
Multimodal Person Recognition usingUnconstrained Audio and VideoTanzeem Choudhury, Brian Clarkson, Tony Jebara, Alex PentlandPerceptual Computing GroupMIT Media LaboratoryCambridge, MA 02139ftanzeem,clarkson,jebara,sandyg@media.mit.eduAbstractWe propose a person identi�cation technique thatcan recognize and verify people from unconstrainedvideo and audio. We do not expect fully frontal faceimage or clean speech as our input. Our recognition al-gorithm can detect and compensate for pose variationand changes in the auditory background and also se-lect the most reliable video frame and audio clip to usefor recognition. We also use 3D depth information ofa human head to detect the presence of an actual per-son as opposed to an image of that person. Our sys-tem achieves 100% recognition and veri�cation rateson natural real-time input with 26 registered clients.1 IntroductionAutomatic identi�cation of people has many ap-plications in di�erent areas. If the recognition canbe performed in an unobtrusive manner it will beuseful in secured access sites, for automatic banking,password-free computer login and also analysis of per-son dependent- behaviors and preferences.Relatively high accuracy rates have been obtainedin face recognition using computer vision techniquesalone and by fusing with other modalities like speakerveri�cation and di�erent bio-metric measurements.But much less work has been done in person identi�-cation where there is little or no restriction on the per-son's movement or speech. Researchers have proposeddi�erent techniques that can handle varying pose byusing template matching techniques or by modelingthe pose variations as manifolds or subspaces in a highdimensional image space [5, 3].The main goal of this paper is to recognize a personusing unconstrained audio and video information. Wederive a con�dence scoring which allows us to identifythe reliable video frames and audio clips that can beused for recognition. We also propose a robust methodbased on 3D depth information for rejecting imposterswho try to fool the face recognition system by usingphotographs.2 Face RecognitionIn a realistic environment, a face image query willnot have the same background, pose, or expressioneverytime. Thus we need a system that can detect

a face reliably in any kind of background and rec-ognize a person despite wide variations in pose andfacial expression. The system also must be able topick out reliable images from the video sequence forthe recognition task. We propose a technique whichuses real-time face tracking and depth information todetect and recognize the face under varying pose.2.1 Face Detection and TrackingThe �rst step of the recognition process is to ac-curately and robustly detect the face. In order to dothat we do the following:1. Detect the face using skin color information.2. Detect approximate feature location using sym-metry transforms and image intensity gradient.3. Compute the feature trajectories using correla-tion based tracking.4. Process the trajectories to stably recover the 3Dstructure and 3D facial pose.5. Use 3D head model to warp and normalize theface to a frontal positionWe model the skin color (RGB values) as a mixtureof Gaussians. To train our model we take samplesfrom people with varying skin tone and under di�erentlighting conditions. This model is then used to detectregions in the image that contain skin color blobs. Thelargest blob is then processed further to look for facialfeatures e.g. eyes, nose and mouth. Our method doesnot require the face to be frontal for the detectionstage. The loci of the features give an estimate ofthe pose. Using this pose estimate and a 3D headmodel we warp the detected face to a frontal view.This frontal face then undergoes histogram �tting tonormalize it's illumination. For a detailed descriptionplease refer to [7].2.2 Eigenspace ModelingOnce a face has been detected and its features iden-ti�ed, the image region containing the face is sent forrecognition. The face �nding stage gives us only an ap-proximation of the feature locations. We re�ne theseestimates by re-searching for eyes, and mouth within1



a small area around the previous estimate. This over-comes the time consuming stage of face and facialfeature detection in the whole image and makes therecognition process suitable for real-time application.After the feature locations have been accurately de-tected the face is normalized such that the eyes andmouth are at �xed locations.Our eigenspace is built using training images pro-vided by the real-time face tracker. We use the thirty-�ve eigenvectors with the largest eigenvalues to projectour images on to. Having a 3D model for pose nor-malization allows us to use a single eigenspace for arange of poses. This eliminates the requirement forstoring and selecting from multiple eigenspaces. Thusour face detection algorithm does not constrain theuser to maintain a still frontal pose.To capture the facial variations for each person, we�t a Gaussian to their eigencoe�cients. We de�ne theprobability of a match between a person and a testimage to be the probability of the test image eigenco-e�cients given the person's model. In the unimodalcase, the person that has the maximumprobability forthat test image is the claimed identity. You can seein Figure 1 the distribution of the eigencoe�cients fortwo people and it also demonstrates the di�erences inthe mean coe�cients between two people.
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Figure 1: Distribution of the �rst 35 eigen coe�cientsfor person A and B2.3 Depth EstimateIf face recognition is used for security purpose, itis important that the system is not fooled by a stillimage of the person. The structure from motion esti-mate in the tracking stage yields depth estimates foreach of the features. We can use this information todi�erentiate between an actual head and a still im-age of one. A picture held in front of the camera,even if it is in motion, gives a 
at structure. Figure 2shows the depth values extracted for a few test trials.The photograph yielded the same depth value over

all of its feature points, while the depth values variedgreatly for actual faces. We are also looking into reli-ably recovering the 3D structure of individuals to usefor recognition purposes.
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sFigure 2: Depth values for tracked objects: the objectwith all of its features at the same depth is a photo-graph, the rest are faces.3 Speaker Identi�cationPast work has shown that text-independent speakeridenti�cation (SI) relies on the characterization of thespectral distributions of speakers. However, convo-lutional and additive noise in the audio signal willcause a mismatch between the model and test dis-tributions, resulting in poor recognition performance[8, 1]. Even if the audio channel is kept consistent soas to minimize convolutional noise, there will alwaysbe the problem of additive noise in natural scenarios.Deconvolutional techniques such as RASTA [6]have had substantial success in matching the spectralresponse of di�erent auditory channels. However, se-vere drops in performance are still evident with evensmall amounts of additive noise.Work done by [1] has suggested that the presenceof noise doesn't necessarily degrade recognition perfor-mance. They compared their system's error rates on aclean database (YOHO) and a more realistic database(SESP). When training and testing were done on thesame database the error rates were comparable.Building on this idea, our speaker identi�cation sys-tem is based on a simple set of linear spectral fea-tures which are characterized with HMMs. This sim-ple combination is well-suited for adapting the speakermodels to various types of background noise.3.1 Event DetectionThe �rst state in the audio pipeline is the coarsesegmentation of the incoming audio. The purposeof this segmentation is to identify segments of audiowhich are likely to contain speech. We chose this routebecause it makes the statistical modeling much easierand faster. Instead of integrating over all possible seg-mentations, we have built-in the segmentation as priorknowledge.We used a simple and e�cient event detector, con-structed by thresholding total energy and incorpo-rating constraints on event length and surrounding



pauses. These constraints were encoded with a �nite-state machine. The resulting segmentation yields aseries of audio clips that can be analyzed for speakeridenti�cation.This method's 
aw is the possibility of arbitrarilylong events. If for example there was a jack hammernearby then the level of sound would always exceed thethreshold. A simple solution is to adapt the thresh-old or equivalently scale the energy. The system keepsa running estimate of the energy statistics and con-tinually normalizes the energy to zero mean and unitvariance (similar to Brown's onset detector [2]). Thee�ect is that after a period of silence the system ishypersensitive and after a period of loud sound thesystem grows desensitized.3.2 Feature ExtractionAfter segmentation the (16 kHz sampled) audio is�ltered with a weak high-pass �lter (preemphasis) inorder to remove the DC o�set and boost the higherfrequencies. We calculate Mel-scaled frequency coe�-cients (MFCs) for frames of audio that are spaced 16ms apart and are 32 ms long. This frame size sets thelower limit on the frequency measurement to approxi-mately 30 Hz. Mel-scaling increases the resolution forlower frequencies, where speech typically occurs.MFC is a linear operation on the audio signal, soadditive noise does not cause a nonlinear distortion inour features. This useful because it allows us to detectadditive noise given a model of the noise in isolation.3.3 ModelingOur system uses HMMs to capture the spectral sig-nature of each speaker. An HMM for each person isestimated from examples of their speech. The esti-mation was achieved by �rst using segmental k-meansto initialize HMM parameters and then Expectation-Maximization (EM) to maximize (locally) the modellikelihood. Since the examples of speech are text-independent there is no common temporal structureamongst the training examples. This situation re-quires the use of fully-connected (ergodic) HMMs.In order to �nd the optimal model complexity forour task, we varied the number of states and num-ber of Gaussians per state until the recognition ratewas optimized. We tested HMMs with 1 to 10 statesand 1 to 100 Gaussians. The best performance wasachieved with a 1 state HMM with 30 Gaussians perstate or, equivalently, a mixture of 30 Gaussians. Thisis not surprising given the lack of temporal structurein our text-independent training and testing examples.Arguably this makes the use of HMMs unnecessary.However, the use of HMMs is justi�ed for our back-ground noise adaptation.3.4 Background AdaptationStatistical models trained on clean speech (orspeech in any speci�c environment) will perform badlyon speech in a di�erent environment. The changingenvironment causes distortions in the speech featureswhich create a mismatch between the test speech andmodel distribution. Convolutional noise is caused pri-marily by di�ering microphone and sound card types,and microphone and sound source location. Additivenoise is caused by the presence of other sound sources.

We will assume that the microphone type and locationis constant and concentrate on additive noise only.The goal is to be able to adapt models of cleanspeech for use in noisy environments. However, theadaptation cannot require samples of the speech inthe noisy environment because usually they are notavailable. So given only the clean speech models andrecordings of the background noise, our adaptationtechnique can estimate the appropriate noisy speechmodels.The model adaptation procedure (which is relatedto the parallel model combination algorithm of [4])is based on estimating HMMs for noisy speech fromHMMs separately trained on speech and noise. Sincethe background noise might have temporal structure,such as repetitive noises like motor noise, or randomlyoccurring changes like thunder in a rain storm, it isappropriate to use an HMM to model it. The featureextraction and HMM training was the same as above.If the background noise and speech are assumedindependent and the features are extracted using onlylinear operators then the distributions can be easilyestimated. Let B be the background noise HMM withM states, S the clean speech HMM with N states, andS0 the noisy speech HMM. The combination of thetwo HMMs, S and B, is the HMM S0 with M � Nstates in the state space constructed from the outerproduct of the S and B state spaces. The probabilitydistributions for each state in S0 are the convolutionof the distributions in S with the distributions in B.This adaptation was evaluated using the speechof 26 people(their collection is described below) andan auditory background scene of a street in a thun-der storm. The noise scene contains frequent thunderand occassional passing cars against a constant back-ground of rain. We created two sets of audio data:a Speech Only set with uncorrupted speech, and aSpeech + Noise set which was constructed by addingthe background recordings to the audio clips in theSpeech Only set. They were mixed at a Signal-to-NoiseRatio (SNR) of 7dB. Each of these sets were furtherdivided into training and test sets.A single state HMM, Si, was trained on the speechof each individual from the Speech Only set. A 3-state HMM, B, was trained on the background sounds.This HMM was used to adapt the Si HMMs therebycreating a new set of HMMs, S0i, which should matchthe speech in the Speech + Noise set. Although this isnot an option for real-time adaptation, we also trainedHMMs, call them Ci, on the Speech + Noise trainingset to evaluate the e�ectiveness of the adaptation.Finally we test all HMMs on both the Speech Onlyand Speech + Noise test sets. Table 3 contains therecognition rates for two sets of 130 audio clips. Asshown by the extremely poor performance of the SHMMs on the Speech + Noise test set, the back-ground scene has clearly caused a mismatch betweenthe speech models and the audio. The adaptation isable to regain 95% of the performance if we assumethe C HMMs are exactly matched to the Speech +Noise set.



HMM Models Speech Only Speech + NoiseSpeech Only (S) 71.5% 23.1%Adapted (S0) N/A 65.4%Corrupted (C) N/A 69.2%Figure 3: Recognition rates for the clean speech, cor-rupted speech and adapted speech models.4 Classi�er FusionThe goal of classi�er fusion is to complement onemodality with the another. If a classi�er is performingpoorly then it is important not to let its suggestionsskew the �nal decision. Therefore, careful considera-tions must be made to ensure the appropriate weight-ing of each classi�er.The derivation of this weighting relies on havinga measurement of each classi�er's reliability. LetP (Xi = j) be the probability that classi�er i assignsto person j. These probabilities are calculated fromthe model likelihoods, L(Xi = j) = P (DatajModelj):P (Xi = j) = L(Xi = j)Xk L(Xi = k)While this normalization is necessary for compar-ing classi�er scores, it also removes any measure ofhow well a test case is modeled by the classi�er (i.e.P (dataj all models)).4.1 Con�dence ScoresWe have tried numerous measures for estimating aclassi�er's con�dence. For the face classi�er, we testedcon�dences based on the following measures (x is atest image):Distance from Face Space (DFFS)DFFS(x) = kx� �xkEigenspaceAggregate Model Likelihood (AML)AML(x) = log0@Xj P (xjModelj)1AMaximum-Probability to Average-Probability Dis-tance (MPAP)MPAP (x) = maxj fP (X = j)g � 1N Xj P (X = j)The speech classi�er was evaluated with only theAML and MPAP measures. Since the above measurescan have arbitrary ranges and distributions we con-verted them to probabilities with the following trans-formation (M (x) is one of the measures above):

Let p(!) = pdf for the r.v., ! =M (x), thencon�dence(!0) = P (! < !0) = Z !01 p(!) d!We estimate p(!) from a set of images or audio clipsusing Parzen windows with Gaussian kernels. Figure4 shows this mapping for the DFFS measure.
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Distance from Face SpaceFigure 4: Mapping the DFFS to a probability: (top)the DFFS pdf for a set of images, (bottom) the derivedcdf which is used for the mapping.Table 5 shows how each con�dence measure per-forms as a predictor for recognition. The percentagesare based on the correlation between the con�dencescores and the correctly or incorrectly recognized testcases. A score of 50% (chance) means that the con-�dence score is uncorrelated with recognition. TheMPAP measure clearly outperforms the rest of themeasures and hence it was adopted as the con�dencemeasure for the system.4.2 Bayes NetIn the fusion of classi�ers, each knowledge sourcemay be dependent on other sources. The full Bayesianapproach assumes the least by assuming each knowl-edge source is dependent on all the other sources. Thisrequires the estimation of many conditional distribu-tions which in turn requires large amounts of trainingdata. However, many of the dependencies are unnec-essary and we will make our assumptions explicit witha Bayes Net.The knowledge sources for each classi�er, i 2f(S)peech,(F)aceg, are:1. P (XjXi) - classi�er's probability for each personCon�dence Score Speech FaceDFFS N/A 55.3%,90.0%AML 50.2%,47.6% N/AMPAP 71.4%,50.3% 99.1%,53.4%Figure 5: Comparison of Con�dence Scores: Predic-tion rates of Correct Recognition (left) and WrongRecognition (right).



Figure 6: The Bayes net used for combining knowledgesources for each classi�er to produce a �nal decision,X.2. P (XijCi) - con�dence in the classi�erwhere the r.v. Ci =freliable, not reliableg, and ther.v. Xi = fjjj 2 Client Databaseg. Figure 6 displaysthe Bayes net we used to combine these knowledgesources.The audio and video channels are assumed condi-tionally independent as depicted by the lack of directlinks between CS and CF , and XA and XF . Weare also assuming that the con�dence scores are con-ditionally independent from X. This is equivalent toassuming that the distributions of con�dence scoresare the same for both classi�ers.P (X) = P (XjXS)P (XS jCS)P (CS) +P (XjXF )P (XF jCF )P (CF )Finally, the prior on each con�dence score, P (Ci),is simply the recognition rate for each classi�er. Thisprior should be estimated separately for each individ-ual, but the lack of training data forced us to use thesame prior for everyone.5 ExperimentsBoth recognition and veri�cation experiments wereperformed. We describe the data collection processand then discuss some of the results using variousmethods of evaluation.5.1 Data CollectionWe collected our data for training and testing usingan Automated Teller Machine (ATM) scenario. Thesetup included a single camera and microphone placedat average head height. A speech synthesis system wasused to communicate with the subjects rather thandisplaying text on a screen. The reasons for this aretwo-fold. First, the subjects won't be constrained toface the screen at all times. Second, it is more naturalto answer with speech when the question is spoken aswell. The subjects were instructed to behave as if theywere at an actual ATM. No constraints were placed ontheir movement and speech.The session begins when the subject enters the cam-era's �eld of view and the system detects their face.The system then greets the person and begins thebanking transaction. A series of questions were askedand after each question the system waited for a speech

event before proceeding to the next question. A typi-cal session was as follows:1. Wait for a face to enter the scene2. System: \Welcome to Vizbank.Please state yourname"3. User: \Joe Schmoe."4. System: \Would you like to make a deposit or awithdrawal?"5. User: \Ummm, withdrawal."6. System: \And the amount please ?"7. User: \Fifty dollars."8. System: \The transaction is complete. Thankyou for banking with us"9. Wait for the face to leave the scene10. Go back to step 1During the transaction process the system saves40X80-pixel images centered around the face and au-dio at 16 KHz. We collected data from 26 people.5.2 Evaluation MethodsWe evaluated our system using both recognitionand veri�cation rates. Both procedures include a cri-teria for rejecting clients entirely based on the proba-bility output of the Bayes net. Rejection means thatthe system did not get a suitable image clip or audioclip for recognizing or verifying the client. Usually anapplication would ask the client to repeat the session.The recognition procedure is as follows:1. The Client gives no information.2. Recognized Identity = argmaxjfP (X = j)g.3. Reject if P (X = Recognized Identity) < Rejec-tion Threshold.The veri�cation procedure is as follows:1. The Client gives a Claimed Identity.2. Recognized Identity = argmaxjfP (X = j)g.3. Reject if P (X = Recognized Identity) < Rejec-tion Threshold.4. Verify i� Recognized Identity = Claimed Identityelse reject.The results for each experiment are analyzed for hitrate and correct rejection rate over the entire range ofrejection thresholds. The optimal operating thresholdis theoretically where the sum of hit and correct rejec-tion rates are maximized. This is assuming equal costweights for hit rate and correction rejection rate. Foreach experiment we give the success rate at both zerothreshold (i.e. no rejections) and the optimal operat-ing threshold.



Modality Per Image/Clip Per SessionAudio 71.2 % 80.8 %Video 83.5 % 88.4 %Audio + Video 93.5 % 100 %Figure 7: Recognition Rates (Zero Rejection Thresh-old): no rejectionsModality Per Image/ClipAudio 92.1% (28.8%)Video 97.1% (17.7%)Audio + Video 99.2% (55.3%)Figure 8: Recognition Rates (Optimal RejectionThreshold): the rejection rates are in parentheses.5.3 ResultsResults for our recognition and veri�cation pro-cesses were calculated based on audio information andvideo information alone and also by combining theoutputs using the Bayes Net described above. We cal-culate rates both using all the images/clips and usingonly the \best" clip from each session. Where \best"is de�ned as the image/clip with the highest con�-dence score. For session-based applications the latteris more meaningful because it identi�es the session ac-curacy rather than the accuracy per video frame andaudio clip.Table 7 gives an overview of the system's recogni-tion performance when no thresholding is used. Therecognition is perfect when done on a per session ba-sis using only the most reliable image/clip pair. Table8 shows what the optimal operating point is for perimage/clip recognition. The high rejection rates arequite reasonable given that there were at least 7 im-age/clips per person.The veri�cation rates are in table 9. The veri�ca-tion is near perfect (99.5%) with only 0.3% false ac-ceptance rate on a per image/clip basis. The sessionperformance is perfect.As is expected, when we prune away the less reli-able images and audio clips, the performance increasesappreciably. When we use only the most con�dentimages and clips both the recognition and veri�cationrates rise to 100% with no false acceptances.6 ConclusionsWe have implemented and evaluated a system thatcombines face recognition and speaker identi�cationmodules for high accuracy person recognition. Fur-thermore, both of these modules were designed to takea large variety of natural real-time input. The facerecognition module achieves high recognition accura-cies by combining face detection, head tracking, andeigenface recognition. The text-independent speakeridenti�cation module is robust to changes in back-
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