
System-Level Power/Performance Analysis of Portable
Multimedia Systems Communicating over Wireless Channels†

Radu Marculescu Amit Nandi
Department of ECE

Carnegie Mellon University
Pittsburgh, PA 15213

{radum,anandi}@ece.cmu.edu

Luciano Lavagno
DIEGM

Universita di’ Udine
33100 Udine, Italy

lavagno@diegm.uniud.it

Alberto Sangiovanni-Vincentelli
Department of EECS

University of California
Berkeley, CA 94720

alberto@eecs.berkeley.edu
Abstract
This paper presents a new methodology for system-level
power and performance analysis of wireless multimedia sys-
tems. More precisely, we introduce an analytical approach
based on concurrent processes modeled as Stochastic
Automata Networks (SANs) that can be effectively used to
integrate power and performance metrics in system-level
design. We show that 1) under various input traces and wire-
less channel conditions, the average-case behavior of a mul-
timedia system consisting of a video encoder/decoder pair is
characterized by very different probability distributions and
power consumption values and 2) in order to identify the
best trade-off between power and performance figures, one
must take into consideration the entire environment (i.e.,
encoder, decoder, and channel) for which the system is being
designed. Compared to using simulation, our analytical
technique reduces the time needed to find the steady-state
behavior by orders of magnitude, with some limited loss in
accuracy compared to the exact solution. We illustrate the
potential of our methodology using the MPEG-2 video as the
driver application.

1. Introduction and objectives
Portable embedded multimedia systems have a few distinc-
tive features that make them special within the general class
of embedded systems. First, they are characterized by ‘soft’
real-time constraints and then may tolerate missed deadlines.
In other words, their behavior is not necessarily character-
ized by a single number (the hard real-time constraint), as is
the case for reactive embedded systems used in safety criti-
cal applications, but by a probability (or distribution of prob-
abilities) which captures some sort of variability in the
performance metrics. Another important characteristic is the
notion of Quality of Service (QoS) which embraces all the
non-functional properties of a system (e.g. power consump-
tion, latency, jitter, cost, etc.). In multimedia systems, QoS
requirements vary considerably from one media type to
another. For example, video connections require consistently
high throughput, but can tolerate reasonable levels of jitter

and bit or packet errors. In contrast, audio applications do
not require such high bandwidth, but place tighter restric-
tions on jitter and error rates. The ability to explore several
design alternatives while trying to satisfy QoS requirements
is of crucial importance, especially early in the design cycle
to avoid costly redesign steps [1,2].

Based on the distinctive features discussed above, the
objective of this paper is to propose a new modeling and
analysis methodology for multimedia systems communicat-
ing over wireless channels. More precisely, we provide an
analytical technique for average-case power/performance
analysis that can be used early in the design cycle to identify
the best match (in terms of performance and power con-
sumption) among several possible application-architecture
combinations. Indeed, the computational requirements of
such systems show such large statistical variations that
designing them based on a single fixed number that repre-
sents the worst-case behavior (typically, one or two orders of
magnitude larger than the actual execution time [3]) would
result in completely inefficient systems.

Despite the great potential for embedded system design,
the area of average-case analysis has received little attention
[3,17,20,21]. The target of our research is to investigate this
very issue and, using abstract representations, provide quan-
titative measures of power/performance estimates that can be
used in early stages of the design process. Our effort comple-
ments the existing results for worst-case time analysis
[5,18,19] and is quite distinct from other approaches for per-
formance analysis based on rate analysis [6], and adaptation
process [3]. We also point out that, while simulation has
been predominantly used to evaluate the average-case
behavior, our analytical technique dramatically reduces the
time needed to find the steady-state regime, with some lim-
ited loss in accuracy compared to the exact solution.

While our formalism is completely general, to illustrate
its technicalities, we consider the MPEG-2 video application
throughout the paper [13]. In its most abstract form, the
application consists of an encoder-decoder pair talking to
each other over an ideal channel (Fig.1(a)). As we move the
level of abstraction down, the communication mechanism
gets refined as shown in Fig.1(b) and the effects of the lossy
communication channel start to become important. The prac-

†This research was supported in part by NSF under grant CCR-00-93104
and MARCO/DARPA Gigascale Silicon Research Center (GSRC).

Legend:
P/C: Producer and consumer C/P: Consumer and producer
B1, B2, B3, B4: buffers Tx, Rx: transmitter, receiver

Application: ENCODER

Channel

C1
IDCT

B3

d
isp

la
yB1Tx - B2 - Rx

B4

VLD
P/C

MV
C2

transmit receive

(lossy)
Sink

Fig 1(b). Model of the complete system

Source

Application: DECODER

C/P

Buf

VLC
Input

Channel
idle

transmit

send_OK

Video data

(re)-transmit
data

error/timeout

read

wait

idle

receivereceive_OK

receive
data

read

wait

error

error
error
model Scheduler

Application level

∝∝∝∝ Buffer

Encoder Decoder

Encoder

Finite Buffer

Rx Decoder
Buffer-Rx

Application
mapped to
Hardware

Tx
Buffer-Tx scheduler

HW

Ideal Channel

Tx RxError
Model

Buffer-Tx Buffer-Rx

Communication Error

Encoder

Real Channel

Decoder
scheduler

HW

Application level

∝∝∝∝ Buffer

Encoder Decoder
Application level

∝∝∝∝ Buffer

Encoder Decoder

Encoder

Finite Buffer

Rx Decoder
Buffer-Rx

Application
mapped to
Hardware

Tx
Buffer-Tx scheduler

HW

Ideal Channel

Tx RxError
Model

Buffer-Tx Buffer-Rx

Communication Error

Encoder

Real Channel

Decoder
scheduler

HW

Fig 1(a). Stages in Modeling the system
tical problem that we are trying to solve is to find efficient
mappings of the standard MPEG-2 onto a platform designed
to support portable encoding/decoding devices that interact
and communicate over a wireless lossy channel. Although
the focus of our analysis is on the decoder, we show that, in
order to identify the best trade-off between power and per-
formance, one must take into consideration the entire envi-
ronment (i.e., encoder, decoder, and communication
channel) for which the system is being designed. By doing
so, the designer can decide (at the highest level of abstrac-
tion) how the speed of the encoder should look like, how
much re-transmission can be afforded, etc.

To carry out the analysis, we propose to use concurrent
Markov chains as an effective formalism for system-level
analysis. The challenge is to model - at process level - the
system consisting of encoder, decoder, and lossy communi-
cation channel, and measure the degradation in performance
(i.e., QoS) seen at the decoder-level when the channel
becomes lossy. This is possible since we model explicitly
processes that have both computation and communication
states. Also, inside processes, these states have associated
delay and power costs which are taken into consideration
during the analysis step. We believe that our analysis brings

a new perspective by providing an unified model for the
application, architecture, and communication medium.

To evaluate our methodology, we analyze the Markov
model under different conditions of the wireless channel.
This may be a significant contribution since we apply fast
and precise techniques for analytical calculations of perfor-
mance metrics (power, delay) to communicating and inter-
acting processes that represent multimedia applications.
Using a fully analytical solution helps in avoiding lengthy
profiling simulations for predicting power and performance
figures. This is important for multimedia systems since thou-
sands of runs are typically required to gather relevant statis-
tics for average-case behavior. Considering that 5 min. of
compressed MPEG-2 video needs roughly 1.2 Gbits of input
vectors to simulate, the impact of having such a tool to eval-
uate power/performance estimates becomes evident.

Our analysis on power and delay variation (as a function
of the channel error rate) shows that some encoding rates
simply make the communication too expensive; that is, the
design constraints that should be satisfied become too severe
(either in terms of power consumption and/or end-to-end
latency). In these cases, encoding data at a certain rate
becomes a necessity, not an option based on designers taste.

Also, starting with some anticipated behavior of the channel,
we show what is achievable (in terms of power and/or end-
to-end latency) by doing trade-offs between computation and
communication needs. From this perspective, our paper
makes a first step towards providing design support for plat-
form-based implementation of multimedia applications. This
is important since most of the published papers to date (both
in design automation and mobile computing communities)
are focussed only on providing run-time support [10,11] for
PC-based platforms when the Advanced Configuration and
Power Interface (ACPI) is available [16].

The paper is organized as follows: Section 2 presents the
overall modeling strategy. In Section 3, we present a detailed
analysis of the MPEG-2 encoder/decoder application. The
power/performance results are described in Section 4,
together with some implications in the design process.
Finally, we conclude by summarizing our main contribution.

2. Modeling
To model the application of interest, we use process graphs
where each node corresponds to a process in the application.
Communication between processes is achieved using event
and wait synchronization signals. Data is exchanged asyn-
chronously between processes through buffers that behave
like fixed-length FIFOs. Furthermore, the process graph is
characterized by execution rates which, under the hypothesis
of exponentially distributed activity durations, can be used to
generate the underlying Markov chain [12]. This way, the
whole process graph translates into a network of automata
called Stochastic Automata Network (SAN) [22].

2.1 The multimedia stream abstraction
At the highest level of abstraction, the MPEG-2 application
consists of three top-level components: the Source (encoder),
the Sink (decoder), and a lossy Channel (communication
medium) (Fig.1(a)). The Source generates a continuous
sequence of packets which are relayed by the Channel to the
Sink, which then displays them. The Channel is assumed to
support asynchronous communication between the Source
and the Sink. In addition, the channel is unreliable and may
lose messages.

We model the process graph obtained from the MPEG-2
application following the Producer-Consumer paradigm
(Fig.1(b)). The multimedia input stream is first analyzed at
macroblock level in intra/motion-compensated format
(namely, I, P and B frames) [13]. To do this we use the mpeg-
stat [15] tool which, for a given clip, provides the exact way
in which the macroblocks would be decoded by the MPEG
decoder. We note that profiling with mpeg-stat is not the
same thing with simulation since it consists of just parsing
the input video stream and collecting statistics on the number
and type of macroblocks. Later, we feed these parameters
back to the analytic model and use them for our calculations.

The three basic actions which support the flow of data

are transmit, receive, and display, which respectively signal
the transfer of packets from Source to the Channel, from
Channel to the Sink, and finally their display at the Sink.
Specific rates (λtrans, λrec, and λdisp) are associated with the
actions of transmit, receive, and display, respectively.

2.2 Source modeling
The Source simply transmits frames over the communication
medium at a rate of λtrans. Since the objective of our model

is to understand the behavior of the decoder under different
error-levels in the Channel, the encoder is simply modelled
as a Producer (the VLC block in Fig.1b) which can encode
frames at varying encoding speeds; that is, λtrans may vary to
adapt to the channel behavior. The encoded frames are put
into the buffer B1 which is associated to the transmitter Tx.

2.3 Channel modeling
The Channel models the communication medium; it accepts
frames from the Source (via the action transmit), and then
either passes them on to the Sink (via the action receive at
rate λrec), or loses them (via the action loss at rate λloss). An

ideal channel is described by setting λloss to zero.

We model the Channel in Fig.1 as an automaton which
simply transmits packets from buffer B1 to buffer B2. The
packets may be sent over the channel with error, or may be
lost (at rate λloss) during transmission. If the packets are

transmitted successfully, then they are stored into the buffer
B2 (i.e., the Rx-buffer). The ‘error model’ block in Fig.1(b)
models the error over the channel which in our case is
assumed to be Gaussian.

The action transmit in Channel is passive since the
Channel accepts frames from the Source at any rate. How-
ever, when a message is lost due to some channel error, a re-
transmission action is initiated and the Source re-transmits
the message until it gets to the Sink. We assume a non-block-
ing communication scheme, where the Source may send
packets to the Sink even if the Rx-buffer (i.e. B2) is full (in
which case the packet is lost). This is because, in a real sce-
nario, the transmitter has no way of knowing whether the Rx-
buffer is full or not, and hence it will transmit the packets
irrespective of the buffer condition. The receiver can, how-
ever, request a re-transmission of these lost packets when the
buffer is free.

We point out that, in the most general case, the Channel
can actually model the transmission protocol in all details.
For instance, we may assume a full duplex communication
and model the channel with two automata on the transmitter
side (one of which deals with sending data, and the other one
with handling acknowledgements), and another two autom-
ata on the receiver side (one for receiving data, and another
one for sending acknowledgements). These automata make
communication possible via synchronization signals and
shared buffers.

To complete our channel modeling, we need to model
the error which determines whether the synchronization sig-
nals are to be sent or not. To keep our analysis general, we
model the channel as an error process which not only mod-
els the error over the channel, but also synchronizes the Rx
and Tx buffers at a certain rate determined by the communi-
cation speed. This process knows when an error has occurred
and assumes certain durations (passed as parameters) during
which an error can be detected and/or the data can be trans-
mitted. If the error process determines that the packet is
affected by error, it waits in the error state for a duration in
which the error can be detected, and then retransmits the
packet. If there is no error, then this process waits in the
transmit state for the duration necessary to transmit the
packet, and then synchronizes the Rx and Tx buffers to
update their status. If at this point the Rx-buffer is full, it
assumes that the packet is lost and retransmits it.

2.4 Sink modeling
The Sink (or decoder) receives frames from the communica-
tion channel via buffer B2 and displays them at rate λdisp.
The Sink consists of the VLD (Variable Length Decoder), the
IDCT/IQ unit and the MV (Motion Vector) unit. We describe
the VLD process as the Producer and the other two units as
two Consumer processes (C1 and C2 in Fig.1(b)). The VLD
block decodes the packets which arrive at buffer B2, gener-
ates macroblocks that are put into the buffer B3 and motion
vectors that are put into the buffer B4, with a rate λVLD.

These packets are picked up by the Consumer processes to
compute IDCT’s (at rate λIDCT) and decode motion vectors

(at rate λMV) which are used to reconstruct the frames. These
individual processing rates are obtained either from applica-
tion specification or off-line data profiling.

As we have described earlier, the exchange of data
between the Producer (VLD) and the Consumer processes
(IDCT/IQ and MV) occurs through buffers B3 and B4. These
buffers have been modelled with five different states, which
represents the number of elements stored in them, starting
from zero (empty) to four (full). The buffer accesses in the
decoder constitutes accesses to the memory which is a
shared resource. Hence, only a single process is allowed to
access it at any time. The average length of these buffers
reflects their utilization over time. Since the variable length
decoding constitutes a simple table-lookup, it is assumed to
run on some dedicated hardware, while the IDCT/IQ and the
MV units run on a shared processor. The scheduling is based
on a first-come first-serve (FCFS) basis, without preemption.
This is not a limitation since this scheduler itself can be eas-
ily modeled within our framework.

3. Analysis
The objective of the SAN analysis is the computation of the
stationary probability distribution π for an N-dimensional
system consisting of N stochastic automata which operate

and interact concurrently. This involves two major steps: 1)
SAN model construction and 2) SAN model evaluation. The
following two sub-sections briefly describe these two steps.
For more details, the reader is referred to [7,22].

3.1. The SAN model construction
The SAN model can be described using continuous-time
Markov processes based on infinitesimal generators:

(1)

with ,

, and

, where is the

transition probability from state i to state j during time 0 to t,
and is its derivative. Each entry σij in the infinitesi-

mal generator represents the execution rate of the process in
that particular state [12].

The automata interact via synchronization signals (tran-
sitions). More precisely, a transition in one automaton may
force a transition to occur in one or many other automata.
Given N stochastic automata (with associated matrices

) which interact via E synchronizing
events (j = 1, 2,..., E), the infinitesimal generator of the sys-
tem can be written as:

(3)

This quantity is called the global descriptor of the SAN and

it can be written as a sum of tensorial1 products as shown in
[7,12].

3.2. Performance model evaluation
Once we have the SAN model, our goal is to find out its
steady-state behavior. This is simply expressed by the solu-
tion of the equation

(4)

with the normalization condition π⋅e =1, where π is steady-

state probability distribution and e is a column vector s.t. eT=
(1,1,...,1).

1.

Q

σ0 0,– σ0 1, σ0 2, …

σ1 0, σ1 1,– σ1 2, …

σ2 0, σ2 1, σ2 2,– …

… … … …

=

σi i,
1 pi i→–

t
------------------------ p'i i→–=

t 0→
lim= i 1 2 … n, , ,=

σi j,
pi j→

t
------------ p'i j→=

t 0→
lim= i j, 1 2 … n, , , i j≠()=

σi j, σi i,=∑ i j, 1 2 … n i j≠(), , ,= pi j→

p'i j→

Q
1()

Q
2() … Q

N(), , ,

Q

N

⊗
i 1=j 1=

2E N+

∑ Qj
i()

=

X
x11 x12

x21 x22

= Y

y11 y12 y13

y21 y22 y23

y31 y32 y33

= X Y⊗
x11Y x12Y

x21Y x22Y
=, ,

π Q⋅ 0=

In order to avoid the state explosion problem, we solve eqn.
(4) using numerical methods that do not require the explicit
construction of the matrix Q but can work with the descriptor
in its compact form. To solve for π, we use the power method
which can be applied to the discretized version of Q. More
precisely, from Q one can easily construct another matrix P
s.t. (where) which can

be also written as a tensorial product [12]. Thus, the iterative
process of calculating π becomes

(5)

and the underlying operation which we need to compute very

efficiently is . Fortunately, exploiting the proper-

ties of tensorial product (which are unique to the SAN

model!) this can be done using only multipli-

cations, where ni is the numbers of states in the i-th automa-

ton [7,12]. We note that this is far better than the brute-force

approach which would require multiplications.

Once the steady-state probability distribution is deter-
mined, different performance measures such as throughput,
utilization, average response time can be easily derived. To
this end, we use the true rates of the activities, which are
based on the probability of each activity being enabled. For
instance, the rate at which the Sink displays packets is
directly influenced by the loss-rate over the Channel. The
true (or equilibrium) rate of an activity is thus given by the
specified activity rate multiplied by the probability that the
activity is enabled.

3.3. System-level latency estimation
The end-to-end latency of our system is controlled by three
different segments, namely the Source, the Channel, and the
Sink [14]. Hence, the total latency of the system is:

where the source latency is given by
, the channel latency is given by

, and finally, the

sink latency is given by
. The average num-

ber of frames received (avg_frames_rec), can be estimated
from the average buffer length of B2, while the buffers B3
and B4 provides estimates on the avg_frames_sink.

3.4. System-level power estimation
For a subsystem k, the average power consumed is given by:

(6)

where Pi and Pij represent the power consumption per state

and per transition, respectively, πi is the steady-state proba-

bility and λij is the transition rate associated with the transi-
tion between states i and j. Having already found the steady-
state regime, a πi value (for a particular i) can be determined

by summing up the appropriate components of the global
probability vector π. The Pi and Pij costs are determined dur-
ing an off-line step using other proposed techniques [8].

To obtain the power values, we use the Wattch [9] simu-
lator that estimates the CPU power consumption based on a
suite of parametrized power modes. For instance, by specify-
ing a low-power Strong-Arm like architecture, we obtain an
average power value of 0.356W for the VLD module, 0.4W
for the IDCT and 0.51W for the MV unit, at a clock fre-
quency of 100MHz. For transmitter and receiver units (Tx
and Rx), we estimate the power consumption as in [11],
where the transmitter power varies with the square of the dis-
tance between source and destination. For a piconetwork
environment, assuming conservatively a distance of 100m
and a transmission rate of 1Mb/sec., we estimate a transmit-
ting and receiving power of 0.5W and 0.1W, respectively.

Using these power figures, we can determine the aver-
age power characterization of the entire system under vary-
ing workloads. We present these results in the next section.

4. Results and discussion
To specify the system that we want to analyze, we chose the
Stateflow component of Matlab which uses the semantics of
Statecharts, formally proposed by Harel [4]. To create the
Stateflow model of the MPEG-2 video application, the
sequential C code of the encoder and decoder was split into
eleven processes and the communication among processes
made explicit by using eighteen synchronization signals. Of
the eleven processes, five processes are associated to the
MPEG application itself (encoder and decoder), four to the
buffers, and two to the schedulers (CPU and memory). We
note that the overall system has more than three million
states which would be prohibitive for any kind of direct anal-
ysis based on building the global descriptor of the system.
The SAN approach can perform this analysis since, as
explained in Section 3, it exploits the tensorial property and
then avoids building the global matrix Q.

Once the SAN model is constructed, we analyze its
steady-state behavior and derive the metrics of interest (like
state occupancy, buffer length, etc.) using the iterative
approach in eq. (5). All the steady-state results that we
obtained using the analytical approach, have been also vali-
dated by extensive simulations in Matlab.

P I t∆()Q+= ∆t 1 maxi σi i,()⁄()≤

πl 1+ πl ∆t πl×()
N

⊗
i 1=j 1=

2E N+

∑ Qj
i()

 
 
 
 

×+=

π
N

⊗
i 1=

Q
i()

ni
i 1=

N

∏ ni
i 1=

N

∑×

ni
i 1=

N

∏
 
 
  2

latencytotal latencySource latencyChannel latencySink+ +=

latencySource 1 λ⁄ trans=

latencyChannel avg_frames_rec() λ⁄ trans=

latencySink avg_frames_sink() λ⁄ disp=

P
k() πi Pi⋅

all i
∑ λij Pij⋅

all i j,
∑+=

Fig.2. Steady-state probabilities for buffer B1 and average buffer length estimates
In the experiments reported in this section, we use the
SAN analytic technique to determine the system behavior for
various encoding speeds (frame-rates) and under varying
error-levels in the channel. To this end, we observe the sys-
tem under 0%, 15%, 30% and 50% error-level in the chan-
nel, at four different encoding speeds, namely 20, 24, 30 and
36 frames per second (fps). The error in the channel is
assumed to be Gaussian, though results can be easily derived
for other types of distributions. The capacity/bandwidth of
the channel is assumed to be sufficient for transmitting data
at the highest frame-rate when channel error-level is zero.

We first present the buffer-length distributions corre-
sponding to buffer B1 (Fig.2). The buffer B1 has five slots:
‘one’, ‘two’, ‘three’, ‘four’ (full), plus ‘zero’ (empty) which
corresponds to storing one, two,... or zero items (that is, mac-
roblocks). Each group of six bars in Fig. 2 (that is, zero, one,

two,..., four, and the average buffer-length normalized by 41)
represents a run that corresponds to a certain frame-rate of
the encoder and a certain error-level in the channel. For
instance, the 2nd run in Fig.2 corresponds to having 30fps
sent over an ideal channel, and a probability of 0.48 of get-
ting B2 full. Also, for the same ideal conditions, the average
buffer length is 0.7×4 = 2.8 for 30fps but it becomes 0.32×4
= 1.28 if the encoding speed decreases to 20fps.

By analyzing all 16 runs in Fig.2, we observe that for a
given level of error, decreasing the encoder speed makes the
buffer less congested (in the 1st run, the average buffer
length is 3.24, while in the fourth run it is only 1.28), while
increasing the error-level in the channel increases the con-

gestion (in the 1st run, the average buffer length is 3.24,
while in the 13th run it becomes 3.79). These results suggest
that if the error in the channel is high, then the system (per
overall) needs to slow-down and adapt to channel behavior.

Next, in Fig.3, we consider the buffer-length distribution
of buffer B2. The bars have been organized in the same man-
ner as in the previous case; that is, the first four runs corre-
spond to having an ideal channel, the next four to 15% error,
so on so forth. We observe that increasing the error-level,
decreases the average buffer-length. For instance, in the 1st
run, the average buffer length is 2.32 while in the 13th run it
is only 1.06. We also observe that the average buffer length
(across al runs) is about 1.5, which is more than twice shorter
compared to the length 4 which would be predicted by the
worst-case analysis.

The next set of plots (Fig.4) show the steady-state
behavior of the IDCT/IQ process in the Decoder, again as a
function of frame-rates and error-level in the channel. The
three bars in each run represent the probability of the IDCT
process spending its time in computing (IDCTC), writing1. This normalization has been done to save some space in the plots, and

has no other implications.

Fig.4. Steady-state probabilities for IDCT unit
Error=0% 15% 30% 50%

36fps
20fps

Fig.3. Steady-state probabilities for buffer B2 and average buffer length estimates

Error=0% 15% 30% 50%

36fps

20fps
36fps

20fps

Error=0% 15% 30% 50%
into the buffer (WriteB), and waiting for data-packets to

arrive (WaitP), respectively. From this plot, it is clear that the

probability of the processes computing and writing into the
buffer decreases, as the error-level increases and the frame-
rate decreases. We also note that considering the entire envi-
ronment into steady-state calculations (for buffer lengths and
decoder states) is very important. For instance, from Fig. 3,
we can see that by ignoring the contribution of the noisy
channel, we may overestimate the average length of buffer
B2 by more than 30% (it may get to more than 100% for
50% noise in the channel!). In terms of probabilities of IDCT
states (Fig. 4), we can see that the overestimation can be
more than 40%. These overestimations will further propa-
gate and severely affect the power/energy calculations for
the decoder.

Based on the steady-state results above, we next present
the estimates of the power consumption and latency values
for various error-levels and frame-rates (Fig.5). This is
important since they are directly related to the QoS of the
system. Regarding the power results (Fig.5, left plot), we
must note that an unsuccessful packet transmission includes
two cases. In the first case, the packets may reach the Sink
correctly, but the data in the packets may be corrupted (Pow-
erE bars in Fig.5), while in the second case the packets may

be completely lost (PowerL bars). This distinction arises

because, in the former case, the decoder comes to know that
the packet is corrupt only after it is completely received,
while in the latter case, a packet lost in transmission is not
received at the receiver (thus, no power is wasted in the
reception process). The first bar of each run shows the power
consumed in the first case, while the second column shows
the power consumed by the receiver in the second case,
which is obviously less. We observe that the receiving power
decreases with the decrease in the frame-rate. However, this
rate of decrease also decreases with the error-level (the
change at 0% error-level is more that 3.5 times the change at
50% error-level).

Finally, in Fig. 5 (right plot), we present the latency of
the system under varying channel conditions. We see that the
latency not only increases with the frame-rate decrease, but
also varies as a function of the error-level. Since the number

of retransmissions due to error in the packets predominates,
we would expect that the spread of the channel latency val-
ues should constantly decrease as the error-level increases.
However, when we move between 0% to 15% error, we
observe that the spread of latency values actually increases.
This is because, within this error range, the number of re-
transmissions due to the full buffer condition decreases.

Before concluding this section, we show the

power×delay1 figures (Fig.6) which is an important metric in
low-power design. Since the system processes packets in a
pipelined manner, the delay of the system is directly propor-
tional to the maximum delay seen in any of the stages. Also,
since the volume of data that is transmitted per time unit var-
ies as a function of the encoding speed and the error in the
channel, we need to consider the rate of packets that have
been successfully processed (that is, rate of committed pack-
ets). For instance, the video data for 10 sec could be encoded
at either 36fps or 20fps, thus resulting in very different vol-
umes of data that are sent over the channel. Further, if the
error is high, there will be a large number of packets that are
actually not processed because they are going to be lost dur-
ing the transmission. Hence the power×delay product is

computed as: ,

where λeff is the rate of committed packets.

1. We note that the inverse of (power×delay) is actually the throughput per
Watt or number of committed frames per Joule which may be another metric
of interest.

Fig.6. Power×Delay plots for different frame rates and
error levels

Error=0% 15% 30%

power MAX
all buf fers

avg_buffer_length() 1
λef f
--------××

Fig.5. Power and Latency plots for different frame-rates and error levels

From Fig. 6, we observe that, in the case of 0% error, the
value of the power×delay product is minimum at 30fps. For
15% and 30% error rates, 24fps and 20fps show the mini-
mum values, respectively. These results obtained via analy-
sis were also verified (for consistency) against simulation
and the agreement was perfect. We also point out that a simi-
lar analysis can be easily carried out using the energy×delay
metric. This may be of interest since the power×delay figure
is good only if one optimizes for energy.

Finally, the CPU time needed in the iterative algorithm
that computes the probability distribution π as in eq. (5) is
about 20-50 secs/iteration (we generally need a few tens of
iterations to converge to the steady-state solution), while the
error is less than 10% compared to the simulation results.
This is orders of magnitude faster than the active simulation
time (which typically takes about 20∼25 hours, for a 2
minute video clip) required to obtain the same results.
Hence, the analytical approach can significantly cut down
the design cycle and, at the same time, enhance the opportu-
nities for exploring the design space.

5. Conclusion
We presented a new modeling and analysis technique based
on concurrent processes (specified with concurrent Markov
chains) which can be effectively used to integrate power and
performance metrics for multimedia systems communicating
over wireless channels. We showed that, under various input
traces and wireless channel conditions, the steady-state
behavior of the multimedia system (encoder, decoder, and
channel) is characterized by very different probability distri-
butions and power consumption values. Also, our analysis
on power×delay product variation showed possible trade-
offs between computation and communication needs when
the encoding rate of the encoder adapts to the wireless chan-
nel behavior.

The relevance of our approach is clear when we exam-
ine the results presented in the previous section. To obtain
the best results in terms of power and performance, one must
not just consider the design in isolation, but also take into
account the entire environment (i.e., encoder, decoder, and
channel) for which the system is being designed. Only by
doing so it is possible to get a deep understanding of the pos-
sible power/performance trade-offs. Our analysis in Section
4, is the first step towards achieving such a goal.

Based on the results obtained, we believe that analytic
approaches for system-level design should be the object of
intense research because of their advantages over simula-
tion-based techniques. Indeed, starting at a higher level of
abstraction than commonly done offers the opportunity of
using more formal approaches that are likely to increase the
quality of the design and reduce time-to-market.

6. References
1. F. Balarin, M. Chiodo, P. Giusto, H. Hsieh, A. Jurecska, L. Lavagno,

C. Passerone, A. Sangiovanni-Vincentelli, E. Sentovich, K. Suzuki,
and B. Tabbara, ‘Hardware-Software Co-Design of Embedded
Systems: The POLIS Approach,’ Kluwer Academic Publishers, 1997.

2. A. Ferrari, A. Sangiovanni-Vincentelli, ‘System Design: Traditional
Concepts and New Paradigms,’ Proc. ICCD, Austin, TX, Oct. 1999.

3. A. Kalavade, P. Moghe, ‘A tool for performance estimation of
networked Embedded End-Systems,’ Proc. DAC, San Francisco, CA,
June 1998.

4. D. Harel, ‘Statecharts: A visual formalism for complex systems,’ Sci.
Comp. Prog, Vol. 8, 1987.

5. S. Malik, M. Martonosi, Y.-T. Li, ‘Static Timing Analysis of
Embedded Software,’ Proc. DAC, Anaheim, CA, 1997.

6. A. Mathur, A. Dasdan, R. Gupta, ‘Rate Analysis for Embedded
Systems,’ ACM TODAES, Vol. 3, no. 3, July 1998.

7. P. Fernandes, B. Plateau, ‘Efficient Descriptor-Vector Multiplications
in Stochastic Automata Networks,’ Journal ACM, Vol. 45, May 1998.

8. T. Simunic, L. Benini, G. De Micheli, ‘Cycle-Accurate Simulation of
Energy Consumption in Embedded Systems,’ Proc. DAC, New
Orleans, June 1999.

9. D. Brooks, V. Tiwari and M. Martonosi, ‘Wattch: a framework for
architectural-level power analysis and optimizations,’ Proc. ISCA,
June 2000.

10. T. Simunic, L. Benini, P. Glynn, G. De Micheli, ‘Dynamic Power
Management for Portable Systems,’ in Proc. Mobicom, Boston, MA,
Aug. 2000.

11. W. R. Heinzelman, A. Chandrakasan, and H. Balakrishnan, ‘Energy-
Efficient Routing Protocols for Wireless Microsensor Networks,’ in
Proc. HICSS, Jan. 2000.

12. W. J. Stewart, ‘An introduction to the Numerical Solution of Markov
Chains,’ Princeton Univ. Press, New Jersey, 1994.

13. J. L. Mitchell, W. B. Pennebaker, C. E. Fogg, and D. J. LeGall,
‘MPEG Video Compression Standard,’ Chapman & Hall, I. T. P.,
1996.

14. H. Bowman, J. Bryans, and J. Derrick, ‘Analysis of a multimedia
stream using stochastic process algebra,’ Proc. Intl. Workshop on
Process Algebras and Performance Modelling, Nice, Sept. 1998.

15. http://bmrc.berkeley.edu/ftp/pub/multimedia/mpeg/stat/
16. Intel, Microsoft and Toshiba, ‘Advanced Configuration and Power

Interface Specification,’ http://www.intel.com/ial/powermgm/
specs.html, 1996.

17. P. Lieverse, P. Van der Wolf, E. Deprettere, and K.Vissers, ‘A Method-
ology for Architecture Exploration of Heterogeneous Signal Process-
ing Systems,’ Proc. SiPS, 1999.

18. T.-Y.Yen, W. Wolf, ‘Performance Estimation for Real-Time Distrib-
uted Embedded Systems’, Proc. ICCD, Oct. 1995.

19. K. Suzuki, A. Sangiovanni-Vincentelli, ‘Efficient Software Perfor-
mance Estimation Methods for Hardware-Software Codesign’, Proc.
DAC, June 1996.

20. A. Xie, P.A. Beerel, ‘Accelerating Markovian Analysis of Asynchro-
nous Systems using State Compression’, in IEEE Trans. on CAD, July
1999.

21. T. Zhou, X. Hu, and E.Sha, ‘A Probabilistic Performance Metric for
Real-Time System Design’, in Proc. CODES, May 1999.

22. B. Plateau, K. Atif, ‘Stochastic Automata Network for Modelling
Parallel Systems,’ IEEE Trans. on Software Engineering, Vol. 17, no.
17, pp. 1093-1108, 1991.

	Main
	ICCAD01
	Front Matter
	Table of Contents
	Author Index

