
Reward Functions for Accelerated Learning

Maja J Mataric
MIT Artificial Intelligence Laboratory

545 Technology Square #721
Cambridge, MA 02139

maja@ai.mit.edu

Abstract

This paper discusses why traditional reinforce-
ment learning methods, and algorithms applied
to those models, result in poor performance in
situated domains characterized by multiple goals,
noisy state, and inconsistent reinforcement. We
propose a methodology for designing reinforce-
ment functions that take advantage of implicit
domain knowledge in order to accelerate learn-
ing in such domains. The methodology involves
the use of heterogeneous reinforcement functions
and progress estimators, and applies to learning
in domains with a single agent or with multiple
agents. The methodology is experimentally val-
idated on a group of mobile robots learning a
foraging task.

1 INTRODUCTION

Reinforcement learning (RL) has become the methodology
of choice for learning in a variety of different domains. Its
convergence properties and potential biological relevance
make it an approach worth studying. RL has been shown
to perform well in Markovian domains, such as games
(Tesauro 1992) and simulations (Sutton 1990). However,
it has not yet been proven useful in situated agent domains,
in particular when applied to physical robots.

In this paper we discuss why traditional reinforcement
learning methods and associated algorithms perform poorly
in situated domains with multiple goals, noisy state, and in-
consistent reinforcement. We propose a strategy that uses
heterogeneous reinforcement functions and progress esti-
mators which take advantage of implicit domain knowl-
edge in order to both enable and accelerate learning. The
approach applies to single–agent and multi–agent learning,
and is experimentally validated on a group of mobile robots
learning to forage. Its performance is compared to standard
alternatives.

2 LEARNING IN SITUATED DOMAINS

Reinforcement learning has been studied extensively and
its properties are well known (Sutton 1988, Watkins
1989, Kaelbling 1990). Successful applications of RL
methodologies to well–behaved domains have encouraged
researchers to hypothesize about its value for learning on
situated agents such as mobile robots. However, while sim-
ulation results are encouraging, work on physical robots has
not repeated that success.

The underlying cause for this inconsistency lies in the fun-
damental assumption of most RL models, the belief that the
agent–environment (A–E) interaction can be modeled as a
Markov Decision Process (MDP) such that:

1. A and E are synchronized finite state automata.

2. A and E interact in discrete time intervals.

3. A can sense the state of E and use it to act.

4. After A acts, E transitions to a new state.

5. A receives a reward after performing an action.

Unfortunately, the MDP assumption cannot be applied to
situated domains. To explain why, we address each of the
key aspects of the MDP assumption in turn.

2.1 STATES VS. DESCRIPTORS

The state of a situated agent consists of a collection of
properties, some of which are discrete (e.g., inputs from
binary sensors), others continuous (e.g., velocities of the
wheels). A monolithic descriptor of all of those properties,
even for the simplest of agents, is very large, and thus results
in a combinatorial explosion in standard RL.

Since not all aspects of a complex state descriptor are rele-
vant at all times, groups of input states can be generalized.
Chapman & Kaelbling (1991) and Mahadevan & Connell
(1991) demonstrate complementary approaches for gener-
ating sufficiently differentiated state spaces that eliminate
irrelevant state bits. Although effective, this process re-
quires a large number of trials to obtain the necessary sta-
tistical information for pruning the state space.

Much of simulation work attempts to hide continuous state,
such as the inputs from complex sensors, by presuming
higher–level filters. (e.g., “I see a chair in front of me.”).
These assumptions have proven unrealistic in physical sys-
tems (Brooks & Matarić 1992, Agre & Chapman 1990). In
general, in situated domains, which are dynamic and noisy,
there is no guarantee that the agent can sense its own state
correctly. Furthermore, the agent can usually only perceive
local, not global,external state, and do so with inherent limi-
tations. Whitehead & Ballard (1990) addressed a part of this
problem in their work on perceptual aliasing, the many–to–
one mapping between world and perceptual states, resulting
from limited sensing. Finally, sensors are noisy, and often
deliver inconsistent data. All of these properties of situated
domains drastically interfere with traditional RL algorithms
that depend on accurate state information.

2.2 TRANSITIONS VS. EVENTS

Traditional notions of state fit nicely into deterministic
state transition models. However, discrete synchronous
automata models are inappropriate for situated domains.
World and agent states change asynchronously, in response
to events not all of which are caused by and in control of
the agent. Events take various amounts of time to exe-
cute; the same event (as perceived by the agent) can vary in
duration under different circumstances and have different
consequences. Situated domains are not deterministic, and
cannot be usefully modeled by deterministic automata.

The noise and uncertainty in situated domains has specific
semantic properties. Consequently, it is not sufficient, or
even useful, to add artificial noise to simple finite automata
models. For example, while simple and practical, Gaus-
sian noise models are not realistic, and produce artificial
dynamics.

Nondeterministic and stochastic models with probabilis-
tic state transitions can more closely model situated do-
mains. However, the information for establishing a stochas-
tic model is not usually readily available, and may take as
long to acquire experimentally as a nontrivial learning al-
gorithm would to learn an implicit policy. In general, the
problem of constructing world models with enough pre-
cision to provide predictive power is unsolved in situated
AI.

The nondeterminism and uncertainly properties of situated
domains that make modeling difficult also make learning
world models even more challenging. Whitehead (1992)
eloquently describes why assumptions about world models
commonly held in RL do not apply to real–world tasks.
Thus, insightful work on building world models for more
intelligent exploration (Sutton 1990, Kaelbling 1990) is yet
to be generalized to situated domains.

2.3 LEARNING TRIALS

Traditional RL models allow for proving convergence
properties of various forms of temporal differencing (TD)

applied to deterministic MDP environments (Watkins &
Dayan 1992, Barto, Bradtke & Singh 1993, Jaakkola &
Jordan 1993). Asymptotic convergence of TD and re-
lated learning strategies based on dynamic programming
requires infinite trials (Watkins 1989). Simply generating
a complete policy requires time exponential in the size of
the state space, and the policy approaches optimality as
the number of trials approaches infinity. Thus, even in
ideal Markovian worlds the number of trials required for
learning is prohibitive for all but the smallest state spaces.
In situated domains, the agent cannot chose what states it
will transition to, and cannot visit all states with equal fre-
quency. Furthermore, experimentation in situated worlds
takes time, even if the behavior is performed satisfactorily
and appropriate feedback is received.

Thus, convergence of situated learning depends on focus-
ing only on the relevant parts of state and maximizing the
amount of information learned from each trial. The popular
form of estimating the complexity of a learning problem by
measuring the size of the state space is inappropriate. In-
stead, the smaller the state space, the better the problem is
formulated and the fewer learning trials are required. The
situated learning problem is still more difficult since even in
an appropriately minimized state space a learner may still
fail to converge due to insufficient reinforcement. The next
section describes the source of this problem.

2.4 REINFORCEMENT VS. FEEDBACK

Design of reinforcement functions is not often discussed,
although it is perhaps the most difficult aspect of setting up
an RL system. A variation of RL with immediate reinfor-
cement has been successfully applied to a six–legged robot
learning to walk (Maes & Brooks 1990). The approach was
appropriate given the small size of the search space and
the immediate and accurate reinforcement. More delayed
reinforcement was used by Mahadevan & Connell (1991)
in a box–pushing task, in which subgoals had to be intro-
duced to provide more immediate reward for making the
task learnable.

Besides examples on physical learning systems, much of
current reinforcement learning work uses two types of re-
ward: immediate, and very delayed. Situated domains,
however, tend to fall in between the two popular extremes,
providing some immediate rewards, plenty of intermittent
delayed ones, and only few very delayed ones. Although
very delayed reinforcement, and particularly impulse rein-
forcement, eliminates the possibility for biasing the learner,
most realistic learning problems do not resemble mazes in
which the reward is only found at the end. Instead, they
often offer some estimate of progress which, even if in-
termittent, internally biased, and inconsistent, can provide
an informative learning signal. Taking advantage of such
estimates will be described in a later section.

2.5 MULTIPLE GOALS

Delayed reinforcement is related to the way goals are for-
mulated in a learning system. One of the main properties
of situated domains is that agents pursues multiple goals,
some of which are maintained continuously, while others
are achieved and terminated. In contrast, traditional RL
approaches tend to deal with specialized problems in which
the learning task can be specified with a single, monolithic
goal, and thus directly translated into a monolithic reward
function. The policy learned by such a system is very spe-
cific, and conflicts with any future learning that may involve
different goals resulting from changes in the environment
and the agent.

In traditional RL, learning a multi–goal policy required that
the goals must be formulated as sequential and consistent
subgoals of a monolithic reward function. Singh (1991) ad-
dresses such an approach in a simplified navigation problem
in which a simulated agent must reach three special states in
a particular order. In order to enforce the specific sequence,
the state space must explicitly encode what goals have been
reached so far, so extra bits are added to the state vector.
Although more realistic than single–goal methods, this ap-
proach is a direct extension of traditional RL, and therefore
scales poorly and fails to address concurrent goals.

Another solution to multiple goals within the traditional
framework is to use separate state spaces and reinforcement
functions for each of the goals. Whitehead, Karlsson &
Tenenberg (1993) describe such an approach and discuss
methods for merging existing policies. The work is based
on the assumption that the necessary information for utility
evaluation is available. This approach scales better than the
former and is more general, but pushes the multiple–goal
problem to a higher level of control.

This section overviewed the key properties of traditional
RL models and algorithms, and their implications for sit-
uated domains. In the next section we propose a way of
reformulating reinforcement to make learning feasible in
such domains.

3 DESIGNING REWARD FUNCTIONS

Traditional RL formulation makes learning in situated do-
mains extremely difficult. Given the complexity and uncer-
tainty of such domains, a more appropriate learning model
is needed, one that minimizes the state space and maxi-
mizes the amount of learning at each trial. Our previous
work has described a reformulation of states and actions
into conditions and behaviors in order to significantly di-
minish the state space (Matarić 1994). In this paper we
propose a method for accelerated learning by extending and
structuring reward functions to take advantage of domain
knowledge.

Rather than encode knowledge explicitly, RL methods hide
it in the reinforcement. Domain knowledge can be utilized
througha reward–rich and complex reinforcement function,

but the process of embedding semantics is usually ad hoc.
A direct way to utilize implicit domain knowledge is to con-
vert reward functions into error signals, akin to those used
in learning control (Jordan & Rumelhart 1992, Atkeson
1990, Schaal & Atkeson 1994). Immediate reinforcement
in RL is a weak version of error signals, using only the sign
of the error but not the magnitude. Such reinforcement is
often not available in situated domains, but intermittent re-
inforcement can be used similarly, by weighting the reward
according to the accomplished progress.

Intermediate reinforcement can be introduced in two ways:
1) by reinforcing multiple goals, and 2) by using progress
estimators. We have argued that situated agents have mul-
tiple goals, it is most natural to reinforce them individually
rather than to attempt to collapse them into a monolithic goal
function. We call such a reward scheme a heterogeneous
reinforcement function. A similar approach was success-
fully used by Mahadevan & Connell (1991) to speed up
learning of a box–pushing task. Multiple goals, however,
are not sufficient, if each of the goals requires a complex
sequence of actions to accomplish, and thus results in de-
layed reinforcement. In such cases some progress metric is
also necessary.

Progress estimators are partial internal critics. They are
associated with specific goals and, when active, provide
a metric of improvement relative to those goals. Unlike
external critics (Whitehead 1992), progress estimators do
not provide a complete oracle but only partial, goal–specific
“advice.”

Progress estimators are important in noisy worlds because
they decrease the learner’s sensitivity to intermittent errors
by associating a continuous metric with the behavior being
executed. Progress estimators also encourage exploration.
Without them, the agent can thrash, repeatedly attempting
inappropriate behaviors. In synchronized, discrete worlds
this effect can be minimized, but not in continuous domains
where state changes are triggered by events. In such worlds,
the agent has no impetus to terminate behaviors since any
behavior may eventually produce a delayed reward. With-
out built–in knowledge the agent cannot rationally decide
when to switch behaviors. Various ad hoc solutions can be
used, but a principled, domain–related progress estimator
is preferable. Finally, progress estimators also decrease the
probability of fortuitous rewards, i.e., rewards for an inap-
propriate behavior that happened, by chance, to achieve the
desired goal. While in theory there is not way to elimi-
nate this effect, it can be minimized by using the progress
estimate to weight the received reward.

Having proposed multiple goals and progress estimators as
two ways of embedding domain knowledge into the reward
function in order to accelerate learning, we now validate
these ideas experimentally.

Figure 1: Up to four robots were used in the learning experi-
ments, each consisting of a differentially steerable wheeled
base and a gripper for grasping and lifting objects. The
robots’ sensory capabilities include piezo–electric bump
and gripper sensors, infra–red sensors for collision avoid-
ance, internal sensors of motor current, voltage, and posi-
tion, and a radio transmitter for absolute positioning.

4 EXPERIMENTAL DESIGN

In order to validate the proposed approach, we designed
experiments for comparing our reinforcement ideas with
traditional RL approaches. This section describes the ex-
perimental environment, the learning task, and the learning
algorithm.

4.1 THE ROBOTS

The learning experiments were conducted on a group of up
to four fully autonomous R2 mobile robots with on–board
power and sensing. Each robot consists of a differentially
steerable wheeled base and a gripper for grasping and lift-
ing objects. The robots’ sensory capabilities include piezo–
electric bump sensors for detecting contact–collisions and
monitoring the grasping force on the gripper, and a set of
infra–red (IR) sensors for obstacle avoidance and grasping
(see Figure 1). The robots are also equipped with radio
transceivers, used for determining absolute position. Po-
sition information is obtained by triangulating the distance
computed from synchronized ultrasound pulses from two
fixed beacons.

The robots are programmed in the Behavior Language, a
parallel programming language based on the Subsumption
Architecture (Brooks 1990). Their control systems are col-
lections of parallel, concurrently active behaviors, some
of which gather sensory information, some drive effectors,
and some monitor progress and contribute reinforcement.

4.2 THE LEARNING TASK

The learning task consists of finding a mapping of all condi-
tions and behaviors into the most efficient policy for group
foraging. Individually, each robot learns to select the best
behavior for each condition, in order to find and take home

the most pucks. Foraging was chosen because it is a non-
trivial and biologically inspired task, and because our pre-
vious group behavior work (Matarić 1992, Matarić 1993)
provided the basic behavior repertoire from which to learn
behavior selection. The fixed repertoire consisted of the
following behaviors:� avoiding � dispersing� searching � homing� resting

Utility behaviors for grasping and dropping objects were
included in the robot’s capabilities, but were not learned.
The robots were expected to learn to associate appropriate
conditions for triggering each of the above behaviors. By
considering only the space of conditions necessary and suf-
ficient for triggering the behaviors, the state space can be
reduced to the cross–product of the following state vari-
ables:� have-puck?� at-home?� near-intruder?� night-time?

The conditions for grasping, dropping, and avoiding were
built–in. As soon as a robot detects a puck between its
fingers, it grasps it. Similarly, as soon as a robot reaches the
home region, it drops the puck if it is carrying one. Finally,
whenever a robot is too near an obstacle, it avoids. The
three behaviors were deemed to be “instinctive” because
learning them has a high cost. Learning to avoid has a
potentially prohibitive damaging cost for the robot, and is
an un–intuitive learning task, as it appears to be innate in
nature, and can be easily programmed on most systems.
Puck manipulation requires a fast and accurate response
from the gripper motors, and, like the other basic behaviors,
is best suited for parameter learning.

As described, the foraging task may appear trivial, since its
state space has been appropriately minimized. In theory,
an agent should be able to quickly explore it and learn the
optimal policy. In practice, however, such quick and uni-
form exploration is not possible. Even the relatively small
state space presents a challenge to the learner situated in a
nondeterministic, noisy and uncertain world. We will see
that in its current reformulated version this problem poses a
challenge for the traditional RL methodologies, and that it
necessitates the proposed reformulation of reinforcement.

This shown learning problem is made more difficult by the
fact that the learner is not provided with a model of the
world. As discussed earlier, such a model is difficult to
obtain, and cannot be assumed to be available. Without it,
the agent is faced with implicitly deducing the structure of
a dynamic environment including other agents. The behav-
ior of others occasionally facilitates but largely interferes
with the individual learning process (see figure 2). Thus,

the shown scenario poses a difficult challenge for the rein-
forcement learning paradigm. The next section shows our
solution to the challenge.

4.3 THE LEARNING ALGORITHM

Figure 2: The experimental area in which the learning task
was conducted. The workspace is small enough to result
in frequent interaction and interference between the robots.
The home region is shaded.

The learning algorithm produces and maintains a total order
on the appropriateness of behaviors associated with every
situation, expressed as a matrix A(c; b). The values in the
matrix fluctuate over time based on received reinforcement,
and are updated asynchronously, with any received reinfor-
cement.

The following events produce immediate positive reinfor-
cement:� grasped-puck (p)� dropped-puck-at-home (gd)� woke-up-at-home (gw).

The following events result in immediate negative reinfor-
cement:� dropped-puck-away-from-home (bd)� woke-up-away-from-home (bw)

The events are combined into the following heterogeneous
reinforcement function:

E(c) = 8>>>>><>>>>>: p if new puck graspedgd if puck dropped at homebd if puck dropped not at homegw if woke up at homebw if woke up away from home
0 otherwisep; gd; gw > 0; bd; bw < 0

Two progress estimating functions, I and H, are used. I
is associated with minimizing interference and is triggered
whenever an agent is very close to another agent. If the be-
havior being executed has the effect of increasing the phys-
ical distance to the other agent, the agent receives positive
reinforcement. Conversely, lack of progress away from the
other agent is punished, and after a fixed time period of no
progress, the current behavior is terminated.

Formally, I is the intruder avoiding progress function s.t.:I(c; t) = � m distance to intruder decreasedn otherwisenear � intruder 2 c; m > 0; n < 0

The other progress estimator, H, is associated with homing,
and is initiated whenever a puck is grasped. If the distance
to home is decreased while H is active, the agent receives
positive reinforcement, status quo delivers no reinforce-
ment, and movement away from home is punished.

Formally, H is the homing progress function s.t.:H(c; t) = (i closer to homej farther from home
0 otherwisehave � puck 2 c; i > 0; j < 0

For the sake of a bottom–up methodology, we implemented
and tested the simplest learning algorithm that uses the
above reinforcement functions. The algorithm sums the
reinforcement over time:A(c; b) = TXt=1

R(c; t)R(c; t) = E(c; t) + I(c; t) +H(c; t)
The influence of the different types of feedback was
weighted by the values of the feedback constants. This
is equivalent to the alternative of weighting their contribu-
tions to the sum:R(c; t) = uE(c; t) + vI(c; t) +wH(c; t)u; v; w � 0; (u+ v +w) = 1

Binary–valued and real–valued E, H, and I functions were
tested. The results conclusively indicated that differentially
weighted reinforcement does not result in faster or more
stable learning. This is not surprising, since the subgoals
in the foraging task are independent and thus their learning
speed is uncorrelated.

4.4 THE CONTROL ALGORITHM

The following is the complete control algorithm used for
learning foraging. Behavior selection is induced by events,
each of which can be triggered:

1. externally: e.g., a robot gets in the way of another,

2. internally: e.g., the internal clock indicates night
time,

3. by progress estimators:, e.g., the interference estima-
tor detects a lack of progress and terminates the current
behavior.

Whenever an event is detected, the following control se-
quence is executed:

1. appropriate reinforcement is delivered for the current
condition–behavior pair,

2. the current behavior is terminated,

3. another behavior is selected.

Behaviors are selected according to the following rule:

1. choose an untried behavior if one is available,

2. otherwise choose the best behavior.

Learning is continuous and incremental over the lifetime of
the agent, thus ensuring that the agent remains responsive
to changes in the environment (e.g., no more pucks are left
at a particular location) and internal changes in function
(e.g., dying battery slows motion down, or a broken sensor
affects the perception of conditions). Experimental results
are described next.

5 EXPERIMENTAL RESULTS

In order to evaluate the effectiveness of the proposed het-
erogeneous reinforcement functions and progress estima-
tors, we compared their performance against two alternative
learning strategies. The following three approaches were
compared:

1. a monolithic single–goal (puck delivery to the home re-
gion) reward function using Q-learning, R(t) = P (t),

2. a heterogeneous reinforcement function using multiple
goals: R(t) = E(t),

3. a heterogeneous reinforcement function using multiple
goals and two progress estimator functions: R(t) =E(t) + I(t) +H(t).

Data from twenty trials of each of the three strategies was
collected and averaged. The experiments were run on four
different robots, and no significant machine–specific dif-
ferences were found. Data from runs in which persistent
sensor failures occurred were discarded. Values of A(c; b)
were collected twice per minute during each learning ex-
periment and the final learning values after each 15 minute

0

10

20

30

40

50

60

70

80

90

100

R(t) = P(t) R(t) = E(t) R(t) = I(t) + H(t) + E(t)

Figure 3: The performance of the three reinforcement
strategies on learning to forage. The x-axis shows the three
reinforcement strategies. The y-axis maps the percent of
the correct policy the agents learned, averaged over twenty
trials.

run were collated. The 15 minute threshold was chosen
empirically, since the majority of the learning trials reached
a steady state after about 10 minutes, except for a small
number of rare conditions, as discussed below.

Evaluating performance of situated systems is notoriously
difficult. Standard metrics for evaluating learning mecha-
nisms, such as time–to–convergence, do not directly apply.
The amount of time required for a robot to discover the cor-
rect policy depends on the frequency of external events that
trigger different states in its learning space. Additionally,
noise and error make certain parts of the policy fluctuate
so waiting for a specific point of absolute convergence is
not feasible. Instead, convergence is defined as a relative
ordering of condition–behavior pairs.

In the described learning task, the optimal policy was de-
rived empirically, by implementing foraging strategies by
hand. The performance of the desired policy was tested in-
dependently and compared to alternative solutions in order
to establish its superiority relative to the imposed evaluation
criteria.

5.1 EVALUATION

The performance of the three approaches is compared in
figure 3. The x-axis shows the three reinforcement strate-
gies. The y-axis maps the percent of the correct policy the
agents learned, averaged over twenty trials, i.e., the ratio of
correct condition–behavior pairings and the optimal policy.

The Q-learning algorithm was tested on the reduced state
space using the enumerated conditions and behaviors. The
algorithm is functionally equivalent to a simplified version
of the second algorithm, using only positive reinforcement
for the single goal of dropping a puck in the home region.

Given the nondeterminism of the world, and the uncertainty
in sensing and state transitions, the single goal provides in-
sufficient feedback for learning all aspects of foraging, in
particular those that rely on accurate delayed credit assign-
ment. The performance of Q-learning was very vulnerable
to interference from other robots, and declined most rapidly
of the three approaches when tested on increased group
sizes.

As shown in figure 3, Q does not perform better than chance.
However, the partial policy it discovers is not random. It is
consistent over all trials and consists of the few condition–
behavior pairings that receive immediate and reliable re-
inforcement. Thus, the performance of Q indicates the
difficulty of the learning task at least to the extent of demon-
strating the immediately reinforced parts as the only parts
it is capable of learning.

The second learning strategy, utilizing reinforcement from
multiple goals, outperforms Q because it detects the
achievement of the subgoals on the way of the top–level
goal of depositing pucks at home. However, it also suffers
from the credit assignment problem in the cases of very
delayed reinforcement, since the nondeterministic environ-
ment with other other agents does not guarantee consistency
of rewards over time.

Furthermore, this strategy does not prevent thrashing, so
certain behaviors are active unnecessarily long. For ex-
ample, searching and grasping are pursued persistently, at
the expense of behaviors with delayed reinforcement, such
as homing. The performance of heterogeneous reinforce-
ment gives us another evaluation of the difficulty of the
proposed learning task. With 60% average performance, it
demonstrates that additional structure is necessary to aid the
learner. This structure is provided by progress estimators.

The complete heterogeneous reinforcement and progress
estimator approach outperforms the other two approaches
because it maximizes the use of all available information
for every condition and behavior. As predicted, thrashing
is eliminated both in the case of learning the conditions for
dispersing and homing because the progress estimator func-
tions enforce better exploration. Furthermore, fortuitous
rewards have less impact than in the alternative algorithms.
The implicit domain knowledge is effectively spread over
the reinforcement in order to guide the learning process con-
tinually, thus minimizing the utility of each of the learning
trials and consequently speeding up the learning.

5.1.1 Additional Evaluation

In addition to averaging the performance of each algorithm
on learning the complete policy, we also evaluated each part
of the policy separately, thus measuring when and what each
robot was learning. To capture the dynamics of the learn-
ing process, each condition–behavior pair was evaluated
according to the following three criteria:

1. number of trials required,

2. correctness,

3. stability.

The number of trials was measured relative to a stable so-
lution, whether the solution was optimal or not. The sec-
ond criterion sought out any tendencies toward incorrect
solutions. Finally, the third criterion focused on unstable
policies, looking for those in which the behavior orderings
tended to fluctuate.

Based on those criteria, some condition–behavior pairs
proved to be much more difficult to learn than others. The
most prominent source of difficultywas the delay in reinfor-
cement, which had predictable results clearly demonstrated
by the performance differences between the three strategies.
Learning the conditions for searching was difficult as there
was no available progress estimator, and the robot could
be executing the correct behavior for a long while before
reaching pucks and receiving reward. In the mean time it
could be repeatedly interrupted by other activities, such as
avoiding obstacles and intruders, and resting.

Another source of difficulty was rareness of occurrence of
some combinations of conditions. For example, the condi-
tion consisting of the onset of night time while a robot is
carrying a puck and avoiding another robot rarely occurred.
Consequently, the correct mapping was difficult to learn
since the robots did not get a chance to explore all behavior
alternatives. This accounts for the incomplete policy even
in the case of the most successful reinforcement strategy.

6 DISCUSSION

6.0.2 Summing Reinforcement

The presence of positive and negative reinforcement in the
continuous learning algorithm guarantees that the learner
will not get stuck in local minima, but it also allows for
oscillations. Two of the conditions oscillated because the
alternatives resulted in equally effective solutions. For ex-
ample, in situations when the robot is not carrying a puck
and encounters an intruder, any motion away from the in-
truder will be beneficial and rewarded by the progress mon-
itor I. Consequently, homing and searching are often as
effective as dispersing. In contrast, if the robot is carrying
a puck, then dispersing followed by homing is optimal and
is manifested in the contributions of the I and H progress
estimators. As described earlier, it is the combination of the
two estimators that speeds up exploration as well as min-
imizes fortuitous rewards. Only a very specific progress
measure that minimizes the travel time to the goal can elim-
inate this effect. Such optimization is difficult in systems
using largely local sensing and control and dealing with in-
terference from other agents. Consequently, the policy the
robots found was optimal for the properties of their domain.

In theory, the more reinforcement is used the faster the
learning should be. In practice, noise and error in reinfor-
cement could have the opposite effect. The experiments de-
scribed here demonstrate that even with a significant amount
of noise, multiple reinforcers and progress estimators sig-

nificantly accelerate learning. For example, each robot’s
estimate of its position and the proximity of others was fre-
quently inaccurate due to radio transmission delays. These
errors resulted in faulty homing and interference progress
estimates. Nonetheless, all condition–behavior pairs that
involved carrying a puck converged quickly. The fast rate
of convergence for behaviors that involved dispersing and
homing result directly from the effects of the two progress
estimators. When the two are removed, as in the second
algorithm we tested, the performance declines accordingly.

6.0.3 Scaling

The three reinforcement alternatives were evaluated on
groups of three and four robots and it was found that inter-
ference was a detriment to all three. In general, the more
robots were learning at the same time, the longer it took
for each to converge. This was particularly pronounced
for condition–behavior pairs without directly associated
progress estimators, such as those involved in the non–puck
carrying states. The only behavior capable of reaping ben-
efits from interference was dispersing, which was learned
faster and more accurately in crowded situations.

In terms of global effectiveness, the amount of time required
to collect all of the pucks, the learned group foraging strat-
egy outperformed hand–coded strategies for individualist
foraging in which each agent behaved greedily. Nonethe-
less, the overall foraging performance could be further im-
proved through the use of additional social behaviors. We
have recently begun work on learning a social behavior
called yielding in order to minimize interference by having
only one robot move at a time in crowded situations.

6.0.4 Transition Models

The learning problem presented here, involvinga collection
of concurrently learning agents in a noisy and uncertain en-
vironment, was purposefully chosen for its complexity. In
particular, the fact that a state transition model was not
available to aid the learner presented one of the major chal-
lenges. In particular, the absence of a model made it difficult
to compute discounted future rewards for Q-learning, and
back–propagation of rewards was used in its place with the
same effect.

As argued earlier, such models are not generally available,
but partial models could be constructed empirically, either
before or during the learning process. The reinforcement
functions we proposed take advantage of immediate infor-
mation from the world to generate reinforcement. Thus,
they would have an accelerating effect on any learning do-
main, regardless of whether a transition model is available.
We are interested in applying our reinforcement approach
to problems that involve incomplete and approximate state
transitionmodels so that we can study the effects of combin-
ing immediate reinforcement of the kind we have discussed
with discounted future rewards commonly applied to RL
problems.

6.0.5 Related Work

Work related to the approaches introduced here has been
discussed throughout the paper. To summarize, the het-
erogeneous reward functions we presented are related to
subgoals used by Mahadevan & Connell (1991) as well
as subtasks used by Whitehead et al. (1993). However,
unlike previous work, which has focused on learning ac-
tion sequences, we use a higher level of description. The
proposed subgoals are directly tied to behaviors which are
used as the basis of learning. Similarly, progress estimators
are also mapped to one or more behaviors, and expedite
learning of the associated goals, unlike a single complete
external critic used with a monolithic reinforcement func-
tion (Whitehead 1992).

The presented work is, to the best of our knowledge, the
first attempt at applying reinforcement learning to a collec-
tion of physical robots learning a complex task consisting
of multiple goals. Tan (1993) has applied traditional RL to
a simulated multi–agent domain. Due to the simplicity of
the simulated environment, the work can assume all of the
MDP axioms that we have shown to be invalid for physical
robots. Furthermore, this and other work that uses commu-
nication between agents relies on the assumption that agents
can correctly exchange learned information. This does not
hold true on physical systems whose noise and uncertainty
properties extend to the communication channels.

7 SUMMARY

The goal of this paper has been to bring to light some of
the important properties of situated domains, and their im-
pact on the existing reinforcement learning strategies. We
have discussed why modeling agent–world interactions as
Markov Decision Processes is unrealistic, and how the tra-
ditional notions of state, state transitions, goals, and reward
functions fail to transfer to the physical world.

We have argued that the noisy and inconsistent proper-
ties of complex worlds require the use of domain knowl-
edge. We proposed a principled approach to embedding
such knowledge into the reinforcement based on utilizing
heterogeneous reward functions and goal–specific progress
estimators. We believe that these strategies take advan-
tage of the information readily available to situated agents,
make learning possible in complex dynamic worlds, and
accelerate it in any domain.

Acknowledgements

I am grateful to to the two anonymous reviewers for detailed
helpful comments on an earlier draft of this paper, and to
Rich Sutton for encouraging me to write up the the results.
The research reported here was done at the MIT Artificial
Intelligence Laboratory, and supported in part by the Jet
Propulsion Laboratory contract 959333 and in part by the
Advanced Research Projects Agency under Office of Naval
Research grant N00014–91–J–4038.

References

Agre, P. E. & Chapman, D. (1990), What Are Plans for?, in
P. Maes, ed., ‘Designing Autonomous Agents: Theory
and Practice from Biology to Engineering and Back’,
The MIT Press, pp. 17–34.

Atkeson, C. G. (1990), Memory-Based Approaches to Ap-
proximating Continuous Functions, in ‘Proceedings,
Sixt Yale Workshop on Adaptive and Learning Sys-
tems’.

Barto, A. G., Bradtke, S. J. & Singh, S. P. (1993), ‘Learning
to Act using Real-Time Dynamic Programming’, AI
Journal.

Brooks, R. A. (1990), The Behavior Language; User’s
Guide, Technical Report AIM-1127, MIT Artificial
Intelligence Lab.

Brooks, R. A. & Matarić, M. J. (1992), Real Robots, Real
Learning Problems, in ‘Robot Learning’,Kluwer Aca-
demic Press, pp. 193–213.

Chapman, D. & Kaelbling, L. P. (1991), Input Generaliza-
tion in Delayed Reinforcement Learning: An Algo-
rithm and Performance Comparisons, in ‘Proceedings,
IJCAI-91’, Sydney, Australia.

Jaakkola, T. & Jordan, M. I. (1993), ‘On the Convergence
of Stochastic Iterative Dynamic Programming Algo-
rithms’, Submitted to Neural Computation.

Jordan, M. I. & Rumelhart, D. E. (1992), ‘Forward Models:
Supervised Learning with a Distal Teacher’, Cognitive
Science 16, 307–354.

Kaelbling, L. P. (1990), Learning in Embedded Systems,
PhD thesis, Stanford University.

Maes, P. & Brooks, R. A. (1990), Learning to Coordinate
Behaviors, in ‘Proceedings, AAAI-91’, Boston, MA,
pp. 796–802.

Mahadevan, S. & Connell, J. (1991), Automatic Program-
ming of Behavior-based Robots using Reinforcement
Learning, in ‘Proceedings, AAAI-91’, Pittsburgh, PA,
pp. 8–14.

Matarić, M. J. (1992), Designing Emergent Behaviors:
From Local Interactions to Collective Intelligence, in
‘From Animals to Animats: International Conference
on Simulation of Adaptive Behavior’.

Matarić, M. J. (1993), Kin Recognition, Similarity, and
Group Behavior, in ‘Proceedings of the Fifteenth An-
nual Conference of the Cognitive Science Society’,
Boulder, Colorado, pp. 705–710.

Matarić, M. J. (1994), Interaction and Intelligent Behavior,
PhD thesis, MIT.

Schaal, S. & Atkeson, C. G. (1994), ‘Robot Juggling: An
Implementation of Memory-Based Learning’,Control
Systems Magazine.

Singh, S. P. (1991), Transfer of Leanring Across Com-
positions of Sequential Tasks, in ‘Proceedings, Eighth
International Conference on Machine Learning’, Mor-
gan Kaufmann, Evanston, Illinois, pp. 348–352.

Sutton, R. (1988), ‘Learning to Predict by Method of Tem-
poral Differences’, The Journal of Machine Learning
3(1), 9–44.

Sutton, R. S. (1990), Integrated Architectures for Learn-
ing, Planning and Reacting Based on Approximating
Dynamic Programming, in ‘Proceedings, Seventh In-
ternational Conference on Machine Learning’,Austin,
Texas.

Tan, M. (1993), Multi-Agent Reinforcement Learning: In-
dependent vs. Cooperative Agents, in ‘Proceedings,
Tenth International Conference on Machine Learn-
ing’, Amherst, MA, pp. 330–337.

Tesauro, G. (1992), Practical Issues in Temporal Differ-
ence Learning, in J. E. Moody, S. J. Hanson & R. P.
Lippmann, eds, ‘Advances in Neural Information Pro-
cessing Systems 4’, Morgan Kaufmann, pp. 259–267.

Watkins, C. J. C. H. (1989), Learning from Delayed Re-
wards, PhD thesis, King’s College, Cambridge.

Watkins, C. J. C. H. & Dayan, P. (1992), ‘Q-Learning’,
Machine Learning 8, 279–292.

Whitehead, S. D. (1992), Reinforcement Learning for the
Adaptive Control of Perception and Action, PhD the-
sis, University of Rochester.

Whitehead, S. D. & Ballard, D. H. (1990), Active Percep-
tion and Reinforcement Learning, in ‘Proceedings,
Seventh International Conference on Machine Learn-
ing’, Austin, Texas.

Whitehead, S. D., Karlsson, J. & Tenenberg, J. (1993),
Learning Multiple Goal Behavior via Task Decompo-
sition and Dynamic Policy Merging, in J. H. Connell
& S. Mahadevan, eds, ‘Robot Learning’, Kluwer Aca-
demic Publishers, pp. 45–78.

