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ABSTRACT

Datacenter networks typically have many paths connecting

each host pair to achieve high bisection bandwidth for arbi-

trary communication patterns. Fully utilizing the bisection

bandwidth may require flows between the same source and

destination pair to take different paths to avoid hot spots.

However, the existing routing protocols have little support

for load-sensitive adaptive routing. This work proposes DARD,

a Distributed Adaptive Routing architecture for Datacenter

networks. DARD allows each end host to adjust traffic from

overloaded paths to underloaded ones without central coor-

dination. We use openflow implementation and simulations

to show that DARD can effectively use the network’s bisec-

tion bandwidth. It outperforms previous solutions based on

random flow-level scheduling by 10%, and performs simi-

larly to previous work that assigns flows to paths using a cen-

tralized scheduler but without its scaling limitation. We use

competitive game theory to show that DARD’s flow schedul-

ing algorithm is stable. It makes progress in every step and

converges to a Nash equilibrium in finite steps. Our evalu-

ation results suggest its gap to the optimal solution is likely

to be small in practice.

1. INTRODUCTION

Datacenter network applications, e.g., MapReduce and net-

work storage, often require tremendous intra-cluster band-

width [9] to transfer data among distributed components. In-

creasingly, the components of an application cannot always

be placed on machines close to each other (e.g., within a

rack) for two main reasons. First, an application may use

common services provided by a datacenter network, e.g.,

DNS, web search, and storage. Those services may not re-

side in nearby machines. Second, the auto-scaling feature

offered by a datacenter network [1, 5] allows an application

to create dynamic instances when its workload increases.

Where those instances will be placed depends on machine

availability, and are not guaranteed to be close to the other

instances of the application.

Therefore, it is important for a datacenter network to have

high bi-section bandwidth to avoid hot spots between any

pair of hosts. Today’s datacenter networks often use com-

modity Ethernet switches to form multi-rooted tree topolo-

gies [23] (e.g., fat-tree [8] or Clos topology [16]) to achieve

this goal. A multi-rooted tree topology has multiple equal-

cost paths connecting any host pair. A flow can use an alter-

native path if one path is overloaded.

However, it requires load-sensitive adaptive routing to fully

take advantage of the multiple paths connecting a pair of

hosts. Yet existing routing protocols have little support to

load-sensitive routing. Existing work uses two approaches

to evenly distribute flows among multiple paths: random

flow-level scheduling and centralized scheduling. Equal-

Cost-Multi-Path forwarding (ECMP) [21] is one represen-

tative example of the random flow-based scheduling. It for-

wards a packet according to a hash of the selected fields of

the packet header. Since a flow’s packets share the same

hash value, they will take the same next hop to avoid the

TCP packet reordering problem. Flow level Valiant Load

Balancing (VLB) [16], which forwards a flow to a randomly

chosen core switch, is another example. Random flow-level

scheduling requires little computation and memory resources,

and thus is scalable. However, multiple long flows (which

we refer to as elephant flows) may collide on the same link

to create a permanent bottleneck [9].

In contrast, Hedera [9] adopts a centralized scheduling ap-

proach. It detects elephant flows at the edge switches and

collects the flow information at a centralized server, which

will further calculate a flow assignment and distribute the de-

cisions to the switches periodically. Centralized scheduling

is able to obtain a nearly optimal flow assignment. How-

ever, it is not scalable for at least three reasons. First, the

controller’s crash degrades the entire system to ECMP. Sec-

ond, the amount of control messages to or from the central-

ized controller is proportional to the product of network size

and the traffic load, which may congest the bottleneck con-

necting the controller and the network. Third, if the net-

work diameter is large, some switches may suffer from long

flow setup delay. This delay will further cause asynchronous

flow table update and degrade the adaptive flow scheduling

to ECMP.

Given the limitations of existing mechanisms, we propose

DARD, a distributed adaptive routing system for data cen-

ter networks. Ideally, we intend to make DARD as scalable

as random flow-level scheduling and achieve a flow assign-

ment comparable with the centralized scheduling. Recent

datacenter network traffic measurement studies [10, 16, 23]

show that both short-term delay-sensitive flows and long-
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term throughput-sensitive flows exist in datacenter networks.

For the rest of this paper, we use the term elephant flow to

refer to a continuous flow set up by a TCP connection which

lasts for at least 10 seconds. We focus our research on ele-

phant flows for two reasons. First, a short-term flow usu-

ally lasts for seconds or even less than a second [10, 23].

It is not practical to shift a short-term flow from path to

path in its life cycle. Meanwhile, existing work shows that

random flow-level scheduling already performs well enough

on short-term traffic [16]. Second, the quantity of elephant

flows may not be as many as short-term flows, but wide area

network measurement shows elephant flows may occupy a

significant fraction of the total bandwidth [27]. An adaptive

flow scheduling approach should be robust to this kind of

traffic that stresses out the network resources.

In a high level description, DARD uses hierarchical ad-

dressing to facilitate flows between the same source desti-

nation pair to take different paths. It enables a source to

monitor the state of all paths to the destination without flood-

ing the network. The source further selfishly shifts flows off

from overloaded paths to underloaded ones. We prove in

appendix that this selfish-routing-like approach is stable and

converges to a Nash equilibrium in finite steps.

We have implemented a DARD prototype on DeterLab [6]

and a simulator on ns-2. Evaluation results show that when

inter-pod traffic is dominant, DARD outperforms random

flow-level scheduling and the performance gap to the cen-

tralized scheduling is small. When intra-pod traffic is dom-

inant, DARD outperforms centralized scheduling. The re-

sults also show that 90% of the flows switch their paths less

than 3 times in their life cycles, which means DARD intro-

duces little path oscillation.

To the best of our knowledge, this is the first work that

uses a distributed, scalable, and stable adaptive routing al-

gorithm to load-balance datacenter network traffic. The rest

of this paper is organized as follows. Section 2 describes

DARD’s design goals and system components. In Section 3,

we introduce the system implementation details. We evalu-

ate DARD in section 4. Related work is discussed in Sec-

tion 5. Section 6 concludes our work.

2. DARD DESIGN

In this section, we describe DARD’s design in detail. We

first highlight the system design goals. Then we present an

overview of the system and identify the design challenges.

Finally, we introduce the detail mechanisms, including the

hierarchical addressing scheme that encodes a path using the

source and destination addresses, the on-demand path mon-

itoring and the selfish flow scheduling.

2.1 Design Goals

Ideally, we strive to make DARD as scalable as random

flow-level scheduling and achieve a flow assignment com-

parable to the centralized scheduling. More specifically, we

want DARD to meet the following design goals.

Maximize the minimum flow rate. Maximizing the min-

imum flow rate is desirable because it does not harm the sys-

tem efficiency and improves fairness to some extent. TCP’s

additive increase and multiplicative decrease (AIMD) ad-

justment algorithm combined with fair queuing tries to achieve

max-min fairness. As shown in the appendix the minimum

link bandwidth divided by the elephant flow numbers is a

good approximation of the minimum flow rate. As a result,

we use maximizing the minimum value of link bandwidth

over the elephant flow numbers as the scheduling objective

to simplify the system design.

Monitor the network states and schedule the traffic

without centralized coordination. As analyzed in Section 1,

single point failure and asynchronous flow table update de-

grade centralized scheduling to ECMP. To make the system

scalable, we strive to make DARD a complete distributed

system, in which each component relies on itself to collect

network states and to make decisions benefiting itself but be-

ing harmless to others.

Modify end hosts instead of switches. Modifying routers

or switches is expensive, but the end host operating systems

can be updated easily by applying software patches. As a

result, we decide to make most changes to the end hosts. In

addition, this modification should be transparent to existing

applications.

2.2 DARD Overview

In this section, we describe the system design intuition

and a toy example to show how DARD works. We call the

Bandwidth of a switch-switch link Over the Number of ele-

phant Flows via that link the BoNF . The BoNF of a path

refers to the minimum BoNF along that path. Unless other-

wise noted, we do not consider the host-switch link because

a flow cannot bypass this first/last link by switching paths.

Take Figure 1 as an example. There are three elephant flows:

Flow0 from E11 to E21, Flow1 fromE31 to E24 and Flow2

from E32 to E23. All of them go through core1. Assume the

bandwidth of all the links is 1 unit, then the global mini-

mum BoNF is 1
3 , where 3 is the number of flows via the

most congested link core1-aggr21. If a link has no flow, its

BoNF is ∞. In DARD, each source-destination pair mon-

itors the equal-cost paths connecting them. We call the path

goes through corei the pathi. A source-destination pair also

maintains a vector, whose ith item is pathi’s BoNF . For

example, (E11, E21)’s vector is [ 13 , 1, ∞, ∞] at step 0.

DARD’s design goal is to maximize the minimumBoNF .

The intuition is to let each source-destination pair to self-

ishly shift flows to increase the minimum BoNF . Figure 1

together with Table 1 shows a scheduling example. The up-

dated vector in Table 1 means the updated BoNF vector

at the beginning of each round. The estimated vector is a

source-destination pair’s estimation of the BoNF vector if it

switches one flow to a different path. The source-destination

pair in bold will shift one flow to a different path in the next

round.
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(a) Round 0

(b) Round 1

(c) Round 2

Figure 1: end hosts in DARD shift traffic selfishly from overloaded

paths to underloaded ones.

Round 0 is the initial state. The source-destination pair

(E11, E21) assumes there is no overlap among its four paths

and further estimates if it shifts one flow off from path1 to

path3, the vector will change from [ 13 , 1, ∞, ∞] to [ 12 , 1,

1, ∞]. The minimum BoNF increases from 1
3 to 1

2 . As

a result, (E11, E21) shifts one flow to path3, as shown in

Figure 1(b).

In round 1, all sources-destination pairs first update their

BoNF vectors. (E31, E24) assumes the 4 paths connecting

them are not overlapped and estimates if it shifts one flow

off from path1 to path4, its vector will change from [ 12 , 1
2 ,

1, ∞] to [1, 1
2 , 1, 1]. Even though the minimum BoNF is

still 1
2 , the quantity of the minimum BoNF s decreases from

2 to 1. As a result, (E31, E24) shifts one flow to path4, as

shown in Figure 1(c).

In round 2, all sources-destination pairs first update their

BoNF vectors. Then each of the pairs estimates the new

vector if it shifts one flow off from the path with smallest

BoNF to the path with the largest BoNF . (E31, E24) and

(E32, E23) will find out this scheduling will eventually de-

crease the minimum BoNF from 1 to 1
2 . (E11, E21) will

notice shifting one flow to a different path does not increase

the minimumBoNF either. As a result, no flow shifting will

be triggered at this round. The scheduling process converges

after 2 rounds. To simplify this toy example, we make round

1 come before round 2. As a real system, each end host be-

haves independently without coordination.

In the above toy example, each source-destination pair as-

sumes the paths connecting them do not share links, which is

not true for fatree topologies. However we use this assump-

tion for two reasons. First this assumption is only used to es-

timate the BoNF vector in the next round. This rough esti-

mation is good enough to prevent a scheduling that decreases

the minimum BoNF . In other words, this rough estimation

will not make the system perform worse. We prove in the

appendix that DARD’s flow scheduling algorithm is stable.

It converges to a Nash equilibrium in finite rounds. Second,

this assumption greatly simplifies the selfish scheduling pro-

cess as described in Section 2.5.

round src-dst pair updated vector estimated vector

0
E11→ E21

1
3

1 ∞ ∞
1

2
1 1 ∞

E31 → E24 1
3

1
2

∞ ∞
1
2

1
2

1 ∞

E32 → E23 1
3

1
2

∞ ∞
1
2

1
2

1 ∞

1
E11 → E21 1

2
∞ 1 1 1

2
1 ∞ 1

E31→ E24
1
2

1
2

1 ∞ 1
1

2
1 1

E32 → E23 1
2

1
2

1 ∞ 1 1
2

1 1

2
E11 → E21 1 ∞ 1 1 1 1 ∞ 1
E31 → E24 1 1 1 1 1 1

2
1 ∞

E32 → E23 1 1 1 1 ∞
1
2

1 1

Table 1: Bottleneck elephant flow numbers on each path

To achieve the system design goals and enable DARD to

behave as we expected, we face three design challenges.

First, how to build an multipath routing scheme with lit-

tle modification to the switch. Second, how to monitor the

network states in a distributed way and prevent flooding as

much as possible. Third, how to design a distributed schedul-

ing algorithm to increase the minimum BoNF round by

round.

2.3 Addressing and Routing in DARD

To prevent TCP suffering from reordering, a flow in DARD

only uses a single path at any time. But DARD enables the

flow to switch from path to path. We use a hierarchical ad-

dressing scheme that encodes a path using source and des-

tination addresses as NIRA [7] did to achieve this design

requirement.

Datacenter networks are usually constructed as a multi-

rooted tree topology. Take Figure 2 as an example, all the

switches and end hosts highlighted by solid circles form a

tree with root core1. Three other similar trees exist in the

same topology. The strictly hierarchical structure facilitates

adaptive routing through some special addressing rules [8].

We borrow the idea from NIRA [7] to separate an end-to-

end path into uphill and downhill segments and encode a

path in the source and destination addresses. In DARD, each
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of the core switch obtains a unique address prefix and then

allocates nonoverlapping subdivisions of the address prefix

to each of its subtrees. The subtrees will recursively al-

locate nonoverlapping subdivisions of the prefix to lower

hierarchies. By this hierarchical prefix allocation scheme,

each network device receives multiple IP addresses, each of

which represents the device’s position in one of the trees.

We use the private prefix 10.0.0.0/8 to illustrate how pre-

fixes are allocated along the hierarchies. Every 6 bits of an

address’ last 24 bits represent one hierarchy. In Figure 2,

core1 is allocated with prefix 10.4.0.0/14. It then allocates

prefixes 10.4.16.0/20 and 10.4.32.0/20 to its two subtrees.

The subtree rooted from switch aggr11 will further allo-

cate prefixes 10.4.16.64/26 and 10.8.16.64/26 to lower hi-

erarchies. Prefixes are allocated recursively until end hosts

get multiple addresses.

For a general fat-tree topology consisting of p-port switches,

each switch indexes its ports from 1 to p. We ignore the

first 8 bits of the address since they are constant, treat ev-

ery 6 bits of the last 24 bits as one group and represent each

of the groups in decimal notation, e.g., address 10.4.16.66

will be noted as (1, 1, 1, 2) and prefix 10.4.16.64/26 will

be noted as (1, 1, 1, 0)/18. Each core is allocated a pre-

fix (core, 0, 0, 0)/6, where core stands for the index of the

core switch in the range of [1, p2

4 ]. A core then allocates

a prefix (core, portcore, 0, 0)/12 to its subtrees, in which

portcore stands for the core’s port index connecting that sub-

tree. The aggregation switch further allocates prefixes in

form of (core, portcore, portaggr , 0)/18 to the lower hier-

archy, where portaggr stands for the aggregation switch’s

port index connecting the subsequent branch. At the bot-

tom of the hierarchy, every end host get
p2

4 addresses, each

of which stands for its position in one of the trees. For ex-

ample, in Figure 2 every end host gets four addresses, each

of which is originated from the corresponding root. In case

more IP addresses than network cards are assigned to each

end host, we propose to use IP alias to configure multiple IP

addresses to one network interface. The latest operating sys-

tems support a large number of IP alias to be added to one

network interface, e.g., Linux kernel 2.6 sets the limit to be

256K IP alias [3], Windows NT 4.0 has no limitation on the

number of IP addresses that can be bound to a network in-

terface [4], even the Linux kernals before 2.2 allows 255 IP

alias on one network interface, which is sufficient to support

the fattree topology containing 8192 end hosts.

One nice property of this hierarchical addressing scheme

is that one end host address uniquely encodes the sequence

of upper-level switches that allocate that address, e.g., E11’s

address 10.4.16.66 uniquely encodes the address allocation

sequence core1 → aggr11 → ToR11. A source-destination

address pair can be further used to uniquely identify a path,

e.g., we can use the source-destination pair highlighted by

dotted circles to uniquely encode the dotted path from E11

to E21 through core1. We call the partial path encoded by

source address the uphill path and the partial path encoded

by destination address the downhill path. To shift flows from

path to path, we can simply use different source and desti-

nation address combinations without dynamically reconfig-

uring the routing tables.

To forward a packet, each switch stores a downhill table

and an uphill table as described in [7]. The uphill table keeps

the entries for the prefixes allocated from upstream switches

and the downhill table keeps the prefixes allocated to the

downstream switches. Table 2 shows the switch aggr11’s

downhill and uphill table. When a packet arrives, a switch

first looks up the destination address in the downhill table

using the longest prefix matching algorithm. If a match is

found, the packet will be forwarded to the corresponding

downstream switch. Otherwise, the switch will look up the

source address in the uphill table to forward the packet to the

corresponding upstream switch. A core switch only has the

downhill table since there is no higher hierarchies.

downhill talbe

Prefix Port

10.4.16.64/26 1

10.4.16.128/26 2

10.8.16.64/26 1

10.8.16.128/26 2

uphill talbe

Prefix Port

10.4.0.0/14 3

10.8.0.0/14 4

Table 2: aggr11’s downhill and uphill routing tables.

In fact, the downhill-uphill-looking-up scheme is unnec-

essary for a fat-tree topology, because once a core switch

is chosen as the intermediate node, the uphill and down-

hill paths are uniquely determined, e.g., to forward a packet,

aggr11 only needs to look up the destination address in Ta-

ble 3 to decide the exit port. However, not all multi-rooted

trees share the same property, e.g., picking a core switch as

the intermediate node cannot determine either the uphill path

or the downhill path for a Clos network. As a result, we need

both uphill and downhill tables for any generic multi-rooted

trees. The downhill-uphill-looking-up scheme modifies cur-

rent switch’s forwarding algorithm. However an increasing

number of switches support highly customized forwarding

policies. In our implementation described in Section 3, we

use OpenFlow enabled switch to support this forwarding al-

gorithm.

routing talbe

Prefix Port

10.4.16.64/26 1

10.4.16.128/26 2

10.8.16.64/26 1

10.8.16.128/26 2

10.4.0.0/14 3

10.4.0.0/14 4

Table 3: Ordinary routing table works for aggr11.
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Figure 2: DARD’s addressing and routing. Prefix 1.0.0.0/8 is allocated hierarchically along the tree rooted at core1. E11’s address 1.1.1.2 encodes

the uphill path ToR11-aggr11-core1. E21’s address 1.2.1.2 encodes the downhill path core1-aggr21-ToR21 .

Each network component is also assigned a location inde-

pendent IP address, ID, which uniquely identifies the com-

ponent and is used for making TCP connections. The map-

ping from IDs to underlying IP addresses is maintained by

a DNS-like system and cached locally. To deliver a packet

from a source to a destination, the source encapsulates the

packet with a proper source-destination address combina-

tion. Switches in the middle will forward the packet accord-

ing to the encapsulated packet header. When the packet ar-

rives at the destination, it will be decapsulated and passed to

upper layer protocols.

2.4 Monitoring Path State

DARD utilizes ECMP as the default routing mechanism.

Once a source detects an elephant flow, it starts to monitor

all the available paths to the destination and shift flows from

overloaded paths to underloaded ones by choosing different

source-destination address pairs. This section will describe

the monitoring scheme in detail.

Designing a scalable monitoring scheme is challenging

because we need to monitor all paths’ states without flood-

ing the network. We introduce two techniques to resolve

this challenge, On-demand Monitoring and Path State As-

sembling.

2.4.1 On-demand Monitoring

A monitor running on a source end host is responsible to

track the BoNF s of all the paths connecting the correspond-

ing source-destination ToR switch pair, e.g., in Figure 1(a),

the monitor running on E32 tracks the number of elephant

flows of all the four paths between ToR31 and ToR22.

We propose the On-demand Monitoring scheme to limit

the number of monitors, in which a monitor is generated only

when it is necessary. In DARD, once an end host detects an

outgoing elephant flow, it will check if there is already a

monitor tracking the corresponding source-destination ToR

switch pair. If not, the source end host will then generate a

new monitor. For example, in Figure 1(a), When E32 detects

Flow2, it does not have the monitor to track the paths’ states

between ToR31 and ToR22. Therefor it will generate such

a monitor. Suppose before Flow2 being transfered, another

elephant flow from E32 to E24 is detected. Since both (E32,

E23) and (E32, E24) share the same source-destiantion ToR

switch pair (ToR31, ToR22), no new monitor will be gen-

erated at E32. E32 will release this monitor when all its

elephant flows to ToR22 are transfered.

2.4.2 Path State Assembling

One intuitive method to monitor BoNF s of all the paths

connecting a source-destination ToR switch pair is probing.

A source sends probe packets periodically along all the paths.

The BoNF field of the probe packet is updated at each hop

and echoed back at the destination. This method requires

to flood probes and to modify switches to update the probe

packets.

We propose the Path State Assembling scheme to resolve

probing’s unscalable problem. We assume that switches sup-

port state querying. This assumption is valid because ex-

isting “networking operating system", e.g., OpenFlow and

NOX, which provides convenient state querying APIs, has

been deployed in commercial switches [19]. In DARD, a

switch’s state refers to the exit ports’ bandwidths and the

number of elephant flows. The high level idea of Path State

Assembling is to let each monitor periodically query every

switch along all the paths for the switch states and assem-

ble the collected states to BoNF of each path. Figure 3

illustrates an example, in which elephant flows are transfer-

ring from E21 to E31, and a monitor is running on E21 to

track the BoNF along all the paths connecting ToR21 and

ToR31. Instead of sending probe messages along all the four

paths, the monitor sends queries to the switches highlighted

by dotted circles, asking for the states at their exit ports. Af-

ter receiving all the replies, the monitor assembles the col-

lected flow numbers and bandwidths to the BoNF s of all

the paths.

The set of switches to query is determined by the topolo-

gies and configurations. For both fat-tree and Clos network

topologies, this set of switches include (1) the source ToR
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Figure 3: Path State Assembling.

Algorithm selfish flow scheduling

1: for each monitor M on an end host do

2: max index = 0; max BoNF = 0.0;

3: min index = 0; min BoNF = ∞;

4: for each i ∈ [1,M.PV.length] do

5: if M.FV [i] > 0 and

max BoNF < M.PV [i].BoNF then

6: max BoNF = M.PV [i].BoNF ;

7: max index = i;
8: else if min BoNF > M.PV [i].BoNF then

9: min BoNF = M.PV [i].BoNF;

10: min index = i;
11: end if

12: end for

13: end for

14: if max index 6= min index then

15: estimation = M.PV [max index].bandwidth

M.PV [max index].flow numbers+1

16: if estimation−min BoNF > δ then

17: shift one elephant flow from path min index to

path max index.

18: end if

19: end if

switch, (2) the aggregation switches directly connected to

the source ToR switch, (3) all the core switches and (4) the

aggregation switches directly connected to the destination

ToR switch. These four groups of switches covers all the

equal-cost paths between the source and destination ToRs.

2.5 Selfish Flow Scheduling

Each monitor tracks the path states by periodically send-

ing queries to related switches and assembling replies to

BoNF of each path. Link l’s state, noted as Sl, consists

of a triple (bandwidth, flow numbers, BoNF ), where the

BoNF is the bandwidth divided by flow numbers. Path

p’s state, noted as Sp, is the state of the most congested link

along that path, i.e., the Sl with the smallest BoNF . In

DARD each monitor maintains two vectors, the path state

vector (PV ), whose ith item is the state of the ith path, and

the flow vector (FV ), whose ith item is the number of ele-

phant flows the source is sending along the ith path.

As described in Section 2.2, a source end host will self-

ishly shift elephant flows from overloaded paths to under-

loaded ones round by round. However, if the end host con-

tributes no flow to the overloaded path, it cannot shift a flow

off from it. We call the path not transferring any elephant

flow from source to destination the inactive path. For exam-

ple, in Figure 1(b), even though E11’s monitor detects path1

is the most congested path, E11 cannot shift traffic off from

the path since it does not contribute to the congestion. Al-

gorithm selfish flow scheduling illustrates one round of the

selfish path switching process.

Line 15 estimates the BoNF of pathmax index if one

more flow is scheduled on it. The δ in line 16 is a threshold

to prevent unnecessary path switching. Shifting one flow to

an underloaded path may improve some flows’ throughputs

while decrease others’. If we set δ to be 0, line 16 is to make

sure a path switching will not decrease the global minimum

BoNF . If we set δ to be larger than 0, it is a trade off be-

tween performance and stability.

3. IMPLEMENTATION

To test DARD’s performance in real datecenter networks,

we implemented a prototype and deployed it in a fattree

topology consisting of 4-port switches on DeterLab [6]. We

also implemented a simulator based on ns-2 to evaluate DARD’s

performance in larger topologies.

3.1 Emulator

We set up a fat-tree topology using 4-port PCs acting as

the switches and configure IP addresses according to the hi-

erarchical addressing scheme described in Section 2.3. All

switches run OpenFlow. NOX [20] is used as the centralized

controller. We use "out-of-band control", in which control

and data planes use different networks. Data plane band-

width is configured as 100Mbps. We implement a NOX

component which configures all switches’ flow tables dur-

ing the initialization. This component allocates the downhill

table to flow table 0 and the uphill table to flow table 1 to en-

force a higher priority for the downhill table. All entries are

set to be permanent. One thing to note is that even though

we are using OpenFlow as the underlying infrastructure, we

do not rely on the centralized controller. We use NOX only

once to initialize the static flow tables.

A daemon program is running on every end host. It has

three components. An Elephant Flow Detector detects an

elephant flow if a TCP connection (determined by source

and destination IPs and ports) has lasted for more than 10s.

Then the daemon checks if an existing monitor is tracking all

the paths connecting the source and destination ToR switches.

If not, a new monitor is inserted into the monitor list. A

Monitor tracks the BoNF of all the equal-cost paths con-

necting the source and destination ToR switches as described

in Section 2.4. It queries switches for their states using the

interfaces of the aggregate flow statistics provided by Open-

Flow infrastructure. We set the querying interval to be 1 sec-

onds. A Flow Scheduler maintains the monitor linked list

and shifts elephant flows from overloaded paths to under-

loaded ones according to the Algorithm selfish flow schedul-

ing, where we set the δ to be 10Mbps. The scheduling inter-

val is 5 seconds plus a random time from [0s, 5s]. This ran-
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dom time is to prevent synchronized path switching. We use

the Linux IP-in-IP tunneling as the encapsulation/decapsulation

module. All the mappings from IDs to underlying IP ad-

dresses are maintained in one configuration file, which is

kept at every end host.

3.2 Simulator

To evaluate DARD’s performance in larger topologies, we

build a DARD simulator on ns-2, which captures the sys-

tem’s packet level behavior. The simulator can support p =
32 fattree topology and DI = DA = 16 Clos network [16].

The topology and traffic patterns are passed in as tcl con-

figuration files. A link’s bandwidth is 1Gbps and its delay

is 0.01ms. The queue size is set to be the delay-bandwidth

product. We use source routing to assign a path to a flow.

TCP New Reno is used to transfer large files from host to

host. A monitor queries related switches for their states ev-

ery 1 seconds. An end host starts a new round of scheduling

every 5 seconds plus a random time from [0s, 5s]. To speed

up the simulation, we remove unnecessary packet headers

and disable most tracing functions.

4. EVALUATION

This section describes the evaluation of DARD using De-

terLab testbed and ns-2 simulation. We focus this evalua-

tion on two metrics, (1) large file transfer time, which mea-

sures the efficiency of DARD’s flow scheduling algorithm;

and (2) the times an elephant flow switches its paths in its

life cycle, which shows how stable DARD is. We compare

DARD with both random flow level scheduling and central-

ized scheduling on heterogeneous topologies, including fat-

tree, Clos network and a traditional 8-core-3-tier topology

where the oversubscription is larger than 1 [2]. We first in-

troduce the traffic patterns used in our evaluation, and then

analyze our evaluation results.

4.1 Traffic Patterns

Since we cannot obtain commercial datacenter traffic traces,

we use the three traffic patterns introduced in [8] for both

our testbed and simulation evaluations. (1) Random, where

an end host sends elephant flows to any other end host in the

topology with a uniform probability; (2) Staggered(ToRP,PodP),

where an end host sends elephant flows to another end host

connecting to the same ToR switch with probability ToRP ,

to any other end host in the same pod with probabilityPodP
and to the end hosts in different pods with probability 1 −
ToRP − PodP . In our evaluation we set ToRP to be 0.5

and PodP to be 0.3; (3) Stride(step), where an end host

with index x sends elephant flows to the end host with index

((x + step) mod (number of hosts)) + 1. For a specific

topology we choose a proper step to make sure the source

and destination end hosts are in different pods.

4.2 Testbed Results

We generate the source-destination pairs following the three

traffic patterns described in section 4.1. For each source-

destination pair, flow inter-arrival times follow exponential

distribution. We vary each source-destination pair’s expected

flow generating rate from 1 to 10 per second. Each elephant

flow is a FTP connection transferring a 128MB file. The ex-

periment lasts for 5 minutes. We track the start and end time

of every elephant flow and calculate the average file transfer

time during the 5 minutes. We also run ECMP, in which the

hashing function is defined as the source and destination IP

addresses and ports modulo the number of paths, and cal-

culate the improvement of DARD over ECMP using formula

(1), where avg TECMP is the average file transfer time us-

ing ECMP, and avg TDARD is the average file transfer time

using DARD.

improvement =
avg TECMP − avg TDARD

avg TECMP

(1)

Figure 4 shows the improvement vs. the flow generating

rate under different traffic patterns. For the stride traffic pat-

tern, DARD outperforms ECMP within expectation, because

in each step, DARD shifts flows from overloaded paths to

underloaded ones and increases the minimum flow through-

put. We find both random and staggered traffic share an

interesting pattern. When the flow generating rate is low,

ECMP and DARD have almost the same performance be-

cause ECMP’s randomness is capable of exploring the lim-

ited path diversity since a large portion of elephant flows are

within the same pod. As the flow generating rate increases,

cross-pod flows congest the switch-to-switch links, in which

case DARD reschedules the flows sharing the same bottle-

neck and improves the average file transfer time. When flow

generating rate becomes even higher, the end host-switch

links are occupied by flows within the same pod and thus

become the bottleneck, in which case DARD helps little.

1 2 3 4 5 6 7 8 9 10

0%

5%

10%

15%

20%

Flow generating rate for each s−d pair (number_of_flows / s)

Im
pr

ov
em

en
t o

f a
vg

_T

 

 

stag(0.5,0.3)
random
stride

Figure 4: File transfer improvement. Measured on testbed.

We also implement a modified version of VLB in the testbed.

Since VLB randomly chooses core switches to forward a

flow, it may also introduce permanent collisions as ECMP

does. As a result, in our VLB implementation, a flow ran-

domly picks a core switch every 10 seconds to prevent the

permanent collision. We note it as periodical VLB (pV LB).

7



Figure 5 shows the CDF of file transfer time for the three

scheduling approaches under stride traffic pattern. DARD

improves the average file transfer time by enhancing the fair-

ness, in which both the fastest and slowest flow perform to-

ward an average case.

Figure 6 shows DARD’s CDF of path switch times under

different traffic patterns. For the staggered traffic, around

90% of the flows stick to their original path assignment. This

indicates when most of the flows are within the same pod

or even the same ToR switch, the bottleneck is most likely

located at the end host-switch links, in which case DARD

helps little. On the other hand, for the stride traffic, where

all flows are cross pods, around 40% of the flows do not

switch their paths. Another 50% switch their paths for only

1 or 2 times. The largest path switch time is 3, which is

smaller than the number of available paths ( p
2

4 = 4) connect-

ing a source-destination pair. The average path switch time

is 0.9. This small number indicates that DARD is stable and

no flow switches its paths back and forth. We contribute this

property to the random time added to the scheduling interval

which prevents the synchronized flow scheduling. The path

switch time distribution of the random traffic is between that

of the staggered and stride traffic, because the quantity of

random traffic’s intra-pod flows is in the middle of staggered

and stride traffic’.
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Figure 5: File transfer time on p = 4 fattree topology under stride

traffic pattern. Measured on testbed

4.3 Simulation Results

4.3.1 Results on Fattree Topologies

To compare DARD with centralized scheduling, in our

ns-2 simulation we implement both the demand-estimation

and simulated annealing algorithm described in Hedera [9],

and set the scheduling interval to be 5 seconds. We compare

the above four approaches (Simulated annealing, DARD, ECMP

and pVLB) on p-pod fattree topologies with 1Gbps band-

width. We use the three traffic patterns described in sec-

tion 4.1. Flow inter-arrival times follow the exponential dis-

tribution with 0.2s as the expectation for each source-destination
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Figure 6: Path switch times on p = 4 fattree topology. Measured on

testbed

p = 8 p = 16 p = 32
90% max 90% max 90% max

random 1 1 2 5 2 8

staggered 1 1 1 4 1 11

stride 1 2 2 3 3 9

Table 5: DARD’s 90-percentile and maximum path switch

times on fattree topologies. Measured on ns-2.

pair. An elephant flow transfers a 128MB file. Every exper-

iment lasts for 120s in ns-2.
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Figure 8: Path switch times on p = 32 fattree topology under differ-

ent traffic patterns. Measured on ns-2.

Figure 7 shows the CDF of file transfer time on p = 32
fattree topology under different traffic patterns. We have

three main observations. (1) Under stride traffic pattern,

both simulated annealing and DARD outperform ECMP and

pVLB. The simulated annealing outperforms DARD by less

than 10%. (2) For the staggered traffic pattern, the simulated

annealing does not improve the file transfer time much, be-

cause it does not schedule the traffic in granularity of a single

flow, but assigns core switches to destination hosts to limit

the searching space. This optimization fails to approach the

optimal solution when intra-pod traffic are dominant. On the

other hand, when intra-pod traffic are dominant, even though
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p = 8 p = 16 p = 32
random staggered stride random staggered stride random staggered stride

Simulated Annealing 26.5 34.2 18.7 30.4 34.6 21.8 21.0 23.1 18.5

DARD 26.1 31.3 20.6 31.2 32.5 21.8 21.7 21.1 20.3

ECMP 29.9 35.0 24.8 34.2 34.9 25.4 23.8 24.5 22.3

pVLB 30.2 34.8 25.1 33.9 35.1 25.3 24.4 23.7 22.8

Table 4: Average file transfer time (s) on fattree topologies. Measured on ns-2.

DI = DA = 4 DI = DA = 8 DI = DA = 16
random staggered stride random staggered stride random staggered stride

Simulated Annealing 27.8 30.0 31.4 30.9 21.0 25.4 18.2 19.7 21.7

DARD 27.4 29.2 32.6 30.5 19.5 26.8 18.8 18.3 22.9

ECMP 32.4 30.7 35.8 32.6 20.8 29.5 20.5 19.7 25.3

pVLB 32.4 30.8 35.6 32.5 21.4 30.0 20.5 19.4 26.0

Table 6: Average file transfer time (s) on Clos topologies. Measured on ns-2.

DI = DA = 4 DI = DA = 8 DI = DA = 16
90% max 90% max 90% max

random 1 2 1 3 2 6

staggered 0 0 1 2 1 7

stride 1 2 2 4 3 8

Table 7: DARD’s 90-percentile and maximum path switch

times on Clos topologies. Measured on ns-2.

path diversity is limited and the bottlenecks are very likely

on the end host-switch links, DARD is still capable of shift-

ing flows to underloaded paths and improving performance.

(3) The random traffic pattern lies somewhere in the mid-

dle. Both simulated annealing and DARD improve the file

transfer time. DARD and the simulated annealing’s curves

are close to each other. We find the same pattern in smaller

fattree topologies. Table 4 shows the comparison of average

file transfer time under different traffic patterns. On the 8-

pod fattree topology, DARD even outperforms the simulated

annealing.

Figure 6 shows the CDF of DARD’s path switch times on

p = 32 fattree topology under different traffic patterns. It

shares the same characteristic as Figure 6. DARD adjusts

paths most frequently under the stride traffic pattern. But

for staggered traffic, only a small percentage of flows switch

their paths. The number of paths for a cross-pod flow is p2

4 =
256. We find that even the maximum path switch times are

much smaller than this number, which means a flow finishes

transferring before it exploring all the available paths. This

further indicates DARD is stable and introduces little path

oscillation. We find the same pattern of path switch times

on smaller fattree topologies. Table 5 summarizes the 90-

percentile and the maximum path switch times on different

fattree topologies and under different traffic patterns.

4.3.2 Results on Other Topologies

DARD and the other flow scheduling mechanisms are de-

signed for "multi-rooted trees" [9] in datacenter networks.

Besides fattree topology, Clos network is another horizon-

tal expandable topology whose oversubscription is 1 [16].

We construct Clos topologies of different sizes in the ns-2
simulator. The link bandwidth is 1Gbps. An elephant flow

transfers a 128MB file. We use the three traffic patterns

described in Section 4.1. Flow inter-arrival times follow

the exponential distribution with 0.2s as the expectation for

each source-destination pair. The simulation lasts for 120s
in ns-2. The key difference between fattree and Clos net-

work is that in fattree topology we can uniquely identify a

path for a source-destination pair by assigning a core switch,

but in Clos network, we need both uphill and downhill ag-

gregation switches to uniquely identify a path connecting a

source-destination pair. As a result, in the simulated anneal-

ing implementation, we assign uphill and downhill aggre-

gation switch pairs, instead of core switches, to destination

hosts. In the VLB implementation, a flow randomly chooses

a uphill and downhill aggregation switch pair instead of a

core switch.

Figure 9 shows the CDF of file transfer time under above

settings. When the network is dominated by inter-pod traffic

(i.e., the stride traffic), DARD can improve the file trans-

fer time considerably. The improvement of simulated an-

nealing over DARD is less than 10%. When the network

is dominated by intra-pod traffic (i.e., the staggered traf-

fic), DARD can still explore the path diversities and improve

the file transfer time. Table 6 summarizes DARD’s average

file transfer time on different Clos networks. It flows the

same pattern as we discovered in Table 4. Figure 10 shows

that even the flow’s maximum path switch times is much

smaller than the available paths (2DA) connecting a source-

destination pair. This indicates that DARD introduces little

path oscillation in Clos networks.

Both Table 4 and 6 show that pVLB introduces some ran-

domness to the performance. Even though pVLB can pre-

vent permanent elephant flow collisions, a TCP connection

may suffer from packet loss or reordering because of fre-

quent path switching. As a result, in most cases, pVLB per-

forms similarly to ECMP.

Both fattree topology and Clos network have the 1 over-

subscription, which is not always true in existing datacen-

ter networks. As a result, we compare the four scheduling

approaches on a 8-core-3-tier topology [2], whose access

layer’s oversubscription is 2.5 : 1 and aggregation layer’s

oversubscription is 1.5 : 1. We use the same traffic gener-

ating mechanisms, the same bandwidth setting and the same

9
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Figure 7: CDF of file transfer time on p = 32 fattree topology under different traffic patterns. Measured on ns-2.
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Figure 9: CDF of file transfer time on DI = DA = 16 Clos topology under different traffic patterns. Measured on ns-2.
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Figure 10: Path switch times on DI = DA = 16 Clos topology

under different traffic patterns. Measured on ns-2.

file size as previous simulations.

Figure 11 shows the CDF of file transfer time on this 8-

core-3-tier topology. It shares the same characteristic as the

results on fattree and Clos topologies. Under staggered traf-

fic pattern, where intra-pod traffic is dominant, DARD out-

performs both the centralized scheduling and random flow

level scheduling. Under the stride traffic pattern, where the

inter-pod traffic is dominant, DARD outperforms random

flow level scheduling and the gap to the centralized schedul-

ing’s performance is small. Figure 12 shows the CDF of
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Figure 12: Path switch times on 8-core-3-tier topology under differ-

ent traffic patterns.

DARD’s path switch times on the 8-core-3-tier topology un-

der different traffic patterns. We find that 90% of the flows

shift their paths no more than twice. This indicates DARD

introduces little path oscillation and is stable on topologies

whose oversubscription is larger than 1.

4.3.3 Comparison with Load-sensitive Scheduling

In this section, we compare DARD with TeXCP [22], a

distributed online intra-domain traffic engineering approach.

TeXCP adaptively moves traffic from over-utilized to under-

utilized paths without oscillation. We implement TeXCP in

ns-2 according to [22], in which each ToR switch pair main-
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Figure 11: CDF of file transfer time on 8-core-3-tier topology under different traffic patterns. Measured on ns-2.

tains states for all the available paths connecting the two of

them and probes the network states every 10ms (The default

probe interval is 200ms. However since the RTT in datacen-

ter is in granularity of 1ms or even smaller, we decrease this

probe interval). We do not implement the flowlet [29] mech-

anisms in the simulator, thus each ToR switch schedules at

the packet level. As required in [22], we set the control in-

terval to be five times of the probe interval. We use the same

traffic patterns and topology configurations as previous ex-

periments.
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Figure 13: File transfer time on p = 4 fattree topology under stride

traffic pattern. Measured on ns-2.

Figure 13 shows the CDF of DARD and TeXCP’s file

transfer time on a p = 4 fattree topology under stride traffic

pattern. We find DARD outperforms TeXCP slightly. By

tracking the link parameters, we find the bisection band-

width for both DARD and TeXCP are close to each other.

We further measure every elephant flow’s retransmission rate,

which is defined as the number of retransmitted packets over

the number of unique packets. Figure 14 shows TeXCP has a

higher retransmission rate than DARD. In other words, even

though TeXCP can fully utilize the bisection bandwidth, some

of the packets are retransmitted and thus its goodput is not

as high as DARD. Packet level scheduling assigns packets

belonging to the same flow to different paths with different

RTTs, and causes packets reordering. This reordering prob-

lem eventually triggers retransmission.
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Figure 14: DARD and TeXCP’s TCP retransmission rate on p = 4

fattree topology. Measured on ns-2.

It is possible that scheduling traffic in granularity of a

flowlet (TCP packet burst) would reduce TeXCP’s retrans-

mission rate. However, the small RTT in datacenter net-

works may require a more accurate timing mechanisms for

flowlet scheduling. We leave this problem as our future

work.

4.3.4 Communication Overhead

To evaluate DARD’s communication overhead, we trace

the control messages for both DARD and centralized schedul-

ing on a p = 8 fattree topology in ns-2. DARD’s com-

munication overhead is mainly introduced by the periodical

probes, which include both queries from hosts and replies

from switches. This communication overhead is bounded

by the size of the topology, because in the worst case, the

system only needs to handle all pair probes. However, for

centralized scheduling, ToR switches need to report elephant

flows to the centralized controller and the controller will fur-

ther update some switches’ flow tables. As a result, the com-

munication overhead is bounded by the number of flows,

which could be potentially very large.
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Figure 15 shows how much of the bandwidth is taken by

control messages given different workload. With the in-

crease of the workload, there are three stages. The first

stage is where elephant flow numbers is less than 1.5k, in

which case DARD’s control messages take less bandwidth

than centralized scheduling’s. The reason is mainly because

centralized scheduling’s control message size is larger than

DARD’s (a message from a ToR switch to the controller

takes 80 bytes and a message from the controller to a switch

takes 72 Bytes. On the other hand, a message from a host

to a switch takes 48 bytes and a message from a switch to

a host takes 32 bytes). The second stage is where the ele-

phant flow number is between 1.5K and 3K , in which case

DARD’s control messages take more bandwidth. That is be-

cause more source-destination pairs in DARD need to probe

all paths states. The third stage is where more than 3K
flows compete for the limited network resources, in which

case DARD’s probe traffic is bounded by the topology size.

One thing to note is that the centralized scheduling’s com-

munication overhead does not increase proportionally to the

workload. That is mainly because when the traffic pattern is

dense enough, even the centralized scheduling cannot easily

find out a better flow allocation and thus few messages are

sent from the controller to switches.
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Figure 15: DARD and Centralized Scheduling’s communication

overhead on p = 8 fattree topology. Measured on ns-2.

In sum, both testbed and simulation evaluations show that

for a wide range of datacenter topologies, DARD can con-

siderably improve the elephant flow transfer time compared

with random flow-level scheduling. When inter-pod traf-

fic are dominant, the improvement of centralized schedul-

ing over DARD is less than 10%. When the intra-pod traffic

becomes dominant, DARD can even outperform centralized

scheduling in some cases. DARD’s randomness in control

interval calculation prevents flows from synchronized shift-

ing and introduces little path oscillation.

5. RELATED WORK

Commodity datacenter network design. Traditional dat-

acenter network typically consists of trees of switches and

routers with more expensive equipments moving up the topol-

ogy hierarchy [2]. However, non-uniform bandwidth among

datacenter components limits the utilization of the aggre-

gated bandwidth at the edge of the network. On the other

hand, commodity switches are becoming available with high

port speed and low price. OpenFlow [25] further provides

switches with a programmable infrastructure. As a result,

people start to redesign the datacenter networks using com-

modity switches as the building blocks. Fat-tree [8] and

PortLand [28] propose to build up datacenter networks us-

ing fattree topology. VL2 [16] and Monsoon [18] construct

commodity datacenter networks with the Clos topology. All

these systems provide multiple equal-cost paths connecting

any pair of hosts. DARD provides a generic flow scheduling

mechanism for all the above datacenter networks.

Centralized flow scheduling. In addition to Hedera [9],

Ethane [13] and 4D [17] also schedule flows in a centralized

manner. Being unscalable is the major concern of these cen-

tralized scheduling approaches. DARD, on the other hand,

adopts distributed scheduling approach and thus is scalable.

Based on our evaluation, The performance gap between DARD

and the centralized scheduling is small. When intra-pod

traffic is dominant, DARD even outperforms the centralized

scheduling.

Distributed flow scheduling. ECMP [21] and flow level

VLB [24] are two dominant distributed flow scheduling ap-

proaches in datacenter networks. We observed that these dis-

tributed scheduling algorithms introduce some randomness

to the performance. That is mainly because both of them

do not rely on traffic patterns to make scheduling decisions.

DARD, on the other hand, schedules flows according to the

traffic patterns and makes improvement in every step.

There are extensive literature on distributed multipath flow

scheduling for general topologies. MATE [14] and TeXCP [22]

perform distributed traffic engineering within a network through

explicit congestion feedback, which is not supported by cur-

rent commodity switches. Our evaluation shows that TeXCP’s

packet level scheduling causes reordering and packet retrans-

mission. It is still unclear whether scheduling traffic in gran-

ularity of flowlet will improve TeXCP’s performance in dat-

acenter. Geoffray et al. proposed to conduct packet level

scheduling in high performance networks, which may bring

significant reordering problem to TCP flows [15]. VLAN-

Net [26] schedules flows along multiple paths by dynami-

cally modifying routing tables, which may cause temporary

loops in routes.

6. CONCLUSION

This paper proposes DARD, a distributed adaptive routing

system for datacenter networks. DARD allows each end-

host to selfishly shift elephant flows from overloaded paths

to underloaded ones. Our analysis shows that this algorithm

converges to a Nash equilibrium in finite steps. Testbed em-

ulation and ns-2 simulation show that DARD outperforms

random flow-level scheduling when the bottlenecks are not

at the edge, and outperforms centralized scheduling when

intra-pod traffic is dominant. Evaluation results also show
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that DARD introduces little path oscillation. 90% of the

flows shift less than 3 times in their life cycles.
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Appendix

A. EXPLANATION OF THE OBJECTIVE

We assume TCP is the dominant transport protocol in dat-

acenter, which tries to achieve max-min fairness when com-

bined with fair queuing. Each endhost shifts flows from

overloaded paths to underloaded ones to increase its observed

minimum bandwidth
flow numbers

, i.e., the BoNF . This section ex-

plains given max-min fair bandwidth allocation, the global

minimum BoNF is the lower bound of the global minimum

flow rate, thus increasing the minimum BoNF actually in-

creases the global minimum flow rate.

Theorem 1. Given max-min fair bandwidth allocation for

any network topology and any traffic pattern, the global min-

imum BoNF is the lower bound of global minimum flow

rate.

First we define a bottleneck link according to [11]. A link

l is a bottleneck for a flow f if and only if (a) link l is fully

utilized, and (b) flow f has the maximum rate among all the

flows using link l. This definition is on the assumption that

max-min fair bandwidth allocation is achieved.

Given max-min fair bandwidth allocation, link li has the

fair share rate BoNFi = bandwidthi

flow numbersi
. Suppose link l0

has the minimum fair share rate BoNF0. Flow f has the

global minimum flow rate, min rate. Link lf is flow f ’s

bottleneck. Theorem 1 claims min rate ≥ BoNF0. We

prove this theorem using contradiction.

According to the bottleneck definition, min rate is the

maximum flow rate on link lf , and thus
bandwidthlf

flow numberslf
≤

min rate. Suppose min rate < BoNF0, we get

bandwidthlf

flow numberslf
< BoNF0 (A1)

(A1) is conflict withBoNF0 being the minimum fair share

rate. As a result, the minimum BoNF is the lower bound of

the global minimum flow rate.

In DARD, every endhost tries to increase its observed min-

imumBoNF in each round, thus the global minimumBoNF
increases, so does the global minimum flow rate.

B. CONVERGENCE PROOF

We now formalize DARD’s flow scheduling algorithm and

prove that this algorithm can converge to a Nash equilibrium

in finite steps.

The proof is a special case of a congestion game [12],

which is defined as (F,G, {rf}f∈F ). F is the set of all

the flows. G = (V,E) is an directed graph. rf is a set

of routes that can be used by flow f . A strategy s =

[rf1i1 , r
f2
i2
, . . . , r

f|F |

i|F |
] is a collection of routes, in which the

ikth route in rfk , rfkik , is used by flow fk to deliver the traf-

fic.

For a strategy s and a link j, the link state Sj(s) is a

triple (bandwidthj , flow numbersj , BoNFj ), where the

BoNFj is defined as
bandwidthj

flow numbersj
. For a route r, the route

state Sr(s) is the link state with the smallest BoNF over

all links in r. The system state S(s) is the link state with

the smallest BoNF over all links in E. A flow state Sf (s)
is the corresponding route state, i.e., Sf (s) = Sr(s), flow f
is using route r.

Notation s−k refers to the strategy s without rfkik , i.e.

[rf1i1 , . . . , r
fk−1

ik−1
, r

fk+1

ik+1
, . . . , r

f|F |

i|F |
]. (s−k, r

fk
ik′

) refers to the

strategy [rf1i1 , . . . , r
fk−1

ik−1
, rfkik′

, r
fk+1

ik+1
, . . . , r

f|F |

i|F |
]. Flow fk is

locally optimal in strategy s if

Sfk(s).BoNF ≥ Sfk(s−k, r
fk
ik′

).BoNF (B1)

for all rfkik′
∈ rfk . Nash equilibrium is a state where all

flows are locally optimal. A strategy s∗ is global optimal if

for any strategy s, S(s∗).BoNF ≥ S(s).BoNF .

Theorem 2. If there is no synchronized flow scheduling,

Algorithm selfish flow scheduling will increase the minimum

BoNF round by round and converge to a Nash equilibrium

in finite steps. The global optimal strategy is also a Nash

equilibrium strategy.

For a strategy s, the state vector SV (s) = [v0(s), v1(s),
v2(s),. . .], where vk(s) stands for the number of links whose

BoNF is located at [kδ, (k + 1)δ), where δ is a positive

parameter, e.g., 10Mbps, to cluster links into groups. As

a result
∑

k vk(s) = |E|. A small δ will group the links

in a fine granularity and increase the minimum BoNF . A

large δ will improve the convergence speed. Suppose s and

s′ are two strategies, SV (s) = [v0(s), v1(s), v2(s),. . .] and

SV (s′) = [v0(s
′), v1(s

′), v2(s
′), . . .]. We define s = s′

when vk(s) = vk(s
′) for all k ≥ 0. s < s′ when there exists

some K such that vK(s) < vK(s′) and ∀k < K, vk(s) ≤
vk(s

′). It is easy to show that given three strategies s, s′ and

s′′, if s ≤ s′ and s′ ≤ s′′, then s ≤ s′′.
Given a congestion game (F,G, {rf}f∈F ) and δ, there

are only finite number of state vectors. According to the

definition of ” = ” and ” < ”, we can find out at least one

strategy s̃ that is the smallest, i.e., for any strategy s, s̃ ≤ s.

It is easy to see that this s̃ has the largest minimumBoNF or

has the least number of links that have the minimum BoNF
and thus is the global optimal.

If only one flow f selfishly changes its route to improve

its BoNF , making the strategy change from s to s′, this ac-

tion decreases the number of links with small BoNF s and

increases the number of links with larger BoNF s. In other

words, s′ < s. This indicates that asynchronous and selfish

flow movements actually increase global minimum BoNF
round by round until all flows reach their locally optimal

state. Since the number of state vectors is limited, the steps

converge to a Nash equilibrium is finite. What is more, be-

cause s̃ is the smallest strategy, no flow can have a further

movement to decrease s̃, i.e every flow is in its locally opti-

mal state. Hence this global optimal strategy s̃ is also a Nash

equilibrium strategy.
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