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Abstract

We study resonant Andreev tunneling through a strongly interacting quan-

tum dot connected to a normal and to a superconducting lead. We obtain

a formula for the Andreev current and apply it to discuss the linear and

non-linear transport in the nonperturbative regime, where the effects of the

Kondo resonance on the two particle tunneling arise. In particular we notice

an enhancement of the Kondo anomaly in the I−V characteristics due to the

superconducting electrode.
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The way a superconducting electrode affects the electrical resistance of a small meso-
scopic region via Andreev tunneling, has been the subject of an impressive research activity
over the last years [1]. This has lead to the discovery of a number of new phenomena.
Examples are the zero-bias anomalies in Normal-Insulating-Superconducting (NIS) struc-
tures [2] or temperature (and voltage) re-entrant behaviour in the conductance of a small
metallic wire in contact with a superconducting lead [3]. Several of these phenomena have
been successfully explained by models of non-interacting electrons [4–9]. Electron-electron
interaction strongly modifies the two-particle tunneling. In small capacitance junctions, for
example, it leads to the Coulomb blockade of Andreev tunneling [10], whereas in a Lut-
tinger liquid-Superconducting structure anomalous I − V characteristics appear due to the
excitation of the low lying modes [11].

Electrical transport via resonant tunneling in strongly interacting systems has been in-
tensively investigated because of the possibility to study the behavior of an Anderson-like
impurity model. The prototype model is a Quantum Dot (QD), which mimics the impurity
level, coupled by tunnel junctions to two non-interacting leads. When the dot level is far be-
low the Fermi energy of the leads, the formation of a spin singlet between the impurity spin
and the conduction electrons gives rise to a many-body resonance at the Fermi energy. Such
a resonance, known as Abrikosov-Suhl or Kondo resonance, manifests in a peak in the den-
sity of states at the Fermi level and leads to a perfect transmission at zero temperature [12].
The two reservoirs, differently from the case of the Anderson impurity in metals, can be kept
at different chemical potentials. Nonlinear transport through a QD provides then a beatiful
tool to study a Anderson impurity out of equilibrium [13]. The nonlinear I −V characteris-
tics and the Kondo resonance in nonequilibrium conditions have been studied by a variety
of methods: the equation of motion for the Green’s function [13], variational procedure [14],
a newly developed diagrammatic technique [15], and the 1/N expansion [16]. Experimental
evidences of Kondo-like correlations have been reported in metal point contact [17] and very
recently in SET transistors [18]. Zero bias anomalies have also been reported recently in
experiments involving superconductor/Anderson-insulator interfaces, though their physical
interpretation is still under debate [19].

Remarkably a QD offers the, yet unexplored, possibility to study a quantum impurity
coupled to two different types of electronic systems, such as superconductors and normal
metals at the same time. The development of superconductor-semiconductor integration
technology should allow to study the signatures of the Kondo effect in the Andreev tunneling.

In this Letter we will study Resonant Andreev Tunneling (RAT) in a QD coupled to a
normal and to a superconducting reservoirs as shown schematically in Fig. 1. Differently
from the conventional problem of a Kondo impurity in a superconductor [20] here the low
lying excitations are still present due to the presence of the normal electrode.

The model Hamiltonian for the N-QD-S system under consideration can be written as

H = HN + HS + HD + HT,N + HT,S (1)

where HN =
∑

k,σ ǫkc
†
N,k,σcN,k,σ , HS =

∑

k,σ ǫkc
†
S,k,σcS,k,σ +

∑

k(∆c†S,k,↑c
†
S,−k,↓ + c.c.) and

HD = ǫdd
†
σdσ +Und,↑nd,↓ are the Hamiltonians of the normal lead, the superconducting lead

(∆ is the superconducting gap) and the dot respectively. The single particle energy ǫd is
double degenerate in the spin index σ and the interaction is included through the on-site
repulsion U . The position of the dot level can be modulated by an external gate voltage.
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The tunneling between the leads and the dot is described by HT,η =
∑

k,σ(Vη,k,σc†η,k,σ,dσ+c.c.)
where η = N, S and Vη,k,σ is the tunneling amplitude.

The average current, which for convenience we compute in the normal electrode, is given
by I = 2eIm

∑

k < Ψ†
N,kτ̂zĤkΦ >, where we have adopted the Nambu notation (the hat

indicates matrices in the Nambu space): ΨN,k = (cN,k,↑, c
†
N,−k,↓) and Φ = (d↑, d

†
↓). Ĥk is a

diagonal matrix with elements H11 = VN,k,↑,H22 = V ∗
N,−k,↓.

By means of the Keldysh technique, as employed in Ref. [21], the current I can be
rewritten in the form

I = ie
∫ ∞

−∞

dǫ

2π
ΓNTr{τ̂zĜ

R(ǫ)[Σ̂R(ǫ)f̂N(ǫ) − f̂N (ǫ)Σ̂A(ǫ) + Σ̂<(ǫ)]ĜA(ǫ)} (2)

where ĜR(A), Ĝ< are the retarded (advanced) and the lesser Green’s functions of the dot (for
example ĜR(t) = −iθ(t) < {Φ(t), Φ†(0)} >). In deriving eq.(2), the relation Ĝ< = ĜRΣ̂<ĜA

has been used. Here ΓN(ǫ) = 2π
∑

k |VN,k,σ|
2δ(ǫ − ǫk). For the sake of simplicity, from now

on we will neglect the spin and energy dependence of the tunneling matrix elements. The
diagonal matrix f̂N has elements fN,11 = f((ǫ + eV )/T ) and fN,22 = 1 − f((−ǫ + eV )/T )
if the normal electrode is kept at a chemical potential which differs by eV from that of the
superconductor (f(x) is the Fermi function and V the voltage drop) .

To obtain a suitable expression for the current, we need to evaluate the lesser self-energy.
In the non-interacting case, Σ̂R(ǫ) can be computed exactly and it is expressed in terms of
the retarded and advanced self-energies as Σ̂<

0 (ǫ) = −
∑

η=N,S(Σ̂R
0,η(ǫ)f̂η(ǫ) − f̂η(ǫ)Σ̂

A
0,η(ǫ)).

In the interacting case, we generalize Ng’s ansatz to the present case [22]. The lesser and
greater self-energies are assumed to be of the form

Σ̂< = Σ̂<
0 Â , Σ̂> = Σ̂>

0 Â (3)

where Â is a matrix to be determined by the condition Σ̂< − Σ̂> = Σ̂R − Σ̂A. This ansatz
is exact both in the non-interacting limit, U = 0, and in the absence of superconductivity,
∆ = 0. Moreover it guarantees automatically a current conserving scheme for any given
approximation procedure to evaluate the retarded Green’s function. As a result we obtain
Σ̂< = Σ̂<

0 (Σ̂R
0 − Σ̂A

0 )−1(Σ̂R − Σ̂A) . The expression for the current can be greatly simplified
in the relevant limit U, ∆ ≫ kBT, V . In this case the non-interacting self-energy due to the
superconducting lead Σ̂

R(A)
0,S is real and purely off-diagonal whereas that due to the normal

lead, Σ̂
R(A)
0,N , is diagonal. As a consequence, we obtain the following form for the Andreev

current through a QD

I = ie
∫ ∞

−∞

dǫ

2π
ΓNTr{τ̂zĜ

R(ǫ)
[

Σ̂R(ǫ), f̂N(ǫ)
]

ĜA(ǫ)} . (4)

This is the first central result of this work. It generalizes to the case of a strongly interacting
dot the formula valid in the non interacting case [23] and allows to study the transport
through a N-QD-S under non-equilibrium situations and in the nonperturbative regime.

The presence of a superconducting lead introduces, besides U , another energy scale in
the problem, the energy gap ∆. One is often interested to voltages and temperatures well
below the energy scale set by ∆ and could be tempted to take the ∆ → ∞ from the outset.
In an interacting quantum dot, the ∆ → ∞ limit cannot be taken, in contrast to the non-
interacting case. In order to have coherent Andreev scattering, the two electrons enter the
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superconductor without double occupying the QD (which is forbidden in the U → ∞ limit).
This can happen only on a time scale of the order 1/∆. We will then consider the case
U ≫ ∆ ≫ T, V [24].

The generalization of the decoupling scheme for ĜR in the presence of superconductivity
is conveniently done by rewriting the superconducting lead Hamiltonian, HS, in terms of
quasiparticles operators by means of a Bogoliubov transformation. The reason for trans-
forming to the quasiparticles basis is dictated by the type of approximations introduced in
the equation of motion approach. In fact, one may generalize to the case of a supercon-
ducting lead, the decoupling usually introduced in the normal case. Such decoupling, which
neglects correlations in the lead, is done in terms of the equilibrium number of quasiparticles.
The final expression for the matrix Green’s function of the dot is [25,26]

(

ǫ − ǫd − σN,11(ǫ) − σS,11(ǫ) ΓS/2
ΓS/2 ǫ + ǫd − σN,22(ǫ) − σS,22(ǫ)

)

Ĝ =

(

1− < n↓ > 0
0 1− < n↑ >

)

(5)

where σN,11 is the U = ∞-limit self-energy considered in Ref. [13]

σN,11(ǫ) = −i
ΓN

2
+
∑

k

|V |2
fN(ǫk)

ǫ − ǫk + i0+
(6)

and σS,11 is the corresponding self-energy due to the superconducting electrode

σS,11(ǫ) = −
∑

k

|V |2
v2

k

ǫ + Ek + i0+
(7)

(v2
k = 1/2(1− ǫk/Ek) and Ek =

√

ǫ2
k + |∆|2). The self-energy for the hole propagator can be

obtained using the property σN(S),22(ǫ) = σ∗
N(S),11(−ǫ). The self-energy σS,11 is weakly energy

dependent due to the low energy cutoff provided by ∆ (in what follows, we consider ωc ≫
∆ ≫ T, ǫ with ωc the bandwidth). At energies much smaller than the gap quasiparticles
present in the dot cannot decay by tunneling into the superconductor (as the imaginary
part of the diagonal elements of the self-energy σ̂S vanishes). As a result the contribution of
the self energy due to the superconducting lead σS,11 simply shifts the dot level to the new
value ǫ̃d ≈ ǫd + (ΓS/2π) lnωc/∆. The divergence of the level energy renormalization with
∆ reveals that the process occurs via a virtual state in which a quasiparticle is created in
the superconductor. It is however due to the weak (logarithmic) nature of this divergence
that RAT can can be observed in any realistic situation. Note also that the off-diagonal
element, ΓS/2, entering eq.(5), has the same form of the non interacting case apart from an
overall phase-shift of π. This π phase-shift comes from a relative cancellation between the
non-interacting and interacting off-diagonal self-energies. Substituting the espression of the
QD’s Green’s function in Eq.(2) we get the desidered result

I(V ) =
∫ ∞

−∞
dǫ

f(ǫ − eV ) − f(ǫ + eV )

2e
GNS(ǫ) (8)

with
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GNS(ǫ) =
4e2

h

2(ΓNΓS)2((Γ1,N + Γ2,N)/2ΓN))

[4(ǫ − ǫ1)(ǫ + ǫ2) − Γ1,NΓ2,N − Γ2
S]

2
+ 4 [Γ1,N(ǫ + ǫ2) + Γ2,N(ǫ − ǫ1)]

2 (9)

where ǫ1(2) = ǫd + Reσ̂N,11(22) + Reσ̂S,11(22), Γ1(2),N = −2Imσ̂N,11(22). Eqs.(4,9) are the main
results of the present paper.

The spectral function GNS(ǫ) associated with the resonant Andreev tunneling is plotted
in Fig.2 for various bias voltages (for comparison, the non-interacting case is shown in the
inset). Several features are worth noticing. First, two peaks at ±ǫ̃ are due to particle
and hole bare levels. Note that in the interacting case the bare level energy includes the
renormalization due to the superconducting electrode self-energy as discussed above. Second,
at low temperatures a Kondo peak develops at the Fermi energy. Quite remarkably, at finite
positive (negative) voltages the Kondo peak shifts pinned to the Fermi level of the normal
metal while a small kink develops at negative (positive) voltages. At finite voltages hole
and particle energies differ by 2eV , and while the electron (hole) is on resonance for positive
(negative) voltage, the Andreev reflected hole (electron) is off resonance with respect to
the shifted Fermi level. Compared to the N-QD-N case, here there is no peak splitting.
Third, the Kondo peak remains rather pronounced even in the nonequilibrium situation.
The differences between the N-QD-N and the N-QD-S cases, can be traced back to the
fact that the superconducting electrode acts simply as a boundary condition, even in the
nonequilibrium situation, the Kondo resonance being achieved through the tunneling into
the normal electrode. For this reason the Kondo peak is shifted but not suppressed.

The differential conductance, for various temperatures, is shown in Fig. 3. In the low
temperature regime the zero bias anomaly associated with the Kondo effect is clearly seen.
We note that the Kondo peak survives up to temperatures of the order of Γ/4, about one
order of magnitude larger than the N-QD-N case. This effects is shown in the inset of
Fig. 3 where the zero bias anomaly for the N-QD-S (present work) is compared with the
corresponding quantity in the N-QD-N, Ref. [13]. The anomaly in the RAT clearly survives
in a temperature regime where is already absent for normal tunneling. This may be useful
for the experimental detection of the effect.

In this Letter we studied the RAT in a Normal metal - Quantum Dot - Superconductor
device. An explicit form of the current through the device is obtained. The analysis of
the I − V characteristics has been carried out in the limit U ≫ ∆ ≫ T, V , where two
electrons tunnel almost indipendently since the onsite Coulomb repulsion (which is the
largest energy scale in the problem) prohibits the double occupancy of the Dot. In this case
the Kondo effect enhances the Andreev conductance at low temperatures. In the opposite
limit, ∆ ≫ U ≫ T, V , different processes dominate the transport and a suppression of the
Andreev tunneling is expected. The results were obtained by generalizing, in the presence of
superconductivity, an ansatz due to Ng and by means of the equation of motion method to
determine the Green’s function of the Dot. While the expression for the current in Eq. (4)
holds under general circumstances, the results for the spectral function and the differential
conductance are quantitatively valid for temperatures larger than the Kondo temperatures
and only qualitatively valid for lower temperatures [13,22]. We then expect that, even though
a more refined treatment is necessary for more quantitative results in the Kondo region, all
qualitative features of our findings will survive. The combined effect of a finite ∆ and U is
currently being investigated and it will be a subject of a forthcoming publication.
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FIGURES

FIG. 1. The system under consideration. A Quantum Dot coupled by tunnel barriers to a

Normal and to a Superconducting electrodes. The position of the level in the dots can be tuned

by means of the gate voltage Vg

FIG. 2. The spectral density for the two particle tunneling GNS(ǫ) is plotted for various bias

voltages ( V = 0 solid line, V = ±0.005 dotted line, V = ±0.01 dashed line, V = ±0.015 dot-dashed

line, ǫ̃d = −0.07, ΓS = ΓN = 0.02 and T = 0.0001, in units of the bandwidth ωc). In the inset the

non interacting case is shown for comparison.

FIG. 3. The differential conductance of the NQDS device, in units of 4e2/h, is plotted for

different temperatures (T = 0.0001 solid line, T = 0.001 dotted line, T = 0.01 dot-dashed line,

ǫ̃d = −0.04, ΓS = ΓN = 0.02, in units of the bandwidth ωc). In the inset the zero bias anomaly,

detected by measuring the relative change of the differential conductance G(V ) between zero and

high voltage (∆G/G ≡ (G(0)−G(−0.04))/G(0)), is shown for the N-QD-S (triangles ) and for the

N-QD-N (filled circles) [13]
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