
See	discussions,	stats,	and	author	profiles	for	this	publication	at:	https://www.researchgate.net/publication/3775083

An	HDM	interpreter	for	on-line	tutorials

Conference	Paper	·	November	1998

DOI:	10.1109/MULMM.1998.723000	·	Source:	IEEE	Xplore

CITATIONS

10

READS

25

2	authors:

Mario	A.	Bochicchio

Università	del	Salento

121	PUBLICATIONS			315	CITATIONS			

SEE	PROFILE

Paolo	Paolini

Politecnico	di	Milano

115	PUBLICATIONS			2,628	CITATIONS			

SEE	PROFILE

Available	from:	Mario	A.	Bochicchio

Retrieved	on:	18	September	2016

https://www.researchgate.net/publication/3775083_An_HDM_interpreter_for_on-line_tutorials?enrichId=rgreq-fba67734a8ce9865a6408b07d63f6323-XXX&enrichSource=Y292ZXJQYWdlOzM3NzUwODM7QVM6OTcxNzk1NzQyMTA1NzRAMTQwMDE4MDgyNDc1Mg%3D%3D&el=1_x_2
https://www.researchgate.net/publication/3775083_An_HDM_interpreter_for_on-line_tutorials?enrichId=rgreq-fba67734a8ce9865a6408b07d63f6323-XXX&enrichSource=Y292ZXJQYWdlOzM3NzUwODM7QVM6OTcxNzk1NzQyMTA1NzRAMTQwMDE4MDgyNDc1Mg%3D%3D&el=1_x_3
https://www.researchgate.net/?enrichId=rgreq-fba67734a8ce9865a6408b07d63f6323-XXX&enrichSource=Y292ZXJQYWdlOzM3NzUwODM7QVM6OTcxNzk1NzQyMTA1NzRAMTQwMDE4MDgyNDc1Mg%3D%3D&el=1_x_1
https://www.researchgate.net/profile/Mario_Bochicchio?enrichId=rgreq-fba67734a8ce9865a6408b07d63f6323-XXX&enrichSource=Y292ZXJQYWdlOzM3NzUwODM7QVM6OTcxNzk1NzQyMTA1NzRAMTQwMDE4MDgyNDc1Mg%3D%3D&el=1_x_4
https://www.researchgate.net/profile/Mario_Bochicchio?enrichId=rgreq-fba67734a8ce9865a6408b07d63f6323-XXX&enrichSource=Y292ZXJQYWdlOzM3NzUwODM7QVM6OTcxNzk1NzQyMTA1NzRAMTQwMDE4MDgyNDc1Mg%3D%3D&el=1_x_5
https://www.researchgate.net/institution/Universita_del_Salento?enrichId=rgreq-fba67734a8ce9865a6408b07d63f6323-XXX&enrichSource=Y292ZXJQYWdlOzM3NzUwODM7QVM6OTcxNzk1NzQyMTA1NzRAMTQwMDE4MDgyNDc1Mg%3D%3D&el=1_x_6
https://www.researchgate.net/profile/Mario_Bochicchio?enrichId=rgreq-fba67734a8ce9865a6408b07d63f6323-XXX&enrichSource=Y292ZXJQYWdlOzM3NzUwODM7QVM6OTcxNzk1NzQyMTA1NzRAMTQwMDE4MDgyNDc1Mg%3D%3D&el=1_x_7
https://www.researchgate.net/profile/Paolo_Paolini?enrichId=rgreq-fba67734a8ce9865a6408b07d63f6323-XXX&enrichSource=Y292ZXJQYWdlOzM3NzUwODM7QVM6OTcxNzk1NzQyMTA1NzRAMTQwMDE4MDgyNDc1Mg%3D%3D&el=1_x_4
https://www.researchgate.net/profile/Paolo_Paolini?enrichId=rgreq-fba67734a8ce9865a6408b07d63f6323-XXX&enrichSource=Y292ZXJQYWdlOzM3NzUwODM7QVM6OTcxNzk1NzQyMTA1NzRAMTQwMDE4MDgyNDc1Mg%3D%3D&el=1_x_5
https://www.researchgate.net/institution/Politecnico_di_Milano?enrichId=rgreq-fba67734a8ce9865a6408b07d63f6323-XXX&enrichSource=Y292ZXJQYWdlOzM3NzUwODM7QVM6OTcxNzk1NzQyMTA1NzRAMTQwMDE4MDgyNDc1Mg%3D%3D&el=1_x_6
https://www.researchgate.net/profile/Paolo_Paolini?enrichId=rgreq-fba67734a8ce9865a6408b07d63f6323-XXX&enrichSource=Y292ZXJQYWdlOzM3NzUwODM7QVM6OTcxNzk1NzQyMTA1NzRAMTQwMDE4MDgyNDc1Mg%3D%3D&el=1_x_7

An HDM Interpreter for On-Line Tutorials

Mario Bochicchio
Telemedia Lab, University of Lecce, Italy

bomal@ingle01.unile.it

Paolo Paolini
Hypermedia Open Center, Politecnico di Milano

Telemedia Lab, University of Lecce, Italy
paolini@elet.polimi.it

Abstract

The use of WWW for training purposes is rapidly
growing; in a sense it could be said that training is one of
the most important applications for Internet Technology,
in general, and for WWW in particular. The overall
organization of the sites, is, however, a difficult task,
mostly if a standard structure must be enforced across
different sets of content. In addition it is of growing
interest the need for a compatibility between off-line
training (e.g. CD-ROM’s) and on-line training (e.g.
WWW sites).
In this paper, a real life experience is described: a set of
complex tutorials, for an industrial consortium, had to be
delivered both off-line and on-line. At design time, the
content was only partially known. It was important also
to be able to add new material and to modify access
structure, without reprogramming.
The solution has been a flexible design schema (through
the model HDM) and an advanced set of tools (based on
Java), that allow the cost-effective development of
advanced multimedia training material.

1. Introduction and background

Complex software tools, as well as modern
applications programs, rely more and more on extensive,
context sensitive tutorials in order to disclose their full
potential. This caused an increasing interest about the
production process of multimedia tutorials.

Nowadays the realization of a good quality, error free
multimedia tutorial for a complex application is an
expensive task, in term of time and money, and the
effectiveness of the result is hard to evaluate.

A comprehensive methodology is required [1] to
master the complexity inherent to the amount of contents,
the relations among them, and to implement the flexibility
of use required for a truly satisfactory tutorial.

In this paper we describe a tutorial model developed
on the basis of the HDM methodology; the model is
discussed referring to a specific application, the “Corinto
Tutorial”, we developed for a consortium1 of software
houses. The tutorial model is designed to be reusable, i.e.
to implement many specific tutorials, with different set of
contents and different look and feels.

The tutorial runs on the top of an HDM interpreter,
also outlined here. The interpreter, named JWeb, is able
to concurrently serve multiple users and multiple
applications (different multimedia tutorials) in an intranet
environment. A stand-alone version of Jweb, named JWeb
Lite, was also developed, to distribute the same tutorials
by using normal CD-ROMs

The structure of the paper is the following: in section 2
we describe the tutorial model referring to the Corinto
Tutorial application; in section 3 we outline the structure
of the HDM interpreter; in section 4 we draw the
conclusions and sketch the future directions for work;
section 5 is for bibliography and references.

2. The Application

The Corinto Tutorial has been designed to support a
family of software tools [2,3] developed by the Corinto
Consortium. The main goal of the Consortium is the
creation of tools supporting the small software houses in
the transition to the Object Technology

In particular, the "Corinto Tools" follows the
guidelines of the San Francisco Project, that is an
international project, leaded by IBM and others, aimed to
the production of extensible and customizable frameworks
of applications for commercial purposes.

The Tutorial, when fully developed (sw: december '97;
contents: July '98), will contain more than 1000 images,
about 200 animated examples in form of Shockwave files

1 CORINTO (COnsorzio di RIcerca Nazionale sulla Tecnologia ad
Oggetti) is a consortium among IBM Italia, Apple Italia, Selfin and
other software houses.

(interactive animations) and screen-cams (digital films),
10 minutes of interviews to the tool’s authors, in form of
digital films, diagrams, texts (Italian and English), tables,
audio comments (Italian and English) and music.

The tutorial has been designed using the Hypermedia
Design Model [4-8] that provides the primitives to model
the application, the directives for its implementation and
the precepts for an ordered development cycle.

According to HDM [4,5,8], a hypermedia application
can be completely described in terms of an "Hyperbase
in-the-large" schema, an "Hyperbase in-the-small"
schema, an "Access Structures" plan and a "Layout
Definition". The Hyperbase in-the-large outlines the main
features of the application topics and the relations among
them. The Hyperbase in-the-small describes the detailed
structure of each application topic, and the involved
multimedia objects. The Access Structures allows the user
to locate the multimedia contents of his/her interest. The
Layout Definition describes the look of the application,
and the interaction rules.

2.1. Hyperbase

The Hyperbase in-the-large of the Corinto Tutorial,
depicted in Fig. 1, consists of five main entity types:

� Operation: represents an action we can bring about
when using the Corinto Tools (e.g. extend a given
class, find a given hotspot, but also print the current
form, edit the pointed object, …). The description of
the action must emphasize the means of what we do,
as well as the “performing mechanic” and the various
available options; so, the operation must be explained
both conceptually and operationally.

� Procedure: groups a set of operations having a
global meaning (e.g. add a method to a given class,
prepare a project for the test phase, …). The structure
of the procedure can be linear (direct sequence),
linear with mutually exclusive variants (direct tree) or
linear with variants (direct lattice).

� Result: describes a goal we can attain using the
Corinto Tools (e.g. guided project analysis, automatic
generation of class diagrams, …). The goal

Procedure

Result

Problem

Operation

Example
Procedure
Operation

Result

Procedure
Operation

Result
Example
Problem

Glossary

Cites

Part of

Made up of

Made up of

Part of

Produces

Comes from

Comes from

Produces

Connected to Connected to

Connected to

Connected to

Example of Illustrated by

Fig. 1. Corinto tutorial: hyperbase in-the-large

description must emphasize, from the user point of
view, what the Tools can do, and not how the Tools
do it. This is also a good place to underline the
strength points of the Corinto Tools, (comparing it
with the competitors), and to anticipate the features
of the future releases.

� Problem: illustrates a typical problem we can
experience using the Tools (e.g. limits to the project
size, incomplete implementation of a standard, …).

� Example: explain a typical case of interest showing
recorded instances (animations or digital films with a
suitable audio comment) of interaction with the
Corinto Tools (e.g. open a new project, specialize an
abstract class, …).

� A hypertextual Glossary, also reported in Fig. 1,
provides the definitions of the terms specific to the
Object Technology or to the Corinto Tools, with
additional information, where it is needed.

The Application Link types, providing the semantic
relationships, are:

� Produces / Comes from
{Result}⇔{Operation; Procedure}
Describes how to proceed (in term of procedures or
operations) to achieve a given result.

� Made up of / Part of
{Procedure}⇔{Operation}
Describes the structure of a procedure.

� Made up of / Part of
{Procedure}⇔{Procedure}
Describes the recursive structure of some procedure.

� Example of / Illustrated by
{Example}⇔{Procedure; Operation; Result}
Exemplifies a procedure, an operation or a result.

� Connected to
{Problem}⇒{Procedure;Operation;Result;Example}
Links the problem with its cause. It is a mono
directional link because, in a general purpose tutorial,
the omitted direction (from right to left) is to much
populated (e.g. too much potential known problems
related to a given procedure) and rarely useful.

� Cite
{Procedure; Operation; Result; Example; Problem}
⇒ {Glossary}
Links a technical term, everywhere in the Tutorial, to
its concise explanation or definition. We must
consider that the glossary is conceived to help the
understandability of the adopted language; it is
inadequate to drive the navigation as a sort of
“analytical index”. Consequently, this is a mono
directional link.

The design in-the-small [9], not reported here for sake
of briefness, takes into account the internal structure of

the entity types in terms of multimedia slots (images, slide
shows, films, audio, ...) and relations among them
(synchronization between audio and animation, text and
pictures, ...). For the Corinto Tutorial we adopted
relatively simple (internally unstructured, flat) entity
types, migrating each structuring need at the in-the-large
level (in particular for the entity types "procedure" and
"operation"). This results in a simplified production and
maintenance for the multimedia contents. From the
implementation point of view, in fact, each instance of the
previously defined entity types can be packed as a
separate file, and each single "instance file" can be
created, edited or updated at any time. This allows the
Corinto staff to easily modify and upgrade the tutorial
contents without external intervention, and without the
need to rebuild the whole tutorial at each time [9].

A template-based version of the "instance editor" has
been developed by using Macromedia Director. The
Shockwave technlogy (also from Macromedia) was
selected for the "instance files", because of its suitability
for on-line and off-line applications.

An interesting benefit of HDM is the reusability of the
structure in the large of the hyperbase. In fact we can
observe that the previously defined description of the
hyperbase structure is not specific for the Corinto
Tutorial. The same schema in the large can be reused to
implement many different tutorials, even with different
contents and dissimilar interfaces. In other words, the
design in the large tries to capture the intrinsic meaning of
the tutorial concept, making it available for different
specific implementations, but also for successive
refinements.

2.2. Access structures

Various fruition strategies needs to be supported in
order to satisfy the various readers, from the potential
customer to the neophyte of the Corinto Tools, up to the
experienced user asking for advanced information on the
Corinto Tools.

Therefore, we defined the following access structures:

� A guided tour is planned to explain the main concepts
and the terminology of the Object Technology, as
implemented in the Corinto Tools.

� A free-running collection of examples will be used
for demo purposes.

� A number of heterogeneous collections, ordered by
increasing skill level (lessons), will be used for an
interactive training to the features of the tools and to
the related operating procedures.

� A separated subset of the Hyperbase objects,
organized as an automatic guided tour, will be used to

illustrate the concepts underlying the San Francisco
Project [10].

� A number of heterogeneous collections, most of all
containing operations and procedures, will be used
for context sensitive tutoring, invoked directly from
the Tools when detecting incorrect user actions.
The detection logic needs to be embedded in the
Corinto Tools.
The invoking procedure spawns an HTML Browser
instance with the entry point of the suitable HDM
collection.

� The implicit collections, i.e. the entire indexes of the
entities in the Hyperbase, complete the Access
Structures of the Tutorials, allowing the access to
whatever multimedia object in the Hyperbase. The
indexes are searchable; the standard ordering is the
alphabetic one, but an author-defined ordering is also
implemented and available.

A substantial benefit for the advanced user consists of
the possibility to create its own collections or indexes at
run time (i.e. also after that the tutorial has been released
to the users). Adopting the HDM terminology, in the
following of the paper this activity will be referred as
“second level authoring” or “co-authoring”.

The co-authoring makes possible to reuse the
multimedia objects in the hyperbase for its own purposes.
The type of co-authoring we adopted (other types are also
possible) is based on the creation of a set of multimedia
objects structured in a linear sequence. An audio comment
recorded at run-time or imported later, and an optional
text, explains the global meaning of the collection as well
as the logical steps outlined by the sequence.

From the user point of view, this is obtained by
bookmarking the desired multimedia objects during a
normal session, finally, the bookmark sequence can be
saved as a new user-defined collection. The sequence can
be completed by adding the audio comment and the text
explanation [11].

In this way, for example, we can create customized
copy of the existing access structures, able to better match
the cultural and professional background of a specific user
(or set of users). Moreover, completely new access
structures can be created for specific purposes (e.g.
presentations, computer supported lessons, personal
bookmarks, ...).

2.3. Layout and Interactions

The main interface of the Tutorial was subdivided in
five areas maintaining a constant functional meaning and
a similar visual appearance across the application
functioning [12,13]. The adopted layout structure is

presented in Fig. 2 while in Fig. 3 is reported the
corresponding (raw) prototype of the main interface.

-The area labeled “Access Structures” contains the
controls to activate the author collections, the indexes and
the user collections defined in the previous paragraph.

-The area “Interaction & Navigation In-The-Small” is
aimed to receive the multimedia object to be played.

-The area labeled “Applications Links Navigation”
encompasses the controls needed to follow the
applications links. For example, referring to Fig 3, when
the user is reading the procedure "Extending a CBOF
Class" (i.e. an instance of the entity type "procedure"),
then the button labeled “Operations” is highlighted
(enabled) because they exist operations “part-of” the
given procedure. This operation's index (alphabetically
ordered and searchable) will pop-up by clicking on the
highlighted button.

Grayed (disabled) buttons denote the absence of
linked instances.

-In the lower-left area are located the "Session
Controls", useful to define some general parameters such
as the tutorial language, the volume level for the audio
and so on.

-The area “Collection Navigation” contains the well-
known controls: "first", "last", "next", "previous", plus a
“go to the collection index” and a “status indicator". The
last one reports the collection name, the total number of
items in the collection and the number of the current item.
The status indicator gives to the user the feedback needed
to “estimate its position in the Tutorial” during the
reading process. This information is very useful to
minimize the “be lost in the Tutorial” feeling, when a
complex navigation is performed [12,13].

Access Structures

Interaction & Navigation
In-The-Small

Collection Navigation Status

Application
Links

Session
Controls

Navigation

Fig. 2. Main interface: layout structure

3. The HDM interpreter

In fig. 4 is reported the simplified logical structure of
the architecture we implemented to deliver the Corinto
Tutorial in an intranet environment.

An intranet server (hardware) running a standard Web
Server and a DBMS, is also equipped with the HDM
interpreter. The interpreter, named JWeb, is a Java
application communicating with the Web Server (via
CGI) and with the DBMS (via JDBC [14]); the job
performed by JWeb is the on-the-fly creation of the
tutorial pages when requested.

A typical session of use, for the so configured intranet
server, is the following:
1) a user, on the intranet, by means of a Web Browser,

issues a request for a tutorial page (e.g. the home
page, a bookmarked page or a page invoked by the
context sensitive engine of the Corinto Tools).

2) The request, accepted by the Web Server, is
redirected to JWeb (thanks to an appropriate URL
format).

3) JWeb decodes the parameters contained in the URL;
this gives to the interpreter the information about the
current status in the form: <tutorial name, collection

name, object name, others session parameters
(language, skill level, …), navigation action to be
performed>. The last parameter refers to the action
requested by the user, in terms of navigation in the
large (e.g. "go to the next object in the collection",
"go to the index", "open the glossary", "open a new
access structure", …).

4) The interpreter, based on the deciphered parameters,
submits a query to the DBMS to obtain the needed
new objects (this is a simplified explanation, more
details on this step and on the next one are reported
in the following of the paper).

5) On the receptions of the required multimedia object,
JWeb performs the "on-the-fly composition" of the
page required by the user; the result is sent to the
Web Server in form of an HTML file trough the file
system.

6) Finally, the Web Server send the page back to the
user.

In the previous description we assumed that, at the
step 4, the HDM interpreter submits the query to the
DBMS on the base of the URL parameters, but this need
an intermediate step. In fact the parameters contained in
the URL needs to be interpreted as a function of the

Fig. 3. Layout: prototype

Tutorial Model in order to identify the new object
required by the user.

So the step 4 can be subdivided in:
4a) JWeb submits to the DBMS a first query, to obtain

the components of the Tutorial Model needed to
decipher the parameters in the URL;

4b) JWeb submits to the DBMS a second query, based on
the deciphered parameters, to obtain the multimedia
objects (in term of "instance files" and multimedia
slots) needed to create the new tutorial page.

The step 4a) is essential if JWeb is used to
concurrently support different Tutorial Models. However,
in the case of the Corinto Tutorial, a single model is
required, so that it can be loaded once for all in a suitable
data structure in the main memory. This result in a
reduced number of queries submitted to the DBMS and in
an increased throughput of tutorial pages that JWeb can
serve.

Similar considerations can be applied to the step 5,
even in this case, in fact, the layout description is usually
stored into the database, and a suitable query is needed to
obtain the structural description of the page to create.

Moreover, it should be noted that this structural
description is done in term of pathnames and filenames of
the multimedia objects forming the page, rather than as
binary fields stored in the database. For example, as
previously stated, the contents section of each tutorial
page is stored in the file system as a Shockwave file. This
is a general rule: each multimedia object (e.g. the Java
Applets we used to program the visual interface objects,
the digital films, the audio files, the still images, …) is
stored on the file system, and this is a key point of our
implementation. This choice ensures, in fact, the
flexibility to create, to edit and to manage the multimedia
objects by using the third-part tools preferred by the
authors (Macromedia Director, Adobe PhotoShop, ...)

Intranet Browser
(Netscape or Explorer)

Query
Formatter

Layout
Engine

HTML
Class Library

DBMSFile
System

JWeb

INTRANET SERVER

WEB SERVER
File

System

 1

 2

 3

 4

Intranet Browser
(Netscape or Explorer)

Intranet Browser
(Netscape or Explorer)

Fig. 4. JWeb: structure and interaction

instead of the rigid choice forced by many multimedia
database.

An advanced prototype of JWeb has been
implemented and tested on a pool of networked Win95
workstations, using JDK 1.1. Moreover, we verified the
compatibility with various DBMSs (MS Access, IBM
DB2 and Oracle running on various Operating Systems,
via JDBC/ODBC) and various Web Servers (Apache and
MS Personal Web Server).

4. Conclusions and future work

The advantages offered by the application described in
the previous section could be summarized as it follows:
• a generalized tutorial schema that allows to

accommodate nearly any kind of content for any type
of subject;

• a data base driven implementation, with automatic
generation on web pages, that allows a great
flexibility in maintaining and expanding the tutorial;

• a high quality interface, ensured by the use of
shockwave pieces of content;

• the possibility of defining directly specific paths,
guided tours and indexes, without need for
reprogramming anything; this allows the specific
tailoring and tuning of the material to the needs of the
training context.

As future work we are planning the following
developments:
• at requirement level we need to expand the possibility

of customization of the material; it would be nice, for
example, to be able to cooperatively annotate parts of
the content [15], to be able to insert new pieces of
content, relating them to the content already stored in
the tutorial, to introduce more powerful collections
(i.e. indexes and guided tour, etc.);

• at design level, the schema should be slightly revised
and generalized, since the current version does not
fully support complex bodies of material;

• at the implementation level, we should allow a better
mix between use of data base formatted data items (to
be composed in a web page dynamically) and the use
of “precanned” pages, as it is in the current version.

An optimization of the code is also required to ensure
the proper level of performance.

These modifications and enhancements are due by the
end of 98.

5. Bibliography

[1] V. Balasubramanian, Bang Min Ma, Joonhee Yoo, "A
Systematic Approach to Designing a WWW Application",
Communications of the ACM, Vol. 38, N. 8, pp.47-48, 1995
[2] Aphrodite: a Form Based Approach to the Object Oriented
Analysis and Design, Corinto internal paper, Bari, Italy, 1997.
[3] Aphrodite Project Manual, Corinto internal paper, Bari,
Italy, 1997.
[4] D.Schwabe, G.Rossi, The Object-Oriented Hypermedia
Design Model, Communications of the ACM, Vol. 38, N. 8,
pp.45-46, Aug. 1995
[5] F.Garzotto, P.Paolini and D.Schwabe, “HDM - A Model
Based Approach to Hypermedia Application Design”, ACM
Transactions on Information Systems, 11, 1 (Jan. 1993), 1-26
[6] U.Cavallaro, F.Garzotto, P.Paolini and D.Totaro, “HIFI:
Hypertext Interface for Information Systems”, IEEE Software
10, 6 (Nov. 1993), 48-51.
[7] F.Garzotto, L.Mainetti and P.Paolini, “Hypermedia
Application Design: A Structured Approach”, In J.W.Schuler,
N.Hannemann and N.Streitz Eds., “Designing User Interfaces
for Hypermedia”, Springer Verlag, 1995.
[8] F.Garzotto, L.Mainetti and P.Paolini, “Navigation in
Hypermedia Applications: Modeling and Semantics”, Journal of
Organizational Computing (in press)
[9] Corinto Tutorial: Project Manual, Corinto internal paper,
Bari, Italy, 1997.
[10] http://www.ibm.com/Java/Sanfrancisco.
[11] Corinto Tutorial: User Manual, Corinto internal paper,
Bari, Italy, 1997.
[12] A.Dix, J.Finlay, G.Abowd and R.Beale, Human Computer
Interaction, Prentice Hall, 1993.
[13] J.Preece, Y.Rogers, H.Sharp, D.Benyon, S.Holland and
T.Carey, Designing the User Interface, Addison Wesley, 1994.
[14] G.Hamilton, R.Cattal and M.Fisher, JDBC Database
Access from Java: a Tutorial and Annotated Reference,
Addison Wesley, 1997.
 [14] H.Benz, S.Bessler; S.Fischer; M.Hager; R.Mecklenburg,
"DIANE: A Multimedia Annotation System", Proceedings of
the Second European Conference on Multimedia Applications,
Services and Techniques (ECMAST'97).

