model 

 

In our defined contribution pension scheme, funds can be invested in n assets with different 

levels of risk. Contributions, which are assumed to be a fixed percentage of salary, are paid at 

the beginning of each period. The only decrement from accumulated funds is assumed to be 

retirement. Taxation is not taken into account; i.e., contributions and investment income are 

assumed to be exempt from tax. 
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3.1. Derivation of Optimal Portfolio Weights with the Analytical Model 

 

We use the model developed by Tuncer and Senel (2004). Following Haberman and Vigna 

(2002), they define a disutility or cost function that penalizes deviations from targets for level 

of funds as follows: 

 

( ) ( )tt
2

ttt fFfFC −α+−= , t = 0, 1, ..., N,       (1) 

 

Ct : Cost incurred at the end of period t 

Ft : Target level for accumulated funds at the end of period t 

ft : Actual level of accumulated funds at the end of period t 

α  : Risk aversion parameter 

 

where α  = 0. For the above disutility function, risk aversion is decreasing with increasing risk 

aversion parameter α . Hence, greater values of α  are associated with less risk-averse 

individuals. The target level for each period is given a priori. 

 

Hence, the optimization problem can be stated as 

 

.                  (2) 

 

The actual level of funds at time t + 1 can be expressed as  

 

( )( )Wy′+=+ cff t1t ,          (3) 

 

or, 

 

( )( )yW′+=+ cff t1t ,          (4) 

 

where c is the contribution rate, y is the vector of portfolio weights, and W is the vector of 

real (gross) asset returns. Here, the real salary growth rate is assumed to be zero and the real 

salary level is set at 1. Therefore, the annual contribution by the individual is assumed to be 

( )t1t ICEmin +
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equal to a constant contribution rate, c, throughout the whole period. Although y and W are 

dependent on time, the subscript t is dropped for convenience. 

 

y and W can explicitly be written as 

 

[ ]ntt2t1 yyy K=′y ,         (5) 

 

and, 

 

[ ]ntt2t1 WWW K=′W , itX
it eW = , Xit ~ N( iµ , 2

itσ ),    (6) 

 

where Xit is the real force of interest for the i-th asset in period t, which is assumed to be 

constant throughout the period. The asset returns are assumed to be lognormally distributed 

and the usual assumption of time-invariant covariance matrix of asset returns is relaxed. If 

equation (3) is rewritten explicitly, 

 

( )[ ]





















+=

+µ

+µ

+µ

+

n tn

t22

t11

V

V

V

ntt2t1t1t

e

e
e

yyycff
K

K , Vit ~ N(0, 2
itσ ),    (7) 

 

or, 

 

( )( )n tnt22t11 V
nt

V
t2

V
t1t1t eeyeeyeeycff µµµ

+ ++++= K .      (8)

     

Tuncer and Senel (2004) define 

 

[ ]n21 eyeyey ntt2t1
µµµ=′ KTy ,        (9) 

 

and, 

 

[ ]n tt2t1 VVV eee K=′
TW ,         (10) 
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where yT is the transformed vector of portfolio weights and WT is the transformed vector of 

(gross) asset returns. Similar to y and W, yT and WT are also dependent on time, but the 

subscript t is dropped for convenience. Then, equation (8) can be rewritten as 

 

( ) 




 ′+=+ TT Wycff t1t ,          (11) 

 

or, 

 

( ) 




 ′+=+ TT yWcff t1t .          (12) 

 

If the constraint that the portfolio weights should add up to 1 is imposed upon, the 

optimization problem can be stated as 

 

 

subject to 1=′ Tyµ ,         (13) 

 

where µ is a vector comprised of all ie µ− ’s. µ can explicitly be written as 

 

[ ]n21 eee µ−µ−µ−=′ Kµ .         (14) 

 

In order to solve the optimization problem in equation (13), a Lagrange multiplier, κ , is 

associated with the above constraint and the Lagrangian 

 

( ) ( )1ICE t1t −′κ−+ Tyµ          (15) 

 

is formed. 

 

Now, the optimization problem in equation (13) becomes 

 

( ) ( )[ ]1ICEmin t1t −′κ−+ Tyµ .         (16) 

( )t1t ICEmin +
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Tuncer and Senel (2004) derive yT, the transformed optimal portfolio weights that minimize 

the expected cost function at t + 1, as 

 

( )( ) ( )
( )2

t

1
t

1
t1t

cf2
IEcfF2

+
κ++α+

=
−−

+ µHWH
y T

T ,       (17) 

 

where, 

 






 ′= tIE TTWWH  and         (18) 

 

( ) ( )( ) ( )
µHµ

WHµ T
1

t
1

t1t
2

t IEcfF2cf2
−

−
+

′
′+α+−+

=κ .      (19) 

 

The analytical model doesn’t take into account the short selling restriction. Hence the 

portfolio weights to be calculated using yT are truncated to the range [0, 1]. 

 

This is a straightforward procedure for two assets. If one of the portfolio weights is less than 

0, the other portfolio weight must be greater than 1. Furthermore, the difference between the 

latter and 1 must be equal to the difference between the former and 0, since the sum of the 

portfolio weights is equal to 1. Hence, if one of the portfolio weights is less than 0, it is set 

equal to 0 and the other portfolio weight, which is greater than 1, is set equal to 1 if we have 

only two assets. 

 

The problem becomes much more complicated for more than two assets. If the above 

procedure is applied, then the sum of the portfolio weights will not be equal to 1. For instance, 

assume that we have three assets for which the portfolio weights are –0.5, 0.3, and 1.2. If we 

set the portfolio weights for the first and third assets to be equal to 0 and 1, respectively, then 

the sum of the portfolio weights is going to be equal to 1.3. Therefore, we need a more 

complicated procedure in such a case. 

 

We propose the following procedure for the case of three assets: 
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i. Find the maximum distance between the portfolio weights and the violated boundaries 

for those portfolio weights outside the range [0, 1]. 

ii. If the portfolio weight corresponding to the maximum distance is greater than 1: 

• Set that portfolio weight to be equal to 1. 

• Set the other two portfolio weights, which are de facto negative, to be equal to 0. 

If the portfolio weight corresponding to the maximum distance is less than 0: 

• Set that portfolio weight to be equal to 0. 

• Reduce the other portfolio weights, which are de facto positive, so that they are 

proportional to their original sizes and the total reduction is equal to the maximum 

distance. 

 

If this procedure is applied to the above mentioned example, the curtailed portfolio weights 

become 0, 0.175, and 0.825. 

 

3.2. Derivation of Optimal Portfolio Weights with the Genetic Algorithm 

 

In the derivation of optimal portfolio weights with the genetic algorithm, we use two different 

variants of the genetic algorithm, namely the real value encoded and the binary value 

encoded. 

 

In the real value encoded genetic algorithm, the solution vector is comprised of N-1 elements 

which correspond to the portfolio weights of N-1 assets. The portfolio weight of the N-th 

asset is dependent on other portfolio weights since the sum of all portfolio weights should be 

equal to 1. With this type of genetic algorithm, there is the possibility of attaining portfolio 

weights outside the range [0, 1] due to the mutation operator. To prevent this, we use a special 

technique called mirroring, which corresponds to taking the mirror image of the solution 

outside the range with respect to the violated boundary until the solution lands in the search 

space. 

 

In the binary value encoded genetic algorithm, each variable is represented with a string of 1’s 

and 0’s. To achieve this, the search space corresponding to the variable is discretized 

according to some power of 2. For instance, if the search space is divided into 2n – 1 equal 

intervals, then n bits are enough to represent the variable. This type of encoding ensures that 
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the solution remains within the search space, since any combination of 1’s and 0’s will 

correspond to a valid solution. 

 

First, we define the cost function in (1) to be the fitness function to be minimized. We use a 

population size of 10 for both the real value encoded and the binary value encoded genetic 

algorithms. 

 

In the “population creation” phase of the real value encoded genetic algorithm, the elements 

of the solution vectors are randomly generated from a uniform distribution in the range [0, 1].2 

Yet, random number generation is repeated until the sum of the N-1 portfolio weights for each 

solution vector remains below 1, so that the portfolio weight of the N-th asset is ensured to be 

positive. For the binary value encoded genetic algorithm, we use 10 bits to represent each 

portfolio weight. This corresponds to an interval size of 1/(210 – 1) or 0.0978% between 

discrete values, which seems to provide more than enough precision for portfolio weights. 

Similar to the real value encoded genetic algorithm, random number generation is repeated 

until the sum of the N-1 portfolio weights for each solution vector remains below 1 to ensure 

that the portfolio weight of the N-th asset is positive. 

 

The “crossover” phases of both the real value encoded and the binary value encoded genetic 

algorithms potentially create “bad” children that violate the short selling restriction for the N-

th asset. In other words, the sum of the N-1 portfolio weights may exceed 1 for some solution 

vectors. Yet, the elimination of such “bad children” is postponed until the “election 

tournament” phase. Our genetic algorithms use the shuffle crossover method with a 50% 

probability of shuffle. 

 

As mentioned before, in the “mutation” phase of the real value encoded genetic algorithm, we 

use a special technique called mirroring to prevent the possibility of attaining portfo lio 

weights outside the range [0, 1]. For the binary value encoded genetic algorithm, again as 

mentioned before, this is not a problem since all solution vectors de facto belong to the search 

space. Similar to their “crossover” phases, the “mutation” phases of both the real value 

encoded and the binary value encoded genetic algorithms potentially create “bad” children 

                                        
2 The general framework for the genetic algorithm we employ is due to McNelis (2005).  
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that violate the short selling restriction for the N-th asset. Again, the elimination of such “bad 

children” is postponed until the “election tournament” phase. 

 

The probability of mutation is given by 

 

NumberGeneration
33.

+15.=MutationofobabilityPr ,3     (20) 

 

which translates into a lower probability of mutation which decreases through time. 

 

For the real value encoded genetic algorithm, the nonuniform mutation operator due to 

Michalewicz (1996) is utilized: 

 
















−+=









−

2

sGenerationofNumberMaximum
NumberGeneration

1

2mutationbeforemutationafter r1syy , if r1 > .5,    (21) 
















−−=









−

2

sGenerationofNumberMaximum
NumberGeneration

1

2mutationbeforemutationafter r1syy , if r1 ≤ .5,    (22) 

 

where y is a portfolio weight, r1 and r2 are random numbers from a uniform distribution in the 

range [0, 1], and s is a random number from a standard normal distribution. The mutation 

operator is nonuniform, since the odds of a mutated portfolio weight that is substantially 

different from the original portfolio weight become smaller and smaller as “Generation 

Number” gets closer to “Maximum Number of Generations” ( or, as time passes). For the 

binary value encoded genetic algorithm, the mutation simply inverts the bit; i.e., a “1” 

becomes “0” and a “0” becomes “1”. 

 

We set the maximum number of generations to be equal to 20. 

 

                                        
3 Due to McNelis (2005). 
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3.3. Conversion of Final Fund into a Whole Life Annuity Due 

 

We assume that the final fund (the actual level of accumulated funds at retirement), ffinal, is 

converted into a whole life annuity due. Using the retiree’s expected mortality4 and the return 

of the low-risk asset as the discount rate, the annual retirement income is given by 

 

x

final

a
f

IncometirementReAnnual
&&

= ,        (23) 

 

where xa&&  is the actuarial present value of a whole life annuity of 1 payable at the beginning of 

each year (starting immediately after retirement) as long as the retiree who is at the age of x at 

retirement survives. The actuarial present value of a whole life annuity of 1 payable at the 

beginning of each year, xa&& , is given by 

 

k

0k
xkx pa ν= ∑

ω

=

&& ,          (24) 

 

where ω  is the maximum age, kpx is the probability that a retiree who is at the age of x (at 

retirement) survives for k years, and ν  is the discount factor that uses the return of the low-

risk asset. ν  is given by 

 

ν  = E(e−X), X ~ N( assetrisklow−µ , 2
assetrisklow−σ ), or,      (25) 

2
assetrisklowassetrisklow 5.0e −− σ+µ−=ν ,         (26) 

 

where assetrisklow−µ  and 2
assetrisklow−σ  are the mean and variance of the low-risk asset. 

 

Since the final fund is assumed to be converted into an annuity, the retiree will be more 

concerned with the net replacement ratio than the final fund. The net replacement ratio is 

defined as the ratio of retirement income to final salary. Since the real salary growth rate is 

assumed to be zero and the real salary level is set at 1, the net replacement ratio is given by 

 

                                        
4 For our simulations, we have used the 1983 US GATT (unisex) mortality table. 
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x

finalxfinal

a
f

1
af

SalaryFinal
IncometirementReAnnual

RatioplacementReNet
&&

&&
=== .   (27) 

 

 

4. Simulations  

 

4.1. Experiment Setup 

 

In our simulations, we consider two different setups. In the first setup, there are two assets, 

one of them being the high-risk asset that may be associated with equity investment and the 

other being the low-risk asset that may be associated with fixed- income investment. In the 

second setup, there are three assets. These assets can similarly be classified as high-risk, 

medium-risk, and low-risk assets. Table 1 summarizes the parameter values that are common 

to both of these setups. Tables 2a and 2b provide the mean and covariance matrices of the 

asset returns for the two-asset and three-asset cases, respectively. 

 

Table 1 
 

Parameter Values for Simulations 
 

Parameter Parameter Value 

Entry Age 25 

Duration of Employment 30 

Retirement Age 55 

Contribution Range (c) 8% 

Risk Aversion ( α ) 2 

 
Table 2a 

 

Mean and Covariance Matrices for the Two-Asset Case 
 

Mean of the Log Return for the Low-Risk Asset 5.0% 

Mean of the Log Return for the High-Risk Asset 10.0% 

Standard Deviation of the Log Return for the Low-Risk Asset 7.5% 

Standard Deviation of the Log Return for the High-Risk Asset 20.0% 

Correlation Coefficient Between the Log Returns for the Low-Risk and High-Risk Assets  0.50 
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Table 2b 
 

Mean and Covariance Matrices for the Three-Asset Case 
 

Mean of the Log Return for the Low-Risk Asset 3.0% 

Mean of the Log Return for the Medium-Risk Asset 5.0% 

Mean of the Log Return for the High-Risk Asset 10.0% 

Standard Deviation of the Log Return for the Low-Risk Asset 5.0% 

Standard Deviation of the Log Return for the Medium-Risk Asset 7.5% 

Standard Deviation of the Log Return for the High-Risk Asset 20.0% 

Correlation Coefficient Between the Log Returns for the Low-Risk and Medium-Risk Assets  0.40 

Correlation Coefficient Between the Log Returns for the Low-Risk and High-Risk Assets  0.25 

Correlation Coefficient Between the Log Returns for the Medium-Risk and High-Risk Assets  0.50 

 

As mentioned before, one of the aims of this study is to measure the degree of suboptimality 

in failing to incorporate short selling restrictions in a standard analytical model. In order to 

achieve this, we compare the results from a standard analytical model with the results from a 

genetic algorithm. The portfolio weights from the standard analytical model are curtailed to 

the range [0, 1] if they violate the short selling restrictions. Hence, the restrictions are actually 

not incorporated in the analytical model, but they are, rather, imposed upon after the model 

produces the portfolio weights. On the other hand, the short selling restrictions are 

incorporated in the genetic algorithm. Hence, it follows that the difference between the 

performances of these two approaches in terms of the statistical properties of the net 

replacement ratio is expected to give a measure for the degree of suboptimality in failing to 

incorporate short selling restrictions in standard analytical models. 

 

For the two asset-case, the above mentioned comparison is made between the outputs of the 

analytical model and the real value encoded genetic algorithm. For the three asset case, on the 

other hand, the comparison is made between the outputs of the analytical model, the real value 

encoded genetic algorithm, and the binary value added genetic algorithm. Hence, the second 

comparison will also provide information regarding the relative performances of the real 

value encoded and the binary value encoded versions of the genetic algorithm for the optimal 

investment allocation decision in defined contribution pension schemes. 

 

In our simulations, we set the initial fund level at zero. For each case, 100 simulations are 

carried out to simulate the net replacement ratio, which may be considered as the single most 
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important indicator for the success of a retirement fund. For each sample of 100 simulations, 

we compute a number of risk measures, namely the probability of failing the target, mean 

shortfall, and the 5th percentile.5 

 

4.2. Simulation Results 

 

4.2.1. The Two Asset Case – Analytical Model vs. Real Value Encoded GA 

 

Figure 1 gives the net replacement ratios simulated by the standard analytical model and the 

real value encoded genetic algorithm for the two asset case. 

 

Figure 1 
 

Net Replacement Ratios for the Two-Asset Case 
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As Figure 1 suggests, there is very little difference between the outputs of the analytical 

model and the real value encoded genetic algorithm for the two asset case. This can be 

verified by Table 3 which summarizes the statistical properties of the net replacement ratios 

and their differences together with the result of a t-test testing for the difference in means of 

two samples. 

 

                                        
5 See Haberman and Vigna (2002) for a description of these risk measures. 



 18

Table 3 
 

Net Replacement Ratios for the Two-Asset Case* 
 

Parameter Mean Standard Deviation 

NRRAnalytical Model  0.5719 0.1645 

NRRReal Value Encoded GA 0.5728 0.1650 

NRRAnalytical Model  -  NRRReal Value Encoded GA -0.0009 0.0027 

NRRAnalytical Model -  NRRReal Value Encoded GA 0.0017 0.0023 

* Performing a t-test assuming that the two samples come from normal distributions with unknown and possibly 

unequal variances, we cannot reject the null hypothesis that the net replacement ratios simulated by the analytical 

model and the real value encoded genetic algorithm come from distributions with equal means at the 5% 

significance level. The t-statistic is -0.0387 and the corresponding p-value is 0.4846. 

 

Based on the evidence from this experiment, we cannot claim that failing to incorporate short 

selling restrictions in a standard analytical model is suboptimal for the two-asset case. Of 

course, this doesn’t mean that analytical models without short selling restrictions always 

generate optimal results. Ours is just one experiment with a single set of assumptions for 

parameters. Other experiments with different assumptions may prove the opposite. 

 

4.2.2. The Three Asset Case  

 

4.2.2.1. Analytical Model vs. Real Value Encoded GA 

 

Figure 2a gives the net replacement ratios simulated by the standard analytical model and the 

real value encoded genetic algorithm for the three-asset case. 
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Figure 2a 
 

Net Replacement Ratios for the Three-Asset Case 
 

0

0.2

0.4

0.6

0.8

1

1.2

1 10 19 28 37 46 55 64 73 82 91 100

Simulation Number

Analytical Model
Real Value Encoded GA

 
 

Figure 2a suggests that there is remarkable difference between the outputs of the analytical 

model and the real value encoded genetic algorithm for the three-asset case. This can be 

verified by Table 4a which summarizes the statistical properties of the net replacement ratios 

and their differences together with the result of a t-test testing for the difference in means of 

two samples. 

 

Table 4a 
 

Net Replacement Ratios for the Three-Asset Case* 
 

Parameter Mean Standard Deviation 

NRRAnalytical Model  0.5290 0.1017 

NRRReal Value Encoded GA 0.6727 0.1635 

NRRAnalytical Model -  NRRReal Value Encoded GA -0.1437 0.0936 

NRRAnalytical Model  -  NRRReal Value Encoded GA 0.1464 0.0892 

* Performing a t-test assuming that the two samples come from normal distributions with unknown and possibly 

unequal variances, we reject the null hypothesis that the net replacement ratios simulated by the analytical model 

and the real value encoded genetic algorithm come from distributions with equal means at the 5% significance 

level. The t-statistic is -7.4619 and the corresponding p-value is 2.2728×10-12 . 

 

Based on the evidence from this experiment, we conclude that failing to incorporate short 

selling restrictions in a standard analytical model is indeed suboptimal for the three-asset case. 

Actually, in 96 out of the 100 simulations, the real value encoded genetic algorithm dominates 
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the analytical model in terms of net replacement ratio. As can be seen in Table 4a, the mean 

net replacement ratio for the real value encoded genetic algorithm is 127% of the mean net 

replacement ratio for the analytical model. Again as indicated in Table 4a, the dominance in 

favor of the real value encoded genetic algorithm is statistically significant with a p-value 

which is virtually equal to 0. 

 

The astonishing difference between the results obtained for the two-asset and three-asset cases 

shows how misleading it can be to make generalizations from a simple two-asset case to a 

case of n assets. 

 

4.2.2.2. Analytical Model vs. Binary Value Encoded GA 

 

Figure 2b gives the net replacement ratios simulated by the standard analytical model and the 

binary value encoded genetic algorithm for the three-asset case. 

 

Figure 2b 
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Figure 2b suggests that there is remarkable difference between the outputs of the analytical 

model and the binary value encoded genetic algorithm for the three-asset case. This can be 

verified by Table 4b which summarizes the statistical properties of the net replacement ratios 

and their differences together with the result of a t-test testing for the difference in means of 

two samples. 
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Table 4 b 
 

Net Replacement Ratios for the Three-Asset Case* 
 

Parameter Mean Standard Deviation 

NRRAnalytical Model  0.5290 0.1017 

NRRBinary Value Encoded GA 0.7006 0.1756 

NRRAnalytical Model  -  NRRBinary Value Encoded GA -0.1716 0.1068 

NRRAnalytical Model  -  NRRBinary Value Encoded GA 0.1747 0.1016 

* Performing a t-test assuming that the two samples come from normal distributions with unknown and possibly 

unequal variances, we reject the null hypothesis that the net replacement ratios simulated by the analytical model 

and the binary value encoded genetic algorithm come from distributions with equal means at the 5% significance 

level. The t-statistic is -8.4597 and the corresponding p-value is  8.2500×10- 15. 

 

Similar to the previous case, the evidence from this experiment repeatedly manifests that 

failing to incorporate short selling restrictions in a standard analytical model is suboptimal. 

Actually, in 94 out of the 100 simulations, the binary value encoded genetic algorithm 

dominates the analytical model in terms of net replacement ratio. As can be seen in Table 4b, 

the mean net replacement ratio for the binary value encoded genetic algorithm is 132% of the 

mean net replacement ratio for the analytical model. Again, as indicated in Table 4b, the 

dominance in favor of the binary value encoded genetic algorithm is statistically significant 

with a p-value which is virtually equal to 0. 

 

4.2.2.3. Real Value Encoded GA vs. Binary Value Encoded GA 

 

Figure 2c gives the net replacement ratios simulated by the real value encoded genetic 

algorithm and the binary value encoded genetic algorithm for the three-asset case. 
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Figure 2c 
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Figure 2c suggests that there is some difference between the outputs of the real value encoded 

genetic algorithm and the binary value encoded genetic algorithm for the three-asset case. 

This can be verified by Table 4c which summarizes the statistical properties of the net 

replacement ratios and their differences together with the result of a t-test testing for the 

difference in means of two samples. 

 

Table 4c 
 

Net Replacement Ratios for the Three-Asset Case* 
 

Parameter Mean Standard Deviation 

NRRReal Value Encoded GA 0.6727 0.1635 

NRRBinary Value Encoded GA 0.7006 0.1756 

NRRReal Value Encoded GA -  NRRBinary Value Encoded GA -0.0279 0.0377 

NRRReal Value Encoded GA -  NRRBinary Value Encoded GA 0.0371 0.0286 

* Performing a t-test assuming that the two samples come from normal distributions with unknown and possibly 

unequal variances, we cannot reject the null hypothesis that the net replacement ratios simulated by the real 

value encoded genetic algorithm and the binary value encoded genetic algorithm come from distributions with 

equal means at the 5% significance level. The t-statistic is -1.1645 and the corresponding p-value is 0.1228. 

 

In 78 out of the 100 simulations, the binary value encoded genetic algorithm dominates the 

real value encoded genetic algorithm in terms of net replacement ratio. As can be seen in 

Table 4c, the mean net replacement ratio for the binary value encoded genetic algorithm is 
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104% of the mean net replacement ratio for the real value encoded genetic algorithm. 

However, as indicated in Table 4c, the dominance in favor of the binary value encoded 

genetic algorithm is not statistically significant. 

 

4.2.3. Risk Measures 

 

Tables 5a and 5b summarize some risk measures, namely the probability of failing the target, 

mean shortfall and 5th percentile, for the two-asset and three-asset cases, respectively. 

 

Table 5a 
 

Risk Measures for the Two-Asset Case 
 

Risk Measure Analytical Model Real Value Encoded GA  

Probability of Failing the Target 0.09 0.09 

Mean Shortfall 0.0458 0.0453 

5th Percentile 0.3784 0.3804 

 

Table 5b 
 

Risk Measures for the Three-Asset Case 
 

Risk Measure Analytical Model Real Value Encoded GA  Binary Value Encoded GA  

Probability of Failing the Target 0.66 0.25 0.20 

Mean Shortfall 0.0969 0.1089 0.1231 

5th Percentile 0.3554 0.3774 0.3814 

 

For the two asset case, the probability of failing the target is the same for the analytical model 

and the real value encoded genetic algorithm, whereas the other risk measures are very close. 

This is an expected outcome since the difference in means of two samples is not statistically 

significant, as we have demonstrated in Section 4.2.1. 

 

For the three asset case, there is a substantial difference between the probabilities of failing 

the target in favor of the genetic algorithm. Also, the 5th percentiles for the genetic algorithm 

are slightly better than the 5th percentile for the analytical model. Together with the evidence 

presented in Section 4.2.2.1 and 4.2.2.2, the differences in these risk measures, particularly 

the difference in the probability of failing the target, saliently manifest the suboptimality due 

to the failure to incorporate short selling restrictions in the analytical model. Interestingly, the 
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mean shortfall for the analytical model is less than the mean shortfall for the genetic 

algorithm. Considering that the analytical model fails 66% of the time whereas the genetic 

algorithm fails only 20 to 25% of the time, the dominance in terms of shortfall is not a strong 

argument in favor of the analytical model. Actually, if we define “expected mean shortfall” as 

another risk measure to incorporate both the probability of failure and the mean shortfall, it is 

clearly evident that the analytical model without short selling restrictions generate suboptimal 

results.6 

 

 

5. Conclusions  

 

In this paper, we present genetic algorithms as an alternative solution for optimal investment 

allocation decision in defined contribution pension schemes. Most of the previous research 

papers attempt to solve the problem analytically. The problem with analytical solutions is that 

they make numerous restricting assumptions such as lognormal distributions, time- invariant 

covariance matrices, or short selling restrictions that are not (or, rather, that cannot be) 

incorporated into the model for the sake of mathematical tractability. Genetic algorithms 

provide numerical solutions that are not bound by such restricting assumptions. For instance, 

short selling restrictions can easily be incorporated in the genetic algorithm. This study 

focuses on the relative performance of genetic algorithms in solving the asset allocation 

problem for defined contribution pension schemes. In particular, we compare the simulation 

results from a standard analytical model with results from a genetic algorithm for analyzing 

the effect of short selling restrictions. 

 

For the case of two assets, the net replacement ratios and the risk measures for the standard 

analytical model and the real value encoded genetic algorithm are similar. Hence, we cannot 

claim that failing to incorporate short selling restrictions in a standard analytical model is 

suboptimal for the two-asset case. Of course, this doesn’t mean that analytical models without 

short selling restrictions always generate optimal results. Ours is just one experiment with a 

single set of assumptions for parameters. Other experiments with different assumptions may 

prove the opposite. 

                                        
6 Define Expected Mean Shortfall = Probability of Failing the Target ×Mean Shortfall. Then the expected mean 
shortfall is 0.0640, 0.0272, and 0.0246 for the analytical model, real value encoded genetic algorithm, and binary 
value encoded genetic algorithm, respectively. 
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For the case of three assets, on the other hand, there is a remarkable difference between the 

net replacement ratios of the analytical model and the real value encoded genetic algorithm. 

Furthermore, the dominance in favor of the real value encoded genetic algorithm is 

statistically significant with a p-value which is virtually equal to 0. Therefore, we conclude 

that failing to incorporate short selling restrictions in a standard analytical model is indeed 

suboptimal for the three-asset case.  

 

We observe a similar, if not stronger, case in favor of the genetic algorithm when binary value 

encoding is used instead of real value encoding. The binary value encoded genetic algorithm 

slightly dominates the real value encoded genetic algorithm; yet, the difference is not 

statistically significant. 

 

Risk measures, with the possible exception of mean shortfall, also manifest the suboptimality 

due to the failure to incorporate short selling restrictions in the analytical model. In particular, 

there is a substantial difference between the probabilities of failing the target in favor of the 

genetic algorithm. 

 

The astonishing difference between the results obtained for the two-asset and three-asset cases 

shows how misleading it can be to make generalizations from a simple two-asset case to a 

case of n assets. 
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