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Preface

Social networks have been studied fairly extensively over two decades in
the general context of analyzing interactions between people, and determin-
ing the important structural patterns in such interactions. The trends in recent
years have focussed on online social networks, in which the social network
is enabled as an internet application. Some examples of such networks are
Facebook, LinkedIn and MySpace. Such social networks have rapidly grown
in popularity, because they are no longer constrained by the geographical lim-
itations of a conventional social network in which interactions are de ned in
more conventional way such as face-to-face meetings, or personal friendships.

The infrastructure which is built around social networks can support a rich
variety of data analytic applications such as search, text analysis, image anal-
ysis, and sensor applications. Furthermore, the analysis and evolution of the
structure of the social network is also an interesting problem in of itself. While
some of these problems are also encountered in the more conventional notion
of social networks, many of the problems which relate to the data-analytic
aspects of social networks are relevant only in the context of online social
networks. Furthermore, online social networks allow for more ef cient data
collection on a large scale, and therefore, the computational challenges are far
more signi cant.

A number of books have been written in recent years on the topic of social
networks, though most of these books focus on the non-technological aspect,
and consider social networks more generally in the context of relationships
between individuals. Therefore, these books mostly focus on the social, struc-
tural, and cognitive aspects of the social network, and do not focus on the
unique issues which arise in the context of the interplay between the structural
and data-centric aspects of the network. For example, an online social network
may contain various kinds of contents or media such as text, images, blogs
or web pages. The ability to mine these rich sources of information in the
context of a social network provides an unprecedented challenge and also an
opportunity to determine useful and actionable information in a wide variety of

elds such as marketing, social sciences, and defense. The volume of the data
available is also a challenge in many cases because of storage and ef ciency
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constraints. This book provides a rst comprehensive compendium on recent
research on the data-centric aspect of social networks.

Research in the eld of online social networks has seen a revival in the
last ten years. The research in the eld is now reaching a level of maturity
where it is useful to create an organized set of chapters which describe the
recent advancements in this eld. This book contains a set of survey chapters
on the different data analytic issues in online social networks. The chapters
describe the different facets of the eld in a comprehensive way. This creates
an organized description of the signi cant body of research in the important
and emerging eld of online social networks.



Chapter 1

AN INTRODUCTION TO SOCIAL NETWORK DATA
ANALYTICS

Charu C. Aggarwal
IBM T. J. Watson Research Center
Hawthorne, NY 10532
charu@us.ibm.com

Abstract The advent of online social networks has been one of the most exciting events in
this decade. Many popular online social networks such as Twitter, LinkedIn, and
Facebook have become increasingly popular. In addition, a number of multime-
dia networks such as Flickr have also seen an increasing level of popularity in
recent years. Many such social networks are extremely rich in content, and they
typically contain a tremendous amount of content and linkage data which can be
leveraged for analysis. The linkage data is essentially the graph structure of the
social network and the communications between entities; whereas the content
data contains the text, images and other multimedia data in the network. The
richness of this network provides unprecedented opportunities for data analyt-
ics in the context of social networks. This book provides a data-centric view of
online social networks; a topic which has been missing from much of the litera-
ture. This chapter provides an overview of the key topics in this eld, and their
coverage in this book.

Keywords: Social Networks, Data Mining

1. Introduction
This chapter will provide an introduction of the topic of social networks, and

the broad organization of this book. Social networks have become very popu-
lar in recent years because of the increasing proliferation and affordability of
internet enabled devices such as personal computers, mobile devices and other
more recent hardware innovations such as internet tablets. This is evidenced
by the burgeoning popularity of many online social networks such as Twitter,

C. C. Aggarwal (ed.), Social Network Data Analytics,
DOI 10.1007/978-1-4419-8462-3_1, © Springer Science+Business Media, LLC 2011



2 SOCIAL NETWORK DATA ANALYTICS

Facebook and LinkedIn. Such social networks have lead to a tremendous ex-
plosion of network-centric data in a wide variety of scenarios. Social networks
can be de ned either in the context of systems such as Facebook which are ex-
plicitly designed for social interactions, or in terms of other sites such as Flickr
which are designed for a different service such as content sharing, but which
also allow an extensive level of social interaction.

In general, a social network is de ned as a network of interactions or re-
lationships, where the nodes consist of actors, and the edges consist of the
relationships or interactions between these actors. A generalization of the idea
of social networks is that of information networks, in which the nodes could
comprise either actors or entities, and the edges denote the relationships be-
tween them. Clearly, the concept of social networks is not restricted to the
speci c case of an internet-based social network such as Facebook; the prob-
lem of social networking has been studied often in the eld of sociology in
terms of generic interactions between any group of actors. Such interactions
may be in any conventional or non-conventional form, whether they be face-to-
face interactions, telecommunication interactions, email interactions or postal
mail interactions.

The conventional studies on social network analysis have generally not fo-
cussed on online interactions, and have historically preceded the advent and
popularity of computers or the internet. A classic example of this is the study
of Milgram [18] in the sixties (well before the invention of the internet), who
hypothesized the likelihood that any pair of actors on the planet are separated
by at most six degrees of separation. While such hypotheses have largely re-
mained conjectures over the last few decades, the development of online social
networks has made it possible to test such hypotheses at least in an online
setting. This is also referred to as the small world phenomenon. This phe-
nomenon was tested in the context of MSN messenger data, and it was shown
in [16] that the average path length between two MSN messenger users is 6.6.
This can be considered a veri cation of the widely known rule of “six degrees
of separation” in (generic) social networks. Such examples are by no means
unique; a wide variety of online data is now available which has been used
to verify the truth of a host of other conjectures such1 as that of shrinking
diameters[15] or preferential attachment. In general, the availability of mas-
sive amounts of data in an online setting has given a new impetus towards a
scienti c and statistically robust study of the eld of social networks.

1The shrinking diameter conjecture hypothesizes that the diameters of social networks shrink in spite of
the addition of new nodes, because of an increase in the density of the underlying edges. The preferential
attachment conjecture hypothesizes that new nodes and edges in the social networks are more likely to be
attached to the dense regions of the network.



An Introduction to Social Network Data Analytics 3

This data-centric impetus has lead to a signi cant amount of research, which
has been unique in its statistical and computational focus in analyzing large
amounts of online social network data. In many cases, the underlying insights
are applicable to the conventional social network setting as well. Before dis-
cussing the research topics in more detail, we will brie y enumerate the differ-
ent settings for social network analysis, and speci cally distinguish between
the conventional and non-conventional scenarios. Speci cally, these different
settings are as follows:

The most classical de nition of a social network is one which is based
purely on human interactions. This is the classical study of social net-
works in the eld of sociology. These studies have traditionally been
conducted with painstaking and laborious methods for measuring in-
teractions between entities by collecting the actual data about human
interactions manually. An example is the six-degrees-of-separation ex-
periment by Milgram [18], who used postal mail between participants in
order to test whether two arbitrary actors could be connected by a chain
of 6 edges with the use of locally chosen forwards of the mail. Such
experiments are often hard to conduct in a completely satisfactory way,
because the actors in such experiments may have response rates which
cannot be cleanly modeled in terms of social interaction behavior. An
example is the case of the Milgram experiment, in which the results have
often been questioned [14] because of the low forward rate of the letters
which never reached the target. Furthermore, such social experiments
are often biased towards high status targets in order to ensure likelihood
of logical forwards. However, these results have eventually been ac-
cepted at least from a qualitative perspective, even though the rule of
six degrees may not be precisely correct, depending upon the nature of
the network which is being studied. Nevertheless, the “small world phe-
nomenon” de nitely seems to be correct, since the diameters of most
such networks are relatively small.
The social analysis of such networks has also been modeled in the eld
of cognitive science, where the cognitive aspects of such interactions are
utilized for analytical purposes. Much of the research in the traditional

eld of social networks has been conducted from this perspective. A
number of books [7, 24, 25] provide an understanding of this perspec-
tive. However, this work does not discuss the data-centric issues which
are common to online and internet-enabled social networks.

A number of technological enablers such as telecommunications, elec-
tronic mail, and electronic chat messengers (such as Skype, Google Talk
or MSN Messenger), can be considered an indirect form of social net-
works, because they are naturally modeled as communications between
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different actors. One advantage of such applications is that the traces
of the communication data are often available (subject to some privacy
controls). This data can be used for extensive analysis of such social
networks. Some examples are the extensive analysis on the Enron email
data set [28], or the recent veri cation of the six degrees of separation
conjecture in the context of the MSN messenger data in [16].

In recent years, a number of sites have arisen explicitly in order to model
the interactions between different actors. Some examples of such social
networks are Facebook, MySpace, or LinkedIn. In addition, sites which
are used for sharing online media content, such as Flickr, Youtube or
delicious, can also be considered indirect forms of social networks, be-
cause they allow an extensive level of user interaction. In these cases,
the interaction is centered around a speci c service such as content-
sharing; yet many fundamental principles of social networking apply.
We note that such social networks are extremely rich, in that they con-
tain a tremendous amount of content such as text, images, audio or video.
Such content can be leveraged for a wide variety of purposes. In partic-
ular, the interaction between the links and content has provided impetus
to a wide variety of mining applications. In addition, social media out-
lets provide a number of unique ways for users to interact with one an-
other such as posting blogs, or tagging each other’s images. Which such
forms of interaction are indirect, they provide rich content-based knowl-
edge which can be exploited for mining purposes. In recent years, it has
even become possible to integrate real-time sensor-based content into
dynamic social networks. This is because of the development of sensors,
accelerometers, mobile devices and other GPS-enabled devices, which
can be used in a social setting for providing a dynamic and interactive
experience.

Finally, a number of social networks can also be constructed from spe-
ci c kinds of interactions in different communities. A classical example
would be the scienti c community in which bibliographic networks can
be constructed from either co-authorship or citation data. These can
be used in conjunction with the content of the publications in order to
derive interesting trends and patterns about the underlying papers. We
note that much of the analysis for the rst case above applies to this as
well, though a lot of data and content is available because of the way in
which such documents networks are archived. A number of document
collections and bibliographic networks are archived explicitly, and they
can be used in conjunction with more principled data-centric techniques,
because of the content which is available along with such networks.
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While the results of this book may be applicable to all the different kinds of
social networks, the speci c focus is on the data-centric issues which arise in
the context of online social networks. It is also important to understand that
an online social network can be de ned much more generally than an online
site such as Facebook, Twitter or LinkedIn which are formally advertised as
social networking sites. In fact, any web-site or application which provides
a social experience in the form of user-interactions can be considered to be
a form of social network. For example, media-sharing sites such as Flickr,
Youtube, or delicious are formally not considered social networks; yet they
allow for social interactions in the context of information exchange about the
content being shared. Similarly, many mobile, web, and internet-driven chat
applications also have social aspects embedded in them. Furthermore, many
mobile applications such as Google Latitude allow the implicit embedding of
sensor or GPS information, and this is used in order to enable user interactions.
These are all novel forms of social networks, each of which brings with it a set
of unique challenges for the purpose of analysis. Therefore, our de nition of
social networks is fairly broad, and many chapters will study aspects which are
relevant to these alternative forms of social networks.

This chapter is organized as follows. In the next section, we discuss the main
thrusts in the eld of social networks. In section 3, we discuss the organization
of the book and their relationships to these different thrusts. In section 4, we
present the conclusions and related directions in the eld.

2. Online Social Networks: Research Issues
The eld of online social networks has seen a rapid revival in recent years.

A key aspect of many of the online social networks is that they are rich in data,
and provide unprecedented challenges and opportunities from the perspective
of knowledge discovery and data mining. There are two primary kinds of data
which are often analyzed in the context of social networks:

Linkage-based and Structural Analysis: In linkage-based and struc-
tural analysis, we construct an analysis of the linkage behavior of the
network in order to determine important nodes, communities, links, and
evolving regions of the network. Such analysis provides a good overview
of the global evolution behavior of the underlying network.

Adding Content-based Analysis: Many social networks such as Flickr,
Message Networks, and Youtube contain a tremendous amount of content
which can be leveraged in order to improve the quality of the analysis.
For example, a photograph sharing site such as Flickr contains a tremen-
dous amount of text and image information in the form of user-tags and
images. Similarly, blog networks, email networks and message boards
contain text content which are linked to one another. It has been ob-
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served that combining content-based analysis with linkage-based analy-
sis provides more effective results in a wide variety of applications. For
example, communities which are designed with text-content are much
richer in terms of carrying information about the topical expertise of the
underlying community.

The other main differences which arises in the context of social network algo-
rithms is that between dynamic analysis and static analysis. In the case of static
analysis, we assume that the social network changes slowly over time, and we
perform an analysis of the whole network in batch mode over particular snap-
shots. Such is often the case for many networks such as bibliographic networks
in which the new events in the network may happen only slowly over time.
On the other hand, in the case of many networks such as instant messaging
networks, interactions are continuously received over time at very large rate,
which may lead to network streams. The analysis of such networks is much
more challenging, and is a subject of recent research [2–5]. The temporal as-
pect of networks often arises in the context of dynamic and evolving scenarios.
Many interesting temporal characteristics of networks can be determined such
as evolving communities, interactions between entities and temporal events in
the underlying network.

Dynamic networks also arise in the context ofmobile applications, in which
moving entities constantly interact with one another. Such dynamic networks
arise in the context of moving entities which interact with one another over
time. For example, many mobile phones are equipped with GPS receivers,
which are exploited by the applications on these phones. A classical example
of such an application is the Google Latitude application which is capable of
keeping track of the locations of different users, and issuing alerts when a given
user is in the vicinity. Such dynamic social networks can be modeled as dy-
namic graphs for which the edges change constantly over time. Such dynamic
graphs lead to massive challenges in processing because of the extremely large
number of connections between the entities which may need to be tracked si-
multaneously. In such cases, graph stream mining applications are required
in order to perform effective online analysis. Such applications are typically
required to be able to summarize the network structure of the data in real time
and utilize it for a variety of mining applications. Some recent advances in this
direction are discussed in [1, 3].

A number of important problems arise in the context of structural analysis
of social networks. An important line of research is to try to understand and
model the nature of very large online networks. For example, the veri cation
of the small world phenomenon, preferential attachment, and other general
structural dynamics has been a topic of great interest in recent years. Since
a signi cantly larger amount of data is available for the case of online social
networks, the veri cation of such structural properties is much more robust
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in terms of statistical signi cance. For the rst time, it has actually become
possible to study these classical conjectures in the context of massive amounts
of data.

The most well known structural problem in the context of social networks is
that of community detection. The problem of community detection is closely
related to the problem of nding structurally related groups in the network.
These structurally related groups are referred to as communities. Some well
known methods for community detection are discussed in [8, 9, 11, 19]. The
problem of community detection arises both in a static setting in which the
network changes slowly over time, as well as a dynamic setting in which the
network structure evolves rapidly. While these problems have been studied
in the traditional literature in the context of the problem of graph partitioning
[11], social networks are signi cantly larger in size. Furthermore, a signi cant
amount of content may be available for improving the effectiveness of com-
munity discovery. Such challenges are unique to the online scenario, and has
lead to the development of a signi cant number of interesting algorithms.

Social networks can be viewed as a structure which enables the dissemina-
tion of information. This is direct corollary of its enabling of social interactions
among individuals. The analysis of the dynamics of such interaction is a chal-
lenging problem in the eld of social networks. For example, important news
is propagated through the network with the use of the interactions between
the different entities. A well known model for in uence propagation may be
found in [20]. The problem of in uence analysis is very relevant in the context
of social networks, especially in the context of determining the most in uential
members of the social network, who are most likely to propagate their in u-
ence to other entities in the social network [12]. The most in uential members
in the social network may be determined using ow models as in [12], or by us-
ing page rank style methods which determine the most well connected entities
in the social network.

Finally, an important class of techniques is that of inferring links which are
not yet known in the social networks. This problem is referred to as that of
link inference [17]. The link prediction problem is useful for determining im-
portant future linkages in the underlying social network. Such future linkages
provide an idea of the future relationships or missing relationships in the social
network. Link prediction is also useful in a number ofadversarial applications
in which one does not fully know the linkages in an enemy or terrorist network,
and uses automated data mining techniques in order to estimate the underlying
links.

Many of the above mentioned applications can be greatly improved with the
use of content information. For example, content can be associated with nodes
in the community, which has been shown to greatly improve the quality of the
clusters in the underlying network [26]. This is because the content informa-
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tion in different parts of the network is often closely related to its structure; the
combination of the two can provide useful information which cannot be ob-
tained from either as a single entity. It has also been observed [10] that the use
of content information can also improve the qualitative results on problems
such as link inference. In general, the incorporation of content can improve
the end result of a wide variety of inference problems in social and informa-
tion networks. In the case of photograph and video sharing web sites such as
Flickr and YouTube, the content can be very rich and can contain data of dif-
ferent types, such as text, audio or video. Such heterogeneous data requires
the design of methods which can learn and analyze data with heterogeneous
feature spaces. In some cases, it is also useful to design methods which can
transfer knowledge from one space to another. This has lead to an increasing
interest in the eld of transfer learning which uses the implicit links creates
by users (such as tags) in order to transfer knowledge [27] from one space to
another. Such methods can be particularly useful when a signi cant amount
of content is available for learning in some spaces, but only a scan amount
of content is available for learning in others. In the next section, we will dis-
cuss how the different chapters of this book are organized in the context of the
afore-mentioned topics.

3. Research Topics in Social Networks
This book is organized into several chapters based on the topics discussed

above. This chapter will discuss the different topics in detail and their rela-
tionship to the corresponding chapters. The discussion of these topics in this
section is organized in approximate order of the corresponding chapters. The
broad organization of the chapters is as follows:

The rst set of chapters are based on structural analysis of social net-
works. These include methods for statistical analysis of networks, com-
munity detection, classi cation, evolution analysis, privacy-preserving
data mining, link inference and visualization.

The second set of chapter are focussed on content-based mining issues
in social networks. We have included chapters on several different kinds
of content: (a) General data mining with arbitrary kinds of data (b) Text
mining in social networks (b) Multimedia mining in social networks (d)
Sensor and stream mining in social networks.

We discuss how these different kinds of content can be leveraged in or-
der to make interesting and valuable inferences in social networks. The
richness of the underlying content results in a number of interesting in-
ferences which are not possible with the use of purely structural meth-
ods.
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Next, we will discuss the individual chapters in the book in detail, and how
they relate to the above themes:

Statistical Analysis of Social Networks: The work of Milgram [18] laid the
foundation for a more extensive analysis of the structural properties of large
scale networks. In chapter 2, we study the important statistical properties of
“typical” social networks. Some interesting questions which are examined in
the chapter are to explore how typical social networks look like, on a large
scale. The connectivity behavior of the nodes is examined to see if most nodes
have few connections, with several “hubs” or whether the degrees are more
evenly distributed. The clustering behavior of the nodes in typical social net-
works is examined. Another issue which is examined are the typical tempo-
ral characteristics of social networks. For example, it is examined how the
structure varies as the network grows. As the network evolves over time, new
entities may be added to the network, though certain graph properties may
continue to be retained in spite of this. The behavior and distribution of the
connected components of the graph is also examined.

Random Walks and their Applications in Social Networks: Ranking is one
of the most well known methods in web search. Starting with the well known
page-rank algorithm [6] for ranking web documents, the broad principle can
also be applied for searching and ranking entities and actors in social networks.
The page-rank algorithm uses random walk techniques for the ranking process.
The idea is that a random walk approach is used on the network in order to es-
timate the probability of visiting each node. This probability is estimated as
the page rank. Clearly, nodes which are structurally well connected have a
higher page-rank, and are also naturally of greater importance. Random walk
techniques can also be used in order to personalize the page-rank computation
process, by biasing the ranking towards particular kinds of nodes. In chapter
3, we present methods for leveraging random walk techniques for a variety of
ranking applications in social networks.

Community Detection in Social Networks: One of the most important prob-
lems in the context of social network analysis is that of community detection.
The community detection problem is closely related to that of clustering, and
it attempts to determine regions of the network, which are dense in terms of
the linkage behavior. The topic is related to the generic problem of graph-
partitioning [13] which partitions the network into dense regions based on the
linkage behavior. However, social networks are usually dynamic, and this leads
to some unique issues from a community detection point of view. In some
cases, it is also possible to integrate the content behavior into the community
detection process. In such cases, the content may be leveraged in order to de-
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termine groups of actors with similar interests. Chapter 4 provides an overview
of some of the important algorithms on the problem of community detection.

Node Classi cation in Social Networks: In many applications, some of the
nodes in the social network may be labeled, and it may be desirable to use the
attribute and structural information in the social network in order to propagate
these labels. For example, in in a marketing application, certain nodes may be
known to be interested in a particular product, and it may be desirable to use
the attribute and structural information in the network in order to learn other
nodes which may also be interested in the same product. Social networks also
contain rich information about the content and structure of the network, which
may be leveraged for this purpose. For example, when two nodes in a social
network are linked together, it is likely that the node labels are correlated as
well. Therefore, the linkage structure can be used in order to propagate the
labels among the different nodes. Content and attributes can be used in order
to further improve the quality of classi cation. Chapter 5 discusses a variety
of methods for link-based node classi cation in social networks.

Evolution in Dynamic Social Networks: Social Networks are inherently dy-
namic entities; new members join them, old members stop participating, new
links emerge as new contacts are built, and old links become obsolete as the
members stop interacting with one other. This leads to changes in the structure
of the social network as a whole and of the communities in it. Two important
questions arise in this context: (a) What are the laws which govern long term
changes in the social network over time, which are frequently observed over
large classes of social networks? (b) How does a community inside a social
platform evolve over time? What changes can occur, and how do we capture
and present them?
Chapter 6 elaborates on these questions in more detail. Advances associated
with the rst set of questions are studied in Chapter 2, and to a lesser extent in
Chapter 6. Advances on the second question are studied in Chapter 6, where
the main focus is on evolution in social networks.

Social In uence Analysis: Since social networks are primarily designed on
the basis of the interactions between the different participants, it is natural that
such interactions may lead to the different actors in uencing one another in
terms of their behavior. A classic example of this would be a viral marketing
application in which we utilize the messages between interconnected partici-
pants in a social network in order to propagate the information across different
parts of the network. A number of natural questions arise in this context:
(a) How do we model the nature of the in uence across actors?
(b) How do we model the spread of in uence?
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(c) Who are the most in uential actors for in uence spread?
Chapter 7 studies these issues in considerable depth and provides a deep un-
derstanding of the nature of in uence analysis in social networks.

Expert Discovery in Networks: Social networks can be used as a tool in
order to identify experts for a particular task. For example, given the activ-
ities of candidates within a context (e.g., authoring a document, answering a
question), we rst describe methods for evaluating the level of expertise for
each of them. Often, experts are organized in networks that correspond to so-
cial networks or organizational structures of companies. Many complex tasks
often require the collective expertise of more than one expert. In such cases,
it is more realistic to require a team of experts that can collaborate towards a
common goal. Chapter 8 discusses methods for determining teams of experts
which can perform particular tasks.

Link Prediction in Social Networks: Much of the research in mining social
networks is focussed on using the links in order to derive interesting informa-
tion about the social network such as the underlying communities, or labeling
the nodes with class labels. However, in most social networking applications,
the links are dynamic, and may change considerably over time. For example, in
a social network, friendship links are continuously created over time. There-
fore, a natural question is to determine or predict future links in the social
network. The prediction process may use either the structure of the network
or the attribute-information at the different nodes. A variety of structural and
relational models have been proposed in the literature for link prediction [17,
21–23]. Chapter 9 provides a detailed survey of such methods.

Privacy in Social Networks: Social networks contain a tremendous informa-
tion about the individual in terms of their interests, demographic information,
friendship link information, and other attributes. This can lead to disclosure
of different kinds of information in the social network, such as identity dis-
closure, attribute disclosure, and linkage information disclosure. Chapter 10
discusses a detailed survey of privacy mechanisms in social networks in con-
text of different kinds of models and different kinds of information which can
be disclosed.

Visualizing Social Networks: As social networks become larger and more
complex, reasoning about social dynamics via simple statistics is cumbersome,
and not very intuitive. Visualization provides a natural way to summarize the
information in order to make it much easier to understand. Recent years have
witnessed a convergence of social network analytics and visualization, coupled
with interaction, that is changing the way analysts understand and character-
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ize social networks. In chapter 11, the main goal of visualization is discussed
in the context of user understanding and interaction. The chapter also exam-
ines how different metaphors are aimed towards elucidating different aspects
of social networks, such as structure and semantics. A number of methods are
described, where analytics and visualization are interwoven towards providing
a better comprehension of social structure and dynamics.

Data Mining in Social Media: Social Media provides a wealth of social net-
work data, which can be mined in order to discover useful business applica-
tions. Data mining techniques provide researchers and practitioners the tools
needed to analyze large, complex, and frequently changing social media data.
An overview on the topic of data mining in social media is provided in Chapter
12. This chapter introduces the basics of data mining in the context of social
media, and discusses how to mine social media data. The chapter also high-
lights a number of illustrative examples with an emphasis on social networking
sites and blogs.

Text Mining in Social Networks: Social networks contain a lot of text in
the nodes in various forms. For example, social networks may contain links to
posts, blogs or other news articles. In some cases, users may tag one another,
which is also a form of text data on the links. The use of content can greatly
enhance the quality of the inferences which may be made in the context of
graphs and social networks. In chapter 13, we present methods for using text
mining techniques in social networks in the context of a variety of problems
such as clustering and classi cation.

Integrating Sensors and Social Networks: Many mobile phones provide the
ability for actors to interact with one another dynamically, and in real time
depending upon their location and status. Such applications also result in the
generation of massive streams in real time, which can be used to make infer-
ences about one another, or about the aggregate properties of the objects which
are being tracked. Since location information is private, this also naturally
leads to a number of privacy concerns from a processing perspective. Chapter
14 discusses such methods for incorporating sensor data as an integral part of
social network data analytics.

Multimedia Information Network Analysis in Social Media: Many forms
of media sharing sites such as Flickr and Youtube provide the ability to share
media. Such shared media are often used in conjunction with the interactions
of different users, such as the placing of tags or comments on the different im-
ages. Such rich context-based information networks can be mined for a wide
variety of applications by leveraging the combination of user tags and image



An Introduction to Social Network Data Analytics 13

data in the mining and retrieval process. Chapter 15 discusses methods for
mining multimedia information networks with social media.

Social Tagging: Much of the interaction between users and social networks
occurs in the form of tagging, in which users attach short descriptions to differ-
ent objects in the social network, such as images, text, video or other multime-
dia data. Chapter 16 provides a detailed survey of various aspects of tagging.
The chapter discusses properties of tag streams, tagging models, tag semantics,
generating recommendations using tags, visualizations of tags, applications of
tags, integration of different tagging systems and problems associated with
tagging usage. Many interesting issues are discussed, such as the reason why
people tag, what in uences the choice of tags, how to model the tagging pro-
cess, kinds of tags, different power laws observed in tagging domain, how tags
are created and how to choose the right tags for recommendation.

4. Conclusions and Future Directions
This book is primarily focussed on providing readers with an introduction

to the area of social networks. The broad area is so vast, that it is probably not
possible to cover it comprehensively in a single book. The problem of social
network data analytics is still in its infancy; there is a tremendous amount of
work to be done, particularly in the area of content-based and temporal social
networks. Some key research directions for the future are as follows:

Content-based Analysis: Much of the past research in this area has
been based on structural analysis of social networks. Such analysis
primarily uses linkage structure only in order to infer interesting char-
acteristics of the underlying network. Some recent research [26] has
shown that the inclusion of content information can yield valuable in-
sights about the underlying social network. For example, the content
at a given node may provide more information about the expertise and
interests of the corresponding actor.

Temporal Analysis: Most of the research in social networks is based
on static networks. However, a number of recent studies [8, 9, 11] have
shown that the incorporation of temporal evolution into network analysis
signi cantly improves the quality of the results. Therefore, a signi cant
amount of work remains to be done on dynamic analysis of social net-
works which evolve rapidly over time.

Adversarial Networks: In adversarial networks, it is desirable to de-
termine the analytical structure of a network in which the actors in the
network are adversaries, and the relationships among the different adver-
saries may not be fully known. For example, terrorist networks would
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be a typical adversarial network to a law enforcement agency. Such net-
works are far more challenging because the links may not be known
a-priori, but may need to be inferred in many cases. Such inferred links
may need to be used for analytical purposes.

In addition, we expect that it will be increasingly important to analyze net-
works in the context of heterogeneous data, in which the links are of different
types and correspond to different kinds of relationships between the actors.
A generalization of the concept of social networks is that of information net-
works, in which the nodes could be either actors of entities, and the edges
correspond to logical relations among these entities. Such networks are also
heterogeneous, and therefore it is increasingly important to design tools and
techniques which can effectively analyze heterogeneous networks.
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Abstract In this chapter we describe patterns that occur in the structure of social networks,
represented as graphs. We describe two main classes of properties, static proper-
ties, or properties describing the structure of snapshots of graphs; and dynamic
properties, properties describing how the structure evolves over time. These
properties may be for unweighted or weighted graphs, where weights may rep-
resent multi-edges (e.g. multiple phone calls from one person to another), or
edge weights (e.g. monetary amounts between a donor and a recipient in a po-
litical donation network).
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What do social networks look like on a global scale? How do they evolve
over time? How do the different components of an entire network form? What
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happens when we take into account multiple edges and weighted edges? Can
we identify certain patterns regarding these weights?

There has been extensive work focusing on static static snapshots of graphs,
where fascinating properties have been discovered, the most striking ones be-
ing the ‘small-world’ phenomenon [38] (also known as ‘six degrees of sepa-
ration’ [24]) and the power-law degree distributions [3, 12]. Time-evolving
graphs have attracted attention only recently, where even more fascinating
properties have been discovered, like shrinking diameters, and the so-called
densi cation power law [18]. Moreover, we nd interesting properties in terms
of multiple edges between nodes, or edge weights.

In this chapter we will describe some of the most important properties ap-
parent in social networks, with a particular emphasis on dynamic properties,
and some of the newer ndings with respect to edge weights.

The questions of interest are:

What do social networks look like, on a large scale? Do most nodes have
few connections, with several “hubs” or is the distribution more stable?
What sort of clustering behavior occurs?
How do networks behave over time? Does the structure vary as the net-
work grows? In what fashion do new entities enter a network? Does the
network retain certain graph properties as it grows and evolves? Does
the graph undergo a “phase transition", in which its behavior suddenly
changes?
How do the non-giant weakly connected components behave over time?
One might argue that they grow, as new nodes are being added; and
their size would probably remain a xed fraction of the size of the GCC.
Someone else might counter-argue that they shrink, and they eventually
get absorbed into the GCC. What is happening, in real graphs?
What distributions and patterns do weighted graphs maintain? How
does the distribution of weights change over time– do we also observe
a densi cation of weights as well as single-edges? How does the dis-
tribution of weights relate to the degree distribution? Is the addition of
weight bursty over time, or is it uniform?

Answering these questions is important to understand how natural graphs
evolve, and to (a) spot anomalous graphs and sub-graphs; (b) answer questions
about entities in a network and what-if scenarios; and (c) discard unrealistic
graph generators.

Let’s elaborate on each of the above applications: Spotting anomalies is vital
for determining abuse of social and computer networks, such as link-spamming
in a web graph, fraudulent reputation building in e-auction systems [29], detec-
tion of dwindling/abnormal social sub-groups in a social-networking site like
Yahoo-360 (360.yahoo.com), Facebook (www.facebook.com) and LinkedIn
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Symbol Description
G Graph representation of datasets
V Set of nodes for graph G
E Set of edges for graph G
N Number of nodes, or |V|
E Number of edges, or |E|
ei,j Edge between node i and node j

wi,j Weight on edge ei,j
wi Weight of node i (sum of weights of incident edges)
A 0-1 Adjacency matrix of the unweighted graph
Aw Real-value adjacency matrix of the weighted graph
ai,j Entry in matrix A
λ1 Principal eigenvalue of unweighted graph
λ1,w Principal eigenvalue of weighted graph

Table 2.1. Table of Notations.

(www.linkedin.com), and network intrusion detection [17]. Analyzing net-
work properties is also useful for identifying authorities and search algorithms
[7, 9, 16], for discovering the “network value” of customers for using viral mar-
keting [30], or to improve recommendation systems [5]. What-if scenarios are
vital for extrapolation, provisioning and algorithm design: For example if we
expect that the number of links will double within the next year, we should pro-
vision for the appropriate hardware to store and process the upcoming queries.

The rest of this chapter will examine both the static and dynamic properties,
for weighted and unweighted graphs. However, before delving into these static
and dynamic properties, we will next establish some terms and de nitions we
will use in the rest of the chapter.

1. Preliminaries
We will rst provide some basic de nitions and terms we will use, and then

present some particular data sets we will reference. A full list of symbols can
be shown in Table 2.1.

1.1 De nitions
1.1.1 Graphs. We can represent a social network as a graph. For the
rest of the chapter we will use network and graph interchangeably.

A static, unweighted graph G consists of a set of nodes V and a set of edges
E : G = (V, E). We represent the sizes of V and E as N and E. A graph
may be directed or undirected– for instance, a phone call may be from one
party to another, and will have a directed edge, or a mutual friendship may
be represented as an undirected edge. Most properties we examine will be on
undirected graphs.
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Graphs may also be weighted, where there may be multiple edges occurring
between two nodes (e.g. repeated phone calls) or speci c edge weights (e.g.
monetary amounts for transactions). In a weighted graph G, let ei,j be the
edge between node i and node j. We shall refer to these two nodes as the
‘neighboring nodes’ or ‘incident nodes’ of edge ei,j . Let wi,j be the weight on
edge ei,j . The total weight wi of node i is de ned as the sum of weights of all
its incident edges, that is wi =

∑di
k=1wi,k, where di denotes its degree. As we

show later, there is a relation between a given edge weight wi,j and the weights
of its neighboring nodes wi and wj .

Finally, graphs may be unipartite or multipartite. Most social networks one
thinks of are unipartite– people in a group, papers in a citation network, etc.
However, there may also be multipartite– that is, there are multiple classes of
nodes and edges are only drawn between nodes of different classes. Bipartite
graphs, like the movie-actor graph of IMDB, consist of disjoint sets of nodes
V1 and V2, say, for authors and movies, with no edges among nodes of the
same type.

We can represent a graph either visually, or with an adjacency matrix A,
where nodes are in rows and columns, and numbers in the matrix indicate the
existence of edges. For unweighted graphs, all entries are 0 or 1; for weighted
graphs the adjacency matrix contains the values of the weights. Figure 2.1
shows examples of graphs and their adjacency matrices.

We next introduce other important concepts we use in analyzing these graphs.

1.1.2 Components. Another interesting property of a graph is its com-
ponent distribution. We refer to a connected component in a graph as a set
of nodes and edges where there exists a path between any two nodes in the
set. (For directed graphs, this would be a weakly connected component, where
a strongly connected component requires a directed path between any given
two nodes in a set.) We nd that in real graphs over time, a giant connected
component (GCC) forms. However, it is also of interest to study the smaller
components– when do they choose to join the GCC, and what size do they
reach before doing so?

In our observations we will focus on the size of the second- and third- largest
components. We will also look at the large scale distribution of all component
sizes, and how that distribution changes over time. Not surprisingly, compo-
nents of rank ≥ 2 form a power law.

1.1.3 Diameter and Effective Diameter. We may want to answer the
questions: How does the largest connected component of a real graph evolve
over time? Do we start with one large CC, that keeps on growing? We pro-
pose to use the diameter-plot of the graph, that is, its diameter, over time, to
answer these questions. For a given (static) graph, its diameter is de ned as
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m1 1 0 1 0

m2 1 0 0 0

m3 0 1 0 1

Figure 2.1. Illustrations of example graphs. On the left is a unipartite, directed, weighted
graph and the corresponding adjacency matrix. On the right is an undirected, bipartite graph
and the corresponding adjacency matrix.



22 SOCIAL NETWORK DATA ANALYTICS

the maximum distance between any two nodes, where distance is the minimum
number of hops (i.e., edges that must be traversed) on the path from one node to
another, ignoring directionality. Calculating graph diameter is O(N2). There-
fore, we choose to estimate the graph diameter by sampling nodes from the
giant component. For s = {1, 2, ..., S}, we choose two nodes at random and
calculate the distance (using breadth- rst search). We then choose to record the
90 percentile value of distances, so we take the .9S largest recorded value. The
distance operation is O(dk), where d is the graph diameter and k the maximum
degree of any node– on average this is a much smaller cost. Intuitively, the di-
ameter represents how much of a “small world” the graph is– how quickly one
can get from one “end” of the graph to another. This is described in [35].
We use sampling to estimate the diameter; alternative methods would include
ANF [28].

1.1.4 Heavy-tailed Distributions. While the Gaussian distribution
is common in nature, there are many cases where the probability of events
far to the right of the mean is signi cantly higher than in Gaussians. In the
Internet, for example, most routers have a very low degree (perhaps “home”
routers), while a few routers have extremely high degree (perhaps the “core”
routers of the Internet backbone) [12] Heavy-tailed distributions attempt to
model this. They are known as “heavy-tailed” because, while traditional ex-
ponential distributions have bounded variance (large deviations from the mean
become nearly impossible), p(x) decays polynomially quickly instead of ex-
ponentially as x → ∞, creating a “fat tail” for extreme values on the PDF
plot.

One of the more well-known heavy-tailed distributions is the power law
distribution. Two variables x and y are related by a power law when:

y(x) = Ax−γ (2.1)

where A and γ are positive constants. The constant γ is often called the power
law exponent.

A random variable is distributed according to a power law when the proba-
bility density function (pdf) is given by:

p(x) = Ax−γ , γ > 1, x ≥ xmin (2.2)

The extra γ > 1 requirement ensures that p(x) can be normalized. Power laws
with γ < 1 rarely occur in nature, if ever [26].

Skewed distributions, such as power laws, occur very often in real-world
graphs, as we will discuss. Figures 2.2(a) and 2.2(b) show two examples of
power laws.
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Figure 2.2. Power laws and deviations: Plots (a) and (b) show the in-degree and out-degree
distributions on a log-log scale for the Epinions graph (an online social network of 75, 888
people and 508, 960 edges [11]). Both follow power-laws. In contrast, plot (c) shows the out-
degree distribution of a Clickstream graph (a bipartite graph of users and the websites they
surf [25]), which deviates from the power-law pattern.

While power laws appear in a large number of graphs, deviations from a
pure power law are sometimes observed. Two of the more common deviations
are exponential cutoffs and lognormals.

Sometimes, the distribution looks like a power law over the lower range of
values along the x-axis, but decays very fast for higher values. Often, this
decay is exponential, and this is usually called an exponential cutoff:

y(x = k) ∝ e−k/κk−γ (2.3)

where e−k/κ is the exponential cutoff term and k−γ is the power law term.
Similar distributions were studied by Bi et al. [6], who found that a discrete

truncated lognormal (called the Discrete Gaussian Exponential or “DGX” by
the authors) gives a very good t. A lognormal is a distribution whose loga-
rithm is a Gaussian; it looks like a truncated parabola in log-log scales. The
DGX distribution has been used to t the degree distribution of a bipartite
“clickstream” graph linking websites and users (Figure 2.2(c)), telecommuni-
cations and other data.

Methods for tting heavy-tailed distributions are described in [26, 10].

1.1.5 Burstiness and Entropy Plots. Human activity, including weight
additions in graphs, is often bursty. If that the traf c is self-similar, then we can
measure the burstiness, using the intrinsic, or fractal dimension of the cloud of
timestamps of edge-additions (or weight-additions). Let ΔW (t) be the total
weight of edges that were added during the t-th interval, e.g., the total network

ow on day t, among all the machines we are observing.
Among the many methods that measure self-similarity (Hurst exponent, etc.

[31]), we choose the entropy plot [37], which plots the entropy H(r) versus
the resolution r. The resolution is the scale, that is, at resolution r, we di-
vide our time interval into 2r equal sub-intervals, sum the weight-additions
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ΔW (t) in each sub-interval k (k = 1 . . . 2r), normalize into fractions pk
(= ΔW (t)/Wtotal), and compute the Shannon entropy of the sequence pk:
H(r) = −∑k pk log2 pk. If the plot H(r) is linear in some range of resolu-
tions, the corresponding time sequence is said to be fractal in that range, and
the slope of the plot is de ned as the intrinsic (or fractal) dimension D of the
time sequence. Notice that a uniform weight-addition distribution yields D=1;
a lower value of D corresponds to a more bursty time sequence like a Cantor
dust [31], with a single burst having the lowest D=0: the intrinsic dimension
of a point. Also notice that a variation of the 80-20 model, the so called ‘b-
model’ [37], generates such self-similar traf c.

We studied several large real-world weighted graphs described in detail in
Table 2.2. In particular, BlogNet contains blog-to-blog links, NetworkTraf c
records IP-source/IP-destination pairs, along with the number of packets sent.
Bipartite networks Auth-Conf, Keyw-Conf, and Auth-Keyw are from DBLP,
representing submission records of authors to conferences with speci ed key-
words. CampaignOrg is from the US FEC, a public record of donations be-
tween political candidates and organizations.

For NetworkTraf c and CampaignOrg datasets, the weights on the edges are
actual weights representing number of packets and donation amounts. For the
remaining datasets, the edge weights are simply the number of occurences of
the edges. For instance, if author i submits a paper to conference j for the rst
time, the weight wi,j of edge ei,j is set to 1. If author i later submits another
paper to the same conference, the edge weight becomes 2.

A complete list of the symbols used throughout text is listed in Table 2.1.

1.2 Data description
We will illustrate some properties described in this chapter on different real-

world social networks. These are described in detail in Table 2.2. This in-
cludes both bipartite and unipartite, and weighted and unweighted graphs.

Several of our graphs had no obvious weighting scheme: for example, a
single paper or patent will cite another only a single time. The graphs that did
have weights are also further divided into two schemes, multi-edges and edge-
weights. In the edge-weights scheme, there is an obvious weight on edges, such
as amounts in campaign donations, or packet-counts in network traf c. For
multi-edges, weights are added if there is more than one interaction between
two nodes. For instance, if a blog cites another blog at a given time, its weight
is 1. If it cites the blog again later, the weight becomes 2.

The datasets are gathered from publicly available data. NIPS1, Arxiv and
Patent [19] are academic paper or patent citation graphs with no weighting

1www.cs.toronto.edu/∼roweis/data.html
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Name Weights |N|,|E|,time Description
PostNet Unweighted 250K, 218K, 80 d. Blog post citation network
NIPS Unweighted 2K, 3K, 13 yr. Paper citation network
Arxiv Unweighted 30K, 60K, 13 yr. Paper citation network
Patent Unweighted 4M, 8M, 17 yr. Patent citation network
IMDB Unweighted 757K, 2M, 114 yr. Bipartite actor-movie network
Net ix Unweighted 125K, 14M, 72 mo. Bipartite user-movie ratings
BlogNet Multi-edges 60K, 125K, 80 d. Social network of blogs based

on citations
Auth-Conf Multi-edges 17K, 22K, 25 yr. Bipartite DBLP Author-to-

Conference associations
Key-Conf Multi-edges 10K, 23K, 25 yr. Bipartite DBLP Keyword-to-

Conference associations
Auth-Key Multi-edges 27K, 189K, 25 yr. Bipartite DBLP Author-to-

Keyword associations
CampOrg Edge-weights

(Amounts)
23K, 877K, 28 yr. Bipartite U.S. electoral cam-

paign donations from organi-
zations to candidates (avail-
able from FEC)

CampIndiv Edge-weights
(Amounts)

6M, 10M, 22 yr. Bipartite election donations
from individuals to organiza-
tions

Table 2.2. The datasets referred to in this chapter.

scheme. IMDB indicates movie-actor information, where an edge occurs if
an actor participates in a movie [3]. Net ix is the dataset from the Net ix
Prize competition2, with user-movie links (we ignored the ratings); we also
noticed that it only contained users with 100 or more ratings. BlogNet and
PostNet are two representations of the same data, hyperlinks between blog
posts [21]. in PostNet nodes represent individual posts, while in BlogNet each
node represents a blog. Essentially, PostNet is a paper citation network while
BlogNet is an author citation network (which contains multi-edges).
Auth-Conf, Key-Conf, and Auth-Key are all from DBLP 3, with the obvious

meanings. CampOrg and CampIndiv are bipartite graphs from U.S. Federal
Election Commission, recording donation amounts from organizations to po-
litical candidates and individuals to organizations 4.

In all the above cases, we assume that edges are never deleted, because edge
deletion never explicitly appeared in these datasets.

2www.netflixprize.com
3dblp.uni-trier.de/xml/
4www.cs.cmu.edu/∼mmcgloho/fec/data/ fec data.html



26 SOCIAL NETWORK DATA ANALYTICS

2. Static Properties
We next review static properties of social graphs. While all networks we

examine are evolving over time, there are properties that are measured at sin-
gle points in time, that is, static snapshots of the graphs. For the purposes
of organization we will further divide these properties into those applying to
unweighted graphs and to weighted graphs.

2.1 Static Unweighted Graphs
Here, we present the ‘laws’ that apply to static snapshots of real graphs

without considering the weights on the edges. Those include the patterns in
degree distributions, the number of hops pairs of nodes can reach each other,
local number of triangles, eigenvalues and communities. Next, we describe the
related patterns in more detail.

2.1.1 S-1: Heavy-tailed Degree Distribution. The degree distribution
of many real graphs obey a power law of the form f(d) ∝ d−α, with the
exponent α > 0, and f(d) being the fraction of nodes with degree d. Such
power-law relations as well as many more have been reported in [8, 12, 15,
26]. Intuitively, power-law-like distributions for degrees state that there exist
many low degree nodes, whereas only a few high degree nodes in real graphs.

2.1.2 S-2: Small Diameter. One of the most striking patterns that real-
world graphs have is a small diameter, which is also known as the ‘small-world
phenomenon’ or the ‘six degrees of separation’.

For a given static graph, its diameter is de ned as the maximum distance
between any two nodes, where distance is the minimum number of hops (i.e.,
edges that must be traversed) on the path from one node to another, usually ig-
noring directionality. Intuitively, the diameter represents how much of a “small
world” the graph is– how quickly one can get from one “end” of the graph to
another.

Many real graphs were found to exhibit surprisingly small diameters– for
example, 19 for the Web [2], and the well-known “six-degrees of separation”
in social networks [4]. It has also been observed that the diameter spikes at the
‘gelling point’ [22].

Since the diameter is de ned as the maximum-length shortest path between
all possible pairs, it can easily be highjacked by long chains. Therefore, of-
ten the effective diameter is used as a more robust metric, which is the 90-
percentile of the pairwise distances among all reachable pairs of nodes. In
other words, the effective diameter is the minimum number of hops in which
some fraction (usually 90%) of all connected node pairs can be reached [34].
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Computing all-pairs-shortest-path lengths is practically intractable for very
large graphs. The exact algorithm is prohibitively expensive (at least O(N2));
while one can use sampling to estimate it, alternative methods would include
ANF [28].

2.1.3 S-3: Triangle Power Law (TPL). The number of triangles Δ and
the number of nodes that participate in Δ number of triangles should follow
a power-law in the form of f(Δ) ∝ Δσ, with the exponent σ < 0 [36]. The
TPL intuitively states that while many nodes have only a few triangles in their
neighborhoods, a few nodes participate in many number of triangles with their
neighbors. The local number of triangles is related to the clustering coef cient
of graphs.

2.1.4 S-4: Eigenvalue Power Law (EPL). Siganos et.al. [33] exam-
ined the spectrum of the adjacency matrix of the AS Internet topology and re-
ported that the 20 or so largest eigenvalues of the Internet graph are power-law
distributed. Michail and Papadimitriou [23] later provided an explanation for
the ‘Eigenvalue Power Law’, showing that it is a consequence of the ‘Degree
Power Law’.

2.1.5 S-5: Community Structure. Real-world graphs are found to
exhibit a modular structure, with nodes forming groups, and possibly groups
within groups [13, 14, 32]. In a modular graph, the nodes form communities
where groups of nodes in the same community are tighter connected to each
other than to those nodes outside the community. In [27], Newman and Girvan
provide a quantitative measure for such a structure, called modularity.

2.2 Static Weighted Graphs
Here we try to nd patterns that weighted graphs obey. In this section

we consider graphs to be directed (and impose a single direction in bipar-
tite graphs), as this will be an important consideration on the weights. The
dataset consist of quadruples: (IP-source, IP-destination, timestamp, number-
of-packets), where timestamp is in increments of, say, 30 minutes. Thus, we
have multi-edges, as well as total weight for each (source, destination) pair.
Let W (t) be the total weight up to time t (ie., the grand total of all exchanged
packets across all pairs), E(t) the number of distinct edges up to time t, and
Ed(t) the number of multi-edges (the d subscript stands for duplicate edges),
up to time t.

We present three “laws” that our datasets seem to follow: The rst is the
“weight power law” (WPL) correlating the total weight, the total number of
edges and the total number of multi-edges, over time. THe second is the “edge
weights power law”, the same law as applied to individual nodes. The third is
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the “snapshot power law” (SPL), correlating the in-degree with the in-weight,
and the out-degree with the out-weight, for all the nodes of a graph, at a given
time-stamp.

2.2.1 SW-1: Weight Power Law (WPL). As de ned above, suppose
we have E(t) total unique edges up to time t (ie., count of pairs that know
each other) and W (t) being the total count of packets up to time t. Is there a
relationship between W (t) and E(t)? If every pair generated k packets, the
relationships would be linear: if the count of pairs double, the packet count
would double, too. This is reasonable, but it doesn’t happen! In reality, the
packet count over-doubles, following the “WPL” below. We shall refer to this
phenomenon as the “forti cation effect”: more edges in the graph imply super-
linearly higher total weight.

Observation 2.1 (Weight Power Law (WPL)) Let E(t), W (t) be
the number of edges and total weight of a graph, at time t. They, they follow a
power law

W (t) = E(t)w

where w is the weight exponent. Power-laws also link the number of nodes
N(t), and the number of multi-edges Ed(t), to E(t), with exponents n and
dupE, respectively.

The weight exponent w ranges from 1.01 to 1.5 for the real graphs we have
studied. The highest value corresponds to campaign donations: super-active
organizations that support many campaigns also tend to spend even more money
per campaign than the less active organizations. For bipartite graphs, we show
the nsrc, ndst exponents for the source and destination nodes (which also
follow power laws: Nsrc(t) = E(t)nsrc and similarly for Ndst(t)).

Fig. 2.5 shows all these quantities, versus E(t), for several datasets. The
plots are all in log-log scales, and straight lines t well. We report the slopes
in Table 2.

2.2.2 SW-2: Edge Weights Power Law. We observe that the weight
of a given edge and weights of its neighboring two nodes are correlated. Our
observation is similar to Newton’s Gravitational Law stating that the gravita-
tional force between two point masses is proportional to the product of the
masses.

Observation 2.2 (Edge Weights Power Law(EWPL)) Given a
real-world graph G, ‘communication’ de ned as the weight of the link between
two given nodes has a power law relation with the weights of the nodes. In
particular, given an edge ei,j with weight wi,j and its two neighbor nodes i
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Figure 2.3. Illustration of the EWPL. Given the weight of a particular edge in the nal snap-
shot of real graphs (x-axis), the multiplication of total weights(y-axis) of the edges incident
to two neighboring nodes follow a power law. A line can be t to the median values after
logarithmic binning on the x-axis. Upper and lower bars indicate 75% and 25% of the data,
respectively.

and j with weights wi and wj , respectively,

wi,j ∝
(√

(wi − wi,j) ∗ (wj − wi,j)

)γ

We report corresponding experimental ndings in Fig. 3.

2.2.3 SW-3: Snapshot Power Laws (SPL). What about a static snap-
shot of a graph? If node i has out-degree outi, what can we say about its
out-weight outwi? It turns out that there is a “forti cation effect” here, too,
resulting in more power laws, both for out-degrees/out-weights as well as for
in-degrees/in-weights.

Speci cally, at a given point in time, we plot the scatterplot of the in/out
weight versus the in/out degree, for all the nodes in the graph, at a given time
snapshot. An example of such a plot is in Fig. 2.4 (c) and (d). Here, every point
represents a node and the x and y coordinates are its degree and total weight,
respectively. To achieve a good t, we bucketize the x axis with logarithmic
binning [26], and, for each bin, we compute the median y.

We observed that the median values of weights versus mid-points of the
intervals follow a power law for all datasets studied. Formally, the “Snapshot
Power Law” is:

Observation 2.3 (Snapshot Power Law (SPL)) Consider the i-th
node of a weighted graph, at time t, and let outi, outwi be its out-degree
and out-weight. Then

outwi ∝ outowi
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Figure 2.4. Weight properties of CampOrg donations: (a) shows all the power laws as well as
the WPL; the slope in (b) is∼ 0.86 indicating bursty weight additions over time; (c) and (d) have
slopes > 1 (“forti cation effect”), that is, that the more campaigns an organization supports,
the superlinearly-more money it donates, and similarly, the more donations a candidate gets,
the more average amount-per-donation is received. Inset plots on (c) and (d) show iw and ow
versus time. Note they are very stable over time.

where ow is the out-weight-exponent of the SPL. Similarly, for the in-degree,
with in-weight-exponent iw.

We studied the snapshot plots for several time-stamps (for brevity, we only
report the slopes for the nal timestamp in Table 2 for all the datasets we
studied). We observed that SPL exponents of a graph over time remains almost
constant. In Fig. 2.4 (c) ((d)), the inset plot shows how the iw(ow) exponent
changes over time (years) for the CampOrg dataset. We notice that iw and ow
take values in the range [0.9-1.2] and [0.95-1.35], respectively. That is:

Observation 2.4 (Persistence of Snapshot Power Law) The in-
and out-exponents iw and ow of the SPL remain about constant, over time.

Looking at Table 2, we observe that all SPL exponents are > 1, which imply
a “forti cation effect” with super-linear growth.
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w nsrc ndst dupE iw ow fd
CampOrg 1.53 0.58 0.73 1.29 1.16 1.30 0.86
CampIndiv 1.36 0.53 0.92 1.14 1.05 1.48 0.87
BlogNet 1.03 0.79 NA NA 1.01 1.10 0.96
Auth-Key 1.01 0.90 0.70 NA 1.01 1.04 0.95
Auth-Conf 1.08 0.96 0.48 NA 1.04 1.81 0.96
Key-Conf 1.22 0.85 0.54 NA 1.26 2.14 0.95

Table 2.3. Power law exponents for all the weighted datasets we studied: The x-axis
being the number of non-duplicate edges E, w: WPL exponent, nsrc, ndst: WPL exponent
for source and destination nodes respectively (if the graph is unipartite, then nsrc is the
number of all nodes), dupE: exponent for multi-edges, iw, ow: SPL exponents for indegree
and outdegree of nodes, respectively. Exponents above 1 indicate forti cation/superlinear
growth. Last column, fd: slope of the entropy plots, or information fractal dimension.
Lower fd means more burstiness.

3. Dynamic Properties
We next present several dynamic properties. These are typically studied by

looking at a series of static snapshots and seeing how measurements of these
snapshots compare. Like the static properties we presented previously, we also
divide these into properties that take into account weights and those that don’t.

3.1 Dynamic Unweighted Graphs
The patterns in dynamic time-evolving graphs that do not consider edge

weights include the shrinking diameter property, the densi cation law, oscillat-
ing around a constant size secondary largest connected components, the largest
eigenvalue law and the bursty and self-similar edge additions over time. We
next describe these laws in detail.

3.1.1 D-1: Shrinking Diameter. Leskovec. et al. [18] showed that
not only is the diameter of real graphs small, but it also shrinks and then sta-
bilizes over time [18]. This pattern can be attributed to the ‘gelling point’ and
the ‘densi cation’ in real graphs both of which are described in the following
sections. Brie y, at the ‘gelling point’ many small disconnected components
merge and form the largest connected component in the graph. This can be
thought as the ‘coalescence’ of the graph at which point the diameter ‘spikes’.
Afterwards, with the addition of new edges the diameter keeps shrinking until
it reaches an equilibrium.

3.1.2 D-2: Densi cation Power Law (DPL). Time-evolving graphs
follow the ‘Densi cation Power Law’ with the equation E(t) ∝ N(t)β , at all



Statistical Properties of Social Networks 33

time ticks t [18], where β is the densi cation exponent, and E(t) and N(t) are
the number of edges and nodes at time t, respectively.

All our real graphs we studied obeyed the DPL, with exponents between
1.03 and 1.7. The power-law exponent being greater than 1 indicates a super-
linearity between the number of nodes and the number of edges in real graphs.
That is, it indicates that for example when the number of nodes N in a graph
doubles, the number of edges E more than doubles– hence the densi cation. It
also explains away the shrinking diameter phenomenon observed in real graphs
described earlier. We will attempt to reproduce this property in a generative
model later in this chapter.
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Figure 2.6. Properties of PostNet network. Notice that we experience an early gelling point at
(a) (diameter versus time), stabilization/oscillation of the NLCC sizes in (b) (size of 2nd and 3rd
CC, versus time). The vertical line marks the gelling point. Part (c) gives N(t) vs E(t) in log-
log scales - the good linear t agrees with the Densi cation Power Law. Part (d): component
size (in log), vs time - the GCC is included, and it clearly dominates the rest, after the gelling
point.

3.1.3 D-3: Diameter-plot and Gelling point. Studying the effective
diameter of the graphs, we notice that there is often a point in time when the di-
ameter spikes. Before that point, the graph is more or less in an establishment
period, typically consisting of a collection of small, disconnected components.
This “gelling point” seems to also be the time where the GCC “takes off”.
After the gelling point, the graph obeys the expected rules, such as the den-
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si cation power law; its diameter decreases or stabilizes; the giant connected
component keeps growing, absorbing the vast majority of the newcomer nodes.

Observation 2.5 (Gelling point) Real graphs exhibit a gelling point,
at which the diameter spikes and (several) disconnected components gel into a
giant component.

In most of these graphs, both unipartite and bipartite, there are clear gelling
points. For example, in NIPS the diameter spikes at t = 8 years, which is a
reasonable time for an academic community to gel. In some networks, we only
see one side of the spike, due to massive network size (Patent).

We show full results for PostNet in Fig. 2.6, including the diameter plot
(Fig. 2.6(a)), sizes of the NLCCs (Fig. 2.6(b)), densi cation plot (Fig. 2.6(c)),
and the sizes of the three largest connected components in log-linear scale, to
observe how the GCC dominates the others (Fig. 2.6(d)). Results from other
networks are similar, and are shown in condensed form for space (Fig. 2.7 for
unipartite graphs, and Fig. 2.8 for bipartite graphs). The left column shows
the diameter plots, and the right column shows the NLCCs, which we describe
next.

3.1.4 D-4: Constant/Oscillating NLCCs. We particularly studied the
second and the third connected component over time. We notice that, after
the gelling point, the sizes of these components oscillate over time. Further
investigation shows that the oscillation may be explained as follows: new-
comer nodes typically link to the GCC; very few of the newcomers link to the
2nd (or 3rd) CC, helping them to grow slowly; in very rare cases, a newcomer
links both to an NLCC, as well as the GCC, thus leading to the absorption of
the NLCC into the GCC. It is exactly at these times that we have a drop in the
size of the 2nd CC: Note that edges are not removed, thus, what is reported as
the size of the 2nd CC is actually the size of yesterday’s 3rd CC, causing the
apparent “oscillation”.

An unexpected (to us, at least) observation is that the largest size these com-
ponents can get seems to be a constant. This is counter-intuitive – based on
random graph theory, we would expect the size of the NLCCs to grow with in-
creasing N . Using scale-free arguments, we would expect the NLCCs to have
size that would be a (small, but constant) fraction of the size of the GCC – to
our surprise, this never happened, on any of the real graphs we tried. If some
underlying growth does exist, it was small enough to be impossible to observe
throughout the (often lengthy) time in the datasets.

The second columns of Fig. 2.7 and Fig. 2.8 show the NLCC sizes versus
time. Notice that, after the “gelling” point (marked with a vertical line), they all
oscillate about constant value (different for each network). The only extreme
cases are datasets with unusually high connectivity. For example, Net ixhas
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Figure 2.7. Properties of other unipartite networks. Diameter plot (left column), and NLCCs
over time (right); vertical line marks the gelling point. All datasets exhibit an early gelling point,
and stabilization of the NLCCs.

very small NLCCs. This may be explained by the fact the dataset is masked,
omitting users with less than a hundred ratings (possibly to further protect the
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privacy of the encrypted user-ids). Therefore, the graph has abnormally high
connectivity.

Observation 2.6 (Oscillating NLCCs) After the gelling point, the sec-
ondary and tertiary connected components remain of approximately constant
size, with small oscillations.

3.1.5 D-5: LPL: Principal eigenvalue over time. Plotting the largest
(principal) eigenvalue of the 0-1 adjacency matrix A of our datasets over time,
we notice that the principal eigenvalue grows following a power law with in-
creasing number of edges. This observation is true especially after the gelling
point. The ‘gelling point’ is de ned to be the point at which a giant con-
nected component (GCC) appears in real-world graphs - after this point, prop-
erties such as densi cation and shrinking diameter become increasingly evi-
dent. See [18] for details.

Observation 2.7 (λ1 Power Law (LPL)) In real graphs, the princi-
pal eigenvalue λ1(t) and the number of edges E(t) over time follow a power
law with exponent less than 0.5, especially after the ‘gelling point’. That is,

λ1(t) ∝ E(t)α, α ≤ 0.5

We report the power law exponents in Fig. 2.9. Note that we t the given
lines after the gelling point which is shown by a vertical line for each dataset.
Notice that the given slopes are less than 0.5, with the exception of the Cam-
paignOrg dataset, with slope ≈ 0.53. This result is in agreement with graph
theory. See [1] for details.

3.2 Dynamic Weighted Graphs
3.2.1 DW-1: Bursty/self-similar weight additions. We tracked how
much weight a graph puts on at each time interval and looking at the entropy
plots, we observed that the weight additions over time show self-similarity.
For those weighted graphs where the edge weight is de ned as the number of
reoccurrences of that edge, the slope of the entropy plot was greater than 0.95,
pointing out uniformity. On the other hand, for those graphs where weight is
not in terms of multiple edges but some other feature of the dataset such as the
amount of donations for the FEC dataset, we observed that weight additions
are more bursty, the slope being as low as 0.6 for the Network Traf c dataset.
Fig. 2.5 (b) column shows the entropy plots for the weighted datasets we stud-
ied. ΔW values over time are also shown in insets at the bottom right corner
of each gure.

Observation 2.8 (Bursty/self-similar weight additions) In all
our graphs, the addition of weight (ΔW (t)) was self-similar, with fractal di-
mension ranging from ≈1 (smooth/uniform), down to 0.6 (bursty).
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Figure 2.8. Properties of bipartite networks. Diameter plot (left column), and NLCCs over
time (right), with vertical line marking the gelling point. Again, all datasets exhibit an early
gelling point, and stabilization of the NLCCs. Net ix has strange behavior because it is masked
(see text).
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Figure 2.9. Illustration of the LPL. 1st eigenvalue λ1(t) of the 0-1 adjacency matrix A versus
number of edges E(t) over time. The vertical lines indicate the gelling point.
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Figure 2.10. Illustration of the LWPL. 1st eigenvalue λ1,w(t) of the weighted adjacency ma-
trix Aw versus number of edges E(t) over time. The vertical lines indicate the gelling point.

3.2.2 DW-2: LWPL: Weighted principal eigenvalue over time. Given
that unweighted (0-1) graphs follow the λ1 Power Law, one may ask if there
is a corresponding law for weighted graphs. To this end, we also compute the
largest eigenvalue λ1,w of the weighted adjacency matrix Aw. The entries wi,j

of Aw now represent the actual edge weight between node i and j. We notice
that λ1,w increases with increasing number of edges following a power law
with a higher exponent than that of its λ1 Power Law. We show the experi-
mental results in Fig. 2.10.

Observation 2.9 (λ1,w Power Law (LWPL)) Weighted real graphs ex-
hibit a power law for the largest eigenvalue of the weighted adjacency matrix
λ1,w(t) and the number of edges E(t) over time. That is,

λ1,w(t) ∝ E(t)β

In our experiments, the exponent β ranged from 0.5 to 1.6.
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4. Conclusion
We believe that the Butter y model and the observation of constant NLCC’s

will shed light upon other research in the area, such as a recent, counter-
intuitive discovery [20]: the GCC of several real graphs has no good cuts, so
graph partitioning and clustering algorithms cannot help identify communities
because no clear communities exist.

We have described the following static patterns:

Heavy-tailed degree distribution, with a few “hubs” and most nodes hav-
ing few neighbors.
Small diameter and community structure– nodes form clusters, and it
takes few “hops” to get between any two nodes in the network.
Several power laws: Triangle Power Law and Eigenalue Power Law for
unweighted graphs, and the Weight Power Law, Edge Weights Power
Law, and Snapshot Power Laws for weighted graphs.

We have also described the following dynamic patterns:

Shrinking diameter and densi cation– the “world gets smaller” as more
nodes are added– increasingly more edges are added which causes the
diameter to shrink. There is also a gelling point at which this occurs.
Constant-size smaller components The large component takes off in size,
but the others will not grow beyond a certain point before joining it.
Several other power laws: LPL, or principal eigenvalue over time (both
weighted and unweighted), and bursty weight additions.

These patterns are helpful to spot anomalous graphs and sub-graphs, and
answer questions about entities in a network and what-if scenarios. Let’s elab-
orate on each of the above applications: Spotting anomalies is vital for de-
termining abuse of social and computer networks, such as link-spamming in
a web graph, fraudulent reputation building in e-auction systems [29], detec-
tion of dwindling/abnormal social sub-groups in a social-networking site like
Yahoo-360 (360.yahoo.com), Facebook (www.facebook.com) and LinkedIn
(www.linkedin.com), and network intrusion detection [17]. Analyzing net-
work properties is also useful for identifying authorities and search algorithms
[7, 9, 16], for discovering the “network value” of customers for using viral mar-
keting [30], or to improve recommendation systems [5]. What-if scenarios are
vital for extrapolation, provisioning and algorithm design: For example if we
expect that the number of links will double within the next year, we should pro-
vision for the appropriate hardware to store and process the upcoming queries.
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Abstract A wide variety of interesting real world applications, e.g. friend suggestion in
social networks, keyword search in databases, web-spam detection etc. can be
framed as ranking entities in a graph. In order to obtain ranking we need a
graph-theoretic measure of similarity. Ideally this should capture the informa-
tion hidden in the graph structure. For example, two entities are similar, if there
are lots of short paths between them. Random walks have proven to be a simple,
yet powerful mathematical tool for extracting information from the ensemble of
paths between entities in a graph. Since real world graphs are enormous and
complex, ranking using random walks is still an active area of research. The
research in this area spans from new applications to novel algorithms and math-
ematical analysis, bringing together ideas from different branches of statistics,
mathematics and computer science. In this book chapter, we describe different
random walk based proximity measures, their applications, and existing algo-
rithms for computing them.

Keywords: random walks, proximity measures, hitting times, personalized pagerank, link
prediction

1. Introduction
Link prediction in social networks, personalized graph search techniques,

spam detection in the World Wide Web and collaborative ltering in recom-
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mender networks are important practical problems that greatly rely on graph
theoretic measures of similarity. All these problems can be framed as ranking
entities in a graph.

Take for example online social networks, where an important application
is to suggest friends to a newcomer. Another example is movie and music
recommendation systems (Net ix, Last.fm), where an user is suggested new
movies and music based on his or her ratings so far. The graph in this case is
a bipartite network between users and items, and an edge can be weighted by
the rating given by the user to the item. Keyword search in large publication
databases leads to another interesting problem setting, where the database can
be seen as an entity-relation graph between papers, authors and words. The
goal is to nd papers which are “contextually” similar to the query submitted
by the user.

The underlying question in all these problems is: given a node in a graph,
which other nodes are most similar to this node. Ideally we would like this
proximity measure to capture the graph structure such as having many common
neighbors or having several short paths between two nodes.

Real world graphs are huge, complex and continuously evolving over time.
Therefore it is important to nd meaningful proximity measures, and design
fast space-ef cient algorithms to compute them.

A widely popular approach in graph-mining and machine learning literature
is to compute proximity between nodes by using random walks on graphs: dif-
fusion of information from one node to another. This chapter will be focused
on these measures: the intuition behind their usefulness and effective algo-
rithms to compute them, and important real-world problems where they have
been applied.

Random walks provide a simple framework for unifying the information
from ensembles of paths between two nodes. The ensemble of paths between
two nodes is an essential ingredient of many popular measures such as person-
alized pagerank [37], hitting and commute times [4], Katz measure [46], har-
monic functions [84]. Personalized page-rank vectors (PPV) have been used
for keyword search in databases [9] and entity-relation graphs [18]. Hitting
and commute times have been shown to be empirically effective for query sug-
gestion [55], ranking in recommender networks [14] and image segmentation
problems [64]. In [39] the authors show how to use hitting times for design-
ing provably manipulation resistant reputation systems. Harmonic functions
have been used for automated image-segmentation and coloring [52, 33], and
document classi cation [84].

Naive computation of these measures usually requires O(n3) time, which
is prohibitive for real world large graphs. Fast approximation algorithms for
computing these bring together ideas from scienti c computing, databases and
graph theory. These algorithms span from clever of ine preprocessing [40, 28,
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74], fast online computation of sparse support of these measures [10, 70, 66]
to hybrid algorithms which use best of both worlds [18]. In section 3 we would
discuss these algorithms, study their interconnections, and see how they t into
the big picture.

Here is the organization: we will discuss two main aspects of random walk-
based graph mining problems. First we will discuss different proximity mea-
sures arising from a random walk in section 2. Section 3 consists of some
popular algorithms for computing different proximity measures. We show real-
world applications of these measures in section 4, and conclude with experi-
mental evaluation techniques and data-sources in section 5.

2. Random Walks on Graphs: Background
In this section we introduce some basic concepts of random walks on graphs.

A graph G = (V,E) is de ned as a set of vertices V and edges E. The ijth

entry of the adjacency matrix A is nonnegative and denotes the weight on edge
i, j, and is zero if the edge does not exist. In unweighted graphs the weight
of any edge is 1, whereas in a weighted graph it can be any positive number.
D is an n × n diagonal matrix, where Dii =

∑
j Aij . We will denote Dii by

the degree d(i) of node i from now on. The Laplacian L of G is de ned as
D − A. This is used widely in machine learning algorithms as a regularizer (
[73, 86]). For undirected1 graphs, L is positive semi-de nite, since for any
vector g, gTLg equals

∑
i,j∈E(g(i) − g(j))2.

P = pij, i, j ∈ V denotes the transition probability matrix, so that Pij =
Aij/Dii if (i, j) ∈ E and zero otherwise. A random walk on this graph is a
Markov chain ([4]) with transition probabilities speci ed by this matrix. For
an undirected graph, A is symmetric and L is symmetric positive semi-de nite.
We will denote the set of neighbors of a node i by N (i). For an unweighted
graph, d(i) is simply the size of this neighborhood. For a directed graph, the
set of nodes having an edge to node i is denoted by I(i), and the indegree is
denoted by d−(i). Similarly the set of out-neighbors is denoted by O(i), and
the outdegree is denoted by d+(i). Both in and outdegree are weighted for
weighted graphs.

In a random walk, if node v0 is chosen from a distribution x0, then the
distributions x0, x1, .. are in general different from one another. However if
xt = xt+1, then we say that xt is the stationary distribution for the graph.
According to the Perron-Frobenius theorem, there exists a unique stationary
distribution, if P is irreducible and aperiodic. For graphs that are undirected,
non-bipartite and connected (both irreducible and aperiodic) the stationary dis-
tribution is proportional to the degree distribution.

1Laplacian matrices for directed graphs have been proposed in [21].
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2.1 Random Walk based Proximity Measures
Now we will brie y describe popular random walk based similarity mea-

sures, e.g. personalized pagerank, hitting and commute times, simrank, etc.
We will rst discuss a few query-independent and broad topic based search al-
gorithms, more speci cally pagerank, HITS and its variants including SALSA.
Note that the primary focus of this chapter is to give a comprehensive survey
of random walk based proximity measures, and hence we will not discuss fast
algorithms for computing pagerank, HITS or SALSA in section 3. We will
brie y mention some algorithms for making SALSA and HITS faster after in-
troducing them. An excellent study of pagerank can be found in [50].

Query independent search and broad topic search. Pagerank [15] is a
widely known tool for ranking web-pages. If the world-wide-web is considered
as a graph then the pagerank is de ned as the distribution that satis es the
following linear equation (3.1):

v = (1− α)P Tv +
α

n
1 (3.1)

α is the probability of restarting the random walk at a given step. Note that
the α restart factor plays a very important role. The Perron-Frobenius theorem
indicates that a stochastic matrix P has a unique principal eigenvector iff it
is irreducible and aperiodic. The random restart assures that, since under this
model 1) all nodes are reachable from all other nodes, and 2) the Markov chain
is aperiodic. Also the restart probability makes the second largest eigenvalue
to be upper bounded by α [45].

Pagerank does not provide topic-speci c search results. In [47] the authors
introduced the idea of Hubs and Authorities (HITS) for distilling search results
for a broad topic. The key intuition behind the HITS algorithm is that the
useful web-pages for searching a broad topic are generally of two types: the
authorities and the hubs. The authorities are pages which are good sources of
information about a given topic, whereas a hub is one which provides pointers
to many authorities. Given a topic, rst the authors nd a subgraph of the web
A. This subgraph ideally should be small, should consist of pages relevant
to the given query and should contain most of the authoritative pages. The
authors obtain this subgraph by expanding a root set of nodes “along the links
that enter and leave it”. The details can be found in the paper. The root set
consists of the top k search results for the given query from a standard text-
based search engine. Given this subgraph, the idea is to assign two numbers to
a node: a hub-score and an authority score. A node is a good hub if it points to
many good authorities, whereas a node is a good authority if many good hubs
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point to it. This leads to iterating over two vectors h and a, namely:

a(i)←
∑

j:j∈I(i)
h(j) (3.2)

h(i)←
∑

j:j∈O(i)

a(j) (3.3)

Both these vectors are normalized to have unit length (the squares of the entries
sum to 1). The last two equations can also be written as follows. Let A be the
un-weighted adjacency matrix of the subgraph.

a = ATh h = Aa

The above equation simply means that h converges to the principal eigenvec-
tor of AAT , whereas a converges to the principal eigenvector of ATA. As
mentioned in [51], the matrix AAT can be described as the bibliographic cou-
pling matrix. This is because, the {i, j}th entry of the matrix AAT is given by∑

k A(i, k)A(j, k), which is simply the number of nodes both i and j point to.
On the other hand, ATA can be thought of as the co-citation matrix, i.e. the
{i, j}th entry is given by

∑
k A(k, i)A(k, j), i.e. the number of nodes which

point to both i and j.
There has been algorithms which use the same idea as in HITS but alter

the recurrence relation. The main idea behind these is to emphasize the higher
authority-scores more while computing the hub scores. These algorithms can
be divided in roughly two kinds: the authority threshold (AT (k)) and the
Norm(p) families2. In [13] the authors restrict the sum in eq (3.3) to the k
largest authority scores, while keeping eq (3.2) intact. The underlying intu-
ition is that a good hub should point to at least k good authorities. When k is
the maximum out-degree, this algorithm is identical to HITS. The Norm(p)
family uses a smoother way to scale the authority weights. The p-norm of the
authority weights vector is used in eq (3.3), while keeping eq 3.2 intact. A
similar approach was used in [30]. When p is 1 this is the HITS algorithm.
The MAX algorithm is a special case of the AT (k) family (for k = 1), and
the Norm(p) family (when p = ∞). An in-depth study of this special case
(MAX) of these two families is provided in [80].

SALSA [51] combines the idea of a random surfer from pagerank with hubs
and authorities from HITS. The idea is to conceptually build an undirected
bipartite graph, with two sides containing hubs and authorities. A node i can
be both a hub (h(i)) and an authority (a(i)). A link is added between nodes

2We use the same names as mentioned in [80].
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h(i) and a(j), if there is link i → j in the original subgraph. The nodes and
links are constrained to a part of the web-graph relevant to the query, built in
a manner similar to HITS. Two Markov chains are considered, s.t. one step of
each consists of traversing two links in a row. This way each walk visits nodes
only on one side of the bipartite graph. The stationary distributions of these
walks are used as the hub and authority scores for the original subgraph.

It can be shown that these vectors are simply principal eigenvectors ofArA
T
c

and AT
c Ar (instead of the matrices AAT and ATA as in HITS). Ar is the row

normalized version of A whereas Ac is the column normalized version of A.
Let D+ be the diagonal matrix of out-degrees, and D− be the diagonal in-
degree matrix. Ar is simply D−1+ A, and Ac is AD−1− . Matrix ArA

T
c is equal

to D−1+ AD−1− AT . Denote this as D−1+ H, where3 H equals AD−1− AT . The
{i, j}th entry of this matrix is given by

∑
k A(i, k)A(j, k)/d

−(k). Note that
this is the number of nodes both i and j point to, as in AAT , except each
common neighbor is inversely weighted by its indegree. Here is an intuitive
reason why this kind of weighting is useful. Consider two pairs of papers in
a citation network. The rst pair, i and j, both point to a very highly cited
paper (high indegree), whereas the second pair, i′ and j′, both point to a rather
obscure paper (low indegree). In this case, i′ and j′ are much more likely to be
contextually similar than i and j.

Also, since the ith row of matrix H sums to d+(i), the matrix ArA
T
c is a

stochastic matrix (each row sums to 1). As H is undirected, when it is con-
nected, the principal eigenvector of the probability transition matrix resulting
from it is proportional to the degree distribution of this modi ed adjacency
matrix, in this case, the out-degrees. The case of a number of connected com-
ponents is described in [51]. Similarly, it can be shown that the principal eigen-
vector of AT

c Ar, also a stochastic matrix, is the in-degree distribution.
Thus, the construction of SALSA simply means that high indegree nodes

in the topic-speci c subgraph are good authorities, whereas high out-degree
nodes in the topic-speci c subgraph are good hubs. This is surprising, since
earlier it has been pointed out that ranking simply with respect to (w.r.t) in-
degrees on the entire WWW graph is not adequate [47].In [51] the authors
point out that this con ict results from better techniques for assembling a topic-
speci c WWW subgraph. These techniques augment the original subgraph-
expansion [47] with link- ltering schemes to remove noisy links, and use
simple heuristics to assign weights to links, so that weighted indegree or out-
degrees can be computed.

One problem with the HITS ranking is the sensitivity to the tightly knit
communities, coined as the TKC effect. This happens when a small tightly-

3The matrix AAT is denoted by H in [51].
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knit community of nodes rank highly, although they are not most authoritative.
Using a combinatorial construction and examples of search results from the
web graph, it has been demonstrated that SALSA is less vulnerable to the TKC
effect than HITS [51].

Note that neighborhood construction is key to both HITS, MAX and SALSA,
and is a major computational bottleneck at query time. In [58] the authors show
how to precompute score maps for web-pages in order to drastically lower
query latency. Later consistent unbiased sampling [17] and bloom lters [11]
have been used for approximating neighborhood graphs [59].

Personalized Pagerank. PageRank gives a democratic view of the re-
spective importance of the webpages. However by using a non-uniform restart
probability density we can create a personalized view of the relative impor-
tance of the nodes. The basic idea is to start a random walk from a node i;
at any step the walk moves randomly to a neighbor of the current node with
probability 1 − α, and is reset to the start node i with probability α. The sta-
tionary distribution of this process is the personalized pagerank w.r.t node i.
As a result, the stationary distribution is localized around the start node. This
was also called “rooted pagerank” in [53].

If we generalize the start node i to a start distribution r, the personalization
vector will be given by:

v = (1− α)P Tv+ αr (3.4)

In order to obtain personalization w.r.t node i, the restart distribution r is set to
a vector where the ith entry is set to 1, and all other entries are set to 0. P Tv
is the distribution after one step of random walk from v. The above de nition
implies that personalized pagerank can be computed by solving a large linear
system involving the transition matrix P .

While most algorithms use personalized pagerank as a measure of similarity
between two nodes, in [81] the authors presented a setting where the restart
distribution is learnt using quadratic programming from ordinal preferences
provided by an administrator. The authors presented a scalable optimization
problem by reducing the number of parameters by clustering the WWW graph.

Simrank. Simrank is a proximity measure de ned in [41], which is based
on the intuition that two nodes are similar if they share many neighbors. The
recursive de nition of simrank is given by

s(a, b) =
γ

|I(a)||I(b)|
∑

i∈I(a),j∈I(b)
s(i, j) (3.5)
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If two random surfers start two simultaneous backward walks from nodes a
and b, then this quantity can be interpreted as the expectation of γ�, where �
equals the time when those two walks meet.

Hitting and Commute time. The hitting time ([4]) between nodes i and j
is de ned as the expected number of steps in a random walk starting from node
i before node j is visited for the rst time. H is an n× n matrix. Recursively
hij can be written as

hij =

{
1 +
∑

k pikhkj If i 	= j

0 If i = j
(3.6)

The hitting time can also be interpreted as weighted path-length from node
i to node j, i.e. hij =

∑
path(i,j) |path(i, j)|P (path(i, j)). Hitting times are

not symmetric even for undirected graphs. This can be seen by considering an
undirected star graph with a central node with large degree, which is connected
to many nodes with degree one. The central node has high hitting time to all
of its neighbors, since there are many different destinations of a random walk.
On the other hand, the degree-1 neighbors have a small hitting time (= 1) to
the central node. Hitting times also follow the triangle inequality ([54]).

Commute time between a pair of nodes is de ned as cij = hij+hji. We will
now show some surprising properties of commute times for undirected graphs.
For undirected graphs4 there is a direct analogy of hitting and commute times
with electrical networks ([25]). Consider an undirected graph. Now think of
each edge as a resistor with conductance Aij . In this setting, the commute time
can be shown ([20]) to be equal to the effective resistance between two nodes
up to a multiplicative constant.

Let vol(G) denote the volume of the graph. This is de ned as the sum
of degrees of all nodes, which also equals twice the number of edges in an
undirected graph. If d(i) amount of current is injected at node i,∀i, and vol(G)
amount of current is withdrawn from node j, let the voltage at of node i be
ψ(i). Now, the voltage at node i w.r.t node j is denoted by ψ(i, j). This is
essentially ψ(i) − ψ(j). Using Kirchhoff’s law we can write:

d(i) =
∑

k∈N (i)

(ψ(i, j) − ψ(k, j))

Using algebraic manipulation we have:

ψ(i, j) =

⎧⎨
⎩1 +

∑
k∈N (i)

ψ(k, j)

d(i)
If i 	= j

0 Otherwise
(3.7)

4A detailed discussion of hitting and commute times in directed graphs can be found in [12].
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Note that this linear system is identical to the de nition of hitting time from
i to j (eq. 3.6) and hence hitting time from i to j is identical to the voltage at
node i w.r.t j. The above can be written as a solution to the following linear
system:

Lψ = y (3.8)

y is the vector of currents injected in the system, in particular, y(x) = d(x),
∀x 	= j and for node j, y(j) = d(j) − vol(G). Note that, if ψ is a solution to
eq. 3.8 then any vector obtained by shifting each entry of it by a xed constant
is also a solution. The intuition behind this is that, the currents in the system
only depend on the difference in the voltages between two nodes, not the re-
spective values. Hence, if all voltages are shifted by a constant, the currents
will stay the same. More concretely, this happens because L is not full rank:
one of its eigenvectors, the all ones vector, has eigenvalue zero. Hence, it is not
invertible. This is why the Moore-Penrose pseudo-inverse, denoted by L+, is
used ([29]). This matrix, i.e. L+, can also be written as (L− 1

n11
T )−1+ 1

n11
T

([29, 88]).
Hence from eq. 3.8, we have:

ψ − 1
1Tψ

n
= L+y (3.9)

The second term on the L.H.S is simply the constant vector, where each entry

equals
1Tψ

n
, i.e. the mean of ψ. Since the hitting time measures the voltage

difference, this mean shifting does not matter, i.e. H(i, j) = ψ(i, j) = ψ(i)−
ψ(j) = (ei − ej)TL+y.

Now consider the system where vol(G) current is withdrawn from i and
d(x) amount is injected at all nodes x. Now the voltage drop at j w.r.t i will
be hji = (ej − ei)TL+y′, where y′ is the new current vector with y(x) =
d(x),∀x 	= i and for node i, y(i) = d(i) − vol(G). Note that y − y′ =
vol(G)(ei − ej). Hence, cij = hij + hji is given by,

cij = vol(G)(ei − ej)TL+(ei − ej) (3.10)

This also gives us some intuition about the effectiveness of commute time
as a proximity measure. First, if the effective resistance between two nodes is
small, then it is easier for information to diffuse from one node to the other.
Second, since electrical properties of networks do not change much by adding
or removing a few edges, hitting and commute times should be robust to small
perturbation in datasets ([25]).

From eq. (3.10) we see that L+ maps each vertex of a graph to a Euclidian
space i �→ xi, where xi = (L+)

1
2ei. This is how in undirected graphs pair-

wise commute time can be expressed as the squared Euclidian distance in the
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transformed space (eq. 3.11).

cij = vol(G)(l+ii + l+jj − 2l+ij)

= vol(G)(ei − ej)TL+(ei − ej) (3.11)

Let us now look at the entries of L+ in terms of these position vectors. The
ijth entry l+ij = xi

Txj , denotes the dot-product between the position vectors
of vertex i and j. The diagonal element l+ii denotes the squared length of the
position vector of i. The cosine similarity ([14]) between two nodes is de ned
as l+ij/

√
l+ii l

+
jj . We discuss different ways of computing the above quantities in

section 3.

More random-walk based proximity measures. A discounted version
of escape probability from node i to node j (probability to hit node j before
coming back to node i in a random walk started from node i) has been used
for computing connection subgraphs in [26]. A connection subgraph is a small
subgraph of the original network which best captures the relationship between
two query nodes. Escape probabilities have also been used to compute di-
rection aware proximity in graphs [78]. Koren et al. use cycle-free escape
probability from i to j (probability that a random walk started at i will reach
j without visiting any node more than once) for computing connection sub-
graphs for a group of nodes in [48].

2.2 Other Graph-based Proximity Measures
In their detailed empirical study of different graph-based proximity mea-

sures for link-prediction tasks [53] have used the Katz score, number of com-
mon neighbors and Jaccard score. The authors also presented higher-level meta
approaches for link prediction which use the above measures as a basic com-
ponent. These approaches included low rank approximations of the adjacency
matrix, unseen bigrams from language modeling, and clustering.

Katz Score. [46] had designed a similarity measure based on ensemble of
paths between two nodes.

Katz(i, j) =

∞∑
�=1

β�.A�(i, j)

Note that A�(i, j) is simply the number of paths of length � from i to j. Hence
the matrix of scores can be written as (I−βA)−1− I . In order to compute the
Katz score from a given query node, one needs to solve a linear system over the
adjacency matrix. For very small β the Katz score mostly returns nodes with
many common neighbors with the query node, whereas larger values of beta
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allows one to examine longer paths. Also, the weighted version (which takes
into account weights of edges in the graph) of the Katz score was introduced
in [53].

Common Neighbors, Adamic/Adar and Jaccard Coef cient. Recall that
in an undirected graph, we de ne the set of neighbors of node i byN (i). Then
the number of common neighbors of nodes i and j is given by |N (i) ∩N (j)|.
If two nodes have a large number of common neighbors they are more likely to
share a link in the future. This leads to the use of number of common neighbors
as a pairwise proximity measure.

The Adamic/Adar score [1] is similar to this, except the high degree com-
mon neighbors are weighed less. The Adamic/Adar score is de ned as:

Adamic/Adar(i, j) =
∑

k∈N (i)∩N (j)

1

log |N (k)| (3.12)

The intuition behind this score is that, a popular common interest, gives less
evidence of a strong tie between two people. For example, many people sub-
scribe to the New York Times. But a few subscribe to the Journal of Neuro-
surgery. Hence, it is much more likely that two people share similar interests
if they both subscribe to the second journal in place of the rst.

The Jaccard coef cient computes the probability that two nodes i and j will
have a common neighbor k, given k is a neighbor of either i or j.

J(i, j) =
|N (i) ∩ N (j)|
|N (i) ∪ N (j)| (3.13)

The matrix of Jaccard coef cients can be shown to be positive de nite [32].
Often the Jaccard coef cient is used to compute document similarity in in-

formation retrieval [65]. Note that for the bag of words model, computing
this score between two documents can be expensive. An ef cient randomized
algorithm (shingles) for computing this was introduced by [16]. The idea is
to represent a document by a set of subsequences of words using a moving
window of length �. Now these sequences are hashed to integers, and then
the smallest k of these are used to form a sketch of each document. Now the
Jaccard score is computed based on this new sketch of a document. The au-
thors show that an unbiased estimate of the Jaccard score can be computed by
comparing these sketches.

2.3 Graph-theoretic Measures for Semi-supervised
Learning

While random-walks have been used to compute proximity measures be-
tween two nodes in a graph or global or topic-speci c importance of nodes,
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they also provide a natural framework to include negative information. The
question we ask for obtaining nearest neighbors is: which nodes are close
or relevant to this query node? In semi-supervised learning we ask, given a
graph where a few nodes are labeled relevant (positive) and irrelevant (nega-
tive) which nodes are more similar to the relevant ones than the irrelevant ones.
We will now formalize this idea.

Consider a partially labeled dataset with l labeled data-points denoted by
{(x1, y1), . . . , (xl, yl),xl+1, . . . ,xn}. The goal is to classify the unlabeled
points, from the labeled examples. Often labels are available for a small frac-
tion of dataset, since labeling might require human intervention. Szummer
et al. [76] represent a data-point using random walks on the graph built from
this dataset. For node k the authors compute the probability that a random
walk started at node i, conditioned on the fact that it ended at k after t steps
(P0|t(i|k)). This distribution in terms of the start distribution over all nodes is
the new representation of node k. This probability can be computed from the
standard t-step probability of reaching k from i using Bayes rule. The intuition
is that two datapoints are similar under this notion if they have similar start dis-
tributions. Now the classi cation rule is to assign to an unlabeled node k the
class c, which maximizes

∑
i P0|t(i|k)P (y = c|i). The parameters P (y|i) are

the hidden class distribution over the nodes, and are estimated by maximizing
likelihood via Expectation Maximization, or maximizing margin of classi ca-
tion. The parameter t is crucial for this algorithm and is chosen so that the
average margin per class is maximized. The authors also propose heuristics
for estimating adaptive time scales for different nodes.

Zhu et al. [84] use another graph theoretic approach for semi-supervised
learning. Given labeled and unlabeled data-points as nodes in a graph, the main
goal is to exploit the graph structure to label the unlabeled examples using the
few labeled ones. The authors introduce the harmonic function, which is based
on the intuition that nodes close in the graph have similar labels. A harmonic
function is de ned as f : V → R which has xed values at the given labeled
points and is smooth over the graph topology. More speci cally the harmonic
property means that the function value at an unlabeled node is the average of
function values at the neighbors. Let U denote the set of unlabeled nodes in
the graph. Now the harmonic property can be mathematically expressed as
follows:

f(i) =

∑
j Aijf(j)

d(i)
, i ∈ U

Let’s assume that for the labeled nodes we assign f(i) = 1, if i has label 1, and
0 otherwise. This can also be expressed as f = Pf . We now divide P into four
blocks by grouping the labeled and unlabeled points together. f is grouped into
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fu (unlabeled) and fl (labeled nodes with xed values). This gives:

fu = (I − Puu)
−1Pulfl (3.14)

The above function represents the probability of hitting a label ‘1’ before a la-
bel ‘0’. This can be easily generalized to multi-class classi cation setting, us-
ing a one vs. all encoding of labels. Harmonic functions can also be thought of
as the voltage at all nodes in a electrical network, where the positive nodes are
connected to a unit voltage external source and the negative nodes are grounded
(zero voltage).

Relationship between harmonic functions, escape probabilities and com-
mute times. We have shown that commute times, escape probabilities
and harmonic functions are widely used for proximity computation and semi-
supervised learning. The harmonic function f with boundary conditions f(s) =
1 and f(t) = 0 at node i, computes the probability that a random walk from
node i will hit s before t. The escape probability from s to t [25] (Pesc(s, t))
is de ned as the probability of reaching t before returning to s in a random
walk stated at s. Hence Pesc(s, t) = 1 −∑i P (s, i)f(i). This can be seen
as the escape probability equals the probability of visiting a neighbor i, and
from there reaching t before returning to s. However the latter has probability
1− f(i), by de nition of harmonic functions.

As mentioned earlier, harmonic functions can also be thought of as the volt-
age at node i resulting from connecting node s to a unit voltage source, and
node t to a zero voltage source. Now we will see the relationship of escape
probabilities and harmonic functions with commute time. Let the total cur-
rent drawn by node s from the outside source be Is. Using Kirchhoff’s law
this quantity is

∑
i As,i(1 − f(i)), where Cs,i is the conductance or weight

of the edge {s, i}, since f(s) = 1. This is simply d(s)
∑

i P (s, i)(1 − f(i)),
which is simply the degree of node s times the escape probability from s to t.
Hence the effective conductance between nodes s and t for a unit voltage drop
is d(s)Pesc(s, t). Recall that the effective conductance between nodes s and
t is the reciprocal of the effective resistance between nodes s and t, which is
proportional to the commute time between nodes s and t.

Using the Laplacian for Graph Regularization. Most semi-supervised
algorithms are variations of learning a function over a graph. The goal is to
optimize the function over the labeled nodes, and enforce smoothness over
the graph topology via regularization. Zhu et al. [86] provide an excellent
survey which uni es different semi-supervised learning algorithms under this
framework. The authors discuss a number of algorithms and show the different
choice of the loss function and the regularizer. A number of these algorithms
use the graph Laplacian L, or the normalized graph Laplacian D−1/2LD−1/2
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for regularizing the function. This, (e.g. in [84]) sometimes leads to a function
closely related to a random walk on the underlying graph. Agarwal et al. [2]
connect the Laplacian regularization framework with random walk based mea-
sures (e.g. personalized pagerank) and provide generalization guarantees for
the latter in directed graphs.

2.4 Clustering with random walk based measures
Random walks provide a natural way of examining the graph structure. It

is popular for clustering applications as well. Spectral clustering [60] is a
body of algorithms that clusters datapoints xi using eigenvectors of a matrix
derived from the af nity matrix A constructed from the data. Each datapoint
is associated to a node in a graph. The weight on a link between two nodes
i and j, i.e. Aij , is obtained from a measure of similarity between the two
datapoints. One widely used edge weighting scheme transforms the Euclidian
distance between the datapoints, i.e. Aij = exp(‖xi−xj‖2/σ2), where σ is a
free parameter.

Meila et al. [56] provide a random-walk based probabilistic interpretation
of spectral clustering algorithms including Normalized Cut [72]. Building the
af nity matrix poses an important algorithmic question, which has not yet been
studied extensively. The choice of σ is crucial. Zhu et al. [86] describe different
techniques for building graphs and estimating σ.

Global graph clustering using random walks. Saerens et al. [64] exploit
equation (3.11) to embed a graph and provide distances between any pair of
nodes. In [83] the authors replace traditional shortest-path distances between
nodes in a graph by hitting and commute times and show that standard clus-
tering algorithms (e.g. K-means) produce much better results when applied
to these re-weighted graphs. These techniques exploit the fact that commute
times are robust to noise and provide a ner measure of cluster cohesion than
simple use of edge weight. Harel et al. [36] present a general framework for
using random walk based measures as separating operators which can be re-
peatedly applied to reveal cluster structure at different scales of granularity.
The authors propose using t step probabilities, escape probabilities and other
variants to obtain edge separation. The authors show how to use these oper-
ators as a primitive for other high level clustering algorithms like multi-level
and agglomerative clustering. In a similar sprit, Azran et al. [8] use different
powers of the transition matrix P to obtain clustering of the data. The authors
estimate the number of steps and the number of clusters by optimizing spectral
properties of P .

Local Graph Clustering. Random walks provide a natural way of cluster-
ing a graph. If a cluster has relatively fewer number of cross-edges compared



RandomWalks in Social Networks 57

to number of edges inside, then a random walk will tend to stay inside that
cluster. Recently there has been interesting theoretical work [75, 5] for using
random walk based approaches for computing good quality local graph parti-
tions (cluster) near a given seed node. The main intuition is that a random walk
started inside a good cluster will mostly stay inside the cluster. Cluster-quality
is measured by its conductance, which is de ned as follows: For a subset of S
of all nodes V , let ΦV (S) denote conductance of S, and vol(S) =

∑
i∈S d(i).

As in [75], conductance is de ned as:

ΦV (S) =
E(S, V \ S)

min(vol(S), vol(V \ S)) (3.15)

A good-quality cluster has small conductance, resulting from a small number
of cross-edges compared to the total number of edges. The smaller the conduc-
tance, the better the cluster quality. Hence 0 is perfect score, for a disconnected
partition, whereas 1 is the worst score for having a cluster with no intra-cluster
edges. Conductance of a graph is de ned as the minimum conductance of all
subsets S of the set of nodes V .

The formal algorithm to compute a low conductance local partition near
a seed node is given in [75]. The algorithm propagates probability mass from
the seed node and at any step rounds the small probabilities, leading to a sparse
representation of the probability distribution. Now a local cluster is obtained by
making a sweep over this probability distribution. The running time is nearly
linear in the size of the cluster it outputs. [5] improve upon the above result by
computing local cuts from personalized pagerank vectors from the prede ned
seed nodes. The authors also generalized their result to strongly connected
directed graphs in a subsequent paper [6].

So far we have introduced different random-walk based proximity measures,
and looked at how they are related to each other. The rest of this chapter will
be divided into three parts. First we will discuss the existing algorithms for fast
computation of different random walk based proximity measures introduced in
the last section. Then we will describe different applications of these measures.
Finally we will conclude with experimental evaluation of these measures, and
some sources of publicly available networks.

3. Related Work: Algorithms
In this section, we will describe the popular algorithms designed for comput-

ing the proximity measures described in section 2. Katz, personalized pager-
ank, hitting times, simrank etc. can each be computed as a xed point of a
recursive de nition. This can be computed either by computing the solution
to a linear system, by clever dynamic programming approaches, or by ef cient
sampling algorithms. We will brie y describe some of these approaches. Some
of the dynamic programming approaches are local in nature, i.e. given a query
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node, the algorithm only examines a local neighborhood of the graph. Some of
these approaches are well-suited for external memory graphs, i.e. for graphs
which are too big to t into main memory.

3.1 Algorithms for Hitting and Commute Times
Most clustering applications based on commute times either require exten-

sive computation to produce pairwise proximity measures, or employ heuris-
tics for restricting the computation to subgraphs. Some authors avoid cu-
bic computation by using sparse matrix manipulation techniques. Saerens et
al. [64] compute the trailing eigenvectors of L to reconstruct L+. This re-
quires solving for the eigenvectors corresponding to the smallest eigenvalues
of L, which requires signi cant pre-computation and can be expensive for very
large graphs.

Brand et al. [14] compute sub-matrices of the hitting time and commute
time matrices H and C by iterative sparse matrix multiplications. Note that
computing the ith row of C , i.e. C(i, ∗) or the cosine-similarities of all j with
i requires L+

jj,∀j. The exact value of L+
jj requires solving linear systems of

equations for all other rows of L+. The authors state that for large Markov
chains the square of the inverse stationary distribution of j is a close constant
factor approximation to L+

jj; however no approximation guarantee is provided.
In short, it is only tractable to compute these measures on graphs with a few
thousand nodes for most purposes. Also these techniques are not applicable to
a directed graph.

Spielman at al. [74] have designed a fast algorithm for computing pairwise
commute times within a constant factor approximation. The idea is to use the
Johnson-Lindenstrauss lemma [43] in conjunction with a nearly linear time
solver [75] to compute a n × log n/ε2 matrix of random projections in Õ(m)
time, ε being the approximation error and m the number of edges. At query
time the commute time can be computed by computing the Euclidian distance
between two points in O(log n) time.

Mei et al. [55] compute hitting time by iterating over the dynamic program-
ming step for a xed number of times. This leads to the truncated hitting
time. In order to scale the search, the authors do a depth- rst search from a
query node and stop expansion when the subgraph exceeds a prede ned num-
ber. Now the iterative algorithm is applied to this subgraph, and the query
nodes are ranked based on hitting time. The problem with this approach is that
there is no formal guarantee that the algorithm will not miss a potential nearest
neighbor.

A formal approach of computing nearest neighbors in truncated hitting time
to a node by doing neighborhood expansion can be found in [66]. The goal
is to compute k ε-approximate nearest neighbors of query nodes s within T -
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truncated hitting time τ . The main idea is to expand a neighborhood around
the given query node, and stop when all nodes outside the neighborhood can
be proven to be “un-interesting”. The key is to obtain provable lower and
upper bounds on the truncated hitting time from the nodes inside the current
neighborhood to the query. These bounds enable the authors to expand the
neighborhood in an adaptive fashion, i.e. include “potential” nearest neighbors.
As the neighborhood is expanded these bounds become tighter. For all nodes
outside the neighborhood the authors maintain a global lower bound on hitting
time to the query node. The expansion is stopped when this bound exceeds τ ;
this guarantees that the hitting times of nodes outside the current neighborhood
is larger than τ , and hence uninteresting.

Note that although it is easy to compute hitting time to a node by using
dynamic programming, it is hard to use dynamic programming for computing
hitting time from a node. The reason is: by de nition of hitting times, i.e.
expected time to hit a node for the rst time, it is hard to de ne a problem
based on smaller subproblems. We will show this using two examples:

P t(i, j) =
∑
k

P (i, k)P t−1(k, j) (3.16)

P t(i, j) =
∑
k

P t−1(i, k)P (k, j) (3.17)

Consider the t step probability of reaching node j from node i. Using eq. 3.16
we can compute t step probabilities from all nodes to node j, whereas eq. 3.17
can be iterated to compute t-step probabilities from node i to all other nodes.
If we could write hitting time from node i using

ht(i, j)
?
=
∑
k

ht−1(i, k)P (k, j)

we would be able to use dynamic programming to compute hitting time from
i to all other nodes. However this is not true, since ht−1(i, k) consists of paths
through j, whereas ht(i, j) is de ned to look at paths that stop at j. Sampling
provides a useful approach for computing truncated hitting time from a node.
The idea is simple: sample M random walks from the query node. Now look at
the rst occurrence time Xt(i, k) of the nodes k which have been encountered
during the random walk. Hitting time is given by

∑
tmin{Xt(i, k), T}/M .

Sarkar et al. [69] provide sample complexity bounds for this and use this in
conjunction with a neighborhood expansion scheme to compute nearest neigh-
bors in commute time from a node with high probability.
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3.2 Algorithms for Computing Personalized Pagerank
and Simrank

Personalized pagerank vectors (PPV) are often used to measure the proxim-
ity between two nodes in a network. Although it was rst introduced in early
2000, fast algorithms for computing it is still an active area of research. It has
been proven [40] that the PPV from a set of webpages can be computed by
linearly combining those for each individual webpage in the set. The problem
is that it is hard to store all possible personalization vectors or compute the
personalized pagerank vector at query time because of the sheer size of the
internet graph. We will brie y sketch a few well-known algorithms here.

Haveliwala et al. [37] divide the web-corpora into k (16) topics. The person-
alized pagerank for each topic (a collection of pages from the Open Directory)
is pre-computed of ine and stored. At runtime a user-query is transformed
into a probability distribution on these basis topics. The resulting personalized
pagerank for the query is now a linear combination of the topics, weighted by
the probability distribution of the query over the topics.

Jeh et al. [40] assume that the preferences of personalized search, i.e. restart
distributions are restricted to a set of important pages, denoted by the “hubs”.
Hence the size of this set determines the degree of personalization. The au-
thors pick the 1000 to 100, 000 top pagerank pages as the “hub” set. If the hub
vectors can be pre-computed and stored, it would be easy to linearly combine
these vectors at query time to obtain different personalizations. If this set is
too large, it becomes computationally expensive to compute the personaliza-
tion vectors for each hub-node. In order to achieve higher degrees of personal-
ization, the authors make the key observation that these vectors share common
components, which can be pre-computed, stored and combined at query time.
The two major components are the partial vectors and the hub skeleton. A
hub-skeleton vector corresponding to a hub-node i measures the in uence of
node i on all other nodes via paths through the set of hub nodes, whereas the
partial vector for node i is a result of the paths which do not go via H . If the
hub nodes are chosen such that most paths in the graph go via them, then for
many pairs i, j, the partial vector will be very sparse. The authors show how
to compute these hub-skeletons and partial vectors via dynamic programming,
so that redundant computation can be avoided.

Fogaras et al. [28] achieve full personalization by simulating random walks.
Personalized pagerank from i to j can also be de ned as the probability that a
random walk of length L started at node i will stop at node j, where � is chosen
from the geometric distribution with parameter α, i.e. P (� = t) = α(1−α)t−1.
This leads to a simple estimation procedure: simulate M random walks from
i, such that after each step the walk continues with probability 1−α and stops
with probability α. The fraction of times the walk ends in j gives an estimate
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of PPV (i, j). The authors also provide lower bounds on the size of a database
needed for achieving approximate answers to different queries with high prob-
ability, e.g. query if a personalized pagerank value is positive, compare values
at two nodes, compute an approximation of a PPV value, etc. The interesting
observation is that if one wants to obtain full personalization the lower bound
on database size is O(n2); However allowing a small probability of error and
approximation can let one have database size linear in the number of vertices.
The sampling algorithm in fact achieves this lower bound. The authors show
how to compute “ ngerprints” of random walks from each node ef ciently for
external memory graphs. A ngerprint is a compact version of a random walk:
it just stores the start and end vertices of the walk so far. By sequentially pass-
ing through two les, one with the edges (sorted lexicographically by source),
and the other with the current ngerprints (sorted lexicographically by the end-
node), one can generate the ngerprint for the next time-step ef ciently.

Fogaras et al. [27] use the sampling algorithm to give the rst scalable algo-
rithm for computing simrank. The authors rst show how to estimate simrank
values by generating independent backward random walks of a xed length
from every node. It is simple to estimate the simrank between two nodes from
the rst meeting time of pairwise walks from two nodes. However storing a
number of xed length random walks from each node in a graph can be pro-
hibitive for a web-scale graph. The authors use coalesced random walks, which
save both time and space-complexity. The authors also show how to represent a
set of coalesced reverse random walks compactly. The key is to store the mini-
mal information such that just the rst meeting times for a pair of walks can be
reconstructed without reconstructing the entire path. This reduces the storage
complexity from xed-length walks to one integer per node in the graph.

Sarlós et al. [70] improve upon the sampling algorithm in [28] by introduc-
ing rounding and sketching based deterministic algorithms which reduces the
approximation error signi cantly. Instead of using a power method approach
to compute personalized pagerank from a node, Sarlós et al. use dynamic pro-
gramming to compute personalized pagerank to a node (similar to [40]). At any
iteration of the dynamic programming, the authors round the small pagerank
values to zero, and show that this rounding scheme leads to sparse supports for
personalized pagerank while leading to a small approximation error. The au-
thors also point out that in a power method approach, at a high in-degree node
the errors from the in-neighbors add up and lead to large approximation error
(proportional to the indegree). However, a dynamic programming approach
computes an average over the pagerank values of the out-neighbors of a node
and hence does not amplify error. The space-requirement of the determinis-
tic rounding algorithm is improved further by using Count-Min sketches [23]
to represent the intermediate sparse distributions. The authors also show that
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similar rounding ideas can be used to compute simrank, by reducing it to per-
sonalized pagerank.

The previously mentioned algorithms compute partial personalized pager-
ank vectors of ine and combine them at query time. Berkhin et al. [10] pro-
pose a simple but novel “Bookmark Coloring Algorithm” (BCA) for comput-
ing sparse personalized pagerank from any given node. Personalized pagerank
can be thought of as the stationary distribution of a random process where ev-
ery node retains α fraction of its color (probability) and distributes the rest
along its out-neighbors. The process starts by injecting unit color (probability)
to the node, w.r.t which we want to personalize the measure. A matrix mul-
tiplication step in personalized pagerank, as in eq. (3.4) achieves exactly this,
where at any node the contribution of its in-neighbors are added. BCA can be
thought of as an adaptive version of the matrix multiplication, where only the
large probability masses are propagated. The authors achieve this by maintain-
ing a queue with the personalized pagerank values. At any step the queue is
popped to nd the largest {i,w} pair, where i is the node with w amount of
residual probability. The personalized pagerank vector is updated by adding α
fraction of w to entry i, whereas the entries {j, (1−α)/d+(i)} for all outgoing
neighbors of j are enqueued in Q. The propagating of probability stops when
the amount falls below a pre-speci ed small threshold ε.

This algorithm is formally analyzed in [5]. The authors improve the time
complexity of BCA algorithm by eliminating the queue, and propagating any
probability that is above ε. Theoretical guarantees are provided for both ap-
proximation error and runtime. The key intuition is to express the personalized
pagerank as the sum of the approximate pagerank and the personalized pager-
ank with the start distribution of the residual probability vector (values stored
in the queue in case of BCA). With ε as the threshold the approximation error
simply involves the personalized pagerank w.r.t a residual vector whose largest
entry is ε. The authors use this approximate pagerank vector to compute a lo-
cal graph partition around the start node, and provide theoretical guarantees
about the quality of the partition. Note that personalized pagerank computed
using these approaches may have large accumulated approximation error at
high-indegree nodes.

Chakrabarti et al. [18] show how to compute approximate personalized pager-
ank vectors using clever neighborhood expansion schemes which would dras-
tically reduce the amount of off-line storage and computation. The motivation
of the HubRank algorithm comes from using PPV for context-sensitive key-
word search in entity-relation graphs. Since the vocabulary is huge, it is often
prohibitive to cache PPV for every word. At query time the vectors for dif-
ferent query words are combined to compute ranking for a multi-word query.
For using personalized pagerank in this setting Balmin et al. [9] rounded the
personalized pagerank values in order to save space. However this can ad-
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versely affect the ranking accuracy of multi-word queries. In order to reduce
this storage requirement, HubRank only stores Monte-Carlo ngerprints (de-

ned in [28]) of a set of words and other entity nodes (e.g. papers or authors),
by examining query logs. Given a query, the algorithm identi es a small ac-
tive subgraph whose personalized pagerank values must be computed. Then
the pagerank values are computed only on this subgraph by loading in border-
ing nodes of this subgraph for whom random walk ngerprints were already
stored.

3.3 Algorithms for Computing Harmonic Functions
Zhu et al. [86] present a thorough survey of algorithms for semi-supervised

learning algorithms. We will brie y describe a few of them, which use ran-
dom walk based measures. The key to computing a harmonic function is to
compute the solution to the linear system in eq. (3.14). A detailed comparison
among the label propagation, loopy belief propagation, and conjugate gradi-
ent approaches is provided in [85]. Label propagation simply uses the basic
de nition of harmonic functions, i.e. the function value at an unlabeled node
is the mean of the function value at its neighbors. The harmonic values can
be viewed as the mean values of the marginal probabilities of the unlabeled
nodes; this is why loopy belief propagation can be used for computing these.
It was shown that loopy belief propagation and preconditioned conjugate gra-
dient often converge faster than the other algorithms. Label propagation is the
simplest among all these approaches, and also the slowest.

In [87] the authors combine the idea of learning mixture models with reg-
ularizing the function over the graph topology. The solution to the resulting
Harmonic Mixture Model involves a much smaller “backbone” graph, where
the nodes are merged into super-nodes using the mixture components. For ex-
ample, if one obtains hard clustering, then all points in one mixture component
are merged into one super-node representing that component. This consider-
ably reduces the cost of solving the linear system. Sarkar et al. [68] use a
truncated version of harmonic functions to rerank search results after incorpo-
rating user feedback. The authors give a neighborhood expansion scheme to
quickly identify the top ranking nodes (w.r.t harmonic function values), where
the labels on a few nodes are provided by the users through an interactive
setting. Azran et al. [7] compute harmonic functions by computing the eigen-
decomposition of a Rendezvous graph, where the labeled nodes are converted
into sink nodes.

4. Related Work: Applications
The random walks approach has been highly successful in social network

analysis [46] and computer vision [31, 62], personalized graph search [40,
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37, 28], keyword search in database graphs [9, 18], detecting spam [35, 82].
Here we brie y describe some of these applications.

4.1 Application in Computer Vision
A common technique in computer vision is to use a graph-representation

of an image frame, where two neighboring pixels share a strong connection if
they have similar color, intensity or texture.

Gorelick et al. [31] use the average hitting time of a random walk from an
object boundary to characterize object shape from silhouettes. Grady et al. [34]
introduced a novel graph clustering algorithm which was shown to have an
interpretation in terms of random walks. Hitting times from all nodes to a
designated node were thresholded to produce partitions with various bene cial
theoretical properties. Qiu et al have used commute times clustering for robust
multibody motion tracking in [63] and image segmentation [62].

Harmonic functions have been used for colorizing images [52], and for auto-
mated image-segmentation [33]. The colorization application involves adding
color to a monochrome image or movie. An artist annotates the image with a
few colored scribbles and the indicated color is propagated to produce a fully
colored image. This can be viewed as a multi-class classi cation problem
when the class (color) information is available for only a few pixels. The seg-
mentation example uses user-de ned labels for different segments and quickly
propagates the information to produce high-quality segmentation of the image.
All of the above examples rely on the same intuition: neighboring nodes in a
graph should have similar labels.

4.2 Text Analysis
A collection of documents can be represented in graph in many different

ways based on the available information. We will describe a few popular ap-
proaches. Zhu et al. [84] build a sparse graph using feature similarity between
pairs of documents, and then a subset of labels are used to compute the har-
monic function for document classi cation.

Another way to build a graph from documents in a publication database,
is to build an entity-relation graph from authors and papers, where papers are
connected via citations and co-authors. The ObjectRank algorithm in [9] com-
putes personalized pagerank for keyword-speci c ranking in such a graph built
from a publication database. For keyword search surfers start random walks
from different entities containing that word. Any surfer either moves randomly
to a neighboring node or jumps back to a node containing the keyword. The

nal ranking is done based on the resulting probability distribution on the ob-
jects in the database. In essence the personalized pagerank for each word is
computed and stored of ine, and at query time combined linearly to gener-
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ate keyword-speci c ranking. Chakrabarti et al. [18] also use the same graph
representation.

Mei et al. [55] use hitting times for query suggestion. The authors build a
bipartite graph of query words and URLs, such that a query is connected to
a URL if the user clicked on the URL when the query was submitted to the
URL. Note that one can consider the Markov chain over this bipartite graph or
construct a Markov chain between the query nodes, by using the shared URLs
between two query nodes. For a given query q the top k query nodes in hitting
time q are suggested as alternate queries. Lafferty et al. [49] build a bipartite
graph out of words and documents, and use the top ranked words in person-
alized pagerank from a query for query expansion. This model is augmented
with external information in [22]. Besides the linkage information inherent
in co-occurring terms, the authors formed the links based on external infor-
mation, like synonymy, stemming, word-association and morphology relations
etc. Also their random walk consists of three stages: early, middle and nal
to emphasize the relationships differently at different stages of the walk, e.g.
the co-occurrence relation could be weighted more in the early stage, whereas
links from synonymy are weighed more highly in later steps.

Minkov et al. [57] build an entity relation graph from email data, where
the entities and relations are extracted from the inherent who-sent-whom social
network, content of the emails and the time-stamps. The authors use random
walks with restart for contextual search and name disambiguation in this graph.
The probabilities obtained from the random walk are augmented with global
features to obtain better predictive performance. In a Markov chain where the
states correspond to words, Toutanova et al. [79] focus on learning the transi-
tion probabilities of the chain to obtain better word dependency distributions.
The authors de ne a number of different link types as the basic transition dis-
tribution. Each link type has a corresponding probability transition matrix.
Learning these basic parameters reduces computational complexity, and also
allows the authors to learn complex random walk models. In [3] Agarwal et
al. show how to compute the parameters of a random walk on a entity rela-
tion graph by including relevance feedback. The authors bring together the
idea of generalizing the Markov chain model to network ow models [77] and
maximum margin optimization to learn rankings [42].

4.3 Collaborative Filtering
Hitting and commute times have been successfully used for collaborative

ltering. Brand et al. [14] use different measures resulting from random walks
on undirected graphs to recommend products to users based on their purchase
history. The authors give empirical evidence of the fact that these measures are
often small if one of the nodes has a high degree.It is also shown empirically
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that the cosine similarity (de ned in section 2) does not have this problem
since the effect of individual popularity is normalized out. Fouss et al. [29]
use hitting and commute times for recommending movies in the MovieLens
dataset and show that these perform much better than shortest path on link
prediction tasks.

4.4 Combating Webspam
There have been a number of learning algorithms to aid spam detection

in the web, which is an extremely important task. These algorithms can be
roughly divided into two classes: content-based methods, and graph based
approaches. The content-based approaches [61] focus on the content of the
webpage, e.g. number of words in the page and page title, amount of anchor
text, fraction of visible content etc. to separate a spam-page from a non-spam
page.

Graph-based algorithms look at the link structure of the web to classify web-
spam. We will brie y discuss two of these. TrustRank [35] uses a similar idea
as personalized pagerank computation . The restart distribution contains the
web-pages which are known to be not spammy.

Harmonic ranking has been successfully used for spam detection by [44].
The authors build an anchor set of nodes, and compute a harmonic function
with restart. For the good anchor nodes the authors use the harmonic ranking
where as for the bad anchors they use a forward-propagation from the anchor
set to identify other nodes with similar labels. Note that the authors only used
the harmonic rank with a homogeneous anchor set.

5. Related Work: Evaluation and datasets
In this section, we will brie y describe a widely used metric for evaluating

proximity measures, namely, link prediction. Then we will give a few pointers
to publicly available datasets which have been used by some of the publications
mentioned in this chapter.

5.1 Evaluation: Link Prediction
While there has been a large body of work for modeling pairwise proxim-

ity in network data, evaluating the different measures is often hard. Although
anecdotal evidence can be used to present nice properties of a measure, they
hardly provide a solid ground for believing in the performance of a given mea-
sure. One option is to conduct a user study, which is time consuming and might
suffer from selection bias. The other option which has been adopted by many
authors is to obtain quantitative scores via link-prediction. Given a snapshot
of a social network, the link prediction problem seeks this answer: which new
connections among entities are likely to occur in the future?
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In general there are a few ways of conducting link prediction experiments.
These are:

1 Randomly hold out a links of the graph. Rank all non-existing links
based on a given proximity measure, and see what fraction of the top k
links were originally held out.

2 Randomly hold out a links of the graph. For every node compute k
nearest neighbors based on a given proximity measure, and see what
fraction of these nodes were originally held out.

3 For every node, hold out a few links randomly and compute nearest
neighbors for prediction. Add these links back, and repeat the process.

4 If time information for the data is available, divide the time-steps into
training and test parts, and compute the ranking based on the older train-
ing data, which is used to predict the future links in the test set. For
example, one might want to predict, which two actors who had never
worked together prior to 2005 will work together in 2010?

Obviously, it is important to rank only the candidate nodes/edges. For example
if a node has only one neighbor, its link is not a candidate for removal. In fact
one can pick a parameter to decide if a link is candidate for being held out.
For example, if the source and destination nodes have degree higher than κ,
we consider it for deletion. Liben-Nowell et al. [53] use two parameters κtest
and κtraining . They divide the time period into < t0, t

′
0, t1, t

′
1 >. Now the data

in the period < t0, t
′
0 > is used as training data, whereas < t1, t

′
1 > is used as

the test data. A node which has at least κtraining edges in the training data and
κtest edges in the test data is a candidate node for link prediction (i.e. some
edges from it can be held out).

Liben-Nowell et al. [53] also investigate different proximity measures be-
tween nodes in a graph for link prediction. While this gives a comprehen-
sive and quantitative platform for evaluating the goodness of different prox-
imity measures, this also can give analytical intuitions about the evolution of
real world graphs. Now we will present a few empirical observations from (
[53], [14] and [66]).

A surprising result by [53] is that simple measures like number of common
neighbors, and Adamic Adar often perform as accurately as more complicated
measures which take into account longer paths. Recall that the Adamic Adar
score (eq. 3.12) weighs the contribution of high degree common neighbors
less than low degree ones. It outperforms number of common neighbors in a
number of datasets.

The authors showed that the hitting and commute times suffer from their
sensitivity to long paths. The most effective measure was shown to be the Katz
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measure [46], with a small discount factor. Also, [14] shows that hitting and
commute times tend to give high rank to high degree nodes, which hurt their
predictive performance. This, along with the fact that Katz score performs well
with a small discount factor provide strong evidence of the fact that focusing
on shorter paths, as in personalized pagerank, simrank, truncated/discounted
hitting and commute times can increase predictive performance of a measure.

Another observation from [53], [14] and [66] is that shortest path performs
very poorly compared to measures which look at ensemble of paths (note
that number of common neighbors and Adamic/Adar also look at ensemble
of length 2 paths).

5.2 Publicly Available Data Sources
In section 4 we have given a few ways of building a graph from publication

databases, email data and images. Here is a brief description of the sources of
these publicly available datasets.

1 MovieLens data: bipartite graph of movies and users.
(http://www.grouplens.org/node/73). This was used in [14, 29]
etc.

2 Net ix data: bipartite graph of movies and users, available from the
Net ix challenge.

3 Citeseer data: can be used to build co-authorship networks and Entity-
relation graphs. Maintained by Prof. C. Lee. Giles (http://clgiles.
ist.psu.edu/). This was used in [18, 66, 69] etc.

4 The DBLP dataset: can be used to build co-authorship networks and
Entity-relation graphs. (http://dblp.uni-trier.de/xml/). Differ-
ent versions of the dataset was used in [9, 68].

5 A variety of social networks are available at http://snap.stanford.
edu/data/. Collected and maintained by Dr. Jure Leskovec. These
include online social networks like LiveJournal, email communication
datasets, citation and co-authorship networks, web-graphs, peer to peer
datasets, blog data, the Epinions dataset etc. Smaller versions of Arxiv
publication networks were used in [53].

6 A large collection of Web spam datasets are posted in
http://barcelona.research.yahoo.net/webspam/.

7 A large collection of web sites can be found under the Stanford Web-
Base project [38] http://diglib.stanford.edu:8091/~testbed/
doc2/WebBase/. Different snapshots of the web available from this
project were used in [37, 40, 28, 70].
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8 A large web-corpus was released for searching for related entities and
properties of a given entity in the Entity Track in the Text Retrieval Con-
ference (TREC) 2009.
http://ilps.science.uva.nl/trec-entity/.

9 Manually hand-labeled segmentations of images are available in:
http://www.eecs.berkeley.edu/Research/Projects/CS

/vision/bsds/.

10 Document and hand written digit data-sets used for graph-based semi-
supervised learning are available in Prof. Xiaojin Xhu’s webpage:
http://pages.cs.wisc.edu/~jerryzhu/publications.html.

11 More datasets on handwritten digits, 20 Newsgroups, and publications in
the Neural Information Processing System (NIPS) conference are avail-
able in Prof. Sam Roweis’s webpage:
(http://cs.nyu.edu/~roweis/data.html).

6. Conclusion and Future Work
In this chapter, we have built the necessary background for understanding

random walk based measures of proximity; studied popular proximity mea-
sures, fast algorithms for computing them, and real world applications. The
last few sections lead to a challenging and interesting array of questions which
involve machine learning with very large graphs. For example: how to design
infrastructure to enable end-users with off-the-shelf computing units use the
existing algorithms? How does one identify the right measure for a given learn-
ing task? In settings where human intervention is needed to make an informed
decision, how can we minimize it as much as possible? Is there a relationship
between random walks on graphs and regularized approaches to graph-based
semi-supervised learning? We can answer these questions by unifying our
knowledge in diverse areas like graph theory, data mining, information theory
and database systems.

Often fast search algorithms make an inherent assumption: the graph can
be t into main memory. Consider the setting where the graph is too large to
be memory-resident. Searching personal information networks [19], which re-
quires integrating the users personal information with information from the
Web, often needs to be performed on the user’s own machine for preserv-
ing privacy [24]. For general purpose user-end machines we need memory-
ef cient fast algorithms. There has been some work to design algorithms on
external memory graphs: Fogaras et al. [28] show how to precompute ran-
dom walks from all nodes in external memory graphs. Das Sarma et al. [71]
design streaming algorithms for sampling short random walks from a given
query node using a few passes. Sarkar et al. [67] show how to use a clus-
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tered representation of disk-resident graphs for computing nearest neighbors
using random walk-based proximity measures. One of the important future
directions is to characterize the tradeoffs and limitations of algorithms in this
external-memory setting.

Personalized search being the holy grail, algorithms for re-ranking and rank-
ing re nement which incorporate user-feedback are gaining popularity. Under
this setting the user is asked to label a set of results. Ideally we would want to
exploit this feedback loop the most. This brings us to graph-based active and
semi-supervised learning problems.

Zhu et al. [86] showed that there is a relationship between the popular regu-
larization framework of semi-supervised learning on graphs with random walk
based measures. Agarwal et al. [2] explore this connection for obtaining gen-
eralization guarantees for popular random walk based measures. It would be
interesting to explore this direction more.

As mentioned in section 5, it is common practice to empirically evaluate
different proximity measures using link prediction tasks. Previous empirical
studies indicate that different proximity measures perform differently on dif-
ferent tasks on different graphs. However there has not been any theoretical
work on why some measures work better than others. This is discussed in
detail in [53], where the properties of different graphs are studied to better ex-
plain the behavior of different measures on different tasks. The answer to this
would have a tremendous impact on our intuition about real world graphs, and
would enable automatic identi cation of the right measure for a task at hand
on a given graph. It would also save end-users the trouble to understand and
compute every metric separately for a task.

Identifying nearest neighbors in graphs is a key ingredient in a diverse set of
applications, starting from nding friends on a social network like Face-book
to suggesting movies or music in recommender systems; from viral marketing
to image-segmentation; from intelligence analysis to context-based keyword
search in databases. Random walks provide a popular, intuitive and mathemat-
ically principled framework for computing the underlying measure of “near-
ness” or proximity. A deep understanding of the behavior of these measures
holds the key to ef ciently utilizing the massive source of networked data that
is being generated from corporate and public sources every day.
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Abstract Data sets originating from many different real world domains can be represented
in the form of interaction networks in a very natural, concise and meaningful
fashion. This is particularly true in the social context, especially given recent
advances in Internet technologies and Web 2.0 applications leading to a diverse
range of evolving social networks. Analysis of such networks can result in the
discovery of important patterns and potentially shed light on important proper-
ties governing the growth of such networks.

It has been shown that most of these networks exhibit strong modular nature
or community structure. An important research agenda thus is to identify com-
munities of interest and study their behavior over time. Given the importance of
this problem there has been signi cant activity within this eld particularly over
the last few years. In this article we survey the landscape and attempt to char-
acterize the principle methods for community discovery (and related variants)
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and identify current and emerging trends as well as crosscutting research issues
within this dynamic eld.

Keywords: Graph Mining, Community Discovery, Social Networks

1. Introduction
Many real world problems can be effectively modeled as complex relation-

ship networks where nodes represent entities of interest and edges mimic the
interactions or relationships among them. Fueled by technological advances
and inspired by empirical analysis, the number of such problems and the di-
versity of domains from which they arise – biological [47, 86, 98, 114, 118],
clinical [9, 30], ecological [14, 33, 68, 69, 97], engineering [1, 75, 122], lin-
guistic [46], scienti c [29, 42, 71, 99], social [72, 91, 113, 121, 124], techno-
logical [4, 34, 37, 87, 92], to name a few – is growing steadily.

It has recently been observed that while such networks arise in a host of
diverse arenas they often share important common concepts or themes. The
study of such complex relationship networks, recently referred to as network
science, can provide insight into their structures, properties and emergent be-
haviors [11, 12, 41, 77]. Of particular interest here are rigorous methods for
uncovering and understanding important network or sub-network (community)
structures and motifs at multiple topological and temporal scales as noted in
a recent government report [17]. Extracting such community structure and
leveraging them for predicting the emergent, critical, and causal nature of such
networks in a dynamic setting is of growing importance.

Extracting such structure is indeed a grand challenge. First, the topological
properties of such networks coupled with an uncertain setting [5, 102], often
limit the applicability of existing off-the-shelf techniques [9]. Second, the re-
quirements imposed by directed and dynamic 1 networks require research into
appropriate solutions. Finally, underpinning all of these challenges is the issue
of scalability. Many of the problems we consider require us to deal with prob-
lems of immense size and scale where graphs may involve millions of nodes
and billions of edges[48].

In this chapter we limit our discussion primarily to the problem of com-
munity detection within social networks (albeit a lot of what we will discuss
may apply naturally to other domains as well). We begin by discussing why

1By dynamic, here we refer to any network that changes. This includes not only time-varying networks, but
also networks that change due to external factors (e.g. networks that change due to trust issues and source
credibility issues, such as intelligence networks).
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community discovery in such networks is useful in Section 2. In other words
what are the actionable patterns[82] or tools one can derive from such an anal-
ysis on social networks. Sample applications abound ranging from the study
of intelligence reports to the social behavior of Zebras and Dolphins, from
the collaborative nature of physical and computer scientists, to the often cited
Karate Club social network, from well established communities in Facebook
to the role of communities in Twitter networks for emergency management.
We discuss these issues in Section 2.

In Section 3 we discuss the core methods for community discovery proposed
in the literature to date. We discuss hierarchical algorithms (agglomerative or
divisive) that are popular within the Physics community [78]. The advantages
of such algorithms lie in their intuitive simplicity but as noted elsewhere [24]
they often do not scale well to large networks. We take a close look at the re-
lated literature in graph partitioning, starting with the early work by Kernighan
and Lin, as well as more recent multi-level graph partitioning algorithms such
as Metis [51], Graclus and MLR-MCL[93]. These are highly scalable and have
been used in studies of some of the biggest graph datasets [61, 93]. Spectral
methods that target weighted cuts [96] form an important class of algorithms
that can be used for community discovery, and are shown to be qualitatively
very effective in the social network context. Recent advances in this domain
have targeted large scale networks (e.g. local spectral clustering) and these
will be discussed as well. To this mix of graph clustering and community dis-
covery algorithms one can also include Markov Clustering (MCL), a graph
clustering algorithm based on (stochastic) ow simulation [115]. MCL has
drawn limited attention from the broader network science, web science, and
data mining communities primarily because it does not scale very well even to
moderate sized graphs [24], and other limitations. However, recent advances
have suggested effective ways to redress these limitations while retaining its
advantages[93, 95]. In addition to the above recent research has suggested the
use of hybrid algorithms (e.g. Metis+MQI) and the notion of different kinds
of community structures (e.g. whiskers and viewpoint neighborhoods), and we
will discuss these in Section 3 as well.

In Section 4 we will primarily discuss relatively new domains within social
network analysis where community discovery can play an important role as
we move forward. Particular attention here will be paid to work on commu-
nity discovery in heterogeneous social networks (e.g. Flickr where links may
correspond to common tags, similar images, or similar user pro les), commu-
nity discovery in dynamic social networks (community evolution, dispersion,
merging[9]), community discovery in directed social networks (e.g. Twitter),
and community discovery that combines content and network information in a
natural manner (e.g. topic driven community discovery, social media analytics
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etc.). In Section 5, we conclude with a discussion of cross cutting research
issues that relate to the current state-of-art in this area.

2. Communities in Context
In this section we will discuss the role(s) of community discovery in social

network analysis. Speci cally we will discuss end applications and contextual
bene ts from both a scienti c as well as actionable perspective.

Social community analysis has been the focus of many studies over the past
eighty years[121]. One of the earliest studies in this context include work by
Rice on the analysis of communities of individuals based on their political bi-
ases and voting patterns[89]. A much more recent study along similar lines but
focusing on the network structure of political blogs was discussed by Adamic
and Glance[2]. Homans was the rst to show that social groups could be re-
vealed by suitably rearranging the rows and the columns of matrices describing
social ties, until they take an approximate block-diagonal form[44]. In fact this
idea still serves as the basic tool for visualizing social community structure and
more generally clustering structure[110]. Weiss and Jacobson examined work
groups within a government agency[123]. A central theme of their work was
the identi cation of bridging nodes and using such nodes to separate out com-
munity structure. In fact this work can be thought of as an early version of the
notion of betweenness centrality popularized by Newman[76]. The karate club
study by anthropologist Zachary, is a well-known graph regularly commonly
used as a benchmark to test community detection algorithms[126]. It consists
of 34 vertices, the members of a karate club in the United States, who were ob-
served during a period of three years and it includes a well known community

ssion instance and thus the subject of many studies. Another study by Bech
and Atalay analyzed the social network of loans among nancial institutions to
understand how interactions among multiple communities affect the health of
the system as a whole[15]. A large majority of these studies focused on simply
understanding the underpinning social structure and its evolution (for instance
in the karate club data the underlying cause of the ssion in the community
structure resulting from a difference of opinion between two members of the
club).

In addition to the study of human social networks zoologists and biologists
have also begun to study the social behavior of other animals and sea crea-
tures. Lusseau in a land mark study examined the behavior of 62 bottlenose
dolphins off the coast of New Zealand[65]. This study looked at the social
behavior of 62 dolphins and edges were set between animals that were seen
together more often than expected by random chance. Lusseau notes the co-
hesive and cliquish structure of the resulting graph suggesting that the social
behavior of such marine mammals is often quite marked. More recently an in-
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terdisciplinary team comprising zoologists and computer scientists have stud-
ied the social behavior of zebras[109]. Insights ranging from the identi cation
of in uential herd leaders within communities, and the evolutionary behavior
of the resulting social network of zebras have led to a signi cantly increased
understanding of how these animals communicate and socialize to survive.

Since the advent of the Internet and more recently the World Wide Web
a number of applications of community discovery have arisen. In the World
Wide Web context a common application of community discovery is in the
context of proxy caches[103]. A grouping of web clients who have similar in-
terests and are geographically near each other may enable them to be served by
a dedicated proxy server. Another example from the same domain is to identify
communities within the hyperlinked structure of the web. Such communities
may help in the detection of link farms[21, 40]. Similarly in the E-commerce
domain the grouping together of customers with similar buying pro les en-
ables more personalized recommendation engines[88]. In a completely differ-
ent arena, community discovery in mobile ad-hoc networks can enable ef cient
message routing and posting[104]. In this context it is important to distinguish
core members of the community from members on the border (analogous to
edge routers).

Recently there has been a tremendous thrust in the use of community discov-
ery techniques for analyzing online social media data[73]. The user-generated
content explosion on Web 2.0 applications such as Twitter, Facebook, review
blogs, micro-blogs and various multimedia sharing sites such as Flickr, presents
many opportunities for both facilitators and users. For facilitators, this user-
generated content is a rich source of implicit consumer feedback. For users the
ability to sense and respond interactively and to be able to leverage the wis-
dom of the crowds (or communities) can be extremely fruitful and useful. It
is becoming increasingly clear that a uni ed approach to analysis combining
content information with network analysis is necessary to make headway into
this arena.

The above examples show that community discovery in social or socio-
technical networks is at the heart of various research agendas. We are now
in a position to discuss some of the implications of this technique. At the most
fundamental level, community discovery (either in a static or evolutionary con-
text) can facilitate and aid in our understanding of a social system. Much like
the role of clustering and community discovery can be thought of as cluster-
ing on graphs, community discovery allows us to summarize the interactions
within a network concisely, enabling a richer understanding of the underly-
ing social phenomenon. Beyond this basic understanding of the network and
how it evolves[9], community discovery can also lend itself to actionable pat-
tern discovery. Identi cation of in uential nodes, or sub-communities within a
broader community can be used for viral marketing[32, 53, 59], churn predic-
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tion within telecommunication networks[90] and ratings predictions[56]. We
will conclude this section with an example of how community discovery can
be useful for organizational entities.

Von Hayek, one of the leading economists of the twentieth century, when
discussing a competitive market mechanism, articulated the important fact that
the minds of millions of people is not available to any central body or any
group of decision-makers who have to determine prices, employment, pro-
duction, and investment policies[116]. He further argued that an increase in
decentralization was an essential component to rational decision-making by
organizations in a complex society. The ideas he expounded have broad utility
beyond the context he was considering. Emergency management is an analo-
gous example of a large and complex socio-technical system, where many peo-
ple distributed in space and time may potentially harness the power of mod-
ern social information technologies to coordinate activities of many in order
to accomplish a complex task. In this context recent work by Palen and Liu
[80] makes a strong case for the value of understanding the dynamic of social
networking and speci cally community structure, in relation to managing and
mitigating the impact of disasters.

3. Core Methods
Informally, a community in a network is a group of nodes with greater ties

internally than to the rest of the network. This intuitive de nition has been for-
malized in a number of competing ways, usually by way of a quality function,
which quanti es the goodness of a given division of the network into com-
munities. Some of these quality metrics, such as Normalized Cuts [96] and
Modularity [78] are more popular than others, but none has gained universal
acceptance since no single metric is applicable in all situations. Several such
metrics are discussed in Section 3.1.

Algorithms for community discovery vary on a number of important dimen-
sions, including their approach to the problem as well as their performance
characteristics. An important dimension on which algorithms vary in their ap-
proaches is whether or not they explicitly optimize a speci c quality metric.
Spectral methods, the Kernighan-Lin algorithm and ow-based postprocess-
ing are all examples of algorithms which explicitly try to optimize a speci c
quality metric, while other algorithms, such as Markov Clustering (MCL) and
clustering via shingling do not do so. Another dimension on which algorithms
vary is in how (or even whether) they let the user control the granularity of
the division of the network into communities. Some algorithms (such as spec-
tral methods) are mainly meant for bi-partitioning the network, but this can
be used to recursively subdivide the network into as many communities as de-
sired. Other algorithms such as agglomerative clustering or MCL allow the
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user to indirectly control the granularity of the output communities through
certain parameters. Still other algorithms, such as certain algorithms optimiz-
ing the Modularity function, do not allow (or require) the user to control the
output number of communities at all. Another important characteristic dif-
ferentiating community discovery algorithms is the importance they attach to a
balanced division of the network - while metrics such as the KL objective func-
tion explicitly encourage balanced division, other metrics capture balance only
implicitly or not at all. Coming to performance characteristics, algorithms also
vary in their scalability to big networks, with multi-level clustering algorithms
such as Metis, MLR-MCL and Graclus and local clustering algorithms scaling
better than many other approaches.

3.1 Quality Functions
A variety of quality functions or measures have been proposed in the liter-

ature to capture the goodness of a division of a graph into clusters. In what
follows, A denotes the adjacency matrix of the network or graph, with A(i, j)
representing the edge weight or af nity between nodes i and j, and V denotes
the vertex or node set of the graph or network.

The normalized cut of a group of vertices S ⊂ V is de ned as[96, 67]

Ncut(S) =

∑
i∈S,j∈S̄ A(i, j)∑
i∈S degree(i)

+

∑
i∈S,j∈S̄ A(i, j)∑
j∈S̄ degree(j)

(4.1)

In words, the normalized cut of a group of nodes S is the sum of weights
of the edges that connect S to the rest of the graph, normalized by the total
edge weight of S and that of the rest of the graph S̄. Intuitively, groups with
low normalized cut make for good communities, as they are well connected
amongst themselves but are sparsely connected to the rest of the graph.

The conductance of a group of vertices S ⊂ V is closely related and is
de ned as [50]

Conductance(S) =

∑
i∈S,j∈S̄ A(i, j)

min(
∑

i∈S degree(i),
∑

i∈S̄ degree(i))
(4.2)

The normalized cut (or conductance) of a division of the graph into k clus-
ters V1, . . . , Vk is the sum of the normalized cuts (or conductances) of each of
the clusters Vi{i = 1, . . . , k} [31].

The Kernighan-Lin (KL) objective looks to minimize the edge cut (or the
sum of the inter-cluster edge weights) under the constraint that all clusters
be of the same size (making the simplifying assumption that the size of the
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network is a multiple of the number of clusters):

KLObj(V1, . . . , Vk) =
∑
i�=j

A(Vi, Vj)subject to|V1| = |V2| = . . . = |Vk|

(4.3)
Here A(Vi, Vj) denotes the sum of edge af nities between vertices in Vi and
Vj , i.e. A(Vi, Vj) =

∑
u∈Vi,v∈Vj

A(u, v)

Modularity [78] has recently become quite popular as a way to measure the
goodness of a clustering of a graph. One of the advantages of modularity is that
it is independent of the number of clusters that the graph is divided into. The
intuition behind the de nition of modularity is that the farther the subgraph
corresponding to each community is from a random subgraph (i.e. the null
model), the better or more signi cant the discovered community structure is.
The modularity Q for a division of the graph into k clusters {V1, . . . , Vk} is
given by:

Q =
k∑

c=1

[
A(Vi, Vi)

m
−
(
degree(Vi)

2m

)2
]

(4.4)

In the above, the Vis are the clusters, m is the number of edges in the graph and
degree(Vi) is the total degree of the cluster Vi. For each cluster, we take the
difference between the fraction of edges internal to that cluster and the fraction
of edges that would be expected to be inside a random cluster with the same
total degree.

Optimizing any of these objective functions is NP-hard [39, 96, 18].

3.2 The Kernighan-Lin(KL) algorithm
The KL algorithm [54] is one of the classic graph partitioning algorithms

which optimizes the KL objective function i.e. minimize the edge cut while
keeping the cluster sizes balanced (see Equation 4.3. The algorithm is iterative
in nature and starts with an initial bipartition of the graph. At each iteration,
the algorithm searches for a subset of vertices from each part of the graph such
that swapping them will lead to a reduction in the edge cut. The identi cation
of such subsets is via a greedy procedure. The gain gv of a vertex v is the
reduction in edge-cut if vertex v is moved from its current partition to the other
partition. The KL algorithm repeatedly selects from the larger partition the
vertex with the largest gain and moves it to the other partition; a vertex is
not considered for moving again if it has already been moved in the current
iteration. After a vertex has been moved, the gains for its neighboring vertices
will be updated in order to re ect the new assignment of vertices to partitions.
While each iteration in the original KL algorithm [54] had a complexity of
O(|E| log |E|), Fiduccia and Mattheyses improved it to O(|E|) per iteration
using appropriate data structures. This algorithm can be extended to multi-
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way partitions by improving each pair of partitions in the multi-way partition
in the above described way.

3.3 Agglomerative/Divisive Algorithms
Agglomerative algorithms begin with each node in the social network in its

own community, and at each step merge communities that are deemed to be
suf ciently similar, continuing until either the desired number of communi-
ties is obtained or the remaining communities are found to be too dissimilar to
merge any further. Divisive algorithms operate in reverse; they begin with the
entire network as one community, and at each step, choose a certain commu-
nity and split it into two parts. Both kinds of hierarchical clustering algorithms
often output a dendrogram which is a binary tree , where the leaves are nodes of
the network, and each internal node is a community. In the case of divisive al-
gorithms, a parent-child relationship indicates that the community represented
by the parent node was divided to obtain the communities represented by the
child nodes. In the case of agglomerative algorithms, a parent-child relation-
ship in the dendrogram indicates that the communities represented by the child
nodes were agglomerated (or merged) to obtain the community represented by
the parent node.

Girvan and Newman’s divisive algorithm: Newman and Girvan [78] pro-
posed a divisive algorithm for community discovery, using ideas of edge be-
tweenness. Edge betweenness measures are de ned in a way that edges with
high betweenness scores are more likely to be the edges that connect different
communities. That is, inter-community edges are designed to have higher edge
betweenness scores than intra-community edges do. Hence, by identifying and
discarding such edges with high betweenness scores, one can disconnect the
social network into its constituent communities.
Shortest path betweenness is one example of an edge betweenness measure:

the intuitive idea here is that since there will only be a few inter-community
edges, shortest paths between nodes that belong to different communities will
be constrained to pass through those few inter-community edges. Also enu-
merated are two other examples of edge betweenness. In the de nition of
random-walk betweenness, the choice of path connecting any two nodes is the
result of random walk instead of geodesic as in the case of shortest path. The
current- ow betweenness de nition is motivated by the circuit theory. First the
network is virtually transformed into a resistance network where each edge is
replaced by a unit resistance and two nodes are chosen as unit current source
and sink. Then the betweenness of each edge is computed as the sum of ab-
solute values of the currents owing on it with all possible selections of node
pairs.
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The general form of their algorithms is as follows:

1 Calculate betweenness score for all edges in the network using any mea-
sure.

2 Find the edge with the highest score and remove it from the network.

3 Recalculate betweenness for all remaining edges.

4 Repeat from step 2.

The above procedure is continued until a suf ciently small number of com-
munities are obtained, and a hierarchical nesting of the communities is also
obtained as a natural by-product. On the contrary to the speculation that dif-
ferent measures of edge betweenness may lead to diverged community struc-
tures, the experiment showed that the exact betweenness measure used is not
so crucial. As long as the recalculation step is executed, the results by dif-
ferent measures only differ from each other slightly. The motivation for the
recalculation step is as follows: if the edge betweenness scores are only cal-
culated once and edges are then removed by the decreasing order of scores,
these scores won’t get updated and no longer re ect the new network structure
after edge removals. Therefore, recalculation is in fact the most critical step in
the algorithm to achieve satisfactory results. The main disadvantage of this ap-
proach is the high computational cost: simply computing the betweenness for
all edges takes O(|V ||E|) time, and the entire algorithm requires O(|V |3) time.

Newman’s greedy optimization of modularity: Newman [74] proposed a
greedy agglomerative clustering algorithm for optimizing modularity. The ba-
sic idea of the algorithm is that at each stage, groups of vertices are succes-
sively merged to form larger communities such that the modularity of the re-
sulting division of the network increases after each merge. At the start, each
node in the network is in its own community, and at each step one chooses
the two communities whose merger leads to the biggest increase in the mod-
ularity. We only need to consider those communities which share at least one
edge, since merging communities which do not share any edges cannot result
in an increase in modularity - hence this step takes O(|E|) time. An additional
data structure which maintains the fraction of shared edges between each pair
of communities in the current partition is also maintained, and updating this
data structure takes worst-case O(|V |) time. There are a total of |V | − 1 it-
erations (i.e. mergers), hence the algorithm requires O(|V |2) time. Clauset
et al. [29] later improved the complexity of this algorithm by the use of ef -
cient data structures such as max-heaps, with the nal complexity coming to
O(|E|d log |V |), where d is the depth of the dendrogram describing the suc-
cessive partitions found during the execution of the algorithm.
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3.4 Spectral Algorithms
Spectral algorithms are among the classic methods for clustering and com-

munity discovery. Spectral methods generally refer to algorithms that assign
nodes to communities based on the eigenvectors of matrices, such as the ad-
jacency matrix of the network itself or other related matrices. The top k
eigenvectors de ne an embedding of the nodes of the network as points in
a k-dimensional space, and one can subsequently use classical data cluster-
ing techniques such as K-means clustering to derive the nal assignment of
nodes to clusters [117]. The main idea behind spectral clustering is that the
low-dimensional representation, induced by the top eigenvectors, exposes the
cluster structure in the original graph with greater clarity. From an alterna-
tive perspective, spectral clustering can be shown to solve real relaxations of
different weighted graph cut problems, including the normalized cut de ned
above [117, 96].

The main matrix that is used in spectral clustering applications is the Lapla-
cian matrix L. If A is the adjacency matrix of the network, and D is the diag-
onal matrix with the degrees of the nodes along the diagonal, then the unnor-
malized Laplacian L is given as L = D−A. The Laplacian (or the normalized
Laplacian) L is given by L = D−1/2(D − A)D−1/2 = I − D−1/2AD−1/2.
It can be veri ed that both L and L are symmetric and positive de nite, and
therefore have real and positive eigenvalues [27, 117]. The Laplacian has 0 as
an eigenvalue with multiplicity equal to the number of connected components
in the graph. The eigenvector corresponding to the smallest non-zero eigen-
value of L is known as the Fiedler vector [35], and usually forms the basis for
bi-partitioning the graph.

The main disadvantage of spectral algorithms lies in their computational
complexity. Most modern implementations for eigenvector computation use
iterative algorithms such as the Lanczos algorithm, where at each stage a se-
ries of matrix vector multiplications are performed to obtain successive ap-
proximations to the eigenvector currently being computed. The complexity
for computing the top eigenvector is O(kM(m)), where k is the number of
matrix-vector multiplications and M(m) is the complexity of each such multi-
plication, dependent primarily on the number of non-zeros m in the matrix. k
depends on the speci c properties of the matrix at hand - such as the spectral
gap i.e. the difference between the current eigenvalue and the next eigenvalue;
the smaller this gap, the more number of matrix-vector multiplications are re-
quired for convergence. In practice, spectral clustering is hard to scale up to
networks with more than tens of thousands of vertices without employing par-
allel algorithms.

Dhillon et al. [31] showed that the weighted cut measures such as normal-
ized cut that are often optimized using spectral clustering can also be opti-
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mized using an equivalent weighted kernel k-means algorithm. This is the
core idea behind their algorithm Graclus, which can cluster graphs at a com-
parable quality to spectral clustering without paying the same computational
cost, since k-means is much faster compared to eigenvector computation.

3.5 Multi-level Graph Partitioning
Multi-level methods provide a powerful framework for fast and high-quality

graph partitioning, and in fact have been used for solving a variety of other
problems as well [112]. The main idea here is to shrink or coarsen the input
graph successively so as to obtain a small graph, partition this small graph and
then successively project this partition back up to the original graph, re ning
the partition at each step along the way. Multi-level graph partitioning methods
include multi-level spectral clustering [13], Metis (which optimizes the KL
objective function) [51], Graclus (which optimizes normalized cuts and other
weighted cuts) [31] and MLR-MCL [93] (further discussed in Section 3.6).

The main components of a multi-level graph partitioning strategy are:

1 Coarsening. The goal here is to produce a smaller graph that is similar
to the original graph. This step may be applied repeatedly to obtain
a graph that is small enough to be partitioned quickly and with high-
quality. A popular coarsening strategy is to rst construct a matching on
the graph, where a matching is de ned as a set of edges no two of which
are incident on the same vertex. For each edge in the matching, the
vertices at the ends of the edge are collapsed together and are represented
by a single node in the coarsened graph. Coarsening can be performed
very quickly using simple randomized strategies [51].

2 Initial partitioning. In this step, a partitioning of the coarsest graph is
performed. Since the graph at this stage is small enough, one may use
strategies like spectral partitioning which are slow but are known to give
high quality partitions.

3 Uncoarsening. In this phase, the partition on the current graph is used
to initialize a partition on the ner (bigger) graph. The ner connectivity
structure of the graph revealed by the uncoarsening is used to re ne the
partition, usually by performing local search. This step is continued until
we arrive at the original input graph.

At a ner level, Metis uses a variant of the KL algorithm in its uncoarsening
phase to re ne the partition obtained from previous steps. Graclus, on the other
hand, uses weighted kernel k-means for re ning the partition.
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3.6 Markov Clustering
Stijn van Dongen’s Markov Clustering algorithm (MCL) clusters graphs via

manipulation of the stochastic matrix or transition probability matrix corre-
sponding to the graph [115]. In what follows, the transition probability be-
tween two nodes is also referred to as stochastic ow. The MCL process con-
sists of two operations on stochastic matrices, Expand and In ate. Expand(M )
is simply M ∗M , and In ate(M, r) raises each entry in the matrix M to the in-

ation parameter r ( > 1, and typically set to 2) followed by re-normalizing the
columns to sum to 1. These two operators are applied in alternation iteratively
until convergence, starting with the initial transition probability matrix.

The expand step spreads the stochastic ow out of a vertex to potentially
new vertices and also enhances the stochastic ow to those vertices which are
reachable by multiple paths. This has the effect of enhancing within-cluster
stochastic ows as there are more paths between two nodes that are in the same
cluster than between those in different clusters. The in ation step introduces a
non-linearity into the process, with the purpose of strengthening intra-cluster
stochastic ow and weakening inter-cluster stochastic ow. The process as a
whole sets up a positive feedback loop that forces all the nodes within a tightly-
linked group of nodes to stochastically ow to one “attractor” node within the
group, allowing us to identify the group.

MCL has received a lot of attention in the bioinformatics eld, with multi-
ple researchers nding it to be very effective at clustering biological interaction
networks ([20, 62]). However, MCL has two major shortcomings [93]. First,
MCL is slow, since the Expand step, which involves matrix-matrix multiplica-
tion, is very time consuming in the rst few iterations when many entries in
the stochastic ow matrix have not been pruned out. Second, MCL tends to
produce imbalanced clustering, usually by producing a large number of very
small clusters (singleton clusters or clusters with only 2 or 3 nodes), or by pro-
ducing one very big cluster, or by doing both at the same time.

Recent Variants of MCL: Recently, Regularized MCL and Multi-level Regu-
larized MCL (MLR-MCL) [93, 95] have been proposed that x the above two
weaknesses of poor scalability and imbalanced clustering. Regularized MCL
ensures that the stochastic ows of neighboring nodes are taken into account
when updating the stochastic ows of each node by replacing the Expand step
of MCL with a Regularize step, which is M := M ∗MG, where MG is the
original stochastic (transition) matrix corresponding to the graph. Other regu-
larization matrices instead of MG are also explored in [95] with the intention of
reducing the imbalance in the sizes of output clusters. Multi-level Regularized
MCL (MLR-MCL) embeds Regularized MCL in a multi-level framework, with
the algorithm working its way up the chain of coarsened graphs of the input
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graph, and projecting intermediate results from the smaller graph onto the next
bigger graph. MLR-MCL achieves state-of-the-art scalability since the initial
iterations of the algorithm, which are the most expensive in the total computa-
tion, are performed on the smallest graphs, and the matrices are sparse enough
at the biggest graphs to enable fast multiplication.

3.7 Other Approaches
Local Graph Clustering: A local algorithm is one that nds a solution con-
taining or near a given vertex (or vertices) without looking at the whole graph.
Local algorithms are interesting in the context of large graphs since their time
complexity depends on the size of the solution rather than the size of the graph
to a large extent. (Although if the clusters need to cover the whole graph, then it
is not possible to be independent of the size of the graph.) The main intuition is
that random walks simulated from inside a group of internally well-connected
nodes will not mix well enough/soon enough, as the cluster boundary acts a
bottleneck that prevents the probability from seeping out of the cluster easily.
Low-probability vertices are removed at each step to keep the complexity of
the algorithm tractable.

Spielman and Teng [101, 100] described the rst such local clustering algo-
rithm using random walks. Let pt,v be the probability distribution of the t-step
random walk starting at v. (pt,v is truncated i.e. low probability entries are set
to zero, in order to avoid exploring too much of the graph.) For each t, let π be
the permutation on the vertices of the graph that indicates the sorted order of
the degree-normalized probabilities i.e.

pt(π(i))

d(π(i))
≥ pt(π(i + 1))

d(π(i + 1))
(4.5)

The sweep sets St
1, S

t
2, . . . , S

t
n are de ned as St

j = {π(1), . . . , π(j)}. Let
ψV be the nal stationary distribution of the random walk (all random walks
within a component converge to the same stationary distribution.) The main
theoretical result exploited says that the difference between pt(St

j) and ψV (S
t
j)

is either small, or there exists a cut with low conductance among the sweep
sets. Therefore by checking the conductance of the sweep sets St

j at each time
step t, we discover clusters of low conductance.

Andersen and Lang [7] extended this work to handle seed sets (instead of
just a seed vertex). On real datasets such as web graph, IMDB graph etc. they
select a random subset of nodes belonging to a known community and show
that the local clustering approach is able to recover the original community.

Andersen et al. [6] improved upon Spielman and Teng’s algorithm by sim-
ulating random walks with restarts (i.e. Personalized PageRank), instead of
just plain random walks. The notion of sweep sets for probability distribu-
tions, obtained by sorting the degree-normalized probabilities, is the same.
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The theoretical results here involve pagerank vectors though; if there is a set of
vertices whose probability in the pagerank vector is signi cantly greater than
their probability in the general stationary distribution, then some sweep set of
the pagerank vector has low conductance. They show that they can compute
an approximate page rank vector in time depending only on the error of the ap-
proximation and the truncation threshold (and not on the graph size). Once the
approximate pagerank vector is computed, conductances of successive sweep
sets are calculated to discover a set of vertices with low conductance.

Flow-Based Post-Processing for Improving Community Detection: We will
discuss how algorithms for computing the maximum ow in ow networks can
be used to post-process or improve existing partitions of the graph. Flake et
al. [36] proposed to discover web communities by using a focused crawler
to rst obtain a coarse or approximate community and then set up a max-

ow/min-cut problem whose solution can be used to obtain the actual set of
pages that belong to the same community. Lang and Rao [57] discuss a strat-
egy for improving the conductance of any arbitrary bipartition or cut of the
graph. Given a cut of the graph (S, S̄), their algorithm nds the best improve-
ment among all cuts (S′, S̄′) such that S′ is a strict subset of S. Their main
approach is to construct a new instance of a max- ow problem, such that the
solution to this problem (which can be found in polynomial time) can be used
to nd the set S′ with the lowest conductance among all subsets of S. They
refer to their method as MQI (Max-Flow Quotient-Cut Improvement). They
use Metis+MQI to recursively bi-partition the input graph; at each step they
bi-partition using Metis rst and then improve the partition using MQI and re-
peat the process on the individual partitions. Anderson and Lang [7] nd that
MQI can improve the partitions found by local clustering as well.

Community Discovery via Shingling: Broder et al. [19] introduced the idea
of clustering web documents through the use of shingles and ngerprints (also
denoted as sketches). In short, a length-s shingle is s of all parts of the ob-
ject. For example, a length-s shingle of a graph node contains s outgoing links
of the node; a length-s shingle of a document is a contiguous subsequence of
length s of the document. Meanwhile, a sketch is a constant-size subset of all
shingles with a speci c length, with the remarkable property that the similar-
ity between sets of two objects’ sketches approximates the similarity between
the objects themselves (here the de nition of similarity being used is Jaccard
similarity, i.e. sim(A,B) = |A ∩B|/|A ∪B|. This property makes sketch an
object’s ngerprint.

Gibson et al. [40] attempt to extract dense communities from large-scale
graphs via a recursive application of shingling. In this algorithm, the rst-level
shingling is performed on each graph node using its outgoing links. That is,
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each node v is associated with a sketch of c1 shingles, each of which stands
for s1 nodes selected from all nodes that v points to. Then an inverted index
is built, containing each rst-level shingle and a list of all nodes that the shin-
gle is associated with. The second-level shingling function is then performed
on each rst-level shingle, producing second-level shingles (also called meta-
shingles) and sketches. Two rst-level shingles are considered as relevant if
they share at least one meta-shingle in common, and the interpretation is that
these two shingles are associated with some common nodes. If a new graph
is constructed in such a way that nodes stand for rst-level shingles and edges
indicate the above-de ned relation, then clusters of rst-level shingles corre-
spond to connect components in this new graph. Finally, communities can be
extracted by mapping rst-level shingles clusters back to original nodes plus
including associated common meta-shingles. This algorithm is inherently ap-
plicable to both bipartite and directed graph, and can also be extended to the
case of undirected graph. It is also very ef cient in terms of both memory us-
age and running time, thus can handle graph of billions of edges.

Alternative De nitions of Communities: At the start of this section, we in-
formally de ned a community as a subset of nodes well connected internally
and weakly connected to the rest of the graph. We now look at additional
notions of communities which are either different from this de nition or are
re nements of this idea for a particular context.

Asur and Parthasarathy [10] recently introduced the idea of viewpoint neigh-
borhoods, which are groups of nodes that are salient or in uential from the
viewpoint of a single node (or subset of nodes) in the network. Thus a view-
point neighborhood may be seen as a cluster or community of nodes that is
local to the node (or subset of nodes) that is being analyzed. The same pa-
per also proposes algorithms for extraction of viewpoint neighborhoods using
activation spread models that are general enough to incorporate different no-
tions of salience or in uence. Viewpoint analysis of graphs provides us a novel
analytic and conceptual tool for understanding large networks at a ne scale.

Leskovec et al. [60] nd that in a wide variety of real-world networks, some
of the best communities, according to the measure of conductance (see Equa-
tion 4.2) , are groups of nodes that are connected to the rest of the graph by
only one edge. They refer to such communities as whiskers (with groups of
nodes that are connected by 2 edges called 2-whiskers etc.) They postulate a
core-and-whiskers model for the structure of networks, where most networks
consist of a core part of the network surrounded by whiskers which are often
connected to the rest of the network by only one or two edges. The whiskers
of a network may either represent patterns that are useful within the context
of the domain or may be considered noise which is to be removed while pre-
processing the network.
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4. Emerging Fields and Problems
In this section we attempt to identify recent research trends within the do-

main of community discovery in social networks. Given the relatively prelimi-
nary nature of the work presented in this section our objective here is to identify
and discuss exemplar efforts rather than provide a comprehensive survey of all
results in each sub-area.

4.1 Community Discovery in Dynamic Networks
Most of the community discovery algorithms discussed in Section 3 were

designed with the implicit assumption that the underlying network is unchang-
ing. In most real social networks however, the networks themselves as well
as the communities and their members evolve over time. Some of the ques-
tions consequently raised are: How should community discovery algorithms
be modi ed to take into account the dynamic and temporally evolving nature
of social networks? How do communities get formed? How persistent and
stable are communities and their members? How do they evolve over time? In
this section, we introduce the reader to the slew of recent work that addresses
these questions.

Asur et al.[9] presented an an event-based approach for understanding the
evolution of communities and their members over time. The key ideas brought
forth by this work is a structured way to reason about how communities and
individual elements within such networks evolve over time and what are the
critical events that characterize their behavior. Events involving communities
include continue, κ-merge, κ-split, form and dissolve, and events involving
individuals include appear, disappear and join. The authors demonstrate how
behavioral indices such as stability and in uence as well as a diffusion model
can be ef ciently composed from the events detected by their framework and
can be used to effectively analyze real-life evolving networks in an incremental
fashion. Their model can also be used to predict future community behavior
(e.g. collaboration between groups). Also it can help identifying nodes with
interests (e.g. sociable or in uential users). Furthermore, semantic content can
be integrated in the model naturally.

Recently, much research effort has gone into the question of designing com-
munity discovery algorithms for dynamic networks. The simple approach of
treating treating each network snapshot as an independent network and apply-
ing a conventional community discovery algorithm may result in undesirable

uctuations of community memberships from one snapshot to the next. Con-
sider an extreme example from [25], where there exist two orthogonal splits (A
and B) on a data set. A performs slightly better on odd-numbered days, while
B is a little superior on even-numbered days. Taking the optimal split every
day results in radical change in the obtained communities from day to day,
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and therefore it may be better to sacri ce some optimality and instead adopt a
consistent split (either A or B) on all days.

Initial approaches to tackle this problem focused on constructing temporal
slices of the network and then relied on community discovery on each slice to
detect temporal changes to community structure between consecutive slices.
For example, Berger-Wolf and Saia[16] took partitions of individuals at each
time-stamp as input, trying to nd a metagroup that contains a sequence of
groups which are similar to each other. De nitions of three extreme meta-
groups (namely most persistent metagroup, most stable metagroup and largest
metagroup) were given, and the extraction algorithms were discussed. Tan-
tipathananandh et al. [111] studied the problem of identifying the “true” com-
munity af liations of the individuals in a dynamic network, given the af lia-
tions of the individuals in each timeslice. They formulate this as a combinato-
rial optimization problem and show that the problem is NP-hard. Consequently
they solve the problem using a combination of approximate greedy heuristics
and dynamic programming.

An alternative approach to dynamic analysis of networks is to take a holis-
tic view of the community discovery across time-slices, by constraining the
network division in a time-slice to not be too divergent from the network divi-
sions of the previous time-slices. Chakrabarti et al.[25] were among the rst
to work on this problem and referred to it as evolutionary clustering. The most
essential contribution of it is, instead of rst extracting communities on each
network snapshots and then nding connections among communities in differ-
ent snapshots, it considers snapshot quality (how well the clustering at certain
time Ct represents the data at t) and history cost (how different is the clustering
Ct from clustering Ct−1) as a whole. In this way, community structure and its
evolution are studied at the same time. Furthermore, it allows the compromise
between these two parts by linear combination of snapshot quality and history
cost. They also adapted agglomerative hierarchical clustering and k-means
clustering for this framework.

Sun et al.[106] present an alternative approach to clustering time-evolving
graphs using theMinimum Description Length (MDL) principle. Here, graphs
of consecutive timestamps are grouped into graph stream segments, and these
segments are divided by change-points. These change-points indeed indicate
points of drastic discontinuities in the network structure. The total cost of graph
stream encoding is then de ned as C =

∑
sC

(s), where C(s) is the encoding
cost for s-th graph stream segment. The segment encoding cost, C(s) is again
a sum of the segment length, the graph encoding cost and the partition encod-
ing cost. Unfortunately, minimizing total cost was proved NP-hard, leading
to a greedy algorithm based on alternating minimizations called GraphScope.
Basically it deals with when to start a new graph stream segment and how to
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nd well-formed communities among all snapshots in a single segment. One
of GraphScope’s advantages is that it doesn’t require any parameter as input.

Chi et al.[26] extended spectral clustering to a dynamic network setting.
They proposed two frameworks, named preserving cluster quality (PCQ) and
preserving cluster membership (PCM) respectively, to measure the tempo-
ral/history cost. The former metric is interested in how well the partition at
time t (Ct) performs on the data at time t − 1, while latter cares how similar
the two consecutive partitions (Ct and Ct−1) are. This framework also allows
variation in cluster numbers as well as insertion and removal of nodes.

Lin et al.[63] proposed FacetNet for dynamic community discovery through
the use of probabilistic community membership models. The advantage of
such probabilistic models is the ability to assign each individuals to multiple
communities with a weight indicating the degree of membership for each com-
munity. They used KL-divergence to measure the snapshot quality and history
cost respectively. It was proved in[64] that when certain assumptions hold,
optimization of total cost is equivalent to maximization of the log-likelihood
function L(Ut) = logP (Wt|Ut) + log P (Ut|Ut−1), where Wt is the data at
time t, and Ut the cover at t.

Kim and Han[55] revisited the cost function used in existing research and
found that temporal smoothing at the clustering level can degrade the perfor-
mance because of the need to adjust the clustering result iteratively. Their rem-
edy was to push down the cost to each pair of nodes, get a temporal-smoothed
version of pair-wise node distance and then conduct density-based clustering
on this new distance metric. To deal with the problem that the number of com-
munities change over time, greedy local clustering mapping based on mutual
information was performed. By doing so, the model can account for the ar-
bitrary creation/dissolution as well as growing/shrinking of a community over
time.

4.2 Community Discovery in Heterogeneous Networks
Most conventional algorithms assume the existence of a homogeneous net-

work where nodes and edges are of the same type. In the real world, however,
we often have to deal with heterogeneous social networks, where the nodes
are of different kinds, edges are of dissimilar types (e.g. relationships based
upon various communication methods[43]) or even both of them at the same
time[108]. Consider an IMDB network, where the entities may be of multiple
types such as movies, directors, actors and the relationships may also be of dif-
ferent types such as acted-in, directed-by, co-acted-in and so on. Such diversity
presents both an opportunity and challenge, since there may exist valuable in-
formation to be gained from recognizing the heterogeneity in the network and
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yet it is not obvious how to appropriately handle nodes and edges that belong
to different types.

Guy et al.[43] designed the SONAR API, aiming at aggregating social net-
work information from emails, instant messaging, organization charts, blogs
and so on. They experimented with different weighted combination of these
information sources and subsequently performed the task of user recommen-
dation based on the outcome network. It was reported that recommendation
based on aggregated network had a better performance than that based on any
of the input networks. However, they did not discuss how to nd the best
combination scheme.

Cai et al.[23] looked into the problem of nding the best linear combination
of different source networks. Their main idea is to rst build a target network,
with associated adjacency matrix M̃ , and regress it on the source networks Mi.

aopt = argmin
a
‖M̃ −

n∑
i=1

aiMi‖2 (4.6)

The ais are the coef cients for the corresponding source networks. However,
since we rarely know the full target network, the authors assume that the user
provides only a few example target relationships, and derive a linear program-
ming formulation that ef ciently solves the linear regression problem.

The NetClus algorithm introduced by Sun et al.[108] dealt with clustering
networks with star network schema. In the star network, each record is actually
a compound of a single target type and several attribute types. The decision
of cluster assignment is made by ranking the posterior probabilities resulting
from a generative model. This ranking-assignment process is then iterated un-
til convergence. By taking advantage of the ranking distribution for each type
of objects (e.g. conference, author and topic), importance/in uence ranking
in each type can be retrieved as well as communities themselves. Therefore
the results become more meaningful and interpretable. The usage of this al-
gorithm, however, is limited by its ability to process only networks with star
network schema. Similarly, the RankClus algorithm[107] is only designed to
deal with bi-type network, where the network’s vertex set have two types of
vertices.

Finally, we also mention that ensemble clustering [105, 8] - an approach
where the results of multiple clusterings are combined - is also a potential
solution for clustering heterogeneous networks.

4.3 Community Discovery in Directed Networks
Community discovery has generally concerned itself with undirected net-

works; however the networks from a number of important domains are essen-
tially directed, e.g. networks of web pages, research papers and Twitter users.
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Simply ignoring directionality when analyzing such networks, as has been im-
plicitly done in many studies, both ignores the additional information in the
directionality as well as can lead to false conclusions. For this reason, there
has recently been some work on community discovery for directed networks.

Many researchers have extended existing objective functions for community
discovery from undirected networks (see Section 3.1) to take into account di-
rectionality. Using the random-walks interpretation of Normalized Cuts [67],
multiple researchers have de ned a directed version of Normalized Cuts. Let
P be the transition matrix of a random walk on the directed graph, with π being
its associated stationary distribution vector (e.g. PageRank vector) satisfying
πP = π. The (directed) Normalized Cut for a group S ⊂ V is given as [127,
28, 45, 66]:

Ncutdir(S) =

∑
i∈S,j∈S̄ π(i)P (i, j)∑

i∈S π(i)
+

∑
j∈S̄,i∈S π(j)P (j, i)∑

j∈S̄ π(j)
(4.7)

The above objective function is often minimized using spectral clustering
- this time by post-processing the top eigenvectors of the directed Laplacian,
de ned as [127, 28, 45, 66] (P and Π are de ned as above):

L = I − Π1/2PΠ−1/2 +Π−1/2P ′Π1/2

2
(4.8)

Leicht and Newman[58] introduced the directed version of modularity[78]
as follows:

Q =
1

m

∑
ij

[Aij −
kini koutj

m
]δci,cj (4.9)

where kini is the in-degree of node i, and koutj the out-degree of j. To t the
new metric into spectral optimization method proposed in[77] where a large
community is bisected at each step, the de nition of modularity matrix B is
modi ed as Bij = Aij − kini koutj

m . Furthermore, the modularity function is
rewritten as

Q =
1

4m
sT (B+BT )s (4.10)

since B alone may not be symmetric. However, the algorithm may still suffer
from the resolution problem, as pointed out by Fortunato and Barthélemy[38].

Satuluri and Parthasarathy [94] argue that a clustering with low directed
normalized cut or high directed modularity is often not the most meaningful
way to cluster directed graphs. In particular, such objective functions still favor
clusters with high inter-connectivity, while inter-connectivity is not necessary
for a group of vertices to form a meaningful cluster in directed networks [94].
They argue instead for a more general framework where we rst convert the
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input directed graph into a weighted, undirected graph using a (symmetric)
similarity measure for the vertices of the directed graph. They nd that a sim-
ilarity measure that uses in-link and out-link similarity while also discounting
common links to highly connected nodes is more effective than existing ap-
proaches at discovering communities from directed networks.

4.4 Coupling Content and Relationship Information for
Community Discovery

Although relationship information of social networks has been extensively
investigated, the work of incorporating content and relationship information to
facilitate community discovery has not been thoroughly studied yet. In fact
this problem is at the heart of recent efforts to analyze social media. Relation-
ship information can be viewed as a plain graph with vertices and edges, while
content information are properties attached to these graph elements. Content
may exist in the form of text, images, or even geographical locations. With the
availability of content information, it is expected that the extracted communi-
ties are not only topologically well-connected, but also semantically coherent
and meaningful. Consider the email communication network where sender-
recipient communication can be modeled as user relationship. Then a spam-
mer account will have a large amount of connections with others and thus be
regarded as the center of a new community, which is useless in most cases.
The importance of utilizing content information can be clearly perceived from
this simple example. Although in previous studies many datasets also contain
rich contents, they are merely used to infer user relationships (e.g. establish a
link between two authors of a research paper), not to contribute to community
extraction.

Content information may be in the forms of user pro le or user-created ma-
terial, in which case they are associated with vertices. Content may also be
associated with edges in the network, as we will see in some literatures dis-
cusses below. In some cases, it’s more intuitive to use “attribute” instead of
“content”, thus they are used interchangeably in the following context. The
problem of interest is: how can communities be found, using both relationship
and content information?

First introduced are three approaches using Bayesian generative models,
aiming to incorporating textual contents. The Group-Topic model proposed
by Wang et al.[120] is an extension of the stochastic blockstructures model
[79], where both relations and their attributes are considered. Here, an entity is
related with another if they behave the same way on an event, and texts asso-
ciated with the event are this relationship’s attributes. Furthermore, each event
corresponds to one of the T latent topics. Therefore, the group membership of
an entity is no longer constant, but changes over different topics. This blueprint
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of directed probabilistic model guides the discovery of groups by topics, and
vice-versa.

Zhou et al.[128] introduce the notion of a semantic community and two cor-
responding Community-User-Topic (CUT) models. Their objective is to ex-
tract semantic communities from communication documents. In the CUT1

model, the distribution of topics is conditioned on users, who are, in turn, con-
ditioned on communities. This algorithm is similar to conventional community
discovery algorithms, in the sense that a community is still de ned as no more
than a group of users. On the contrary, the CUT2 model let communities decide
topics and topics decide users, assuming a tighter connection between commu-
nity and topic. As the experiments report, CUT2 model nds higher-quality
semantic communities, and is computationally more ef cient than CUT1.

Pathak et al.[84] presented the Community-Author-Recipient-Topic (CART)
model in a setting of email communication networks, assuming that the dis-
cussion among users within a community is relevant to these users as well as
the community. The model constrains all users involved and topics discussed
in the email conversation to belong to a single community, while same users
and topics in different conversations can be assigned to different communities.
Compared with previous models including CUT models, this model is argued
to emphasize more on how topics and relationships jointly affect community
structure. Yet, all these three methods suffer from a common disadvantage:
inference of the generative model using Gibbs sampling may converge slowly,
thus the running time may be a problem in practice, especially for large-scale
datasets.

The problem of Connected X Clusters (CXC) introduced by Moser et al.[70]
was inspired by traditional graph clustering. While the algorithm still assumes
that each cluster is compact and distinctive from neighboring ones (by using
content information), the idea of community is enforced by requiring each clus-
ter to be internally connected (by using relationship information). They also
formally derived the number of initial centroids such that each true cluster is
represented by at least one initial cluster atom (the smallest building compo-
nent in the algorithm), at certain pre-de ned con dence level. The proposed
algorithm (called JointClust) is essentially a agglomerative clustering method.
It rst determines cluster atoms based on the number of initial centroids. In
the second phase, it merges cluster atoms in a bottom-up fashion based on the
joint Silhouette coef cient, an extension of traditional Silhouette coef cient
[52]. This algorithm does not require pre-speci ed cluster number. It, how-
ever, still takes as a parameter the minimum size of each cluster.

Negoescu and Gatica-Perez[73] proposed an algorithm to identify commu-
nities of groups on Flickr, an image-sharing website. In the context of this algo-
rithm, groups refer to self-organized sets of Flickr users, and are the elements
of the nal communities that we are looking for. Therefore, a community is
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also referred to as a hypergroup. The procedure is to rst abstract each group
into a bag-of-tags model, where tags come from the group’s images and can be
regarded as contents generated by the group. Then latent Dirichlet allocation
LDA method is applied, giving distribution of latent topics over each group.
Several similarity measures can be exploited to build the similarity matrix for
groups, and the original problem is cast to a clustering problem on similarity
matrix. Although it’s not discussed in the paper, this algorithm is applicable
to nding communities of users. Again, ef ciency may be a potential concern,
which is intrinsic to all latent-topic-based approaches.

5. Crosscutting Issues and Concluding Remarks
In this article we surveyed the principal results on community discovery

within social networks. We rst examined the contexts and use-case scenarios
for community discovery within various social settings. We next took a look
at the core methods developed to extract community structure from large net-
works ranging from the traditional to the current state-of-the-art. Subsequently
we focused on recent and emerging strands of research that is gaining traction
within this community. Below we brie y highlight four cross-cutting research
themes that are likely to play a signi cant role as we move forward within this

eld. Note, that this is by no means a comprehensive list of cross-cutting issues
but highlight some of the key challenges and opportunities within the eld.

Scalable Algorithms: With the size and scale of networks and informa-
tion involved researchers are increasingly turning to scalable, parallel
and distributed algorithms for community discovery within social net-
works. At the algorithmic level multi-level algorithms relying on graph
coarsening and re nement offer potential [51, 31, 93]. Architecture con-
scious algorithms on the GPU and multi-cores offer another orthogonal
approach [22, 83] as do streaming algorithms[3]. Given the recent trend
towards cloud computing, researchers are beginning to investigate algo-
rithms for community discovery on platforms such as Hadoop [81, 48,
49].

Visualization of Communities and their Evolution: Visualizing large
complex networks and honing in on important topological character-
istics is a grand challenge since one often runs out of pixel space es-
pecially when attempting to characterize the behavior of billion node
networks. This area, particularly in the context of community discov-
ery within social networks has seen limited research thus far [119, 125,
21, 85]. Moving forward we envision multiple roles for visualization
in this context. First as a front end to display dynamic (sub-)networks
(details-on-demand) housed within the warehouse (e.g. visualizing a
trust network). Second, as a mechanism to help understand and drive
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the analysis process. Third, as a means to validate and lend transparency
to the discovery process. An important challenge here is to determine
how dynamic information is to be modeled and visualized effectively
and ef ciently.

Incorporating Domain Knowledge:It has been our observation that of-
ten we as data mining researchers tend to under-utilize available domain
information during the pattern discovery or model building process. In
fact data mining researchers often speci cally omit important domain
knowledge from the training phase as it then allows them a means to
independently con rm the utility of the proposed methods during vali-
dation and testing. While useful, such a methodology often limits scien-
ti c advances within the domain. We believe a fresh look at how domain
knowledge can be embedded in existing approaches and better testing
and validation methodologies in close conjunction with domain experts
must be designed (see for example work in the eld of Bioinformat-
ics). It is our hypothesis that domain knowledge is often too valuable
a resource to simply ignore during the discovery phase as it can be an
effective means to prune and guide the search for interesting patterns.

Ranking and Summarization: While ranking and summarizing patterns
has been the subject of much research in the data mining community the
role of such methods in this community has been much less researched.
As networks become larger and particularly with an increasing focus on
dynamic networks identifying a hierarchy of patterns from most impor-
tant to least important becomes crucial to help domain experts focus on
the key insights to be drawn from the analysis. Leveraging domain in-
formation (as noted above) will be crucial for this endeavor.

In conclusion we would like to add that the eld of community discovery
in networks (particularly social) is still fairly new with a number of open and
exciting problems ranging from the theoretical to the empirical and covering
a gamut of core research areas both within computer science and across dis-
ciplines. Given the dynamic nature of the eld and the broad interest across
multiple disciplines we expect to see many more exciting results on this topic
in the future.
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1. Introduction
The emergence of online social networks (OSNs) in the past decade has

led to a vast increase in the volume of information about individuals, their
activities, connections amongst individuals or groups, and their opinions and
thoughts. A large part of this data can be modeled as labels associated with in-
dividuals, which are in turn represented as nodes within a graph or graph-like
structure. These labels come in many forms: demographic labels, such as age,
gender and location; labels which represent political or religious beliefs; labels
that encode interests, hobbies, and af liations; and many other possible char-
acteristics capturing aspects of an individual’s preferences or behavior. The
labels typically appear on the user’s pro le within the network, or attached to
other objects in the network (photos, videos etc.).

There are many new applications that can make use of these kinds of labels:

Suggesting new connections or contacts to individuals, based on nding
others with similar interests, demographics, or experiences.

Recommendation systems to suggest objects (music, movies, activities)
based on the interests of other individuals with overlapping characteris-
tics.

Question answering systems which direct questions to those with most
relevant experience to a given question.

Advertising systems which show advertisements to those individuals
most likely to be interested and receptive to advertising on a particular
topic.

Sociological study of communities, such as the extent to which commu-
nities form around particular interests or af liations.

Epidemiological study of how ideas and “memes” spread through com-
munities over time.

Of course, these are just a few examples of the many different ways social
network data is of interest to businesses, researchers, and operators of social
networks. They have in common the aspect that knowing labels for individuals
is a key element of each application.

In an ideal world (as far as these applications are concerned), every user
within a social network is associated with all and only the labels that are rele-
vant to them. But in the real world, this is far from the case. While many users
choose labels to apply to themselves, these labels can be misleading, inappro-
priate, outdated, or partial. This is for a variety of reasons: users may fail to
update or add new labels as time progresses, letting their pro le information
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grow “stale”; out of concerns for privacy, users may omit or distort information
about themselves; users may simply forget or neglect to include information
about their most important activities and interests; and some users simply de-
light in listing wantonly misleading information to amuse themselves and those
who know them. Such distortions are prevalent, although not overwhelmingly
so [18]. The consequence of this noise is to reduce the effectiveness of meth-
ods for the applications listed above. In particular, the most pressing problem is
the absence of labels in certain categories (such as demographics or interests),
which can make it impossible to provide useful suggestions or recommenda-
tions to that user.

The Node Classi cation Problem. This leads to the central problem of
interest in this chapter: given a social network (or more generally, any network
structure) with labels on some nodes, how to provide a high quality labeling
for every node? We refer to this as the “node classi cation problem”, with
the understanding that the basic problem can be abstracted as providing a la-
beling for nodes in a graph structure. Variations on this problem might work
over generalized graph structures, such as hypergraphs, graphs with weighted,
labeled, or timestamped edges, multiple edges between nodes, and so on.

A rst approach to this problem is to engage experts to provide labels on
nodes, based on additional data about the corresponding individuals and their
connections. Or individuals can be incentivized to provide accurate labels, via

nancial or other inducements. Indeed, historically this is exactly what sociol-
ogists have done when studying social groups of the order of tens to a hundred
nodes, for example [35]. But this approach does not scale when confronted
with networks containing hundreds of thousands to millions of individuals.
While it may be feasible to rely on a moderate number of expert labeled nodes,
or even a large fraction of “noisy” self-labeled nodes, this is very far from the
goal of all nodes perfectly labeled.

Instead, we consider methods which use the information already encoded
in the partially labeled graph to help us predict labels. This is based on the
paradigm of machine learning and classi cation. In other words, we aim to
train a classi er based on the examples of nodes that are labeled so we can
apply it to the unlabeled nodes to predict labels for them (and also to nodes
that have some labels to augment or replace their current labels). However,
there are several aspects of this setting which make it somewhat different to
the traditional model of classi cation, as will become apparent.

As is usual in machine learning, we rst have to identify some “features”
of nodes that can be used to guide the classi cation. The obvious features
are properties of the node itself: information that may be known for all (or
most) nodes, such as age, location, and some other existing nodes. But the
presence of an explicit link structure makes the node classi cation problem
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different from traditional machine learning classi cation tasks, where objects
being classi ed are considered independent. In contrast to the traditional set-
ting, we can de ne additional features, based on adjacency or proximity in the
graph. A rst set of features are based on simple graph properties: the degree
(number of neighbors) of the node; the neighborhood size reachable within
two or three steps; the number of shortest paths that traverse through the node,
and so on. But perhaps more interesting are features derived from properties of
the nearby nodes: the labels of the neighbors form a canonical feature in this
setting.

One may ask why the labels of neighboring nodes should be useful in pre-
dicting the label of a node. Certainly, if the edges between nodes were com-
pletely arbitrarily generated, there would not be much information to glean.
But in social networks, links between nodes are far from arbitrary, and typ-
ically indicate some form of a relationship between the individuals that the
nodes represent. In particular, a link can indicate some degree of similarity
between the linked individuals: certainly not exact duplication, but suf cient
to be a useful input into a learning algorithm.

Formally, the social sciences identify two important phenomena that can
apply in online social networks:

homophily, also known informally as “birds of a feather”, is when a
link between individuals (such as friendship or other social connection)
is correlated with those individuals being similar in nature. For exam-
ple, friends often tend to be similar in characteristics like age, social
background, and education level.

co-citation regularity is a related concept, which holds when similar
individuals tend to refer or connect to the same things. For example,
when two individuals have similar tastes in music, literature or fashion,
co-citation regularity suggests that they may be similar in other ways or
have other common interests.

If one can argue that either of these phenomena apply in a network of inter-
est, then it suggests that information about nodes with short graph distance, or
with similar attributes, may be useful in helping to classify a node of interest.

A secondary aspect of the graph setting is that the classi cation process can
be iterative. That is, we may be faced with a node such that we initially have
very little information about the node or its neighborhood. However, after an
initial application of classi cation, we may know have a richer set of (putative)
information about the neighborhood, giving more of a basis to label the node in
question. In other words, the classi cation process can spread information to
new places in the graph, and feed into the features that we use for classi cation.
The classi cation continues to be iterated until it converges, or a xed number
of iterations have taken place. This iterative approach stands in contrast to the
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traditional model of classi cation, where the feature set is given at the start,
and does not alter. The use of the graph edges to spread the labeling can be
thought of as a special case of semi-supervised learning (where both labeled
and unlabeled examples are used to build the classi er).

Chapter Outline. In this chapter we survey techniques that have been
proposed to address the problem of node classi cation. We consider two broad
classes of approaches.

In the rst, we try to build on the vast knowledge of methods to solve the tra-
ditional classi cation problem. In other words, we de ne a method to generate
vectors of features for each node (such as labels from neighboring nodes), and
then apply a “local classi er” such as Naive Bayes, decision trees and so on
to to generate the labeling. As indicated above, this approach can be iterative:
after a rst round of classi cation, by training on the newly labeled examples.

Many other techniques have been suggested that more directly use the struc-
ture of the graph to aid in the labeling task. We take a unifying approach, and
observe that it is possible to view many of these methods as performing ran-
dom walks over the network to determine a labeling function. We thus refer to
these as random walk based methods, and compare them in a common frame-
work. This helps to identify similarities and highlight differences between
these techniques. In particular, we see that all methods can be described via
similar iterative matrix formulations, and that they are also closely related to
iterative approaches with simple classi ers.

Based on this taxonomy of methods, we proceed as follows: in Section 2
we formalize the notions of graphs and labelings, and more precisely de ne
the node classi cation problem over these structures. Given these de nitions,
we present methods for this problem in the graph domain. Then Section 3
describes the (iterative) local classi er method, while Section 4 explains how
many methods can be viewed as random walks. We present additional details
on applying the methods to large social networks in Section 5. Sections 6
and 7 discuss other approaches and related problems respectively, and we give
concluding remarks in Section 8.

2. Problem Formulation
In this section, we discuss how online social networks (or more generally

other networks) can be represented as (weighted) graphs. We then present the
formal de nition of the node classi cation problem.

2.1 Representing data as a graph
We consider data from social networks such as Facebook and LinkedIn, as

well as other online networks for content access and sharing, such as Net ix,
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YouTube and Flickr. As is standard in this area, we choose to represent these
networks as graphs of nodes connected by edges. In our setting, we consider
graphs of the form G(V,E,W ) from this data, where V is the set of n nodes,
E is the set of edges and W is the edge weight matrix. We also let Y be a set
of m labels that can be applied to nodes of the graph.

Given a network such as those above, there are typically many choices of
how to perform this modeling, depending on which features are captured by
the model and which are overlooked. The question of modeling network data
is a topic worthy of study on its own. Likewise, the question of how this data is
collected and prepared (via random sampling, crawling, or activity monitoring)
is beyond the scope of this survey; rather, for this presentation we assume that
the data is readily available in the desired graph model. For clarity, we provide
some illustrative examples of how (social) network data may be captured by a
variety of choices of graph models:

Example 5.1 Consider Facebook as an example of a modern, complex so-
cial network. Users of Facebook have the option of entering a variety of per-
sonal and demographic information into their Facebook pro le. In addition,
two Facebook users may interact by (mutually) listing each other as friends,
sending a message, posting on a wall, engaging in an IM chat, and so on. We
can create a graph representation of the Facebook social network in the form
G(V,E,W ), where

Nodes V : The set of nodes V represents users of Facebook.

Edges E: An edge (i, j) ∈ E between two nodes vi, vj could represent
a variety of possibilities: a relationship (friendship, sibling, partner), an
interaction (wall post, private message, group message), or an activity
(tagging in a photo, playing games). To make this example concrete,
consider only edges which represent declared “friendships”.

Node Labels Y: The set of labels at a node may include the user’s demo-
graphics (age, location, gender, occupation), interests (hobbies, movies,
books, music) etc. Various restrictions may apply to some labels: a user
is allowed to declare only one age and gender, whereas they can be a fan
of an almost unlimited number of bands.

Edge Weights W : The weight wij on an edge between nodes vi, vj can
be used to indicate the strength of the connection. In our example, it may
be a function of interactions among users, e.g., the number of messages
exchanged, number of common friends etc.; or it may simply be set to 1
throughout when the link is present.
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Example 5.2 As an example of a different kind of a network, consider the
video sharing website, YouTube. Let graph G(V,E,W ) represent the YouTube
user network, where

Nodes V : A node vi ∈ V represents a user.

Edges E: An edge (i, j) ∈ E between two nodes vi, vj could be an
explicit link denoting subscription or friend relation; alternately, it could
be a derived link where vi, vj are connected if the corresponding users
have co-viewed more than a certain number of videos.

Node Labels Y: The set of labels at a node may include the user’s demo-
graphics (age, location, gender, occupation), interests (hobbies, movies,
books, music), a list of recommended videos extracted from the site, and
so on.

Edge Weights W : The weight on an edge could indicate the strength of
the similarity by recording the number of co-viewed videos.

Example 5.3 Using the same YouTube data, one can derive a quite different
graph G(V,E,W ), where

Nodes V : A node v ∈ V represents a video.

Edges E: An edge (i, j) ∈ E between two nodes vi, vj may represent
that the corresponding videos are present in certain number of playlists
or have been co-viewed by a certain number of people.

Node Labels Y: The set of labels at a node may be the tags or categories
assigned to the video, the number of times viewed, time of upload, owner,
ratings etc.

Edge Weights W : The weight on an edge may denote the number of
users who co-viewed the videos.

The graphs abstracted in each example vary not only in the semantics of
nodes, edges and labels but also in graph properties such as directionality,
symmetry and weight. For instance, the friend interactions in Facebook and
YouTube are reciprocal, hence a graph G where edges represent friendship
relationship is undirected, i.e. it has a symmetric adjacency matrix. On the
other hand, a graph where an edge represents a subscription in YouTube or a
wall post in Facebook, is directed. Further, depending on the availability of
interaction information, the graph may be unweighted, and all edges treated
uniformly.
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Inducing a graph. In some applications, the input may be a set of objects
with no explicit link structure, for instance, a set of images from Flickr. We
may choose to induce a graph structure for the objects, based on the principles
of homophily or co-citation regularity: we should link entities which have sim-
ilar characteristics (homophily) or which refer to the same objects (co-citation
regularity).

Applying these principles, several choices of how to induce graphs have
been advocated in the literature, including:

Materializing the fully connected graph on V where each edge (i, j) is
weighted by a suitable distance metric based on the similarity between
vi and vj . A special case is the exp-weighted graph where the weight on
an edge (i, j) is given by:

wij = exp(−‖vi − vj‖2
2σ2

) (5.1)

Here, nodes in V are interpreted as points in a geometric space (such as
Euclidean space) and σ2 represents a normalizing constant, which is the
the variance of all points.

Given a node vi, let NN(vi) denote the set of k nearest neighbors, i.e.
the k other nodes which are closest based on some measure of distance:
this could be cosine or euclidean distance based on the features of the
nodes. The k Nearest Neighbor (kNN) graph then has an edge between
a pair of nodes vi, vj if vj ∈ NN(vi). A kNN graph is by de nition
a directed graph with each node having outdegree k. An undirected,
symmetric kNN graph can be de ned where nodes vi, vj are connected
if vi ∈ NN(vj) ∧ vj ∈ NN(vi), possibly resulting in nodes having
degree less than k.

The ε-weighted graph is where only the subset of edges with weight
greater than a threshold ε from the fully connected graph are included.

The methods we describe do not make many assumptions about the nature
of the graph or the edge weight distribution, beyond the fact that the weights
on edges are assumed to be non-negative and wij = 0 if (i, j) 	∈ E.

Types of Labels. Users of social networks often reveal only partial infor-
mation about themselves. For instance, only a subset of users reveal their age
or location on Facebook. Therefore, the graph abstracted from user-generated
data has labels on only a subset of nodes. The labels on nodes can be of differ-
ent types:

binary: only two possible values are allowed (gender is often restricted
to male or female); equivalently, a label may only appear in the positive
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form (“smoker”) and its absence is assumed to indicate the negative form
(“non-smoker”).

numeric: the label takes a numeric value (age, number of views), Only
values in some range may be allowed (age restricted to 0-120), or the
range may be “bucketized” (age is 0-17; 18-35; 36-50, 50+).

categorical: the label may be restricted to a set of speci ed categories
(such as for interests, occupation).

free-text: users may enter arbitrary text to identify the labels that apply to
the node (as in listing favorite bands, or tags that apply to a photograph).

Some datasets have many labels in many categories (such as age, gender,
location, and interests in a Facebook dataset), while in some cases there may
be only a single label recorded (e.g. the only pro le information available
about a user in Net ix is location). Some label types allow a single value
(users may declare only a single age), while others allow many values (users
may list many differing tags for a photograph). For node classi cation, our
goal is typically to provide values of a single label type, even though we may
have information about other label types to use as features: our goal may be
to predict age of Facebook users, given (partial) information about other users’
age, sex and location.

In some cases, there may be weights associated with labels. For instance, the
video sharing service Hulu displays the number of times each tag was assigned
to a video. When normalized, the label-weight vector at each node can be
thought of as providing con dence scores, or in some cases as probabilities for
different labels. This can arise even when the original data does not exhibit
weights: when labels are imputed, these may be given lower con dence scores
than labels that were present in the original data. Depending on the dataset,
some labels may be known for all nodes (e.g., the number of videos posted by
a user on YouTube), and can be used as additional features for inferring the
missing values of other labels.

2.2 The Node Classi cation Problem
We can now formally de ne the node classi cation problem.

Problem Statement. We are given a graph G(V,E,W ) with a subset of
nodes Vl ⊂ V labeled, where V is the set of n nodes in the graph (possibly
augmented with other features), and Vu = V \Vl is the set of unlabeled nodes.
Here W is the weight matrix, and E is the set of edges. Let Y be the set of m
possible labels, and Yl = {y1, y2, . . . , yl} be the initial labels on nodes in the
set Vl. The task is to infer labels Ỹ on all nodes V of the graph.
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Preliminaries and De nitions. Let Vl be the set of l initially labeled nodes
and Vu the set of n − l unlabeled nodes such that V = Vl ∪ Vu. We assume
the nodes are ordered such that the rst l nodes are initially labeled and the
remaining nodes are unlabeled so that V = {v1, . . . , vl, vl+1, . . . , vn}. An
edge (i, j) ∈ E between nodes vi and vj has weight wij . A transition matrix
T is computed by row normalizing the weight matrix W as:

T = D−1W

where D is a diagonal matrix D = diag(di) and di =
∑

j wij . The unnor-
malized graph Laplacian of the graph is de ned as: L = D − W , and the
normalized graph Laplacian as: L = D−1/2LD−1/2. If W is symmetric, then
both these Laplacians are positive semi-de nite matrices.

Let Yl = {y1, y2, . . . , yl} be the initial labels from the label set Y , on nodes
in the set Vl. The label yi on node vi may be a binary label, a single label or
a multi-label. For binary classi cation, we may distinguish the presence of a
label as yi ∈ {−1, 1} if vi ∈ Vl and 0 otherwise to indicate the absence of a
label. For a single label classi cation, yi can take values from Y , the range of
possible values of that label. Finally, for a multi-class classi cation, yi denotes
a probability distribution over Y , where Y is the set of possible labels. For any
label c ∈ Y , yi[c] is the probability of labeling node vi with label c. Here, Yl

is a matrix of size l ×m. We denote the initial label matrix of size n ×m as
Y , such that it has the rst l rows as Yl for labeled nodes and zeros in the next
n− l rows representing unlabeled nodes.

The output of the node classi cation problem is labels Ỹ on all nodes in V .
A slightly different problem is to determine the labels on only the unlabeled
nodes (i.e., Ỹu for nodes in Vu), and assume that the labels on the nodes in Vl

are xed. Another variant is to learn a labeling function f which is used to
determine the label on the nodes of the graph.

3. Methods using Local Classi ers
In the following sections we describe the different approaches to solve the

node classi cation problem and its variations. We start by describing a class of
iterative methods that use local neighborhood information to generate features
that are used to learn local classi ers.

These iterative methods are based on building feature vectors for nodes from
the information known about them and their neighborhood (immediately adja-
cent or nearby nodes). These feature vectors are then used along with the
known class values Yl, to build an instance of a local classi er such as Naive
Bayes, Decision Trees etc. for inferring the labels on nodes in Vu.
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Algorithm 1 ICA(V,E,W, Yl)
Compute Φ1 from V , E, W , Yl

Train classi er using Φl

for t← 1 to τ do
Apply classi er to Φt

u to compute Y t
u

Update Φt
u

Ỹ ← Y τ

return Ỹ

3.1 Iterative Classi cation Method
This notion of iteratively building a classi er is quite natural and has ap-

peared several times in the literature. Here, we follow the outline of Neville
and Jensen [26].

Input. As with traditional classi cation problems, a set of attributes may be
known for each node vi ∈ V . These attributes form a part of the feature vector
for that node and are known as node features. Consider the YouTube graph
from Example 5.3: attributes such as the number of times a video is viewed,
the time of upload, rating etc. are node features that are known for each video.

What makes classi cation of graph data different is the presence of links
between objects (nodes) being classi ed. The information about the neighbor-
hood of each object is captured by link features, such as the (multi)set of tags
on videos. Typically, link features are presented to the classi er as aggregate
statistics derived from the labels on nodes in the neighborhood. A popular
choice for computing a link feature is the frequency with which a particular la-
bel is present in the neighborhood. For instance, for a video vi in the YouTube
graph, the number of times the label music appears in the nodes adjacent to vi
is a link feature. If the graph is directed, the link features may be computed
separately for incoming and outgoing links. The features may also include
graph properties, such as node degrees and connectivity information.

Iterative Framework. Let Φ denote the matrix of feature vectors for all
nodes in V , where the i-th row of Φ represents the feature vector φi for node
vi. The feature vector φi may be composed of both the node and link fea-
tures; these are not treated differently within the vector. Let Φl and Φu denote
the feature vectors for labeled and unlabeled nodes respectively. Algorithm 1
presents the Iterative Classi cation Algorithm (ICA) framework for classify-
ing nodes in a graph. An initial classi er is trained using Φl and the given node
labels Yl. In the rst iteration, the trained classi er is applied to Φu to compute
the new labeling Y 1

u . For any node vi, some previously unlabeled nodes in the
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(a) Step 1 (b) Step 2

Figure 5.1. Two steps of a local iterative approach to node classi cation

neighborhood of vi now have labels from Y 1
u . Since link features are com-

puted using the labels in the neighborhood, after applying the classi er once,
the values of these features can change. It therefore makes sense to iterate the
ICA process. In the tth iteration, the procedure builds a new feature vector Φt

based on Φl and Y t−1
u , and then applies the classi er to produce new labels

Y t
u . Optionally, we may choose to retrain the classi er at each step, over the

current set of labels and features.
If node features are not known, the inference is based only on link features.

In such a case, if a node has no labeled node in its neighborhood, it is remains
unlabeled in the rst iteration. As the algorithm proceeds, more nodes are
labeled. Thus, the total number of iterations τ should be suf ciently large to
at least allow all nodes to receive labels. One possibility is to run the iteration
until “stability” is achieved, that is, until no label changes in an iteration—
but for arbitrary local classi ers there is no guarantee that stability will be
reached. Instead, we may choose to iterate for xed number of iterations that
is considered large enough, or until some large fraction of node labels do not
change in an iteration.

Figure 5.1 shows two steps of local iteration on a simple graph. Here, shaded
nodes are initially labeled. In this example, the rst stage labels node X with
the label ‘18’. Based on this new link feature, in the second iteration this
label is propagated to node Y. Additional iterations will propagate the labeling
further.

A consequence of basing the labeling solely on the labels of other nodes (a
common characteristic of many of the methods we describe in this chapter) is
that if the graph contains isolated components that do not have a single labeled
node, then all nodes in that component will remain unlabeled, no matter how
many iterations are applied.
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Instances of the Iterative Framework. Neville et al. originally used a
Naive Bayes classi er to infer labels in their instantiation of the ICA frame-
work [26]. A strategy they found useful was to sort the predicted class labels
in descending order of their associated probability and retain only the top-k
labels, thus removing the less con dent possibilities. Since then, ICA has been
applied to graph data from different domains, with a variety of classi ers. For
example, Lu and Getoor [20] applied logistic regression to classify linked doc-
uments.

An important special case is the method of Macskassy and Provost [21],
who used a simpler classi cation method based on taking a weighted average
of the class probabilities in the neighborhood (effectively “voting” on the label
to assign). This classi er is based on a direct application of homophily (the
premise that nodes link to other nodes with similar labels), and uses the imme-
diate neighborhood of a node for classi cation. Bhagat et al. [5] proposed a
method that considers the labeled nodes in the entire graph. This can be viewed
as an instance of ICA using a nearest neighbor classi er to nd a labeled node
that is most similar to an unlabeled node being classi ed. It is based on co-
citation regularity, the premise that nodes with similar neighborhoods have
similar labels. These two simple methods (voting and nearest neighbor) are
shown to be surprisingly effective on social network data, achieving quite high
accuracy (70-90% on certain demographic labels) from relatively little local
information [5].

One of the seminal works on classi cation of linked documents was by
Chakrabarti et al. [8]. Their method used features from neighboring docu-
ments to aid the classi cation, which can be viewed as an instance of ICA on a
graph formed by documents. Their experiments showed a signi cant improve-
ment when using link features over just using the text at each node.

4. Random Walk based Methods
The next set of methods we discuss are based on propagating the labels by

performing random walks on the graph. These are often thought of as semi-
supervised learning or transductive learning methods and can be shown to be
equivalent to learning a global labeling function over the graph with provable
convergence guarantees. Unlike the iterative methods described so far that rely
on computing link features to encode the information in the neighborhood,
these methods more explicitly use the link structure for labeling nodes. How-
ever, we will see that there are strong connections between random walk and
iterative methods.

The idea underlying the random walk methods is as follows: the probability
of labeling a node vi ∈ V with label c ∈ Y is the total probability that a
random walk starting at vi will end at a node labeled c. The various methods
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proposed in the literature differ in their de nition of the random walk used for
labeling. For this to provide a complete labeling, the graph G is often assumed
to be label connected [2]. That is, it is possible to reach a labeled node from
any unlabeled node in nite number of steps.

The random walk is de ned by a transition matrix P , so that the walk pro-
ceeds from node vi to node vj with probability pij , the (i, j)-th entry of P . For
this to be well de ned, we require 0 ≤ pij ≤ 1 and

∑
j pij = 1. The matrix P

also encodes the absorbing states of the random walk. These are nodes where
the state remains the same with probability 1, so there is zero probability of
leaving the node, i.e., if a random walk reaches such a node, it ends there. Let
p
(t)
ij be the probability of reaching node vj after t steps of a random walk that

started at node vi, and let P t denote the corresponding matrix at time t. For
t→∞, the entry pij of matrix P∞ represents the probability of the walk that
starts at node vi is at node vj as the length of the walk tends to in nity. That
is, if the start distribution is ei, the vector with 1 at the i-th position and zeros
elsewhere, a random walk on G with transition matrix P will converge to a
stationary distribution which is the i-th row of the matrix P∞. We will often
be able to show a closed-form expression for P∞ as a function of P .

Labeling. The walk is typically de ned over nodes of the graph, and this
is used to de ne a labeling. The probability of label c ∈ Y being assigned
to node vi is computed as the total probability of reaching nodes labeled c on
convergence, starting at vi. More precisely,

ỹi[c] =
∑

j|vj∈Vl

p∞ij yj [c] (5.2)

where the input label yj at vj ∈ Vl is assumed to be a probability distribution
over labels. If the graph is label connected, as t → ∞ the probability of
reaching a labeled node is 1, so it follows that the output labeling ỹi at node
vi ∈ V is also a probability distribution with

∑
c∈Y

∑
j|vj∈Vl

p∞ij yj[c] = 1.

If the output is required to be a single label on each node, then the most
probable label can be assigned to each node, i.e.

ỹi = argmax
c∈Y

∑
j;yj=c

p∞ij .

Recall that Y is the matrix that records the label distribution for each labeled
node, and 0 for unlabeled nodes. Consequently, the matrix equation for node
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classi cation using random walks can be written as:

Ỹ = P∞Y (5.3)

When Y represents a matrix of probability distributions over the label set, then
the result can be scaled to ensure that the output is a probability distribution
as: Ỹ = N−1P∞Y , where N−1 is a diagonal normalization matrix, de ned
as Nii =

∑m
j=1(P

∞Y )ij . We next consider various methods based on ran-
dom walks in detail. Given a description of a random walk, we aim to nd a
description of the stationary distribution P∞, from which the labeling follows
using the above equations.

4.1 Label Propagation
The node classi cation method of Zhu et al. [38] was proposed in the con-

text of semi-supervised learning, where a symmetric weight matrix W is con-
structed using Equation (5.1). More generally, we consider it to take as input
a graph G(V,E,W ), from which we derive the matrix T = D−1W . Nodes Vl

have initial labels Yl from the label set Y .

Random Walk Formulation. The random walk at node vi picks an (out-
going) edge with probability proportional to the edge weight, if vi is unlabeled;
however, if vi is labeled, the walk always loops to vi. Therefore the nodes in
Vl are absorbing states, i.e. they are treated as if they have no outgoing edges,
and thus their labels do not change. Since we have ordered the nodes so that
the labeled nodes are indexed before the unlabeled nodes, we can write the
transition matrix P as a block matrix,

P =

(
Pll Plu

Pul Puu

)
=

(
I 0
Pul Puu

)
(5.4)

where the matrix Pll corresponds to the block of probabilities corresponding
to transitions from a labeled node to another labeled node, and so on. Recall
that a random walk that reaches a labeled node ends there, thus Pll reduces to
I and Plu is a matrix of all zeros. In other words, the transition matrix P can
be de ned as Pi = (D−1W )i if i ∈ Vu, else Pi = ei if i ∈ Vl.

Now, computing the matrix limt→∞ P t, we obtain

P∞ =

(
I 0

(I − Puu)
−1Pul P∞uu

)
. (5.5)

For a graph in which every connected component has a labeled node, each
entry of matrix Puu is less than 1. So P∞uu = 0, and P∞ul is a distribution over
labeled nodes. By combining Equations (5.3) and (5.5), the labels on unlabeled
nodes can be computed as
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Algorithm 2 LP-Zhu(Y, P )
Y 0 ← Y
t← 1
repeat

Y t ← PY t−1
Y t
l ← Yl

until convergence to Y∞
Ỹ ← Y∞ return Ỹ

Ỹu = (I − Puu)
−1PulYl (5.6)

This provides a precise characterization of how the labels on nodes are com-
puted, and can be applied directly when Puu is small enough to invert directly.
The solution is valid only when (I − Puu)

−1 is non-singular, which is true for
all label connected graphs.

Observe that if the labeled nodes were not de ned to be absorbing states,
a random walk over G would converge to a stationary distribution that is in-
dependent of the starting point (and hence would not be meaningful for the
purpose of labeling). Szummer and Jaakkola [31] considered the variation
where the labeled nodes are not forced to be absorbing states. In their de ni-
tion, they perform random walks for t steps. Such methods depend critically
on the parameter t: it is easy to see that the extreme case t = 1 gives exactly
the local voting scheme of Macskassy and Provost executed for a single itera-
tion, while we argued that allowing t to grow too large, the process mixes, and
is independent of the starting location. In experiments, Szummer and Jaakola
found small constant values of t to be effective, around t = 8 on a dataset with
a few thousand examples.

Iterative Formulation. We now show that this random walk is equiva-
lent to a simple iterative algorithm in the limit. Consider an iterative algorithm
where each node is assigned a label distribution (or a null distribution) in each
step. In step t, each unlabeled node takes the set of distributions of its neigh-
bors from step t−1, and takes their mean as its label distribution for step t. The
labels of the labeled nodes Vl are not changed. This is essentially the iterative
algorithm of Macskassy and Provost [21] described above. The initial label
distributions are given by Y . We can observe that each iterative step has the
effect of multiplying the previous distribution by P , the block matrix de ned
above. This is illustrated in Algorithm 2.

The tth iteration of the algorithm sets

Y t
u = PulYl + PuuY

t−1
u ,
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which can be rewritten as

Y t
u =

t∑
i=1

P i−1
uu PulYl + P t

uuYu.

On convergence, we get

Ỹu = lim
t→∞Y t = (I − Puu)

−1PulYl.

In other words, this iterative algorithm converges to the same labeling as the
random walk just described.

Thus, node classi cation performed by the iterative Algorithm 2 is the same
as solving the matrix equation (5.6). Other equivalences can be shown: for
an input graph G which has a symmetric weight matrix W and binary labels
Y = {0, 1} on nodes, Zhu et al. show that labeling using equation (5.6) is
equivalent to computing Ỹ using the value of a minimum energy harmonic
function f : V → R [38].

Rendezvous approach to Label Propagation. Azran [2] showed a dif-
ferent analysis of the label propagation random walk that more strongly uses
the assumption that the graph is label connected. Since G is label connected,
the probability of moving from one unlabeled node to another after an in nite
number of steps is 0, i.e., P∞uu is a zero matrix. Therefore, the limiting matrix
P∞ has the form:

P∞ =

(
I 0

(P∞)ul 0

)
(5.7)

Let P = SΛS−1 and P∞ = SΛ∞S−1, where S is the matrix of left eigen-
vectors of P and Λ is the diagonal matrix of eigenvalues. Azran showed that
the structure of P and P∞ is such that the l leading eigenvalues of both are 1.
All other eigenvalues of P have magnitude less than 1, and so are negligible
for P∞. Thus, to compute P∞, it is suf cient to compute the l leading eigen-
vectors of P . Further, the transition matrix de ned in Equation (5.7) can be
computed as:

(P∞)ij =
sij
sjj

(5.8)

where i, j are indices for unlabeled and labeled nodes respectively. That is, the
equation holds for l + 1 ≤ i ≤ n and 1 ≤ j ≤ l. As before, the labels on
unlabeled nodes can then be computed using Equation (5.2).

In many applications, the number of unlabeled nodes is typically much
larger than the number of labeled nodes. Thus, while inverting the matrix
(I − Puu) from the label propagation method would be too expensive, com-
puting the l principal eigenvectors of P may be cheaper.
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Algorithm 3 LP-Zhou(Y, α, T )
t← 1
Y 0 ← Y
repeat

Y t ← αTY t−1 + (1− α)Y 0

until convergence to Y∞
for each i ∈ V do

c = argmaxj∈Y y∞i [j]
ỹi[c] = 1

return Ỹ

4.2 Graph Regularization
The graph regularization method introduced by Zhou et al. [36] differs from

label propagation in a key way: the labels on nodes in Vl are allowed to change
during label propagation. The initial labels are represented by a binary n×m
matrix Y such that yi[c] = 1 if node vi has label c ∈ Y , and each node has at
most one label.

We rst describe the method in terms of a random walk starting from a node
vi. Now the random walk at every node proceeds to a neighbor with probability
α (whether or not the node is unlabeled) but, with probability 1 − α the walk
jumps back to vi, the starting node. Here, 1 − α can be thought of a “reset
probability”. In matrix form, the t-step transition probability Qt can be written
as

Qt = αTQt−1 + (1− α)I.

This random walk has been well studied in other contexts—in particular, it cor-
responds to the “personalized page rank”, introduced by Jeh and Widom [14]
It can be shown to converge, to the stationary distribution

Q∞ = (1− α)(I − αT )−1.

Further, the corresponding label distribution can be computed as

Ỹ = Q∞Y = (1− α)(I − αT )−1Y.

Iterative Formulation. As in the previous case, this can also be seen as
implementing a simple iterative method: at each step, the label distribution
of node i is computed as an α fraction of the sum of label distributions of its
neighbors from the previous step, plus a 1−α fraction of its initial label distri-
bution. This is illustrated in Algorithm 3. One can verify that this formulation
leads to the same solution, i.e. the nal label distribution is given by



Node Classi cation in Social Networks 133

Ỹ = Y∞ = (1− α)(I − αT )−1Y (5.9)

which can be scaled up appropriately (via a diagonal normalization matrix) so
there is a probability distribution over labels.

Regularization Framework. Zhou et al. considered several variations of
this method, based on replacing P with related matrices. In particular, they
suggest the symmetrically normalizing W via the diagonal matrix of row sums
D as, P = D−1/2WD−1/2. P can also be written in terms of the normalized
Laplacian as P = I − L. This is no longer a stochastic matrix, since the rows
do not yield probability distributions. Nevertheless, we can still apply this as
a generalized random walk/iterative method by computing Y t = αPQt−1Y +
(1− α)Y , which converges to Q∞ = (1− α)(I − αP)−1Y .

The choice of P can be seen as arising naturally from some requirements on
the labeling. Two such requirements are: (1) the difference between initial and
output labels on labeled nodes should be small; and (2) the difference in the
labels of neighbors (especially those with large edge weight) should be small,
i.e., neighbors should have similar labels.

The task of nding a labeling which satis es these two conditions can be
formulated as an optimization problem to nd a function f̃ that minimizes the
above two conditions. This process is known as “regularization”. Formally,
de ne

f̃ = argmin
f

μ

2
‖f − Y ‖2 + fTLf,

for a parameter μ > 0. The rst term measures the difference between the
labeling given by the labeling function and the original labeling Y , to capture
(1). The second term uses the Laplacian L (which is related to the gradient
of the function) to measure the smoothness of the labeling function, to cap-
ture (2). The parameter μ then controls the tradeoff between these two terms.
Thus, solving for f̃ is intended to satisfy both the requirements. Rewriting this
minimization in terms of the Euclidean norm results in

min
f

1

2

n∑
i,j=1

wij

∥∥∥ fi√
di
− fj√

dj

∥∥∥2 + μ

2
‖f − Y ‖2 (5.10)

Differentiating and equating to zero, we get

f̃ −D−1/2WD−1/2f̃ + μ(f̃ − Y ) = 0

(1 + μ)f̃ − P f̃ = μY

Solving for f̃ and setting α = 1
1+μ , we have
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f̃ = (1− α)(I − αP)−1Y (5.11)

Notice that if we de ned the transition matrix Q in terms P instead of T , or
iterated over P instead of T , the solution on convergence would match Equa-
tion (5.9). In other words, we can argue that this solution is a natural conse-
quence of the formalization of the two requirements (1) and (2). It is possible
to motivate other node classi cation algorithms based on similar optimization
criteria. The survey of Bengio et al. [4] has more details on this perspective.

4.3 Adsorption
The “adsorption” method, proposed by Baluja et al. [3] is also based on it-

eratively averaging the labels from neighbors, in common with the previous
algorithms studied. However, this method incorporates some additional fea-
tures and parameters, so it can be seen as a generalization of other methods.

Adsorption takes as input a directed graph G with weight matrix W . The
initial labels are represented as Y = {y1, y2, . . . , yn} such that yi is the prob-
ability distribution over labels Y if node vi ∈ Vl, and is zero if node vi ∈ Vu.
As with graph regularization, adsorption does not keep the labels on nodes in
Vl xed, but instead lets them be set by the labeling process. In order to main-
tain and propagate the initial labeling, adsorption creates a shadow vertex ṽi
for each labeled node vi ∈ Vl such that ṽi has a single incoming edge to vi,
and no outgoing edges. In other words, the shadow vertex is an absorbing state
when we view the algorithm as a random walk. Then, the label distribution
yi is moved from vi to the corresponding shadow vertex ṽi, so initially vi is
treated as unlabeled. The set of shadow vertices is Ṽ = {ṽi|vi ∈ Vl}.

The weight on the edge from a vertex to its shadow is a parameter that can
be adjusted. That is, it can be set so that the random walk has a probability
1 − αi of transitioning from vertex vi to its shadow ṽi and terminating. This
injection probability was set to be a constant such as 1

4 for all labeled nodes
(and 1 for all unlabeled nodes) in the initial experimental study [3].

Random Walk Formulation. Based on this augmented set of nodes and
labels, the Adsorption method de nes additional matrices. First, A captures the
injection probabilities from each node vi: A is the n× n diagonal matrix A =
diag(α1, α2, . . . , αl, 1, . . . , 1) where 1−αi is the (injection) probability that a
random walk currently at vi transitions to the shadow vertex ṽi and terminates.
Hence αi is the probability that the walk continues to a different neighbor
vertex.

A transition matrix T encodes the probability that the walk transitions from
vi to each of its non-shadow neighbors, so T = D−1W as before. Conse-
quently the transitions among the non-shadow vertices are given by (AT ),
while the transitions to shadow vertices are given by the rst l columns of
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(I − A), which we denote as (I − A)(l). Putting these pieces together, we
obtain an overall transition matrix R over the set of l + n nodes Ṽ ∪ V as:

R =

(
I 0

(I −A)(l) AT

)
(5.12)

The rst l columns of R represent the transition probabilities to Ṽ , and the
next n columns give the transition probabilities to (within) V . The (l + i)-th
row of R gives the probability of starting at node vi for 1 ≤ i ≤ n, and moving
to the other nodes of the graph in one step. We can compute Rt to give the
t-step transition probabilities. Assuming that the graph is label connected, and
since 0 ≤ αi ≤ 1 and T is a row stochastic matrix, as t→∞ we get

R∞ =

(
I 0

(I −AT )−1(I −A)(l) 0

)
(5.13)

Let Ys be the matrix of labels on shadow vertices, i.e, the labels that were
originally associated with nodes in Vl, then the matrix of initial labels is de ned

as: Ȳ 0 =

(
Ys

0

)
. Then the labeling at step t is Ȳ t = Rt−1Ȳ 0, and as t→∞,

Ȳ∞ = R∞Ȳ 0 =

(
Ys

(I −AT )−1(I −A)(l)Ys

)
(5.14)

It can be veri ed that Ȳ∞ from Equation (5.14) is an eigenvector of R with
eigenvalue 1. The output as de ned by Equation (5.14) is also a linear combi-
nation of the initial labels. Since R and its powers are row stochastic matrices,
and the initial labels are probability distributions, the output at each node is
guaranteed to be probability distribution over labels. The resulting labeling
can be rewritten in terms of the original graph (without shadow vertices) as:

Ỹ = (I −AT )−1(I −A)(l)Yl (5.15)

Iterative Formulation. We now describe a local averaging method that is
equivalent to the random walk method described above. Consider the graph G
and weight matrix W as above, but with the directionality of all edges reversed.
At each iteration, the algorithm computes the label distribution at node vi as a
weighted sum of the labels in the neighborhood, and the node’s initial labeling,
the weight being given by αi. Formally, at the t-th iteration, for a node vi ∈ V ,
the label distribution is computed as

yti = αi

∑
j

pjiy
t−1
j + (1− αi)y

0
i (5.16)
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Rewriting Equation (5.16) as a matrix equation, with Y 0 =

(
Yl

0

)
, and

A = diag(α1, α2, . . . , αl, 1, . . . , 1) as before,

Y t = ATY t−1 + (I −A)Y 0

= (AT )t−1Y 0 +
t−1∑
i=0

(AT )i(I −A)Y 0

We know that 0 ≤ αi ≤ 1, and T is a stochastic matrix, thus as t→∞, we
reach

Ỹ = Y∞ = (I −AT )−1(I −A)Y 0 (5.17)

Connection to other methods. Observe that Equations (5.17) and (5.15)
can be made to agree, since Y 0 has rst l rows non-zero and remaining u rows
as zeros. In particular, (5.9) can be obtained from (5.17) by setting Aii = α
for all i. In other words, the graph regularization method can be viewed as a
special case of adsorption. This can be seen by comparing the description of
the iterative formulations of both, and observing that both rely on averaging
neighborhoods with the original label of a node. However, the de nition of
adsorption prefers to set αi to be 1 for unlabeled nodes, to ensure that the nal
labeling is directly a probability distribution over labels without rescaling.

A second equivalence is achieved by setting αi = 0 for all (initially) labeled
nodes. This has the effect of making them absorbing (any random walk which
reaches them halts there with probability 1) and so we obtain the original label
propagation algorithm again. This analysis shows that the adsorption method
uni es the previous random walk methods.

5. Applying Node Classi cation to Large Social Networks
Our motivation for node classi cation comes from social networks. These

networks can have millions of nodes and billions of edges, and the label set
may consist of thousands of labels, e.g., the set of all tags on videos in YouTube.
As we have indicated in our discussion, it be very computationally expensive
to directly apply some of the methods described to datasets of this size. In par-
ticular, several methods are described in terms of nding the solution to a set
of matrix equations. For example, in the random walk based method by Zhou
et al., using Equation (5.9) requires inverting a matrix of size n×n, where n is
the number of nodes in the graph. In general, inverting this matrix takes time
O(n3), although for sparse matrices methods from numerical analysis aim to
compute the inverse (approximately) more quickly [12]. Similarly, the method
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by Azran et al. requires computing the l leading eigenvectors of an n× n ma-
trix, which can be done in time O(n2) for a sparse matrix. When n is large,
costs that are signi cantly superlinear in n are not feasible, and we look for
more scalable solutions.

5.1 Basic Approaches
When matrix inversion is not practical, there are several alternate approaches

to nding the stationary distribution of the random walks we consider:

Iteration. When the number of labels m � n, it can be more ef cient
to work with the iterative form of the random walk, applied to Y . That is,
rather than compute the (n×n) stationary distribution via P∞, instead compute
the (n ×m) stationary distribution of label probabilities Y∞. This in turn is
computed by iterating to compute Y 1, Y 2, . . .. In the limit, this converges to
Y∞.

In practice, we may not run this procedure to convergence, but rather for a
suf ciently large xed number of iterations, or until the difference ‖Y t

u−Y t−1
u ‖

is suf ciently small. Such power iteration methods are known to converge ex-
ponentially quickly (i.e. the difference ‖Y t

u − Y∞u ‖ decreases by a constant
factor each iteration) [17]. Hence only a constant number of steps is needed to
reach a close enough approximation—of the order of tens to a hundred itera-
tions.

Random Walk Simulation. An alternative approach is to directly sim-
ulate r random walks that begin at vi for some number of steps, and use the
distribution of the end point of these random walks as a surrogate for the sta-
tionary distribution. In some situations, such as where the graph is too large to
represent as a matrix and compute matrix multiplications with, it may be more
ef cient to instead simulate random walks, which just require to access the
adjacency lists of visited nodes, to pick the next node. This has been applied
when the data is too large to store in memory [28].

5.2 Second-order Methods
When the classi cation method can be formalized as a matrix iteration, as

in the random walk methods, then there have been many approaches sug-
gested to reducing the number of iterations needed before the process con-
verges. The main idea behind these second-order methods is that the update
performed at each iteration is adjusted by the update performed at the pre-
vious iteration. These methods have been shown to converge more rapidly
than simple iterations (referred to as rst-order methods) for applications such
as load balancing [24] and multi-commodity ow [25]. For node classi ca-
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Algorithm 4 Map(Key vi, Value yt−1i )
Data: P
for each vj ∈ V |(i, j) ∈ E do

emit (vj , (yt−1i , pij))

Algorithm 5 Reduce(Key vj , ValueIterator labelWt )
vec1×m ← 0
for each (label, wt) ∈ labelWt do

vec[label] += wt

ytj ← argmax(vec)

emit (vj , ytj)

tion, a rst order iteration of the form Y t+1 = PY t can be reformulated as
Y t+1 = βPY t + (1 − β)Y t−1 to yield a second-order method. Here, β is
a parameter weighting the current update. Second order methods have been
shown to converge faster for 1 ≤ β ≤ 2.

5.3 Implementation within Map-Reduce
The Map-Reduce framework [9] is a popular programming model that fa-

cilitates distributing computation over a cluster of machines for data-intensive
tasks. Applications in this framework are implemented via two operations (1)
Map: input represented as key/value pairs is processed to generate intermedi-
ate key/value pairs, and (2) Reduce: all intermediate pairs associated with the
same key are collected and aggregated. The system takes care of allocating
map and reduce tasks to different machines, which can operate in parallel.

This framework is particularly powerful for cases when the data being pro-
cessed is so large that it does not t on one machine, but must be stored in a
distributed le system, as may be the case for social network data. We observe
that all of the methods discussed so far t well into the map-reduce model:
both local iterative methods and random walk methods can be implemented
so that each node collects information about its neighbors (map), and applies
some process to compute its new label distribution (reduce).

We illustrate the power of Map-Reduce to distribute computations over large
social networks with an example implementation of iterative graph labeling
methods. Consider a simple instance of the ICA method, where the classi er
is based on weighted voting on labels in the neighborhood, as described in [5].
More speci cally, at each iteration of the method, the label assigned to a node
is the weighted vote of labels on its neighbors. This can be thought of as an
iterative message passing scheme, where each node passes its current label
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(weighted by the edge weight) as a message to each neighbor. Then, each
node collects the messages received from its neighbors and combines then to
compute its label, in this case using a voting function.

This process ts neatly into the Map-Reduce setting. Algorithms 4 and 5
describe the Map and Reduce operations performed at each iteration of node
classi cation. As described in Section 2, P is the normalized weight matrix
and Y is a vector of initial labels, so that yi is a single label initially assigned
to node vi, and yti is the label at the t-th iteration. vec is a temporary vector to
aggregate the weight received for each label. The Map function implements the
message passing, where each node vi sends a message (yt−1i , pij) at iteration t.
The Reduce function receives the messages as labelWt and aggregates them
to infer the label ytj at a node vj at iteration t.

Likewise, many other iterative algorithms for node classi cation can be im-
plemented in Map-Reduce. One round of Map-Reduce computes each itera-
tion (equivalently, computes the product of a matrix and a vector). Thus only
a moderate number of rounds are required to converge on the solution.

6. Related approaches
In this section, we survey some of the other approaches to the node classi -

cation problem.

6.1 Inference using Graphical Models
The area of Statistical Relational Learning (SRL) has emerged over the last

decade. SRL is generally concerned with creating models of data which fully
describes the correlations between the different objects that are described by
the data. It therefore encompasses node classi cation as a central problem.
Another example of a problem in SRL is edge prediction: creating a model
which can be used to predict which new edges are likely to be formed in a
graph.

Among many approaches proposed within the SRL framework, two that
have been directly applied to the node classi cation problem are Probabilis-
tic Relational Models (PRMs) [10, 33] and Relational Markov Network Mod-
els (RMNs) [32]. Essentially, the two approaches learn a probabilistic graph
model to represent the relational (graph) data. The model used is a Bayesian
network (directed) for PRMs and a Markov network (undirected) for RMNs.
The learnt models are then used to perform inference or labeling over the
graphs.

Formally, the nodes V in the given graph G are represented by random
variables X which can take values from the set Y . Let Xl denote the observed
random variables associated with labeled nodes and Xu be the unobserved
variables for the unlabeled nodes. The task is to determine the joint probability
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distribution P (Xu|Xl), i.e., the probability distribution over the labels for each
unobserved variable (unlabeled node), given the observed variables (labeled
nodes), and use it for inference.

In PRMs, each random variable xi representing node vi is associated with a
conditional probability distribution P(xi|parents(xi)), where parents(xi) is the
set of label assignments on nodes that have an outgoing edge to node vi. In the
case of RMNs, a pairwise Markov Random Field (MRF) is de ned over the
graph that is parametrized by a set of arbitrary non-negative functions known
as clique potentials.

These relational models are represented by a joint probability distribution of
label assignments over nodes of the graph. This stands in contrast to methods
such as random walks for graph labeling, which do not make these models for
the label of a node explicit, but rather which use an implicit model to compute
the labeling. To use a relational model for node classi cation, we must com-
pute the marginal probability distribution for each node. However, this is not
a simple task, since there are correlations (mutual dependencies) between the
distributions on the nodes, and so there is no compact closed form for these
marginals.

A popular choice for approximate inference in relational models is loopy be-
lief propagation (LBP). LBP is an iterative message passing algorithm, where
a message sent from node vi to vj is the belief of vi on what the value of vj
should be. Pragmatically, this seems similar in spirit to the iterative methods
which pass messages in the form of distributions of label values. LBP does
not guarantee convergence except for special cases such as when the graphical
model is a tree. Nevertheless, it has been found to work well in practice [34].

6.2 Metric labeling
There has been much other work on the problem of labeling objects when

there are some relationships known between them. A central example is the
work by Kleinberg and Tardos [15] that describes the problem of Metric La-
beling. Here, there is a collection of objects with pairwise relationships be-
tween them (so relationships can be modeled as a graph). Each object also has
an initial label (for example, this could be a user’s declared age in a setting
where many users do not reveal their true demographics). There are there-
fore two forces at work in the labeling: to pick labels which are consistent
with the assigned labels of neighboring objects (due to implicit assumption
of homophily), and to pick labels which are consistent with the initial labels.
Kleinberg and Tardos formalize this problem by de ning two functions, the

rst de ned over (initial label, assigned label) pairs, and the second de ned
over (assigned label, neighbor’s assigned label) pairs.
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This then naturally de nes an optimization problem over graphs: given the
initial labeling of nodes, the edges, and the two cost functions, choose a label-
ing with minimum cost summed over all nodes and edges. Using the language
of combinatorial optimization, this becomes a well-de ned optimization prob-
lem, since every assignment has an associated cost: therefore, there must exist
some assignment(s) with minimum cost. Kleinberg and Tardos are able to give
guaranteed approximations to this problem: they show an algorithm to nd an
assignment whose cost is more expensive than the optimal one by a factor that
is at most logarithmic in the number of labels. The approach relies on solv-
ing a carefully de ned linear program, and arguing that rounding the fractional
solution gives a good approximation to the original problem.

Applying this approach to the node classi cation problem is possible, but
requires some effort. First, one needs to choose appropriate metrics over labels,
and to extend these to capture the case of missing labels (which should not be
penalized excessively by the metric over neighbors). Second, for graphs of
social networks, it is necessary to solve a linear program de ned over all the
edges and nodes in the graph, which may stretch the limits of modern solvers.

6.3 Spectral Partitioning
A different approach studied by McSherry [23] is to use spectral methods

(study of eigenvalues and eigenvectors) to recover a labeling. For the analysis,
the graph is assumed to have been produced by a random process. Each of the
n nodes in V has a (secret) initial label from the m possibilities. It is assumed
that edges are created by a random process: let Q be an m×m matrix where
qij denotes the probability of including an edge between a node with label
i and node with label j for i, j < m. In this model, the given graph G is
drawn from the distribution implied by the hidden labels and Q. Computing the
maximum-likelihood labeling is NP-hard in this setting, so McSherry presents
an algorithm based on random partitioning and projections to infer the true
labeling on the nodes of the graph with high probability.

Sidiropoulos (in the survey of Aggarwal et al. [1] points out that in most
cases, it is not realistic to consider connections between all pairs of objects
in the generative model. Hence the distribution of graphs considered by Mc-
Sherry does not correspond to typical social network graphs. To better model
such graphs, they consider a slightly modi ed model where for a given graph
H , each edge e of H is removed with probability 1− qij , where i, j are labels
on the endpoints of e and Q is the m × m matrix of probabilities as before.
Sidiropoulos argues that for arbitrary graphs H , it is not possible to recover
almost all labels with high probability, but that simple algorithms may still
recover a constant fraction of labels.
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6.4 Graph Clustering
A set of approaches proposed for node classi cation are based on partition-

ing the nodes into clusters and assigning the same label to the nodes in the clus-
ter. Blum and Chawla [7] assume that the weights on edges of the graph denote
similarity between the associated nodes. Thus, a high edge weight means the
nodes are very similar. A binary classi cation problem is solved by nding a
“mincut”: a partition of the nodes to minimize the number of edges crossing the
cut. The intuition is that placing highly connected nodes in the same class will
separate the nodes labeled “positive” from the “negative” ones. Such problems
can be solved in polynomial time using classical max- ow algorithms. This
approach is motivated by observing that on certain cases, nding the minimum
cut produces the smallest classi cation error.

Similar ideas are used by Shi and Malik [30], who propose a graph partition-
ing method for image segmentation. An image is represented as a graph, where
a node represented a pixel in the image and the weight on an edge between two
nodes represented the similarity between the pixel features (brightness, color
etc.). After normalizing the edge weights, it is shown that the solution is equiv-
alent to computing the second smallest eigenvector of a suitable matrix de ned
using the graph laplacian.

A recently proposed method by Zhou et al. [37] considers partitioning a
graph based on both structural and attribute similarity of nodes of the graph.
To combine the contribution of both types of feature, Zhou et al. de ne an
attribute augmented graph, where new nodes are introduced for each attribute
value. An edge is created between an existing node vi and an attribute node
if vi has the corresponding attribute. To compute similarity between nodes,
a distance measure based on a random walk is computed over the augmented
graph, as in Section 4. However, rather than assign labels directly from the
distribution of nodes reached, the method clusters nodes based on the random
walk distance of pairs of nodes, via a method such as k-Medoids. Thus each
cluster is assumed to consist of nodes that have similar labels: empirically, this
was used to cluster (label) blogs based on political leaning, and researchers
based on their research topic.

7. Variations on Node Classi cation
In this section, we identify a few generalizations of the graph labeling prob-

lem and methods which have been proposed for them.

7.1 Dissimilarity in Labels
Goldberg et al. [11] make the observation that nodes may link to each other

even if they do not have similar labels. Consider the graph in Example 5.2,
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where an edge represents two videos that are often co-viewed. These videos
may represent the two sides of a polarized debate, so the co-viewing relation
could indicate that the videos are dissimilar, not similar. This can be formal-
ized by allowing two types of edge, indicating either af nity or disagreement.
Goldberg et al.assume that the type of each edge is known. For the case of
binary labels, the goal is to nd a function f which maps nodes to either the
+1 class or the -1 class. This is formalized as trying to minimize the following
cost function: ∑

i,j

wij(f(vi)− sijf(vj))
2

where sij is 1 if edge (i, j) is a similarity edge and -1 otherwise and wij is the
edge weight as before. This minimization requires solving a quadratic program
to nd f to label the graph. It can be extended to the multi-class setting by
introducing a labeling function fk for each class. Such programs can be solved
for a moderate number of examples (hundreds to thousands) but may not scale
to huge graphs.

7.2 Edge Labeling
Thus far in our discussion of node classi cation, we have assumed the

weight matrix W is known, or can be computed directly from node attribute
similarity. But in fact the problem of computing edge weights can be abstracted
as a problem in itself, to infer labels on edges of a graph. The simplest case
is the binary classi cation problem to label the edges as positive or negative.
For instance, in a network of blogs, a user may connect to users with whom
they either (broadly) agree or disagree. Leskovec et al. [19] study the problem
of classifying edges as positive and negative through the lens of two theories
from social science literature: Balance and Status. The balance theory is based
on notions such as “the friend of my friend is my friend”, “the enemy of my
friend is my enemy” etc. to balance the signs on edges within a triad. The
status theory asserts that a positive (negative) edge from vi to vj indicates that
the vi believes that vj has a higher (lower) status that vi. Given two edges
connecting three users, both models can predict the sign of the third edge, but
disagree on some cases. Analyzing real data shows that balance tends to model
the case of undirected edges, while status better captures the directed case.

Goyal et al. [13] studied a problem of edge labeling with applications such
as viral marketing, where it is useful to know the in uence that a user has on his
neighbors. The problem is formulated as that of inferring a weight 0 ≤ wij ≤ 1
on each edge (i, j), termed as an in uence probability. Speci cally, in uence
is measured in terms of actions performed by neighbors of a user after the user
has performed those actions. The authors present static and time-dependent
models for learning edge weights.
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Krushevskaja and Muthukrishnan [16] formulate a more general edge label-
ing problem, for arbitrary sets of possible edge labels. Formally, given a graph
G(V,E) with nodes V and edges E, a subset of the edges El ⊂ E are labeled.
A label yi on edge ei ∈ El is a probability distribution over the label set Y .
The goal is to label all edges in the graph. As an example, consider a social
network graph, with users represented by nodes and interactions between users
represented by edges in the graph. The set of labels consists of types of inter-
actions such as email, public post, tag in a photo, and video message. A subset
of edges are labeled with a probability distribution over the label set. The prob-
ability associated with a label, say email, at any edge is the likelihood of the
corresponding pair of users interacting by email. Krushevskaja and Muthukr-
ishnan study two algorithms for the edge labeling problem, one in which edge
labeling is reduced to node labeling on a line graph, and the other is a direct
random walk based approach to edge labeling.

7.3 Label Summarization
In applications involving user generated data, such as tagging videos in

YouTube (Example 5.3), a classi cation algorithm might choose a non-zero
probability for a large number of labels on a given node. Simply picking the
most likely few labels is not optimal: the chosen tags may be redundant, pick-
ing synonyms and omitting ones which better capture the content. A secondary
concern is that computing the nal label distribution is more costly if the algo-
rithm has to store a complete label distribution for each node at each intermedi-
ate step. Given this motivation, Bhagat et al. [6] formulate a space-constrained
variant of the graph labeling problem, where each node has space to store at
most k labels and associated weights. That is, given a partially labeled graph,
the goal is to output a label summary of size k at each node.

The simplest approach to solving the space-constrained labeling problem
is to perform one of the node classi cation methods discussed earlier, and to
prune each computed distribution to have only k labels. A more sophisticated
approach is to summarize label distributions using the semantic relationship
among labels, modeled as a hierarchy over the label set. Now the goal is to
choose k appropriate labels from the hierarchy to best represent the computed
distribution at each step. Such algorithms can run in small space, requiring
space proportional to the number of labels in the neighborhood at any node.

8. Concluding Remarks
The problem of node classi cation has been de ned and addressed in many

works over the last 15 years, prompted by the growth of large networks such
as the web, social networks, and other social media. In this chapter, we have
surveyed the main lines of work, based on iterative methods and random walks,
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as well as several variations. When viewed from the right perspective, there is
a surprising commonality between many methods: the methods discussed in
Section 4, and several of the methods in Section 3 can all be seen as generating
the labeling from the occupancy probabilities of a random walk over the graph.
The universality of this concept, which may not have been obvious from the
original papers, can be motivated from both linear algebraic and optimization
considerations.

8.1 Future Directions and Challenges
Having surveyed so many approaches to this problem, we step back to ask

the question, “Given a partially labeled graph, do we know how to classify the
other nodes?”. The short answer to this question is “no”. Partly this is because
the problem is underspeci ed: unless we make strong assumptions about the
process that generates a true but hidden labeling, we are unable to prove any
theorems which quantify the quality of any inferred labeling. So, as with other
problems in the machine learning world, we should seek to evaluate solutions,
by withholding some known labels and comparing the imputed labels on these
nodes. Here, we enounter two limitations in the current literature. Firstly,
some proposed methods do not scale up to the large graphs that result from
the motivating social network setting, and have only been tested on graphs of
a few thousand nodes or not at all. Secondly, for those techniques which do
scale, there has been little attempt to compare multiple methods on the same
baseline. A step in the right direction is the work of Macskassy and Provost
[22], which compares multiple methods on relatively small data sets (hundreds
to thousands of nodes).

Given these shortcomings, we identify the following challenges for the area:

The random walk and iterative approaches have the advantage of being
easy to implement and distribute via Map-Reduce. A next step is to
provide baseline implementations of several of these methods, and to
evaluate them across a common test set of large graphs derived from
social networks to compare the behavior.

Other methods suggested based on classical graph algorithms, combina-
torial optimization, and spectral properties have not yet been tested on
the large graphs which arise in from social networks. A natural next step
is to understand how well approaches such as metric labeling, spectral
partitioning and inference perform at this task, in terms of both accu-
racy and scalability. In particular, can they be implemented within the
Map-Reduce framework?

The complex models which arise from relational learning are typically
solved by approximate message passing algorithms such as loopy belief
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propagation. Are there special cases of these models for which the LBP
solution coincides with a known iterative algorithm? This would show a
novel connection between these approaches.

It is open to see if new algorithms can be developed which combine
aspects from multiple different labeling methods to achieve a labeling
which is better than that from any individual method (i.e. hybrid algo-
rithms).

Many methods are motivated based on hypotheses about what links are
present: homophily, co-citation regularity, balance, status etc. To what
extent can these hypotheses be tested within large scale data?

8.2 Further Reading
Several other sources have discussed different aspects of the graph labeling

problem and its generalizations. As mentioned in Section 4.2, the survey by
Bengio et al. [4] relates the semi-supervised learning methods in the context
of optimizing a quadratic cost function.

The survey of Sen et al. [29] compares various node classi cation methods
including ICA and relational learning method RMN that uses LBP. They em-
pirically compare the methods on document classi cation tasks and show that
the simple ICA method is the most ef cient. The authors note that although in
some experiments LBP had better labeling accuracy than ICA, but learning the
parameters for the method is not trivial. Macskassy and Provost [22] survey
different approaches, and give empirical comparisons on some web-based data
sets. The tutorial of Neville and Provost [27] presents the machine learning
perspective, and has slides and a reading list available.
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Abstract There is much research on social network analysis but only recently did scholars
turn their attention to the volatility of social networks. An abundance of ques-
tions emerged. How does a social network evolve – can we nd laws and derive
models that explain its evolution? How do communities emerge in a social net-
work and how do they expand or shrink? What is a community in an evolving
network – can we claim that two communities seen at two distinct timepoints are
the same one, even if they have next to no members in common? Research ad-
vances have different perspectives: some scholars focus on how evolution man-
ifests itself in a social network, while others investigate how individual com-
munities evolve as new members join and old ones become inactive. There are
methods for discovering communities and capturing their changes in time, and
methods that consider a community as a smoothly evolving constellation and
thus build and adapt models upon that premise. This survey organizes advances
on evolution in social networks into a common framework and gives an overview
of these different perspectives.

Keywords: Dynamic social networks, social network evolution, community evolution, stream
clustering, incremental tensor-based clustering, dynamic probabilistic models

1. Introduction
Evolution in social networks is a research domain of some intricacy. Under-

standing the evolution of social communities is an appealing subject, but the
evolution of the social networks themselves is a distinct, no less captivating
problem. The underpinnings of social network evolution are to be found in
modeling and studying evolving graphs. In contrast, an evolving community is
not necessarily part of an evolving graph: many scholars rather perceive a com-
munity as a group of individuals that have some features in common. These
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different perceptions have lead to different methods for the study of community
evolution and to different de nitions of the concept "evolving community".
This study is a survey of the advances on understanding and on predicting
the evolution of social constellations, sometimes called social networks, other
times called communities and often modeled as graphs.

Informally, evolution refers to a change that manifests itself across the time
axis. In the eld of Knowledge Discovery from Data, there is a distinction be-
tween mining static data and mining a data stream. The stream paradigm of
computation dictates that instances arrive in sequential order and each instance
is seen only once [22]. Stream mining algorithms must solve the challenge of
adapting a model over the new data under resource constraints. Some stream
mining algorithms focus on monitoring model evolution, i.e. understanding
how the model changes. Stream mining algorithms that adapt or monitor evolv-
ing communities are obviously within the scope of our survey, albeit graph
stream mining is not. The reader is referred to [49] for an overview of stream
algorithms on graphs. Further, an in-depth discussion on laws explaining (dy-
namic) graphs can be found in [9].

In his report on community detection in graphs [18], Fortunato devotes the
small chapter 13 to the "Detection of Dynamic Communities" [18] and elabo-
rates on the works of [36, 5, 42, 10, 11, 28] (in order of appearance), methods
that the reader will also nd in the next pages. Since the survey starting be-
low is devoted solely to evolution, the emphasis is on placing these and many
other methods in a comprehensive framework, stressing their commonalities
and their differences in objectives, assumptions, methodology and perspective.

The survey is organized as follows. In Section 2, we take the stream paradigm
of computation as basis for the study of social network dynamics. We organize
research advances on social network evolution across different dimensions that
capture the perspective taken and the axioms de ned in the individual studies.
We distinguish between methods that study community evolution in a social
network (Sections 3-5) and methods that use all temporal data to derive a sin-
gle static model that captures the dynamics of the network (Section 6).

Section 3 identi es challenges on community evolution. We identify two
main threads in this topic. Communities can be perceived as clusters built at
each timepoint: analysis of community evolution involves tracing the same
community/cluster at consecutive timepoints and identifying changes. Re-
search advances in this thread are discussed in Section 4. But communities can
also be perceived as smoothly evolving constellations: community monitoring
then involves learning models that adapt smoothly from one timepoint to the
next. We elaborate on this thread in Section 5. In Section 6, we discuss exam-
ples of evolutionary methods that build one model of social network dynamics,
exploiting all data within a given time horizon. The last section concludes this
chapter with a discussion of open issues on community evolution.
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2. Framework
The activities of the participants of a social network constitute a stream. We

therefore use the stream model of computation [22] to describe an evolving
social network across the time axis, albeit this representation is not always
supported by current algorithms for dynamic social networks. We then identify
different perspectives for the study of evolution on a social network. This leads,
in section 2.2, to the multi-dimensional framework of this survey.

2.1 Modeling a Network across the Time Axis
A social network is a graph G(V,E) where V is the set of nodes and V is

the set of edges. For our purposes, we study the graph across the time axis and
assume a series of discrete timepoints t1, . . . , tn−1, tn, . . .. At timepoint ti we
observe the graph instance G(Vi, Ei) which we will also denote as Gi. The
most obvious changes that may occur between two timepoints ti−1 and ti are
the addition of edges, i.e. Ei ⊃ Ei−1, and the appearance of additional nodes,
i.e. Vi ⊃ Vi−1.

We can postulate that timepoint ti is the moment at which a new node or a
new edge has been recorded. This corresponds to the stream model of com-
putation (cf. [22]): the stream is a sequence of records x1, . . . , xi, . . . , xn, . . .,
arriving in increasing order of the index i, where xi may be a new node or a
new edge. Alternatively, we may opt for a discretization of the time axis into
intervals of equal length, e.g. years, days or seconds, or into record buckets of
equal size.

The objective of a stream mining algorithm is to maintain an up-to-date
model of the data. This translates into adapting the model learned to the cur-
rently visible records. These may be all the records seen thus far. However,
for many types of analysis, e.g. for the identi cation of in uential nodes or
for understanding how communities grow and shrink, it is also reasonable to
"forget" some graph elements. In stream mining, this is typically modeled by
a sliding window: only records within the window are considered for model
adaptation. There are several elaborate algorithms that assign weights to the
records inside the time window, e.g. [34], and for lling the time window with
the records expected to be most representative [7].

Modeling the activities in a dynamic social network as a stream of arriving
events allows us to abstract the joint task of community discovery and commu-
nity evolution monitoring as follows: one model Mi is built at each timepoint
i and adapted at the next timepoint into model Mi+1 using the contents of the
time window. The methods we discuss in Sections 3-5 adhere to this abstract
task description, while the methods in Section 6 do not. This is not coinci-
dence: the stream model of computation allows us to distinguish between two
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fundamentally different threads in the study of dynamic social networks. They
constitute the rst dimension of our multi-dimensional framework below.

The stream model of computation has been designed for less complex data
than found in a social network. While the activities recorded in the social net-
work constitute streams (e.g. user postings, uploading of resources, exchange
of messages), the entities themselves (users, resources, tags etc) are rather sta-
tionary. We come again to this issue in Section 3, when we discuss challenges
on community evolution.

2.2 Evolution across Four Dimensions
We organize the advances on evolution in a multi-dimensional framework.

We identify four dimensions that are associated to knowledge discovery in
social networks and elaborate on their interplay in the context of evolution.

Dimension 1: Dealing with Time. We identify two different threads of
research on the analysis of dynamic social networks. Both threads consider
the temporal information about the social network for model learning, but they
exploit the temporal data differently and, ultimately, deliver different types of
knowledge about network dynamics.

Methods of the rst thread learn a single model that captures the dynamics
of the network by exploiting information on how the network has changed from
one timepoint to the next. These methods observe the temporal data as a time
series that has a beginning and an end. Advances in this thread include[19, 25,
27, 45, 26], many of the methods are of evolutionary nature. The model they
learn provides insights on how the network has evolved, and can also be used
for prediction on how it will change in the future, provided that the process
which generated the data is stationary. Hence, such a model delivers laws on
the evolution of the network, given its past data.

Methods of the second thread learn one model at each timepoint and adapt
it to the data arriving at the next timepoint. Although some early examples [46,
2, 37] are contemporary or even older than the rst thread, the popularity of
this thread has grown more recently.These methods observe the temporal data
as an endless stream. They deliver insights on how each community evolves,
and mostly assume a non-stationary data generating process.

The differences between the two threads are fundamental in many aspects.
The object of study for the rst thread is a time series, for the second one it is
a stream. From the algorithmic perspective, the methods of the rst thread can
exploit all information available about the network and use data structures that
accommodate this information in an ef cient way, e.g. using a matrix of inter-
actions among network members. Methods of the second thread cannot know
how the network will grow and how many entities will show up at each time-
point, so they must resort to structures that can adapt to an evolving network
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size. But foremostly, the two threads differ in their objective (see Dimension 2
below): while the second thread monitors communities, the rst thread derives
laws of evolution that govern all communities in a given network.

Dimension 2: Objective of Study. One of the most appealing objectives at
the eve of the Social Web was understanding how social networks are formed
and how they evolve. This is pursued mainly within the rst research thread of
Dimension 1, which seeks to nd laws of evolution that explain the dynamics
of the large social networks we see in the Web. A prominent example is the
work of Leskovec et al. in [26].

The design of methods that monitor the evolution of communities within a
social network is a different task. The goal of community evolution monitoring
is pursued by algorithms that derive and adapt models over a stream of user
interactions or user postings. The underpinnings come from two domains:
stream clustering (see e.g. [1, 22]) and dynamic probabilistic modeling (see
e.g. [37]). The use of methods from two domains is re ected in the de nition
of the term "community", as discussed in Dimension 3 below.

Dimension 3: De nition of a Community. A community may be de ned
by structure, e.g. communities as cliques. Alternatively, it may be de ned
by proximity or similarity of members, whereupon many authors assume that
nodes are proximal if they are linked, while others assume that nodes are sim-
ilar if they have similar semantics.

The rst research thread under Dimension 1 considers both communities
by structure (cliques or less restrictive geometric structures) and communities
as groups of proximal nodes in a graph. The second research thread under
Dimension 1 further distinguishes among crisp communities (a node belongs
to exactly one community at any time), as e.g. in [2], or soft communities (a
node belongs to a community with some probability or possibility, or a node is
described by each latent community with some probability), e.g. in [37, 36].

In the context of community evolution, the de nition depends strongly on
the underlying model of computation: if stream clustering is used, then com-
munities are crisp clusters; if fuzzy clustering is used, then communities are
fuzzy clusters; if dynamic probabilistic modeling is used (e.g. in [37]), then
communities are latent variables that describe each data instance with a speci c
likelihood, thus allowing an instance to be member of many communities.

Dimension 4: Evolution as Objective vs Assumption. The rst category
encompasses methods that discretize the time axis to study how communities
have changed from one timepoint to the next. The second category encom-
passes methods that make the assumption of smooth evolution across time and
learn community models that preserve temporal smoothness.
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We organize the studies across the rst, second and forth dimensions in the
framework depicted in Figure 6.1. We focus on community evolution hereafter,
i.e. on the second thread of Dimension 1 (left box of the gure), and return to
laws on evolution in Section 6.

Figure 6.1. A framework for social network evolution

As we see in the left box of the gure, community evolution is governed by
Dimension 4. We discuss methods that observe a community as a crisp cluster
in Subsection 4, and methods based on dynamic topic modeling and assuming
temporal smoothness in Subsection 5. The main objective (Dimension 2) is
model adaptation, although we will see some methods that compare models
in Subsection 4. Different de nitions of a community (Dimension 3) can be
found in all sections.

3. Challenges of Social Network Streams
Intuitively, the activities among the members of a social network can be con-

ceived as a stream: an interaction between two network members is an event
that is seen and forgotten, as postulated by the stream paradigm [22]. However,
the activities of a social network members constitute more than one streams:
in the Web 2.0, people contribute resources to a social platform and annotate
resources with tags. Albeit one may decide to perceive the stream of resource
contributions and the stream of tag postings as independent, it is obvious that
the two streams are interrelated. In the static case, the ternary relationship
among tags, resources and users has been already recognized as bene cial for
model learning, at least in the context of recommendation systems (see e.g.
[44]). The importance of the temporal dimension for the formulation of reli-
able recommendations (cf. [24]) indicates that this ternary relationship is also



Survey on Social Network Evolution 155

important when observing communities over time. Hence, community moni-
toring involves multiple, interrelated streams (challenge C1).

It is obvious that the recorded activities of social network members con-
stitute the basis for community discovery. However, these activities involve
semantically rich entities 1, the information of which contributes further in-
sights into community formation and evolution. For example, the semantics
of documents uploaded in a folksonomy do in uence the likelihood that a par-
ticular user reads them, as well as the likelihood of choosing a particular tag
for them. Some social platforms possess further information about their users,
such as gender, demographics and af nities towards speci c product proper-
ties. The incorporation of such information into the model learning process is
important for both the static and the dynamic case. Hence, community moni-
toring requires taking account of the information on the data entities in each
of the streams involved (C2).

A remarkable difference between conventional stream mining and commu-
nity stream mining concerns the permanence of the entities involved. Individ-
ual activities, such as resource uploads or tag postings may be perceived like
conventional stream elements: they are observed and may then be forgotten.
In contrast, the users, the uploaded resources and the posted tags may not be
forgotten: they are elements of the social network and in uence its further
evolution. Do then users (as well as tags and resources) constitute a stream of
particular nature? In [39], such entities are termed perennial objects and are
characterized by following properties: (i) new ones may show up at any time,
while (ii) existing ones may or may not be forgotten [38], (iii) they evolve over
time [40], and (iv) they are fed with data from the streams associated with them
[39].

Although the cited studies on perennial objects do not focus on social net-
work analysis2, it is easy to see that community monitoring involves entities
that have the properties of perennial objects (C3): (C3.i) new users join the
social platform at any time, new resources are uploaded and new tags are
recorded; (C3.ii) existing entries might be forgotten if they are inactive for
a long time, but any user may become active again after a dormant period,
any half-forgotten resource may attract people’s interest and any tag may ex-
hibit periods of heavy use and periods of oblivion. Further, (C3.iii) users may
exhibit changes in their properties; a customer may start preferring different
products from before, an author may shift in her research subjects, and a user
may contribute different types of resources in the summer than in the winter.

Hence, community stream mining involves learning on and monitoring of
perennial objects that arrive in a stream-like manner but may not be forgot-

1Lin et al. [28] introduced the term "facet" for each type of entity appearing in a social network.
2The example application and test dataset in [38–40] come from Customer Relationship Management.
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ten; such an entity is associated with more than one, interrelated conventional
streams, and may change its properties over time. This has side-effects on the
data representation used for the evolving social network. If a graph representa-
tion is used, then it is necessary that the graph involves different types of nodes,
that new nodes be added, and that a node (as well as an edge) have properties
that themselves change from one moment to the next. if a tensor representation
is used, then the dimensionality of the tensor must be allowed to change with
time. For both representations, model adaptation further requires de ning a
data ageing function and dealing with streams of different speeds.

In the following, we discuss advances on tracing communities upon a stream
of social network activities and point out to what extend they address the afore-
mentioned challenges.

4. Incremental Mining for Community Tracing
In incremental clustering and in stream clustering, a cluster built at some

point of time evolves as new data arrive and old data are forgotten. In commu-
nity stream mining, one could also observe a community as a cluster, however
one would require some insights about the evolution of each speci c com-
munity/cluster. One research thread focusses on tracing the same community
at different timepoints, while another thread learns communities across time
while ensuring temporal smoothness. We discuss the rst thread here and the
second one in Section5.

The early work of Toyoda and Kitsuregawa [46] contains a framework for
different types of transitions that a community can experience, namely grow-
ing, shrinking, emerging, dissolving and splitting, as well as metrics for those
transitions; these metrics are based on community membership. Their method
has not been designed for community monitoring over a stream, and the term
"community" is perhaps less appropriate from the current point of view: a com-
munity is a set of URLs from a Web archive, where a URL is linked to others
by a HITS-like method. Nonetheless, [46] is one of the earliest methods that
categorize and monitor community transitions.

The work of Aggarwal and Yu on community evolution adheres to the stream
paradigm, while allowing for an of ine exploratory component [2]. The method
builds upon the distinction between online and of ine components [1], the
online component being responsible for summarizing the information in the
stream and building micro-clusters, while the of ine component is invoked by
the user for different time frames and delivers the nal clusters from the micro-
clusters. Aggarwal and Yu propose three community transitions, namely ex-
pansion, contraction and no change (stable state), based on the interaction level
among the member entities. For community clustering, they summarize the
arriving interactions online, thereby taking the recency of interactions into ac-
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count in a weighting scheme, and then allowing the generation of graphs over
the user-speci ed time horizon(s).

For the detection of evolving communities and the characterization of the
transitions that have taken place, Aggarwal and Yu point out that some edges
in the interaction graph indicate intensi ed interaction (positive edges), while
other edges are negative, denoting less interaction than before. The proposed
algorithm for the of ine component starts with a set of seeds (centroids), to
which further nodes are assigned, and then partitions the interaction graph in
such a way that partitions contain edges with similar kind of evolution (mostly
positive edges, mostly negative edges or neither). Remarkable in this method
is that the nature of the interaction (increasing or decreasing) drives the par-
titioning process [2], without making assumptions on the smoothness of the
evolution (as done by the methods in section 5).

A distinction between positive and negative changes in community evolu-
tion is also reported in [15], who propose DENGRAPH, an incremental vari-
ation of DBSCAN for a graph of interactions. Similarly to IncrementalDB-
SCAN [12], DENGRAPH has not been designed for a fast stream, but is in
principle appropriate for stream clustering, if coupled with a mechanism that
adds new data and forgets old entries. For each snapshot of interactions, DEN-
GRAPH computes the proximity between entities (interacting users), thereby
forgetting very old interactions and taking new ones into account. The former
are negative changes and lead potentially to community splits, shrinking or dis-
appearance, while the latter are positive changes that may lead to community
growth, to emerging communities or to community fusion [15].

While the methods in [2, 15] adapt communities, the methods CoDYM [14],
GraphScope [42] and TimeFall [17] are oriented towards comparison of com-
munities detected at different timepoints, and support visualization of their
evolution. Visualization is also the focus of ContexTour [30], which is based
on the assumption of smooth community evolution (cf. Section 5 below).

The approach of Falkowski et al. has a static and a dynamic part [13, 14,
16]. The static component is based on the hierarchical divisive clustering al-
gorithm of Girvan and Newman: the algorithm computes the edge between-
ness of nodes [20] and gradually eliminates edges (interactions), thus building
a dendrogram of clusters/communities that are increasingly tight towards the
leaf nodes. The quality measure proposed in [35] is used to identify the best
level for cutting the dendrogram. The static component in [13] applies this
algorithm upon the graph of interactions, as recorded within the current time
window: interactions that have moved outside the window are forgotten, and
hence nodes may become disconnected, while new connections may emerge.

The dynamic component of [13, 16] is responsible for matching communi-
ties detected at proximal timepoints. To this purpose, the framework MONIC
for the comparison of clusters built at different timepoints [41] is being ap-
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plied: two communities are considered "same" (or very similar) if their over-
lap in members exceeds a threshold; they are then linked with an undirected
edge. The result is a temporal graph, having as nodes the communities found at
different timepoints. The hierarchical divisive clustering algorithm of Girvan
and Newman is again invoked for this graph, delivering persistent communities
and studying the evolution of volatile ones over the stream. Measures on the
stability, density and cohesion of communities across the time axis, as well as
visualization aids for an a posteriori inspection of a computed temporal graph
have been presented in [14].

GraphScope [42] analyzes a stream of bipartite graphs with three objectives.
(i) Split the stream into graph stream segments, i.e. subsequences of graphs,
such that the end of each segment marks a change point in the evolution of the
studied social network. (ii) Partition the contents of each graph stream segment
(two types of entities) in such a way that the resulting models are good. (iii)
Achieve the rst two objectives without the need for user-de ned parameters.
The method builds upon incremental tensor-based clustering [43]: the bipartite
graphs are modeled on a 2-mode tensor, assuming m source nodes ( rst mode)
and n destination nodes (second mode); these numbers remain constant with
time, i.e. all entities involved in the stream are known in advance.

The core idea of GraphScope is lossless encoding [42]. If a graph stream
segment is given and a partitioning has been learnt for it, then the cost of this
segment can be computed as the cost of describing/transmitting the partitions
and the subgraphs (per mode) in each partition. A good partitioning is one
that can be losslessly compressed at low cost. If the number of partitions per
mode were known, the task would be rather simple, but the third objective of
GraphScope disallows input parameters. Therefore, GraphScope performs a
local search, starting with a number of partitions for the 1st and the 2nd mode,
checking if cost improvements can be achieved by changing the number of
partitions in the 1st mode, while taking into account the in uence of a change
upon the partitioning of the 2nd mode.

Similarly, a good segmentation of the stream is one that minimizes the sum
of the costs of transmitting the individual segments. Since a segment consists
of graphs recorded at adjacent timepoints, and since any two adjacent graphs
are expected to differ only in some edges, a good segmentation is one that starts
a new segment, i.e. introduces a change point, only if the arriving graph is too
different from the previous one. Equivalently, a good segmentation keeps the
arriving graph in the current segment as long as a cost bene t is achieved by
doing so. An extensive study with different real datasets of various sizes shows
that the communities and change points found by GraphScope are reasonable:
they either agree with prior knowledge on the data (e.g. the change points
in the ENRON dataset agree with known relevant events) or they allow for a
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straightforward semantic interpretation (e.g. entities that share the same values
for a small number of properties) [42].

Ferlez et al. also study the evolution of communities learned as clusters over
bipartite graphs, but with emphasis on visualization [17]. Graph clustering
takes place at discrete timepoints; then their algorithm TimeFall compares the
models learned at different timepoints. For this comparison, a community is
expressed as a set of words, e.g. the words describing a user pro le. This
somehow limits the approach to networks where nodes can be described as
word vectors. However, it allows the use of the powerful Minimum Description
Length criterion for community matching. Matched communities are linked
into a temporal graph that is pictorially perceived as a time waterfall, hence
the name "TimeFall" for the algorithm [17].

The methods discussed thus far assume that a network participant is associ-
ated with one community only. Palla et al. study the evolution of overlapping
communities, i.e. of social groups that may share members at each timepoint
[36]. For the discovery of overlapping communities, they apply the Clique Per-
colation Method (CPM) at each timepoint. CPM de nes "a community [. . . ]
as a union of all k-cliques (complete sub-graphs of size k) that can be reached
from each other through a series of adjacent k-cliques (where adjacency means
sharing k-1 nodes)" and ensures following key features: "(i) [community]
members can be reached through well connected subsets of nodes, and (ii)
the communities may overlap (share nodes with each other)", as summarized
in the section METHODS, resp. in the second page of [36].

To match communities found in adjacent timepoints t, t+1, Palla et al. take
the union of the edges in the networks G at t and G′ at t+ 1, and apply CPM
over the joing graph. They point out that a community from either t or t + 1
would be "contained in exactly one community of the joint graph . . . . Thus,
the communities in the joint graph provide a natural connection between the
communities at t and at t+ 1" [36].

Taking this matching algorithm as basis, Palla et al. model community dy-
namics by rst enumerating the basic events that a community may experience
(emerge, disappear, merge with another, get split), and then identifying two
core characteristics of a community – its size and its age (in timepoints). They
examine the interplay between community size, stability (which they call "sta-
tionarity") and lifetime (i.e. the age a community reaches before it dies out),
and show that there are signi cant differences in the evolution of large vs small
communities in the (two) inspected networks [36].

In the extended version of their KDD 2007 paper [5], Asur et al. also start
their study of community dynamics by designing an event-based model [6].
This model encompasses events that a community may experience from one
timepoint to the next, and also the events that an individual may encounter.
This second category contains the events "join" (individual joins community)
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and "leave", and the events "appear" (a new individual enters the scene) and
"disappear". For this model, Asur et al. propose an event detection algorithm
and a set of indices which quantify the behavior of nodes and communities [6].
The stability index measures the extend to which a node interacts with the same
nodes in a time interval, while the sociability index counts the interactions of
a node in an interval. The popularity index counts the number of nodes that
joined a community/cluster in a time period and subtracts those that have left
the community. Particularly interesting is their "in uence index": it attempts to
capture the in uence of a node x on the evolution of a cluster by identifying the
nodes that join or leave a cluster together with x. Of course, identifying these
nodes (and demonstrating causality) is far from trivial; Asur et al. propose
heuristics to detect the in uential nodes in the data [6].

With respect to the challenges listed in section 3, we see that all methods
discussed here focus on analyzing one stream (challenge C1). GraphScope
[42] has the potential of analyzing multiple streams, but the issue of stream
synchronization is not addressed. Properties of the network members and of
the entities (e.g. resources, tags) these members act upon (challenge C2) are
not considered by the above methods. The methods in [2, 15] and CoDym [13,
16] allow for the addition of new network members (C3.i) and for forgetting
new ones (C3.ii), while Asur et al. explicitly address both challenges in their
event model [6].

The tensor-based methods [42, 17] assume a xed number of nodes for each
entity type in the bipartite graph, i.e. all nodes must be known in advance.
Node addition in incremental tensor mining leads to a fundamental problem,
for which heuristic solutions have been proposed; this issue is discussed in
Section 5.1 below.

5. Tracing Smoothly Evolving Communities
The methods of Section 4 trace communities over time and can depict how

each community evolves. A different perspective to the community evolu-
tion problem is that of incorporating assumptions on how communities evolve
into the learning process. More precisely, let us assume that communities
are smoothly evolving constellations of interacting entities. Then community
learning over time translates into nding a sequence of models [10], or into
dynamically learning and adapting a probabilistic model [37], such that the
model valid at each timepoint is of good quality and has evolved more or less
smoothly from the previous model.

5.1 Temporal Smoothness for Clusters
Chakrabarti et al. capture continuity with respect to the previously learned

model through the notion of temporal smoothness, which they incorporate into
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the objective function to be optimized during learning [10]. In particular, they
propose two aspects of model quality or, equivalently, model cost: snapshot
cost captures the quality of the clustering learned at each time interval, while
temporal cost measures the (dis-)similarity of a clustering learned at a partic-
ular timepoint to the clustering learned at the previous timepoint [10]. Then,
cluster monitoring translates to the optimization problem of nding a sequence
of models that minimizes the overall cost, where the cost of model ξt to be
learned from the entity similarity matrix Mt valid at timepoint t is

Cost(ξt,Mt) = snapshotCost(ξt,Mt)+β×temporalCost(ξt−1, ξt) (6.1)

The matrix Mt is computed by considering (i) local similarity of entities, where
"local" refers to the current snapshot of the underlying bipartite graph, as well
as (ii) "temporal similarity", which re ects similarity with entities at earlier
moments. This approach assumes that entities (users) found to be similar in
the past are likely to be still similar.

The "change parameter" β expresses the importance of temporal smoothness
between the old model ξt−1 and the new one ξt relatively to the quality of
the new model. This parameter ranges between zero and one, hence the cost
function can be tuned to force smoothness (β is close to one) or rather allow
for shifts (β is close to zero).

Chi et al. took over this idea for community monitoring over time [11],
slightly remodeled the cost function to allow for tuning the impact of the snap-
shot cost explicitly:

Cost(ξt,Mt) = α× snapshotCost(ξt,Mt) + β × temporalCost(ξt−1, ξt)
(6.2)

and made several extensions to the original approach of [10]. First, they
proposed two ways of modeling temporal smoothness (equivalently, tempo-
ral cost): (a) preservation of cluster membership at timepoint t, by measuring
the overlap between the cluster members at t vs the previous timepoint t − 1,
and (b) preservation of cluster quality at t, by measuring the degradation of
the quality of the clusters found in t − 1 towards the new clustering. Further,
they did not only consider K-Means as in [10], but also spectral clustering
over bipartite graphs. The implementation of each component of the cost func-
tion depends obviously on the choice of clustering algorithm. For K-means,
the snapshot cost of model ξt at t is expressed as the sum of square errors
SSE(ξt, t); preservation of cluster quality from t − 1 to t is the SSE of the
clusters in ξt towards the centers they had at t− 1 and normalized by the clus-
ter cardinalities in t− 1; preservation of cluster membership from ξt−1 to ξt is
computed as:

PCM(ξt−1, ξt) = −
∑

X∈ξt−1

∑
Y ∈ξt

|X ∩ Y |
]X| × |Y | (6.3)
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while the corresponding functions for spectral clustering are aiming to min-
imize the normalized cut or the negation of the average association between
subsets of graph nodes.

The core approach of Chakrabarti et al. [10] and Chi et al. [11] is designed
for a graph that has a xed, a priori known, number of nodes. As already men-
tioned in section 3 (challenges C3.i, C3.ii), the social network may grow by
new individuals at any time, while the information on old, inactive individuals
may need to be forgotten.

The addition of new graph nodes leads to the following problem. All com-
putations in [10, 11] are performed upon a matrix that contains derived sim-
ilarities for each pair of graph nodes; when new nodes arrive, similarities to
old nodes must be derived to ll the matrix, but there are no data to derive
them from. Chi et al. propose heuristics for lling the matrix, namely to de-
rive average values from the data seen thus far [11]. In contrast, forgetting old
individuals is less of a challenge: the matrix rows and columns can be simply
eliminated [11]. Hence, methods building upon the approach of Chi et al. [11],
such as [28, 31, 30] discussed below, implicitly possess a heuristic solution to
challenges C3.i and C3.ii on adding and deleting nodes.

5.2 Dynamic Probabilistic Models
Model adaptation under the assumption of smooth evolution is intensively

studied with probabilistic learning methods. A eld where these methods are
being successfully applied for years is text stream mining, under the name
dynamic topic modeling, see e.g.[23, 33, 32, 8, 47, 4, 21] (in chronological
order).

The transition from clustering to probabilistic modeling implies a change
on what a community is. For the methods discussed thus far, a community is
a cluster of proximal entities, where proximity may be modeled as similarity
in behavior, similarity in ground properties or both. If probabilistic model-
ing is used instead, then it is assumed that the data generating process is de-
scribed by a number of latent variables. Then, the behavior of each entity is de-
scribed/determined by each latent variable to a different degree (contribution),
while all contributions add to 1. If the latent variables are called "communi-
ties", as e.g. in [28, 31], then a community determines each activity observed
at each timepoint with some probability (the variable’s contribution to this ac-
tivity). These latent variables describe the stream(s) of activities rather than
the (stream of) entities, and thus do not determine the addition or removal of
network nodes, nor do they correspond to communities of entities.

5.2.1 Discovering and Monitoring Latent Communities. Sarkar and
Moore exploit the power of dynamic probabilistic modeling for community
evolution in [37]. They study a social network of interacting entities, i.e. a
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single stream of interaction data, and investigate the evolution of social rela-
tionships among entities, under two assumptions. First, "entities can move in
latent space between time steps, but large moves are improbable"; second, a
"standard Markov assumption [is done, namely that] latent locations at time
t+ 1 are conditionally independent of all previous locations given latent loca-
tions at time t and that the observed graph at time t is conditionally independent
of all other positions and graphs, given the locations at time t ([37]: section 1).

The rst assumption in [37] means that the contribution of a latent variable
to a given entity’s interaction behavior may change from one timepoint to the
next but not drastically. As an informal example, assume that there are three
hidden variables and that an entity x is described by them with probabilities
p1, p2, p3 (adding to 1) at timepoint t; at the next timepoint, any of these prob-
abilities may change but, the more drastic a change, the less likely it is. If
one observes these latent variables as communities [28, 31], then the above as-
sumption means that the in uence of each community on an entity’s behavior
is unlikely to drop or increase dramatically from one timepoint to the next.

The Dynamic Social Network in Latent Space Model (DSNL) of Sarkar
and More consists of an observation model and a transition model [37]. The
observation part encompasses a likelihood score function that "measures how
well the model explains pairs of entities who are actually connected in the
training graph as well as those that are not" ([37]: section 2.1). Entities are
allowed to vary their "sociability" and linking probabilities are weighted (a
kernel function is used). The core idea is that the sociability of an entity is a
radius in the latent space, in the sense that the entity will link with all entities
that are within its radius with a high probability, and with further entities with a
(constant) probability ρ that corresponds to noise. The transition part penalizes
drastic changes of the current model towards the previous one.

There is a correspondence to the snapshot cost and the temporal cost pro-
posed for clusters in later years [10, 11]: the early method of Sarkar and Moore
targets quality of the probabilistic model at each timepoint (snapshot quality)
and minimal perturbation between timepoints (temporal smoothness). With re-
spect to both objectives, Sarkar and Moore pay particular attention in avoiding
local minima. Their method is indeed shown to perform very well for synthetic
and real networks, including two networks from Citeseer, the largest contain-
ing more than 11,000 nodes [37].

Dynamic topic modeling for community monitoring is used in the method
FacetNet, presented in [28]. FacetNet builds upon the evolutionary clustering
criterion of [10, 11]. The cost of deviating from temporal smoothness is mod-
eled using Kubler-Leibler divergence. According to the probabilistic learning
paradigm, a community is a latent variable, and each node is described by
all communities - with different probabilities. Hence, a node participates to
each community to some extend. Community evolution is then captured by
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building an Evolution Net, the nodes of which are the communities at distinct
timepoints and an edge between a community c at t and a community c′ at
t′ > t is the probability of reaching c′ from c. There is some similarity of
this temporal graph to the one proposed in [14], where the overlap between
community members is used to compute the edges. However, the Evolution
Net is conceptually much closer to the temporal graph proposed by Mei and
Zhai for topic evolution [32], because a topic is de ned as a latent variable
and dynamic topic modeling is performed. The addition of nodes (challenge
C3.i of Section 3) is addressed heuristically (as in [11]) by lling the missing
rows and columns with values derived under assumptions on the contribution
of each community to the newly arriving nodes.

Further community monitoring advances that build upon the core idea of
dynamic topic modeling include [48, 29, 31]. The Dynamic Stochastic Block
Model of Yang et al. uses Bayesian inference with Gibbs sampling to opti-
mize the posterior probabilities at each step [48]. In advances for dynamic
topic modeling (on text streams), it is usual to model the problem of deriving
the a posteriori probabilities as a Maximum A Posteriori (MAP) estimation
problem that can be solved with Expectation Maximization. Yang et al. rather
use a probabilistic simulated annealing algorithm [48], while the extension of
FacetNet by Lin et al. [31] reformulates the original community learning prob-
lem of [28], so that EM can be used for MAP estimation.

ContexTour [30] visualizes evolving communities, building upon the meth-
ods in [28, 29, 31]. The core ideas are (i) the selection of important enti-
ties within each mode, (ii) the generation of different, context-speci c views,
where a view corresponds to a mode, and (iii) the automatic identi cation of
the number of communities at each timepoint, using the soft modularity prin-
ciple [28]. The method allows the observer to see community splits, merges
and other transitions, as well as the content of each community around its most
important entities.

5.2.2 Dealing with Assumptions on the Data Generating Process.
One of the challenging issues in (dynamic) probabilistic modeling is assessing
the number of latent variables K. A further associated challenge is to de-
cide whether the number of latent variables that describe the observed process
should be assumed constant over time or should be allowed to vary.

For FacetNet [28], Lin et al. derive the number of latent variables at each
timepoint. To do so, they extend the concept of modularity [35], which may be
used to assess the number of crisp communities, into soft modularity for over-
lapping communities [28]. Then, if the number of latent variables is allowed
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to change from timepoint t − 1 to t, the cost function is aligned 3 to prevent
too strong a difference between the old model and the new one [28].

A further challenge is to design a mathematically and statistically appropri-
ate model of temporal smoothness. As we have seen, smooth evolution is a
core assumption for the methods in Section 5. This assumption can be used
to drive the learning process, i.e. to learn models that are structurally close
to those of the previous timepoint(s). Ahmed and Xing [3] rather model tem-
poral smoothness as a penalty in the loss function and allow it to be traded
off with data tness (cf. perspective taken in clustering under the assumption
of temporal smoothness, Section 5.1, Eq. 6.2). This allows for a proper ex-
ploitation of prior knowledge about the dynamics of the social network. As the
authors point out (page 11879ff), methods that take smooth evolution as a pre-
condition "may run into dif culties" in "cases where more turbulent dynamics
(e.g. sudden jumps) drives graph evolution." They have applied their method
TESLA on the voting record of the U.S. Senate Network for the period 2005-
2006 and have exemplarily highlighted the evolution in the voting behavior of
three senators.

In contrast to [3], Zhou et al. [50] stick to the assumption of temporal
smoothness and seek for a non-parametric method that can learn a sequence
of graph models from the smoothly evolving distribution. They model the in-
terplay between model quality and smoothness by two risk functions, one cap-
turing model persistency and the other capturing sparsistency (as the size of
the symmetric difference between two sets of edges). Then, they prove that if
the covariance changes smoothly over time, then their method (based on kernel
regression) delivers good estimates of the covariance matrix at each point.

The approaches in [50, 3] demonstrate how background knowledge can be
exploited in a proper and transparent way to model community evolution. If
the assumption of temporal smoothness is known to hold, then Zhou et al.
[50] deliver a non-parametric estimator with provably good performance on
sparse graphs. If it is not known whether the assumption holds, but tuning of
the hyperparameters from a reasonable number of samples is possible, then
Ahmed and Xing [3] show that the original problem translates into a convex
optimization problem with a smooth objective and linear constraint functions,
for which solvers are already available.

An assumption that is rather rarely addressed in studies of social network
dynamics concerns the number of nodes. A priori knowledge about all nodes
in the network is a core premise in [37, 3] who consider both the presence
and the absence of links, and model the emergence of new links as time pro-

3As the authors state, "instead of regularizing the community structure itself, we regularize the marginal
distribution induced by the community structure at time t (. . . ) so that it is not too far away from that at
time t − 1 (. . . ).
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gresses. This assumption is justi ed in a retrospective analysis of a network’s
evolution; as a matter of fact, Ahmed and Xing use the expression "recovering
time-varying networks" (also in the title of [3]) that re ects the intention of
understanding a network a posteriori. In contrast, for studies intending to un-
derstand how communities evolve at each timepoint, given a stream of activi-
ties, this assumption is unrealistic. As already noted in Section 5.1, approaches
like [28, 31, 30] that build upon the method of [11] have a heuristic for node
insertion and deletion.

5.2.3 Extending the Notion of Community. The method MetaFac of
Lin et al. [31], a followup of FacetNet [28], goes beyond the bipartite graph
representation of social data. The authors point out that social networks have
many different types of resources and allow for different actions on each one,
e.g. uploading pictures and tagging them, uploading, sharing, tagging and
commenting stories; some social sites allow users to interact with each other
directly, while others do not. Hence, Lin et al. propose the notion of multi-
relational hypergraph (metagraph) with hyperedges that capture the interac-
tion among two or more facets, i.e. entities of one or more types [31]. For
example, assigning a tag to a picture is a 3-way relation involving the facets
"user", "picture", "tag", while assigning a tag to a document involves the facet
"document" instead of "picture". It is of course still possible to observe doc-
uments and pictures as resources, but the new concept allows to deal with the
fact that documents may be associated with different properties (title, author,
content) than pictures. Thus, MetaFac addresses challenge C2 (section 3) on
the need to take information on each of the entities involved in the social net-
work into account when learning.

For model learning, Lin et al. identify three issues to be dealt with (cf. [31],
section 4): "(1) how to represent multi-relational social data (. . . ), (2) how to
reveal the latent communities consistently across multiple relations, and (3)
how to track the communities over time (. . . )." Multi-relational social data are
modeled in the metagraph that is implemented with multiple tensors, and a
new factorization is proposed for it. Objective of the MetaFac factorization is
to output a core tensor 4 and as many factors as there are facets, so that the
approximate reconstruction of a tensor from the core tensor and some factor(s)
is consistent with the reconstruction of each other tensor that involves one or
more of these factors. The approximation cost for one tensor is modeled as
Kubler-Leibler divergence, and the consistency is pursued by minimizing the
aggregated cost of all approximations. As in [28], KL-divergence is used to
express temporal smoothness [10], or, more precisely, the cost of deviating
from the previously learned model.

4The length of the core tensor is the number of latent communities and must be speci ed in advance.
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5.2.4 Complexity. A challenging issue of (dynamic) probabilistic
modeling concerns execution time, because the complexity is quadratic to the
number of nodes, if no optimizations are undertaken. The approach of Sarkar
and Moore achieves O(nlogn) complexity, where n is the number of nodes
[37]. For the Citeseer subnetwork of 9,364 nodes (studied in 6 time slots), the
recorded processing time was 3.5 hours, increasing to 4.5 hours for the Citeseer
subnetwork of 11,218 entities that were more densely connected; for studied
networks with up to 7000 edges, the reported time per iteration increased lin-
early to around 0.15 of a second and the number of iterations needed until
convergence was almost constant between 600 and 800, implying a total pro-
cessing time of less than 2 minutes [37].

While [37, 3] focus on reducing the complexity with respect to the number
of nodes, other methods in the domain study the complexity with respect to
the number of edges. For FacetNet [28], the complexity of each iteration (up-
dating the model) is O(N), where N is the number of edges in the snapshot
graph. The incremental algorithm of Yang et al. exploits data sparsity and also
achieves a complexity linear to the number of edges, if the network is sparse
[48].

Unfortunately, the results of [37, 3] and [28, 48] are not comparable to each
other. First, the methods in [37, 3] capture both the presence and the absence
of edges, hence they must refer to the number of entities in the network, while
[28, 48] can focus on the edges of the snapshot graph only. Second, FacetNet
studies bipartite graphs [28], while [37, 3] concentrate on graphs of direct in-
teractions between entities, hence the graphs are not of the same nature. The
structure of the networks studied by FacetNet is not detailed in [28], but one
may assume that the 7000 edges reported in [28] originate from much less than
the 9,000 entities studied in [37]. In any case, the absolute numbers reported
in [28] are very encouraging 5.

6. Laws of Evolution in Social Networks
In Section 2, we have pointed to a thread of research that aims to discover

laws that govern the evolution of all communities inside a social network (cf.
Figure 6.1, right side). Research advances in this thread include [19, 25, 27,
45, 26].

Some of the approaches in this thread use evolutionary algorithms, e.g. [45,
26], so they seem very close to the approaches discussed in the two previous
sections. However, algorithms that seek for laws of evolution derive a single
model, not a sequence of models (nor a mechanism that adapts a model from
one timepoint to the next). Second, these algorithms assume availability of all

5Yang et al. do not evaluate on execution time [48].
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time stamped data, i.e. treat the information on the social network as a time
series rather than a stream. In contrast, the incremental algorithms ofSsection
4 and the adaptive methods of Section 5 treat the data as a stream on which the
earlier model must be adapted at each time point. As a side-effect, algorithms
that derive one model of a social network’s dynamics can assume that all nodes
(network participants) are known in advance, while the algorithms of the two
previous sections must deal with newly arriving nodes (cf. challence C3.i of
section 3). In the following, we discuss two evolutionary algorithms of this
research thread.

In [26], Leskovec et al. study evolving social networks within a time hori-
zon. Their approach is evolutionary in the sense that they let the four real
networks under study grow edge-by-edge and then test how given models t
them, i.e. predict well the next event on the network. Hence, the (single)
learned model can predict how the network will evolve, whether a community
in it will decay or grow, given the events seen in the past (and assuming that
the data generating process is not changing). Remarkable for this method is
that it has been applied to large and popular networks (Flickr, Delicious, An-
swers, LinkedIn) and thus delivers insights on the laws governing the evolution
of each one.

Tantipathananandh et al. express the problem of community identi cation
in dynamic social networks as a graph coloring problem[45]. Their approach
is based on a set of assumptions about community membership, and thus, im-
plicitly, about what a community is. Brie y, their assumptions are that (i) com-
munities are distinct and well-separated entities, (ii) an individual is member
of exactly one community at each moment, (iii) moves rarely from one com-
munity to another, and (iv) such movements are towards a rather small number
of target communities. Further, (v) an individual expresses its presence within
the own community often and is much less present with members outside that
community. Hence, a community is a rather stable constellation that binds its
members - this binding is expressed as the community color. Accordingly,
there are different forms of cost associated with the migration from one com-
munity to another: cost incurs when an individual changes color and when the
individual is present/active but not with other individuals of the same color;
the more colors an individual changes, the higher the associated cost. Hence,
the objective of community mining is to nd a community interpretation that
minimizes cost. Tantipathananandh et al. show that this problem is NP-hard
but an approximate solution can be achieved with dynamic programming [45].
As with the previous method, the result is one model of the social network,
which should be re-learned if new data arrive.

Ultimately, the difference between the methods in this research thread and
those in the previous two sections is one of perspective. If the dynamic social
network should be analyzed retrospectively, then it is possible (and reasonable)
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to exploit all temporal data and treat them as a multivariate time series. The
methods we have focussed in this survey are rather those that treat the activities
in the dynamic social network as an ongoing stream, and thus never have access
to all data.

7. Conclusion
The eld of social network analysis is intensively studied and the subject of

community evolution gained momentum in the last years. Powerful methods
are being developed. Their focus is on capturing the multifaceted nature of
online social platforms, on detecting changes in community structure and on
expressing these changes in a comprehensible way. Despite the intensity of
research, many open issues remain, while new ones emerge together with the
latest research results.

An open issue of increasing importance is validation. There is an abundance
of real datasets with publicly available data from social platforms, but there is
no ground truth in them. Hence, verifying that the communities discovered by
a learning algorithm are indeed the real ones becomes a challenge by itself;
verifying that the community evolution patterns detected are the true ones is
even more dif cult. The pragmatic alternative pursued by many studies is to
show that the evolution patterns found are realistic, i.e. they conform to prior
knowledge or can be veri ed by inspection of the underlying data (see e.g.
experiments on real datasets in [31, 42, 14]). This approach is reasonable but
does not generalize well. First, an algorithm nds more evolving communities
in a large network than an expert can inspect. Second, some evolving com-
munities are easier to verify than others: it is easy to monitor a community
associated with a prominent person or a popular product, but very dif cult to

nd an explanation behind each change in one of the many communities of
anonymous and not very active users inside a social platform. A solution may
be the imputation of transparently speci ed evolution patterns in real data.

A further issue that emerged through the proliferation of many innovative
methods is comparability. Many methods turn to be incomparable with respect
to their goals, as the earlier mentioned approaches of Sarkar and Moore [37]
and [28], where dynamic probabilistic modeling is used upon the same data
but with different objectives. Nonetheless, it should be possible to compare
algorithms on their scalability towards number of nodes, network density or
different distributions of edges. The absence of even synthetic benchmarks has
lead to handcrafted experiments that are not always described in full detail.
Hence, there is need for data generators that can express the characteristics of
a real evolving social network.

Online social networks can have millions of nodes, but the distribution of
activity among the network members follows Zipf’s law. For incremental



170 SOCIAL NETWORK DATA ANALYTICS

tensor-based methods, this implies that huge initial tensors must be built at
each timepoint and that sophisticated heuristics (as in [11, 28]) are needed to

ll the entries for new nodes with imputed average values of some reliability.
The sheer number of such nodes makes it likely that the derived values may
affect the model. Even if there are no side-effects on the quality of the learned
model, there are effects on execution time and storage demand. There is need
for economical or even parsimonious use of resources when adapting models
upon sparse graphs. How this can be achieved with incremental methods that
process matrices or tensors is still an open issue, but there are solutions at least
in the area of dynamic topic modeling for text streams (see e.g. the methods
[4, 21] which use an evolving subset of the complete feature space).

The need for huge initial tensors emerges from the fact that social network
members, resources, tags and other entities encountered in a social platform are
perennial objects with inherent properties that can be exploited for learning but
may change in time. The challenges listed in Section 3 on synchronizing and
processing multiple streams of activities associated with such objects are not
yet covered by existing methods.

Presently, research on community evolution is driven by the need for pow-
erful methods that can extract good models from the data. The exploitation of
these models in applications is less investigated. For example, it is known that
communities have in uential members and that communities in uence their
members. Such facts are important for recommendation engines. But how to
incorporate knowledge about community evolution on the ranking of entities
recommended to a community member? And how do recommendations on en-
tities inside a social platform affect community formation and evolution? How
to select the most relevant community for an individual given the individual’s
current preferences and context, and how to adapt this selection as communi-
ties and individuals change with time? The coupling of community evolution
methods with advances in potential application domains can motivate applica-
tion owners to provide benchmark data, can deliver validation frameworks and
promote comparability, and can stimulate the formulation of further research
questions.
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Abstract Social in uence is the behavioral change of a person because of the perceived
relationship with other people, organizations and society in general. Social in-

uence has been a widely accepted phenomenon in social networks for decades.
Many applications have been built based around the implicit notation of social
in uence between people, such as marketing, advertisement and recommenda-
tions. With the exponential growth of online social network services such as
Facebook and Twitter, social in uence can for the rst time be measured over
a large population. In this chapter, we survey the research on social in uence
analysis with a focus on the computational aspects. First, we present statistical
measurements related to social in uence. Second, we describe the literature on
social similarity and in uences. Third, we present the research on social in u-
ence maximization which has many practical applications including marketing
and advertisement.

Keywords: Social network analysis, Social in uence analysis, Network centrality, In uence
maximization

1. Introduction
Social in uence refers to the behavioral change of individuals affected by

others in a network. Social in uence is an intuitive and well-accepted phe-
nomenon in social networks[22]. The strength of social in uence depends on
many factors such as the strength of relationships between people in the net-
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works, the network distance between users, temporal effects, characteristics of
networks and individuals in the network. In this chapter, we focus on com-
putational aspect of social in uence analysis and describe the measures and
algorithms related to it. More speci cally, we aim at qualitatively or quantita-
tively measuring the in uence levels of nodes and edges in the network.

This chapter is organized as follows. First, we present standard measures
and concepts of social networks in section 2. These measures are those of
centrality, closeness and betweenness, and are fundamentally related to the
concept of social in uence in terms of the structural effects of different edges
and nodes. These measures are also fundamental concepts about social net-
work analysis. In section 2, we present the qualitative and quantitative social
in uence analysis and applications. This has been well studied in sociology
research. Much of the work focuses on differentiating social correlation and
social in uence. Many qualitative models and tests have been proposed to ex-
plain social phenomena in social networks. However, most studies are limited
to smaller scale data sets and macro-level observation, partly because of the
lack of high-quality longitudinal data on social networks. In section 4, we
survey in uence maximization techniques, which go beyond simple statistic
measures such as centrality. We also present several applications of in uence
maximization. These include methods for predicting customer behavior and
online advertising through viral marketing. The conclusions are presented in
section 5.

2. In uence Related Statistics
A social network is modeled as a graph G = {V,E}, where V is the set of

nodes, and E is the set of edges. As is the convention, the links correspond
to actors (people) and the links correspond to social relationships. At the local
level, social in uence is a directional effect from node A to node B, and is
related to the edge strength from A to B. On a global level, some nodes can
have intrinsically higher in uence than others due to network structure. These
global measures are often associated with nodes in the network rather than
edges. We next present the concepts and measures at a local and global level
respectively.

2.1 Edge Measures
Edge measures relate the in uence-based concepts and measures on a pair

of nodes. Such measures explain simple in uence-related processes and inter-
actions between individual nodes.

Tie strength. According to Granovetter’s seminal work [32], the tie strength
between two nodes depends on the overlap of their neighborhoods. In partic-
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ular, the more common neighbors that a pair of nodes A and B may have, the
stronger the tie between them. If the overlap of neighborhoods between A and
B is large, we consider A and B to have a strong tie. Otherwise, they are con-
sidered to have a weak tie. We formally de ne the strength S(A,B) in terms
of their Jaccard coef cient.

S(A,B) =
|nA ∩ nB|
|nA ∪ nB|

Here, nA and nB indicate the neighborhoods of A and B, respectively. Some-
times, the tie strength is de ned under a different name called embeddedness.
The embeddedness of an edge is high if two nodes incident on the edge have
a high overlap of neighborhoods. When two individuals are connected by an
embedded edge, it makes it easier for them to trust one another, because it
is easier to nd out dishonest behavior through mutual friends [33]. On the
other end, when embeddedness is zero, two end nodes have no mutual friends.
Therefore, it is riskier for them to trust each other because there are no mutual
friends for behavioral veri cation.

A corollary from this tie strength is the hypothesis of triadic closure. This
relates to the nature of the ties between sets of three actors A, B, and C. If
strong ties connect A to B and A to C, then B and C are likely to be connected
by a strong tie as well. Conversely, if A-B and A-C are weak ties, B and C are
less likely to have a strong tie. Triadic closure is measured by the clustering
coef cient of the network[35, 67]. The clustering coef cient of a node A is
de ned as the probability that two randomly selected friends of A are friends
with each other. In other words, it is the fraction of pairs of friends of A that
are linked to one another. This is naturally related to the problem of triangle
counting in a network. Let nΔ be the number of triangles in the network and
|E| be the number of edges. The clustering coef cient is formally de ned as
follows:

C =
6nΔ

|E|
The naive way of counting the number of triangles nΔ is expensive. An inter-
esting connection between nΔ and the eigenvalues of the network was discov-
ered by Tsourakakis [66]. This work shows that nΔ is approximately equal to
the third-moment of the eigenvalues (or

∑
λ3
i , where λi is the ith eigenvalue).

Given the skewed distribution of eigenvalues, the triangle counts can be ap-
proximated by computing the third moment of only a small number of the top
eigenvalues. This also provides an ef cient way for computing the clustering
coef cient, because the top few eigenvalues can be computed more ef ciently
than the exhaustive determination of all the eigenvalues.

Weak ties. When the overlap of the neighborhoods of A and B is small, the
connection A-B is considered to be a weak tie. When there is no overlap, the
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connection A-B is a local bridge [32]. In the extreme case, the removal of A-B
may result in the disconnection of the connected component containing A and
B. In such a case, the connection A-B may be considered a global bridge. It
may be argued that in real networks, global bridges occur rarely as compared
to local bridges. However, the effect of local and global bridges is quite similar.

Edge Betweenness. Another important measure is the edge betweenness,
which measures the total amount of ow across the edge. Here, we assume
that the information ow between A and B are evenly distributed on the short-
est paths between A and B. Freeman [27, 28] rst articulated the concept of
betweenness in the context of sociology. One application of edge between-
ness is that of graph partitioning. The idea is to gradually remove edges of
high betweenness scores to turn the network into a hierarchy of disconnected
components. These disconnected components will be the clusters of nodes in
the network. More detailed studies on clustering methods are presented in the
work by Girvan and Newman [29].

2.2 Node Measures
Node-based centrality is de ned in order to measure the importance of a

node in the network. Centrality has attracted a lot of attention as a tool for
studying social networks [28, 9]. A node with high centrality score is usu-
ally considered more highly in uential than other nodes in the network. Many
centrality measures have been proposed based on the precise de nition of in-

uence. The main principle in categorizing the centrality measures is the type
of random walk computation involved. In particular, centrality measures can
be grouped into two categories: radial and medial measures [9]. Radial mea-
sures assess random walks that start or end from a given node. On the other
hand, medial measures assess random walks that pass through a given node.
The radial measures are further categorized into volume measures and length
measures based on the type of random walks. Volume measures x the length
of walks and nd the volume (or number) of the walks limited by the length.
Length measures x the volume of the target nodes and nd the length of walks
to reach the target volume. Next, we introduce some popular centrality mea-
sures based on these categories.

Degree. The rst group of the centrality measures is that of the radial and
volume-based measures. The simplest and most popular measure in this cate-
gory is that of degree centrality. Let A be the adjacency matrix of a network,
and deg(i) be the degree of node i. The degree centrality cDEG

i of node i is
de ned to be the degree of the node:

cDEG
i = deg(i).
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One way of interpreting the degree centrality is that it counts the number of
paths of length 1 that starts from a node. A natural generalization from this
perspective is the K − path centrality which is the number of paths of length
at most k that start from a node.

Another class of measures are based on the diffusion behavior in the net-
work. The Katz centrality [40] counts the number of walks starting from
a node, while penalizing longer walks. More formally, the Katz centrality
cKATZ
i of node i is de ned as follows:

cKATZ
i = eTi (

∞∑
j=1

(βA)j)1

Here, ei is a column vector whose ith element is 1, and all other elements are
0. The value of β is a positive penalty constant between 0 and 1.

A slight variation of the Katz measure is the Bonacich centrality [8] which
allows for negative values of β. The Bonacich centrality cBON

i of node i is
de ned as follows:

cBON
i = eTi (

1

β

∞∑
j=1

(βA)j)1

Here the negative weight allows to subtract the even-numbered walks from the
odd-numbered walks which have an interpretation in exchange networks [9].
The Katz and the Bonacich centralities are special cases of the Hubbell cen-
trality [37]. The Hubbell centrality cHUB

i of node i is de ned to be

cHUB
i = eTi (

∞∑
j=0

Xj)y

Here, X is a matrix and y is a vector. It can be shown that X = βA and
y = βA1 lead to the Katz centrality, and X = βA and y = A1 lead to the
Bonacich centrality. The eigenvector centrality [7], the principal eigenvector
of the matrix A, is related to the Katz centrality: the eigenvector centrality is
the limit of the Katz centrality as β approaches 1

λ from below [9].

Closeness. The second group of the centrality measures is that of radial and
length based measures. Unlike the volume based measures, the length based
measures count the length of the walks. The most popular centrality measure in
this group is the Freeman’s closeness centrality [28]. It measures the centrality
by computing the average of the shortest distances to all other nodes. Then,
the closeness centrality cCLO

i of node i is de ned as follows:

cCLO
i = eTi S1.

Here S be the matrix whose (i, j)th element contains the length of the shortest
path from node i to j and 1 is the all one vector.
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Node Betweenness. As is the case for edges of high betweenness, nodes
of high betweenness occupy critical positions in the network structure, and are
therefore able to play critical roles. This is often enabled by a large amount
of ow, which is carried by nodes which occupy a position at the interface of
tightly-knit groups. Such nodes are considered to have high betweenness. The
concept of betweenness is related to nodes that span structural holes in a social
network. We will discuss more on this point slightly later.

Another popular group of the centrality measures is that ofmedialmeasures.
It is called ‘medial’ since all the walks passing through a node are considered.
The most well-known centrality in this group is the Freeman’s betweenness
centrality [27]. It measures how much a given node lies in the shortest paths of
other nodes. The betweenness centrality cBET

i of node i is de ned as follows:

cBET
i =

∑
j,k

bjik
bjk

Here bjk is the number of shortest paths from node j to k, and bjik be the
number of shortest paths from node j to k that pass through node i.

The naive algorithm for computing the betweenness involves all-pair short-
est paths. This requires Θ(n3) time and Θ(n2) storage. Brandes [10] designed
a faster algorithm with the use of n single-source-shortest-path algorithms.
This requires O(n+m) space and runs in O(nm) and O(nm+n2 log n) time,
where n is the number of nodes and m is the number of edges.

Newman [52] proposed an alternative betweenness centrality measure based
on random walks on the graph. The main idea is that instead of considering
shortest paths, it considers all possible walks and computes the betweenness
from these different walks. Then, the Newman’s betweenness centrality cNBE

i
of node i is de ned as follows:

cNBE
i =

∑
j �=i�=k

R
(i)
jk .

Here R(i) be the matrix whose (j, k)th element R(i)
jk contains the probability of

a random walk from j to k, which contains i as an intermediate node.

Structural holes. In a network, we call a node a structural hole if it is con-
nected to multiple local bridges. A canonical example is that an actor’s success
within a social network1 often depends on their access to local bridges [12].
By removing such an actor, an “empty space” will occur in the network. This
is referred to as a structural hole. The actor who serves as a structural hole

1This analogously refers to a person’s success within a company or organization.
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can interconnect information originating from multiple noninteracting parties.
Therefore, this actor is structurally important to the connectivity of diverse
regions of the network. Another interesting point is that the interests of the
actor representing a structural hole and of the organization may not be aligned.
For the organization, accelerating the information ow between groups could
be bene cial, which requires building of bridges. However, this building of
bridges would come at the expense of structural hole’s latent power of regulat-
ing information ow at the boundaries of these groups.

3. Social Similarity and In uence
A central problem for social in uence is to understand the interplay between

similarity and social ties [20]. A lot of research has tried to identify in u-
ence and correlation in social networks from many different aspects: social
similarity and in uence [2, 20]; marketing through social in uence [21, 55],
in uence maximization [41]; social in uence model and practice through con-
formity, compliance and obedience [18, 24], and social in uence in virtual
worlds [23, 5].

3.1 Homophily
Homophily [43] is one of the most fundamental characteristics of social net-

works. This suggests that an actor in the social network tends to be similar to
their connected neighbors or “friends”. This is a natural result, because the
friends or neighbors of a given actor in the social network are not a random
sample of the underlying population. The neighbors of a given actor in the
social network are often similar to that actor along many different dimensions
including racial and ethnic dimensions, age, their occupations, and their inter-
ests and beliefs. McPherson et al. [48] provide an extensive review of research
in the long and rich history on homophily. Singla et al. [60] has conducted a
large-scale experiment of homophily on real social networks, which includes
data from user interactions in the MSN Messenger network and a subset of
Microsoft Web search data collected in the summer of 2006. They observe
that the similarities between friends is signi cantly larger than a random pair-
wise sample, especially in attributes such as age, location and query category.
This experiment con rms the existence of homophily at a global scale in large
online social networks.

The phenomenon of homophily can originate from many different mecha-
nisms:

Social in uence: This indicates that people tend to follow the behav-
iors of their friends. The social in uence effect leads people to adopt
behaviors exhibited by their neighbors.
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Selection: This indicates that people tend to create relationships with
other people who are already similar to them;

Confounding variables: Other unknown variables exist, which may cause
friends to behave similarly with one another.

These three factors are often intertwined in real social networks, and the over-
all effect is to provide a strong support for the homophily phenomenon. In-
tuitively, the effects of selection and social in uence lead to different applica-
tions in mining social network data. In particular, recommendation systems are
based on the selection/social similarity, while viral marketing [21, 55] is based
on social in uence. To model these different factors, several models have been
proposed [36, 20].

Generative models for selection and in uence. Holme and Newman [36]
proposed a generative model to balance the effects of selection and in uence.
The idea is to initially place the M edges of the network uniformly at ran-
dom between vertex pairs, and also assign opinions to vertices uniformly at
random. With this initialization, an in uence- and selection-based dynamic is
simulated. Each step of the simulation either moves an edge to lie between two
individuals whose opinions agree (selection process), or we change the opin-
ion of an individual to agree with one of their neighbors (in uence process).
The results of their simulation con rmed that the selection tend to generate a
large number of small clusters, while social in uence will generate large co-
herent clusters. Thus, this interesting model suggests that these two factors
both support clusters in the network, though the nature of such clusters is quite
different.

Every vertex in the Holme-Newman model [36] at a given time can only
have one opinion. This may be an oversimpli cation of real social networks.
To address this limitation, Crandall et al. [20] introduced multi-dimensional
opinion vectors to better model complex social networks. In particular, they
assumed that there is a set of m possible activities in the social network. Each
node v at time t has an m-dimensional vector v(t), where the ith coordinate
of v(t) represents the extent to which person v is engaging in activity i. They
use cosine similarity to compute the similarity between two people. Similar
to the Holme-Newman model, Crandall et al. also propose a more compre-
hensive generative model which samples a person’s activities based on their
own history, their neighbors’ history, and a background distribution. Cran-
dall’s model is arguably more powerful, but also requires more parameters.
Therefore more data is required in order to learn the parameters. Finally, they
applied their model and conducted a predictive modeling study on wikipedia
and live journal datasets. The bene t of the proposed similarity model are still
inconclusive.
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Quantifying in uence and selection. Subsequent to the work in [20],
Scripps et al. [58] proposed the formal computational de nitions of selection
and in uence. We formally de ne selection and in uence as follows:

Selection =
p(atij = 1|at−1ij = 0, 〈xt−1i , xt−1j 〉 > ε)

p(atij = 1|at−1ij = 0)

Here, the denominator is the conditional probability that an unlinked pair
will become linked and the numerator is the same probability for unlinked pairs
whose similarity exceeds the threshold ε. Values greater than one indicate the
presence of selection.

Influence =
p(〈xti, xtTj 〉 > 〈xt−1i , xt−1j 〉|at−1ij = 0, atij = 1)

p(〈xti, xtj〉 > 〈xt−1i , xt−1j 〉|at−1ij = 0)

Here, the numerator is the conditional probability that similarity increases from
time t−1 to t between two nodes that became linked at time t and the denomi-
nator is the probability that the similarity increases from time t−1 to t between
two nodes that were not linked at time t− 1. As with selection, values greater
than one indicate the presence of in uence.

Based on this de nition, Scripps et al. [58] present a matrix alignment
framework by incorporating the temporal information to learn the weight of
different attributes for establishing relationships between users. This can be
done by optimizing (minimizing) the following objective function:

minW

T∑
t=1

‖At −Xt−1WX(t−1)	‖2F (7.1)

where the diagonal elements of W correspond to the vector of weights of at-
tributes and ‖ · ‖F denotes the Frobenius norm. Solving the objective function
(Eq. 7.1) is equivalent to the problem of nding the weights of different at-
tributes associated with users. A distortion distance function is used to measure
the degree of in uence and selection.

The above method can be used to analyze in uence and selection. However,
it does not differentiate the in uence from different angles (topics). Several
theories in sociology [32, 42] show that the effect of the social in uence from
different angles (topics) may be different. This can be easily understood by
observing different social phenomenon for different angles. For example, col-
leagues have strong in uence on an actor’s work, whereas friends have strong
in uence on an actor’s daily life. Thus, there are several challenging problems
in terms of differentiating the social in uences from different angles (topics).
A number of key questions arise in this context. (a) How do we quantify the
strength of those social in uences? (b) How do we construct a model and
estimate the model parameters for real large networks?
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Topic-level Social in uence Analysis on Co-author Network.

The motivation can be further explained using Example Figure 3.1.0.0. The
left gure illustrates the input, which is a co-author network of 7 researchers,
and the topic distribution of each researcher. For example, George has the same
probability (.5) on both topics, “data mining” and “database”; The right gure
shows the output of our social in uence analysis: two social in uence graphs,
one for each topic, where the arrows indicate the direction and strength. We
see that Ada is the key person on “data mining”, while Eve is the key person
on “databases”. Thus, the goal is to effectively and ef ciently obtain the social
in uence graphs for real and large networks.

To address this problem, Tang et al. [63] propose a Topical Factor Graph
(TFG) model to formalize the topic-level social in uence analysis into a uni ed
graphical model, and present Topical Af nity Propagation (TAP) for model
learning. In particular, the goal of the model is to simultaneously capture the
user topical distributions (or user interests), similarity between users, and net-
work structure. Figure 7.1 shows the graphical structure of the proposed model.
The TFG model has a set of observed variables {vi}Ni=1 and a set of hidden
vectors {yi}Ni=1, which correspond to the N nodes in the input network.

The hidden vector yi ∈ {1, . . . , N}T models the topic-level in uence from
other nodes to node vi. Each element yzi takes the value from the set {1, . . . , N},
and represents the node that has the highest probability to in uence node vi on
topic z.

For example, Figure 7.1 shows a simple example of an TFG. The observed
data consists of four nodes {v1, . . . , v4}, which have corresponding hidden
vectors Y = {y1, . . . , y4}. The edges between the hidden nodes indicate the
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Figure 7.1. Graphical representation of the topical factor graph model.
{v1 . . . v4} are observable nodes in the social network; {y1 . . . y4} are hidden vectors de ned

on all nodes, with each element representing which node has the highest probability to
in uence the corresponding node; g(.) represents a feature function de ned on a node, f(.)

represents a feature function de ned on an edge; and h(.) represents a global feature function
de ned for each node, i.e. k ∈ {1 . . . N}.

four social relationships in the original network (or edges in the original net-
work).

Three types of feature functions are de ned in order to capture the net-
work information: node feature function g(vi, yi, z), edge feature function
f(yi, yj, z), and global feature function h(y1, . . . , yN , k, z).

The node feature function g describes the local information on nodes (e.g.,
attributes associated with users or topical distribution of users). The edge fea-
ture function f describes the correlation between users via the edge on the
graph model, and the global feature function captures constraints de ned on
the network. Based on the formulation, an objective function is de ned by
maximizing the likelihood of the observation.

P (v,Y) =
1

Z

N∏
k=1

T∏
z=1

h(y1, . . . , yN , k, z)

N∏
i=1

T∏
z=1

g(vi, yi, z)
∏

ekl∈E

T∏
z=1

f(yk, yl, z) (7.2)

Here, Z is a normalizing factor; v = [v1, . . . , vN ] and Y = [y1, . . . , yN ] corre-
sponds to all observed and hidden variables, respectively. The feature function
f , g, and h can be de ned in multiple different ways. For example, in the
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work described in [63], f is de ned with binary values in order to capture the
existence of the edge between two users; the node feature function g is de-

ned according to the similarity of two users on a topic; and the global feature
function h is de ned as a constraint.

Based on this formulation, the task of social in uence is cast as that of iden-
tifying the node which has the highest probability to in uence another node on
a speci c topic along with the edge. This is the same as that of maximizing the
likelihood function P (v,Y).

3.2 Existential Test for Social In uence
Anagnostopoulos et al. [2] try to differentiate social in uence from ho-

mophily or confounding variables by proposing the shuf e test and edge re-
versal test. The idea of shuf e test is that if social in uence does not play
a role, even though an agent’s probability of activation could depend on her
friends, the timing of such an activation should be independent of the timing
of other agents. Therefore, the data distribution and characteristics will not
change even if the exact time of occurrence is shuf ed around. The idea of
edge-reversal test is that other forms of social correlation (than social in u-
ence) are only based on the fact that two friends often share common charac-
teristics or are affected by the same external variables and are independent of
which of these two individuals has named the other as a friend. Thus, reversing
the edges will not change our estimate of the social correlation signi cantly.
On the other hand, social in uence spreads in the direction speci ed by the
edges of the graph, and hence reversing the edges should intuitively change
the estimate of the correlation. Anagnostopoulos and et al. [2] test their mod-
els using tagging data from Flickr and validate social in uence as a source of
correlation between the actions of individuals with social ties.

The proposed tests in [2] assume a static network, which is true in many real
social networks. LaFond and Neville [25] propose a different randomization
test with the use of a relational autoregression model. More speci cally, they
propose to model the social network as a time-evolving graph Gt = (V,Et)
where V is the set of all nodes, Et is the set of all edges at time t. Besides Gt,
the nodes have some attribute at time t denoted by Xt. The main idea is that
selection and social in uence can be differentiated through the autocorrelation
between Xt and Gt . On the one hand, the selection process can be represented
as a causal relationship from Xt−1 to Gt, which means the node attributes at
time t− 1, i.e., Xt−1, determines the social network at Gt. On the other hand,
the social in uence can be represented as the causal relation from Gt−1 to
Xt, which means the social network at time t, i.e., Gt, determines the node
attributes at time t, i.e., Xt .
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Aral et al. [3] propose a diffusion model for differentiating selection and
social in uence. In particular, their intuition is that although the diffusion pat-
terns created by peer in uence-driven contagions and homophilous diffusion
are similar, the effects are likely to result in signi cantly different dynamics.
In uence-driven contagions are self-reinforcing and display rapid, exponential,
and less predictable diffusion as they evolve, whereas selection-driven diffu-
sion processes are governed by the distributions of characteristics over nodes.
In [3], they develop a matched sample estimation framework to distinguish
in uence and homophily effects in dynamic networks.

Social in uence in Healthcare. Christakis and Fowler studied the effect of
social in uence on health related issues including alcohol consumption [56],
obesity [16], smoking [17], trouble sleep [49], loneliness [13], happiness [26].
In these studies, they use longitudinal data covering roughly 12,000 people
and correlate health status and social network structure over a 32-year period.
They found that clusters of nodes with similar health status in the network. In
another word, people tend to be more similar in health status to their friends
than in a random graph. The main focus of all these studies is to explain why
homophily of health status is present. The analysis in Christakis and Fowler ar-
gues that, even accounting for effects of selection and confounding variables,
there is signi cant evidence for social in uence as well. The evidence sug-
gests that health status can be in uenced by the health status of the neighbors.
For example, their obesity study [16] suggests that obesity may exhibit some
amount of “contagion” in the social network. Although people do not necessar-
ily catch it as the way one catches the u, it can spread through the underlying
social network via the mechanism of social in uence. Similar observations
of their study on alcohol consumption[56] discover that clusters of drinkers
and abstainers were present in the network at all time points, and the clusters
extended to 3 degrees of separation through the social network. These clus-
ters were not only due to selective formation of social ties among drinkers but
also seem to re ect social in uence. Changes in the alcohol consumption be-
havior of a person’s social network had a statistically signi cant effect on that
person’s subsequent alcohol consumption behavior. The behaviors of immedi-
ate neighbors and co-workers were not signi cantly associated with a person’s
drinking behavior, but the behavior of relatives and friends was.

3.3 In uence and Actions
In uence is usually re ected in changes in social action patterns (user be-

havior) in the social network. Recent work [31, 68] has studied the problem
of learning the in uence degree from historical user actions, while some other
work [58, 64] investigates how social actions evolve in the context of the net-
work, and how such actions are affected by social in uence factors. Before
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introducing these methods, we will rst de ne the time-varying attribute aug-
mented networks with user actions:

Definition 7.1 Time-varying attribute-action augmented network:
The time-varying attribute-action augmented network is denoted as Gt =
(V t, Et,Xt, Y t), wheren V t is the set of users and Et is the set of links be-
tween users at time t, Xt represents the attribute matrix of all users in the
network at time t and Y t represents the set of actions of all users at time t.

For all actions, they de ne a set of action tuples as Y = (v, y, t), where
v ∈ V t, t ∈ 1, · · · , T , and y ∈ Y t.
Learning in uence probabilities Goyal et al. [31] study the problem of learn-
ing the in uence degrees (called probabilities) from a historic log of user ac-
tions. They present the concept of user in uential probability and action in-

uential probability. The assumption is that if user vi performs an action y at
time t and later (t′ > t) his friend vj also perform the action, then there is
an in uence from vi on vj . The goal of learning in uence probabilities [31]
is nd a (static of dynamic) model to best capture the user in uence and ac-
tion in uence information in the network. They give a general user in uential
probability and action in uential probability de nitions as follows:

User In uence Probability

infl(vi) =
|{y|∃v,Δt : prop(a, vi, vj ,Δt) ∧ 0 ≤ Δt|

Yvi

Action In uence Probability

infl(y) =
|{vi|∃vj,Δt : prop(a, vj, vi,Δt) ∧ 0 ≤ Δt}|

number of users performing y

where Δt = tj − ti represents the difference between the time when user vj
performing the action and the time when user vi performing the action, given
eij = 1; prop(a, vi, vj ,Δt) represents the action propagation score.

Goyal et al. [31] propose three methods in order to approximate the action
propagation prop(a, vi, vj ,Δt): 1) static model (based on Bernoulli distribu-
tion, Jaccard Index, and Partial Credits), 2) Continuous Time (CT) Model, and
3) Discrete Time (DT) Model. The model can be learned with a two-stage algo-
rithm. Finally, the learned in uence probabilities have been applied to action
prediction and the experiments show that the Continuous Time (CT) model can
achieve a better performance than other models on the Flickr social network
with the action of “joining a group”.
Social action tracking The main advantage of methods proposed in [31] is
that the model is scalable and it is effective for a large social network. One
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Figure 7.2. Social in uence. The x-axis stands for the percentage of one’s friends who per-
form an action at t − 1 and the y-axis represents the likelihood that the user also performs the
action at t.

limitation is that it ignores the correlation between user actions, and it also
does not consider the attributes associated with each user node.

To address this problem, Tan et al. [62] propose the social action tracking
problem. This problem discusses how to simultaneously model the social net-
work structure, user attributes and user actions over time. They perform an
analysis on three real social networks: Twitter2, Flickr3, and Arnetminer4. On
Twitter, the action is de ned as whether a user discusses the topic “Haiti Earth-
quake” on his microblogs (tweets). On Flickr, the action is de ned as whether
a user adds a photo to his favorite list. In the case of Arnetminer, the action
is de ned as whether a researcher publishes a paper on a speci c conference
(or journal). The analysis includes three aspects: (1) social in uence; (2) time-
dependency of user actions; (3) action correlation between users. Figure 7.2
[62] shows the effect of social in uence. We see that with the percentage of
one’s friends performing an action increasing, the likelihood that the user also
performs the action is increased. For example, when the percentage of one’s
friends discussing “Haiti Earthquake” on their tweets increases the likelihood
that the user herself posts tweets about “Haiti Earthquake” is also increased
signi cantly. Figure 7.3 illustrates how a user’s action is dependent on his his-
toric behaviors. It can be seen that a strong time-dependency exists for users’
actions. For instance, on Twitter, averagely users who posted tweets about
“Haiti Earthquake” will have a much higher probability (+20 to 40%) to post
tweets on this topic than those who never discussed this topic on their blogs.
Figure 7.4 shows the correlation between users’ actions at the same timestamp.
An interesting phenomenon is that friends may perform an action at the same
time. For example, on Twitter, two friends have a higher probability (+19.6%)
to discuss the “Haiti Earthquake” than two users randomly chosen from the
network.

2http://www.twitter.com, a microblogging system.
3http://www. ickr.com, a photo sharing system.
4http://arnetminer.org, an academic search system.
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Figure 7.3. Time-dependency of user actions. The x-axis stands for different timestamps. “de-
pendent” denotes the likelihood that a user performs an action which was previously performed
by herself; “average” represents the likelihood that a user performs the action.
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In order to model and track social in uence and user actions, Tan et al.
[62] propose a Noise-Tolerant Time-varying Factor Graph Model (NTT-FGM),
which is based on three intuitions:

1 User actions at time t are in uenced by their friends’ historic actions
(time < t).

2 User actions at time t are usually dependent on their previous actions.

3 User actions at a same time t have a (strong) correlation.

Moreover, the discrete variable yti only models the user action at a coarse
level, but cannot describe the intention of the user to perform an action. Di-
rectly modeling the social action Y would inevitably introduce noise into the
model. A continuous variable for modeling the action bias is favorable. Thus,
the concept of latent action state is presented:

Definition 7.2 Latent action state: For each user action yti , we de ne a
(continuous) latent state zti ∈ [0, 1], which corresponds to a combination of
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Figure 7.5. Graphical representation of the NTT-FGM model. Each circle stands for a user’s
latent action state zti at time t in the network, which is used to characterize the intention degree
of the user to perform the action; the latent state is associated with the action yt

i , a vector of
attributes xt

i , and depends on friends’ historic actions zt−1
∼vi and correlates with friends’ actions

zt∼vi at time t; g(.) denotes a factor function to represent the friends’ in uence on a user’s
action; hi(.) represents a factor de ned on user vi’s attributes; and hij(.) represents a factor to
capture the correlation between users’ actions.

the observed action yi and a possible bias, to describe the actual intensity of
the intention of the user to perform the action.

Figure 7.5 shows the graphical structure of the NTT-FGM model. An action
of user vi at time t, i.e., yti is modeled by using a (continuous) latent action
state zti , which is dependent on friends’ historic actions zt−1∼vi (where ∼ vi rep-
resents friends of user vi in the network), users’ action correlation zt∼vi , and
users’ attributes xti. Speci cally, in the NTT-FGM model, each discrete action
is mapped into the latent state space and the action bias is modeled using a
factor function. For example, for yti = 1, a small value of its corresponding zti
suggests that a user vi has a low intention to perform the action, thus a large
action bias |yti − zti |. Next, in uence between users is modeled using the la-
tent states based on the same assumption: latent states of user actions at time
t are conditionally independent of all the previous states given the latent states
at time t − 1. Finally, the correlation between actions is also modeled in the
latent state space. A Markov random eld is de ned to model the dependency
(correlation) among the continuous latent states.

Thus, given a series of attribute-augmented networks denoted by G = {Gt =

(V t, Et, Xt, Y t)}, where t ∈ {1, · · · , T} and V = V 1∪V 2∪ . . .∪V T , |V | = N , the joint
distribution over the actions Y given G can be written as follows:

p(Y|G) =

T∏
t=1

N∏
i=1

f(yti |zti)f(zti |zt−1∼vi)f(z
t
i |zt∼vi , xti) (7.3)

where notation ∼ vi represents neighbors of vi in the social network. The joint
probability has three types of factor functions:



194 SOCIAL NETWORK DATA ANALYTICS

Action bias factor: f(yti |zti) represents the posterior probability of user
vi’s action yi at time t given the continuous latent state zti ;

In uence factor: f(zti |zt−1∼vi) re ects friends’ in uence on user vi’s action
at time t;

Correlation factor: f(zti |zt∼vi , xti) denotes the correlation between users’
action at time t.

The three factors can be instantiated in different ways, re ecting the prior
knowledge for different applications. Finally, in the work [62], all the three
factor function are de ned by quadratic functions due to two reasons: the
quadratic function is integrable and it offer the possibility to design an exact
solution to solve the objective function (joint probability). Finally, the model
is learned using an EM-style algorithm and for scale up to large-scale data sets,
a distributed learning algorithm has been designed based on the MPI (Message
Passing Interface).
Mixture model for user actions Manavoglu et al. [47] propose a mixture-
model based approach for learning individualized behavior (action) models for
Web users where a behavior model is a probabilistic model describing which
actions the user will perform in the future.

They rst build a global behavior model for the entire population and then
personalize this global model for the existing users by assigning each user indi-
vidual component weights for the mixture model, and then use these individual
weights to group the users into behavior model clusters. Finally they show that
the clusters generated in this manner are interpretable and able to represent
dominant behavior patterns.

They claim that they are able to eliminate one of the biggest problems of
personalization, which is the lack of suf cient information about each indi-
vidual. This is achieved by starting with a global model and optimizing the
weights for each individual with respect to the amount of data available for
him or her.

Speci cally, for each action in a user session, the history H(U) is de-
ned by the ordered sequence of actions, which have been observed so far.

Their behavior model for individual U is a model, that predicts the next action
Anext given the history H(U). Therefore the problem is to infer this model,
P (Anext|H(U),Data), for each individual given the training data. For exam-
ple, the Markov model is often used for such problems.

In the rst stage, they use a global mixture model to capture the ordered
sequence of actions for an individual U as follows:

P (Anext|H(U),Data) =

Nc∑
k=1

αkP (Anext|H(U),Data, k) (7.4)
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Here the prior probability of cluster k is denoted by αk, and therefore we

have
Nc∑
k=1

αk = 1. The distribution for the k-th component is denoted by the

notation P (Anext|H(U),Data, k). For the global model, the different αk take
on the same values across all the users.

There are two ways to model the cluster-speci c distributions: a rst or-
der Markov model and the maximum entropy model. Regarding the Markov
model, we can use the following way to model the k-th cluster distribution

P (Anext|H(U),Data, k) ∝ θ0,k

|H(U)|∏
h=1

θh→(h+1),k (7.5)

where θ0,k is the probability of observing H(U)0 as the rst action in the his-
tory, and θh→(h+1),k is the probability of observing a transition from action
number h to action number h+ 1 in the history.

In the second stage, we personalize the mixture model by using individual
cluster probabilities, αU,k’s, for each user as follows:

PU (A
next|H(U),Data) =

Nc∑
k=1

αU,kP (Anext|H(U),Data, k) (7.6)

where
Nc∑
k=1

αU,k = 1. The component distribution, P (Anext|H(U),Data, k),

is the same as in global mixture model: either maximum entropy or Markov
model, which is xed across all users.

An EM-style algorithm is utilized to estimate the model parameters.

3.4 In uence and Interaction
Besides the attribute and user actions, in uence can be also re ected by the

interactions between users. Typically, online communities contain ancillary
interaction information about users. For example, a Facebook user has a Wall
page, where her friends can post messages. Based on the messages posted on
the Wall, one can infer which friends are close and which are acquaintances
only. Similarly, one can use follower and following members on Twitter to
infer the strength of a relationship.

Xiang et al [68] propose a latent variable model to infer relationship strength
based on pro le similarity and interaction activity, with the goal of automat-
ically distinguishing strong relation- ships from weak ones. The model at-
tempts to represent the intrinsic causality of social interactions via statistical
dependencies. It distinguishes interaction activity from user pro le data, and
integrates two types of information by considering the relationship strength to



196 SOCIAL NETWORK DATA ANALYTICS

Figure 7.6. From blog graph to in uence graph

be the hidden effect of user pro le similarities, as well as the hidden cause of
the interactions between users.

The input to the problem can be considered an attribute-augmented network
G = (V,E,X) with interaction information mij ⊂ M between users, where
mij is a set of different interactions between users vi and vj . The model also
uses continuous latent variable z, but for each link rather than action. The
latent variable can be further treated as the strength of the social in uence.

There are some methods aiming to model social in uence using a link anal-
ysis method. The basic idea is similar to the concept of random walks. Java et
al. [39] employ such a method to model the in uence in online social networks.

Figure 7.6 shows the conversion of a blog network into an in uence graph.
A link from u to v indicates that u is in uenced by v. The edges in the in uence
graph are the reverse of the blog graph to indicate this in uence. Multiple
edges indicate stronger in uence and are weighted higher. In the in uence
graph, the direction of edges is opposite as the blog graph. The in uence
weight Wu,v can be computed by the following expression:

Wu,v =
Cu,v

dv

Based on the in uence graph, they proposed several typical applications, such
as spam detection and node selection. The classical PageRank and HITS algo-
rithms can also be employed here.

3.4.1 In uence and Friendship Drift. Sarkar et al. [57] study the
problem of friendships drifting over time. They explore two aspects of social
network modeling by the use of a latent space model. First, they generalize a
static model of relationships into a dynamic model that accounts for friendships
drifting over time. Second, they show how to make it tractable to learn such
models from data, even as the number of entities n gets large. The generalized
model associates each entity with a point in p-dimensional Euclidean latent
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space. The points can move as time progresses but large moves in latent space
are improbable. Observed links between entities are more likely if the entities
are close in latent space. They show how to make such a model tractable (sub-
quadratic in the number of entities) by the use of the following characteristics
(a) appropriate kernel functions for similarity in latent space; (b) the use of low
dimensional KD-trees; (c) a new ef cient dynamic adaptation of multidimen-
sional scaling for a rst pass of approximate projection of entities into latent
space; and (d) an ef cient conjugate gradient update rule for non-linear local
optimization in which amortized time per entity during an update is O(logn).
They use both synthetic and real data on up to 11,000 entities which indicate
near-linear scaling in computation time and improved performance over four
alternative approaches. We also illustrate the system operating on twelve years
of NIPS co-authorship data.

3.4.2 In uence and Autocorrelation. Autocorrelation refers to corre-
lation between values of the same variable (e.g., action or attribute) associated
with linked nodes (users) [51]. More formally, autocorrelation in social net-
works, and in particular for in uence analysis, can be de ned with respect to a
set of linked users eij = 1, eij ∈ E and an attribute matrix X associated with
these uses, as the correlation between the values of X on these instance pairs.

Neville et al. provide an overview of research on autocorrelation in a num-
ber of elds with an emphasis on implications for relational learning, and out-
line a number of challenges and opportunities for model learning and inference
[51]. Social phenomena such as social in uence, diffusion processes, and the
principle of homophily give rise to autocorrelated observations as well, through
their in uence on social interactions that govern the data generation process.

Another related topic is referred to as collective behavior in social networks.
Essentially, collective behavior modeling is to understand the behavior corre-
lation in the social network. For this purpose, much work has been done. For
example, Tang and Liu [65] aim to predict collective behaviors in social media.
In particular, they try to answer the question: given information about some in-
dividuals, how can we infer the behavior of unobserved individuals in the same
network?

They attempt to utilize the behavior correlation presented in a social network
to predict the collective behavior in social media. The input of their prob-
lem is the same as De nition 7.1. They propose a framework called SocDim
[64], which is composed of two steps, which are those of social dimension
extraction and discriminative learning respectively. In the instantiation of the
framework SocDim, modularity maximization is adopted to extract social di-
mensions. There are several concerns about the scalability of SocDim:

The social dimensions extracted according to modularity maximization
are dense.
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The modularity maximization requires the computation of the top eigen-
vectors of a modularity matrix which will become a daunting task when
the network scales to millions of node.

Networks in social media tend to evolve which entails ef cient update
of the model for collective behavior prediction.

3.4.3 In uence and Grouping Behavior. Grouping behavior, e.g.,
user’s participation behavior into a forum, is an important action in the social
network. The point of in uence and grouping behavior is to study how differ-
ent factors in uence the dynamics of grouping behaviors.

Shi et al. investigated the user participation behavior in diverse online fo-
rums [59]. In that paper, they are mainly focused on three central questions:

1 What are the factors in online forums that potentially in uence people’s
behavior in joining communities and what is the corresponding impact?

2 What are the relationships between these factors, i.e. which ones are
more effective in predicting the user joining behavior, and which ones
carry supplementary information?

3 What are the similarities and differences of user grouping behavior in
forums of different types (such as news forums versus technology fo-
rums)?

In order to answer the rst question, they analyze four features that can
usually be obtained from a forum dataset:

1 Friends of Reply Relationship. Use this feature to describe how users are
in uenced by the numbers of neighbors with whom they have ever had
any reply relationship.

2 Community Sizes. Use community size as the measurement to quantify
the ‘popularity’ of information.

3 Average Ratings of Top Posts. Aside from the popularity of information,
we are also interested in how the authority or interestingness of informa-
tion impacts user behavior.

4 Similarities of Users. This is the only feature with dependency: if two
users are ‘similar’ in a certain way, what is the correlation of the sets of
communities they join?

Their rst discovery is that, despite the relative randomness, the diffusion
curve of in uence from users of reply relationships has very similar diffu-
sion patterns. However, the reasons that people are linked together are very
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different. They also investigate the in uence of the features associated with
communities, which include the size of communities and the authority or the
interestingness of the information in the communities. They nd that their cor-
responding information diffusion curves show some strong regularities of user
joining behavior as well, and these curves are very different from those of re-
ply relationships. Furthermore, we analyze the effects of similarity of users
on the communities they join, and nd two users who communicate more fre-
quently or have more common friends are more likely to be in the same set of
communities.

In order to answer the second question, we construct a bipartite graph,
whose two sets of nodes are users and communities, to encompass all the fea-
tures and their relationships in this problem. Based on the bipartite graph, we
build a bipartite Markov Random Field (BiMRF) model to quantitatively eval-
uate how much each feature affects the grouping behavior in online forums, as
well as their relationships with each other. BiMRF is a Markov random graph
with edges and two-stars as its con guration, and incorporates the node-level
features we have described as in a social selection model. The most signi cant
advantage of using the BiMRF model is that it can explicitly incorporate the
dependency between different users’ joining behavior, i.e., how a user’s join-
ing behavior is affected by her friends’ joining behavior. The results of this
quantitative analysis shows that different features have different effectiveness
of prediction in news forums versus technology forums.

Backstrom et al. [4] also explore a large corpus of thriving online commu-
nities. These groups vary widely in size, moderation and privacy, and cover
an equally diverse set of subject matter. They present a number of descriptive
statistics of these groups. Using metadata from groups, members, and indi-
vidual messages, they identify users who post and are replied-to frequently by
multiple group members. They classify these high-engagement users based on
the longevity of their engagements. Their results show that users who will go
on to become long-lived, highly-engaged user experience signi cantly better
treatment than other users from the moment they join the group, well before
there is an opportunity for them to develop a long-standing relationship with
members of the group. They also present a simple model explaining long-term
heavy engagement as a combination of user-dependent and group dependent
factors. Using this model as an analytical tool, they show that properties of the
user alone are suf cient to explain 95% of all memberships, but introducing a
small amount of group-speci c information dramatically improves our ability
to model users belonging to multiple groups.



200 SOCIAL NETWORK DATA ANALYTICS

4. In uence Maximization in Viral Marketing
Social in uence analysis has various real-world applications. In uence max-

imization in viral marketing is an example of such an important application.
In this section, we will introduce the problem of in uence maximization and
review recent research progress. We will also introduce relevant work on rep-
resentative user and expert discovery.

4.1 In uence Maximization
The problem of in uence maximization can be traced back to the research

on “word-of-mouth” and “viral marketing” [6, 11, 21, 38, 46, 55]. The prob-
lem of often motivated by the determination of potential customers for mar-
keting purposes. The goal is to minimize marketing cost and more generally
to maximize pro t. For example, a company may wish to market a new prod-
uct through the natural “word of mouth” effect arising from the interactions
in a social network. The goal is to get a small number of in uential users to
adopt the product, and subsequently trigger a large cascade of further adop-
tions. In order to achieve this goal, we need a measure to quantify the intrinsic
characteristics of the user (e.g., the expected pro t from the user) and the user
network value (e.g., the expected pro t from users that may be in uenced by
the user). Previously, the problem has mainly been studied in marketing de-
cision or business management. Domingos and Richardson [21] formulated
this problem as a ranking problem using a Markov random eld model. They
further present an ef cient algorithm to learn the model [55]. However, the
method models the marketing decision process in a “black box”. How users
in uence each other once a set of users have been marketed (selected), how
they will in uence their neighbors and how the diffusion process will continue
are problems which are still not fully solved. Kempe et al. [41] took the rst
step to formally de ne the process in two diffusion models and theoretically
proved that the optimization problem of selecting the most in uential nodes
in the two models is NP-hard. They have developed an algorithm to solve the
models with approximation guarantees. The ef ciency and scalability of the
algorithm has been further improved in recent years [14, 15]. We will skip the
work in marketing or business and focus on the formulation of the problem and
model learning.

4.1.1 Diffusion In uence Model. There are quite a few classical mod-
els of this problem. Here, we review some of them. For ease in explanation,
we associate each user with a status: active or inactive. Then, the status of the
chosen set of users to market (also referred to as “seed nodes”) is viewed as
active, while the other users are viewed as inactive. The problem of in uence
maximization is studied with the use of this status-based dynamic. Initially
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all users are considered inactive. Then, the chosen users are activated, who
may further in uence their friends (neighbor nodes) to be active as well. The
simplest model is to quantify the in uence of each node with some heuristics.
Some examples are as follows:
1) High-degree heuristic. It chooses the seed nodes according to their degree
dv. The strategy is very simple but also natural because the nodes with more
neighbors would arguably tend to impose more in uence upon its direct neigh-
bors. This consideration of high-degree nodes is also known in the sociology
literature as “degree centrality”.
2) Low-distance Heuristic. Another commonly used in uence measure in soci-
ology is distance centrality, which considers the nodes with the shortest paths
to other nodes as be seed nodes. This strategy is based on the intuition that
individuals are more likely to be in uenced by those who are closely related to
them [26].
3) Degree discount heuristic. The general idea of this approach is that if u has
been selected as a seed, then when considering selecting v as a new seed based
on its degree, we should not count the edge −→vu towards its degree. This is re-
ferred to as SingleDiscount. More speci cally, for a node v with dv neighbors
of which tv are selected as seeds already, we should discount v’s degree by
2tv + (dv − tv) tvp.
4) Linear threshold model. In this family of models, whether a given node
v will be active can be based on an arbitrary monotone function of the set of
neighbors of v that are already active. We associate a monotone threshold
function fv which maps subsets of v’s neighbors to real numbers in [0, 1].
Then, each node v is given a threshold θv, and v will turn active in step t
iffv(S) > θv, where S is the set of neighbors of v that are active in step t− 1.

Speci cally, in [41] the threshold function fv(S) is instantiated as fv (S) =∑
u∈S bv.u where bv.u can be seen as a xed weight, subject to the following

constraint: ∑
uneighborsofv

bv,u ≤ 1

5) General cascade model. We rst de ne an incremental function pv(u, S) ∈
[0, 1] as the success probability of user u activating user v, i.e., user u tries
to activate v and nally succeeds, where S is those of v’s neighbors that have
already attempted but failed to make v active. A special version of this model
used in [41] is called Independent Cascade Model in which pv(u, S) is a con-
stant, meaning that whether v is to be active does not depend on the order v’s
neighbors try to activate it. A special case of the Independent Cascade Model
is the weighted cascade model, where each edge from node u to v is assigned
probability 1/dv of activating v.

One challenging problem in the diffusion in uence model is the evaluation
of its effectiveness and ef ciency. From the theoretical perspective, Kempe
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et al. [41] prove that the optimization of their two proposed models, i.e., lin-
ear threshold model and general cascade model is NP-hard. Their proposed
approximation algorithms can also theoretically guarantee that the in uence
spread is within (1 − 1/e) of the optimal in uence spread. From an empirical
perspective, Kempe et al. [41] show that their proposed models can outperform
the traditional heuristics in terms of the maximization of social in uences. Re-
cent research mainly focuses on the improvement of the ef ciency of the al-
gorithm. For example, Leskovec et al. [44] present an optimization strategy
referred to as “Cost-Effective Lazy Forward” or “CELF”, which could accel-
erate the procedure by up to 700 times with no worse effectiveness. Chen et al.
[14] further improve the ef ciency by employing a new heuristics and in [15]
they extend the algorithm to handle large-scale data sets. Another problem is
the evaluation of the effectiveness of the models for in uence maximization.
Some recent work has been proposed in [21] and [55], though these methods
are designed only for small data sets. It is still a challenging problem to extend
these methods to large data sets.

4.1.2 Learning to Predict Customers. Viral Marketing aims to in-
crease brand awareness and marketer revenue with the help of social networks
and social in uence. Direct marketing is an important application, which at-
tempts to market only to a select set of potentially pro table customers. Previ-
ously, the problem was mainly addressed by constructing a model that predicts
a customer’s response from their past buying behavior and any available demo-
graphic information [45]. When applied successfully, this approach can signif-
icantly increase pro ts [53]. One limitation of the approach is that it treats
each customer independently of other customers in terms of their actions. In
reality, a person’s decision to buy a product is often in uenced by their friends
and acquaintances. It is not desirable to ignore such a networking in uence,
because it can lead to severely suboptimal decisions.

We will rst introduce a model that tries to combine the network value with
customer intrinsic value [21]. Here, the intrinsic value represents attributes
(e.g., customer behavior history) that are directly associated with a customer.
Such attributes might affect the likelihood of the customer to buy the prod-
uct, while the network value represents the social network (e.g., customers’
friends), which may in uence the customer’s buying decision.

The basic idea here is to formalize the social network as Markov random
elds, where each customer’s probability of buying is modeled as a function of

both the intrinsic desirability of the product for the customer and the in uence
of other customers. Formally, the input can be de ned as: consider a social net-
work G = (V,E), with n potential customers and their relationships recorded
in E, and let xi indicate the attributes associated with each customer vi. We
assign a boolean variable yi to each customer that takes the value 1 if the cus-
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tomer vi buys the product being marketed, and 0 otherwise. Further let NBi

be the neighbors of vi in the social network and zi be a variable representing
the marketing action that is taken for customer vi. zi can boolean variable, with
zi = 1 if the customer is selected to market (e.g., be offered a free product),
and zi = 0 otherwise. Alternatively, zi could be a continuous variable indicat-
ing a discount offered to the customer. Given this, we can de ne the marketing
process for customer vi in a Markov random eld as follows:

P (yi|yNBi , xi, z) =
∑

C(NBi) P (yi, yNBi |xi, z)
=
∑

C(NBi) P (yi|yNBi , xi, z)P (yNBi |X, z) (7.7)

where C(NBi) is the set of all possible con guration of the neighbors of vi;
and X represent attributes of all customers. To estimate P (yNBi |X, z), Domin-
gos and Richardson [21] employ the maximum entropy estimation to approxi-
mate the probability based on the independent assumption, i.e.,

P (yNBi |X, z) =
∏

vj∈NBi

P (yj|X, z) (7.8)

The marketing action z is modeled as a Boolean variable. The cost of mar-
keting to a customer is further considered in the Markov model. Let r0 be
the revenue from selling the product to the customer if no marketing action is
performed, and r1 be the revenue if marketing is performed. The cost can be
considered as offering a discount to the marketed customer. Thus the expected
lift in pro t from marketing to customer vi in isolation (without in uence) can
be de ned as follows:

ELPi
1(Y, z) = r1P (yi = 1|Y, fi1(M))− r0P (yi = 1|Y, fi0(z))− c (7.9)

where fi1(zi) be the result of setting zi to 1 and leaving the rest of z unchanged,
and similarly for f0

i (zi).
Thus the global lift in pro t for a particular choice z:

ELPi
1(Y, z) =

n∑
i=1

[riP (Xi = 1|Y, z)− r0P (Xi = 1|Y, z0)− ci]

A customer’s total value is the global lift in pro t from marketing to him

ELP (Y, fi
1(zi))− ELP (Y, fi

0(zi))
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and his network value is the difference between his total and intrinsic values.
The model can be also adjusted to a continuous version with no qualitative
difference.

In marketing context, the goal for modeling the value of a customer is to nd
the z that can maximize the lift in pro t. Richardson and Domingos propose
several approximation algorithms in [21] to solve this problem. They make
further contributions to this eld in their later paper [55] by showing a tractable
way to calculate the optimum value of M by directly solving the equation:

rΔi(Y )
dΔPi(z, Y )

dz
=

dc(z)

dz

Here z denotes the market action. The network effect Δi (Y ) =
n∑

j=1
wjiΔj (Y )

is the total increase in probability of purchasing in the network (including yi)
that results from a unit change in P0(yi) when wji indicates how much vj can
in uence vi. The value of ΔPi (z, Y ) denotes the immediate change in cus-
tomer vi’s probability of purchasing when he is subjected to by the marketing
action z. This value is given by the following expression:

ΔPi (z, Y ) = βi [P0 (Xi = 1|Y,Mi = z)− P0 (Xi = 1|Y,Mi = 0)] (7.10)

Some other work aims to nd the optimal marketing strategy by directly
maximizing the revenue rather than social in uence. An example of this ap-
proach is the work discussed in [34]. The basic idea is as follows. A customer
who owns a product can have an impact on potential buyers, and therefore it is
important to decide the sequence of marketing, as well as the particular price
to to be offered to different buyers. Thus a simple marketing strategy, called
in uence-and-exploit strategy is introduced. This strategy consists of an in u-
ence step and an exploit step. In the in uence step, the seller starts by giving
some products for free to some specially chosen customers who are deemed
the most in uential. In the exploit step, the seller tries to sell products to the
remaining customers at a xed optimal price. Hartline et al. [34] also proved
that the in uence-and-exploit method works as a reasonable approximation of
the NP-hard problem of nding the optimal marketing strategy.

4.1.3 Maximizing the Spread of In uence. Kempe et al. [41] pro-
posed the linear threshold model and the independent cascade model. The
optimal solution to either model is NP-hard. The solution here is to use a sub-
modular function to approximate the in uence function. Submodular functions
have a number of very nice tractability properties in terms of the design of ap-
proximation algorithms. One important property that is used in the approach
is as follows. Given a function f that is submodular, taking only non-negative
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values, then we have
f(S ∪ {v}) ≥ f(S)

for all elements v and sets S. Thus, the problem can be transformed into
nding a k-element set S for which f(S) is maximized. The problem, can be

solved using a greedy hill-climbing algorithm which approximates the optimal
solution within a factor of (1− 1/e). The following theorem formally de nes
the problem.

Theorem 7.3 [19, 50] For a non-negative, monotone submodular function
f , let S be a set of size k obtained by selecting elements one at a time, each time
choosing an element that provides the largest marginal increase in the function
value. Let S� be a set that maximizes the value of f over all k-element sets.
Then f(S) ≥ (1 − 1/e) · f(S�); in other words, S provides a (1 − 1/e)-
approximation.

The model can be further extended to assume that each node v has an asso-
ciated non-negative weight wv, which can be used to capture the human prior
knowledge to the task at hand, e.g., how important it is that v be activated in
the nal outcome.

To adapt the model to a more realistic scenario, we may have a number of
m of different marketing actions Mi available, each of which may affect some
subset of nodes by increasing their probabilities of becoming active; however,
different nodes may respond to marketing actions in different ways. Thus a
more general model can considered [41]. More speci cally, we can intro-
duce investment ti for each marketing action Mi. Thus the goal is to reach
a maximum pro t lift while the total investments do not exceed the budget.
A marketing strategy is then an m-dimensional vector t of investments. The
probability that node v will become active is determined by the strategy and
denoted by hv(t). By assuming that the function is non-decreasing and satis es
the “diminishing returns” property for all t ≥ t′ and a ≥ 0:

hv(t+ a)− hv(t) ≤ hv(t
′ + a)− hv(t

′) (7.11)

Satisfying the above inequality corresponds to an interesting marketing in-
tuition: the marketing action would be more effective when the targeted indi-
vidual is less “marketing-saturated” at that point. Finally, the objective of the
model is to maximize the expected size of the nal active set. Given an initial
set A and let the expected size of the nal active set is σ(A), then the expected
revenue of the marketing strategy t can be de ned as:

g(t) =
∑
A⊂V

σ(A) ·
∏
v∈A

hv(t) ·
∏

u∈V−A
(1− hu(t)) (7.12)
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We note that if A be the active set of nodes, then the inactive set of nodes is
denoted by V −A. We can use the submodular property in order to optimize the
function corresponding to the revenue of the marketing strategy. We can design
a greedy hill-climbing algorithm, which can still guarantee an approximation
within a constant factor. A proof of this result may be found in [41].

4.2 Other Applications
4.2.1 Online Advertising. Social in uence analysis techniques can
also be leveraged for online advertising. For example, the work in [54] pro-
poses methods for identifying brand-speci c audiences without utilizing the
user private information. The proposed method takes advantage of the no-
tion of “seed nodes”, which can speci cally indicate the users (or browsers)
who exhibit brand af nity. Yet another term “brand proximity” is a distance
measure between candidate nodes and the seed nodes. For each browser bi
we use

−→
φ bi = [φ1

bi , φ
2
bi , ..., φ

P
bi ] to denote the effect of the P proximity

measures. Then we can discover the best audiences for marketing by ranking
the candidate nodes bi with respect to

−→
φ bi based on some monotonic function

score(bi) = fi(
−→
φ bi ·

−→
I q). The selection vector

−→
I q = [0, ..., 1, ..., 0] holds a 1

in the q-th row. The proximity measures P can be chosen from a pool. Finally,
the authors show that the quasi-social network extracted from the data corre-
sponds well with a real social network. This means that the modeled “friends”
on the virtual network accurately re ect the relationships between friends or
relatives in the real world.

Another tractable approach for viral marketing is through frequent pattern
mining, which is studied by Goyal et al. in [30].Their research focuses on the
actions performed by the users, under the assumption that users can see their
friends’ actions. The authors formally de ne leaders in a social network, and
introduce an ef cient algorithm aiming at discovering the leaders. The ba-
sic formation of the problem is that actions take place in different time steps,
and the actions which come up later could be in uenced by the earlier taken
actions. This is called the propagation of in uence. The notion of leaders
corresponds to people who can in uence a suf cient number of people in the
network with their actions for a long enough period of time. Aside from the
normal leaders, there are other kinds of users who only in uence a smaller
subset of people. These users are called tribe leaders. The algorithm for nd-
ing leaders in a social network makes use of action logs, which sorts actions
chronologically.

4.2.2 In uential Blog Discovery. In the web 2.0 era, people spend a
signi cant amount of time on user-generated content web sites, a classic exam-
ple of which are blog sites. People form an online social network by visiting
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other users’ blog posts. Some of the blog users bring in new information, ideas,
and opinions, and disseminate them down to the masses. This in uences the
opinions and decisions of others by word of mouth. This set of users are called
opinion leaders.

In order to tackle this problem, we can rst de ne the following properties
for each blogger:

Recognition: An in uential blog post is recognized by many people.
This generally means that there are a lot of inlinks to the article.

Activity generation: Blogs often have comments associated with them.
A large number of comments indicates that the contents of the article
encourages discussion. This indicates that the blog is in uential.

Novelty: Normally a novel blog is one that with less outgoing links.

Eloquence: Longer articles posted on blog sites tend to be more elo-
quent, and can thus be more in uential.

The work in [1] presents a model which takes advantages of the above four
properties to describe the in uence ow in the in uence-graph consisting of
all the blogger pages. Basically, the in uence ow probability is de ned as
follows:

InfluenceF low(p) = win

|ι|∑
m=1

I(pm)− wout

|θ|∑
n=1

I(pn) (7.13)

win and wout is the weight to describe the contribution of incoming and out-
going links. Finally, the in uence of a blog is de ned as:

I(p) = w(λ) × (wcomγp + InfluenceF low(p)) (7.14)

where wcom denotes the weight that can be used to regulate the contribution of
the number of comments (γp) towards the in uence of the blog post p.

In another work [61], Song et al. associate a hidden node ve to each node v
to represent the source of the novel information in blog v. More speci cally,
let Out(v) denote the set of blogs that v links to. The information novelty
contribution of entry ve is then calculated as:

Nov (ve|Out(ve)) = min
Oe∈Out(ve)

Nov(ve|Oe) (7.15)

The information novelty provided by the hidden node of blog v is measured
as the average of the novelty scores of the entries it contains.
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Nov (v|Out(v)) =

∑
ve∈V

(Nov (ve|Out(ve)))

card (Set (ve))
(7.16)

where card(·) denotes total number of entries of interest in blog v. Then, the
problem can be formulated as solving the In uenceRank IR.

IRT (I−(1−β)αW−(1−β)αa ·eT ) = (1−β)(1−α)eT +β.NovT (7.17)

with IRT · e = 1.
As the In uenceRank can be tted in a random walk framework, α is the

probability that the random walk follows a link. β re ects how signi cant the
novelty is to the opinion leaders we expect to detect. e is the n-vector of all
ones and a is the vector with components ai = 1 if i-th row of W corresponds to
a dangling node, and 0, otherwise, where W is the normalized adjacent matrix.

5. Conclusion
Social in uence analysis aims at qualitatively and quantitatively measuring

the in uence of one person on others. As social networking becomes more
prevalent in the activities of millions of people on a day-to-day basis, both
research study and practical applications on social in uence will continue to
grow. Furthermore, the size of the networks on which the underlying applica-
tions need to be used also continues to grow over time. Therefore, effective
and ef cient social in uence methods are in high demand.

In this chapter, we focus on the computational aspects of social in uence
analysis and describe different methods and algorithms for calculating social
in uence related measures. First, we cover the basic statistical measure of
networks such as centrality, closeness and betweenness; second, we present the
social in uence and selection models. These covers the fundamental concepts
on in uence; third, we present the in uence maximization and its application
for viral marketing.

In the future, an important and challenging research area is to develop ef -
cient, effective and quanti able social in uence mechanisms to enable various
applications in social networks and social media. This area lies in the inter-
section of computer science, sociology, and physics. In particular, scalable
and parallel data mining algorithms, and scalable database and web technol-
ogy have been changing how sociologists approach this problem. Instead of
building conceptual models and conducting small scale simulations and user
studies, more and more people now rely on large-scale data mining algorithms
to analyze social network data. This provides more realistic results for large-
scale applications. This chapter provides an introduction of the problem space
in social in uence analysis. The area is still in its infancy, and we anticipate
that more techniques will be developed for this problem in the future.
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1. Introduction
The term expert is used to refer to a person/agent with a high degree of a

skill or knowledge of a certain subject. Ideally, given a task at hand and a set
of candidates, one wishes to to ef ciently identify the right expert (or set of ex-
perts) that can perform the given task. We call this problem the expert-location
problem. The abundance of data that monitors people’s online presence and
expertise imposes several challenges to the expert-location problem.

Consider, for example, data from a large enterprise that records the activ-
ity of employees within the organization (e.g., documents, patents, emails).
Given such a dataset, managers need to measure the degree of expertise of the
employees with respect to different topics. Such knowledge allows managers
to identify the right employees that could be valuable for a particular project.
Therefore, an important aspect of expert location is nding out the expertise
of different individuals from the available data. We call this problem expert
location without graph constraints.

The data associated with different candidate experts can sometimes be miss-
ing or incomplete. In such scenarios, the connections of the various candidates
within the organizational chart of the company can be useful in inferring exper-
tise. For example, the data associated with a new employee who works in the
GIS-information systems department of an IT company might provide little ev-
idence that he is an expert in GIS systems. However, his connections with his
colleagues that are indeed experts might prove useful in identifying the former
as an expert in GIS as well. We call the problem of inferring the expertise of
individuals using their connections with other experts as expert location with
score propagation.

Elaborating on the example above, the success of a project depends not only
on the expertise of people who are involved, but also on how effectively these
people collaborate, communicate and work together as a team. Assume, for
example, an IT project manager who wants to build a team of engineers skilled
in the following areas: T={algorithms, software engineering, distributed sys-
tems, web programming}. Also, assume that there are ve candidates, {a, b,
c, d, e}, with the following backgrounds: Xa={algorithms}, Xb={web pro-
gramming}, Xc={software engineering, distributed systems}, Xd={software
engineering} and Xe={software engineering, distributed systems, web pro-
gramming}. The relationships among these candidates are represented by the
social network shown in Figure 8.1, where the existence of an edge between
two nodes in G indicates that the corresponding persons can collaborate effec-
tively.

Without considering how effectively these people can collaborate, the man-
ager can select either X ′ = {a, b, c} or X ′′ = {a, e} – both these teams have
the required skill set. However, the existence of graph G makes X ′ = {a, b, c}
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Figure 8.1. Network of connections between individuals in {a, b, c, d, e}.

a superior solution since the structure of G indicates that a and e cannot work
together at all. We call the problem of identifying a team of experts that can
communicate well the expert team formation problem.

The existence of a social network among individuals is quite common in real
scenarios. In a company, the network may capture the hierarchical organization
of the employees. In this case, the graph encodes the fact that people in the
same group or department can communicate easier than people working in
different divisions. In a research community, the network captures previous
successful collaborations among scientists. Other examples of social networks
between professionals include LinkedIn (www.linkedin.com), Xing (www.
xing.com) and others.

In this chapter, we give an overview of the problems and algorithms for
each of the above three scenarios, with a speci c focus on the latter two. The
rest of the chapter is organized as follows. Section 2 introduces the notations
and problem de nitions. Section 3 provides a brief overview of traditional
expert-location solutions which do not consider any graph/network structures.
Section 4 discusses how popular web page ranking algorithms (e.g., PageR-
ank [6], HITS [36]) and their variations can help identify experts on the net-
work. Section 5 details the work on expert team formation – how to nd a
group experts who can collectively perform a task with minimum collabora-
tion/communication cost in the network. Section 6 mentions several other
relevant work that can be used for expert-location in the network. Section 7
provides a list of expert-location systems. Finally, we conclude this chapter in
Section 8.

2. De nitions and Notation
For the rest of the discussion, we assume there exists a pool of n candidate

experts X = {x1, ..., xn}. Each candidate xi has a set of skills, either explicitly
or implicitly described by a feature vector �xi. Each element in this vector is
associated with a topic or term and the actual element value represents the
strength of the expert with respect to a particular topic or term. For most of the
cases, we further assume that these candidates are organized in a social graph
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G = (X , E). This graph can represent the actual friendship relations, or it can
indicate an organizational hierarchy on experts, or it can be constructed from
email communication networks, co-authorship networks etc.

In its very basic form, the expert-location problem can be de ned as follows:

Definition 8.1 (Expert Location without Graph Constraints)
Given a query Q that consists of a list of skills, identify a subset of candidates
X ′ ⊆ X who have the skills speci ed by the query.
A large body of literature has treated this problem as an information-retrieval
task. In this scenario, we are usually given a set of documents, a list of candi-
date names, and a set of topics, and the goal is to nd experts from the candi-
dates for each of the topics. Mathematically, one wants to estimate the prob-
ability of a candidate being an expert for a given query, i.e., P{xi|Q}. The
top k candidates with the highest probabilities are deemed the most probable
experts for the given query. In Section 3, we will brie y introduce some of the
representative work for this problem de nition.

Link-analysis ranking has brought new perspectives in expertise-location
problems. Popular webpage-ranking algorithms such as PageRank [6] and
HITS [36] have been used to enhance the identi cation and ranking of ex-
perts. In this setting, a new class of expert-location problems has risen; those
where the degree of expertise of a candidate depends on how well-connected
this candidate is in a (social) network of experts. A generic de nition of this
class of problems is given below.

Definition 8.2 (Expert Loc. with Score Propagation) Given a
query Q that consists of a list of skills, and the social graph G, identify an
initial subset of candidates X ′ ⊆ X who have the skills speci ed by the query.
Use the input graph among experts to propagate the initial expertise scores to
rerank experts or to identify new experts.
In Section 4, we will discuss how PageRank and HITS can help with this ex-
perts location problem.

With the proliferation of social networks, the focus has been geared towards
leveraging social interactions to form teams of experts that can work together
towards the successful completion of a project. This has brought up the expert
team formation problem de ned as follows:

Definition 8.3 (Expert Team Formation) Given a queryQ that con-
sists of a list of skills, and the social graph G, identify a subset of candi-
dates X ′ ⊆ X so that the chosen candidates cover the required skills and
the collaboration/communication cost of X ′ is minimized. The collabora-
tion/communication cost is de ned over the input graph G.
In Section 5, we will elaborate on the formal problem de nitions and algo-
rithms for this problem.
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3. Expert Location without Graph Constraints
Traditional systems (without graph constraints) often use information re-

trieval techniques (e.g., language models [47]) to discover expertise from a
large collection of text corpus. The general idea is to estimate the probability
that a candidate xi could be an expert with respect to a given topic query Q,
i.e., p(xi|Q). Using Bayes rule, we can obtain the following:

P (xi|Q) =
P (Q|xi)P (xi)

P (Q) ∝ P (Q|xi)P (xi). (8.1)

In the above equation, P (Q|xi) is the generating probability of query Q
given candidate xi and P (xi) indicates candidate xi’s general expertise, which
is independent of the query. Often we can ignore P (xi) by assuming a uniform
prior for all the candidates. Thus the focus is on how to compute P (Q|xi)
using, for example, language models. In the following subsections, we will

rst introduce languages models in the general context of information retrieval.
Then we will describe several representative work using language models for
expert location.

3.1 Language Models for Document Information
Retrieval

In information retrieval, a language model [47] formulates the probability
that a document is relevant to a query as follows:

P (d|Q) ∝ P (Q|d)P (d). (8.2)

Since we usually assume that terms contained in a query q are independent of
each other, we have

P (Q|d) =
∏
ti∈Q

P (ti|d), (8.3)

where ti is the i-th term in Q and P (ti|d) is the probability of term ti under
the term distribution for document d. The maximum likelihood estimate of the
P (ti|d) with Dirichlet smoothing is:

P (ti|d) = λ · tf(ti, d)|d| + (1− λ) · tf(ti,D)

|D| , and λ = |d|
|d|+μ . (8.4)

In the above equation, |d| is the length of document d, tf(ti, d) is the term
frequency of term ti in d, |D| is the number of documents in the text collection
D, tf(ti,D) is the term frequency of term ti in D, λ is a weighting parameter
ranging in [0, 1], and μ is another control parameter which is often the average
document lengths in D. Next, we will see how the language models are used
for solving the expert-location problem.
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3.2 Language Models for Expert Location
Balog et al. [1] proposed two general strategies to expert location from a

document collection. The rst one, which we call user pro le-centric ap-
proach, directly models a candidate’s expertise based on the documents as-
sociated with this candidate. The second one, which we call document-centric
approach, rst locates document relevant to a topic query, and then nds the
associated expert. Both follow the principle that the relevance of the textual
context of a candidate with respect to a topical query adds up to the evidence
of his expertise.

3.2.1 User Pro le-centric Approach. This approach builds a model
for each candidate xi using the documents associated with him. Speci cally,
for each term t in the vocabulary, the model computes the probability of t
given the candidate xi, i.e., P (t|xi). Following the independence assumption
of terms in a query, P (Q|xi) in Equation 8.1 can be calculated as follows:

P (Q|xi) =
∏
ti∈Q

P (ti|xi) (8.5)

=
∏
ti∈Q

⎡
⎣∑
dj∈D

P (ti|dj)P (dj |xi)
⎤
⎦ . (8.6)

In the above equation, P (ti|dj) can be obtained using Equation 8.4. P (dj |xi)
denotes the strength of the association between candidate xi and document
dj . This association may capture various aspects of the relation between a
candidate and a document. For instance, P (dj |xi) may quantify the extent to
which this candidate has contributed to the document. A simple example is to
set P (dj |xi) = 1 if xi is the co-author of dj or 0 otherwise. We refer interested
readers to Balog et al.’s work [1] for more details on how to build associations.

3.2.2 Document-centric Approach. This approach computes P (Q|xi)
by assuming conditional independence between the queryQ and the candidate
xi as follows:

P (Q|xi) =
∑
dj∈D

P (Q|dj)P (dj |xi) (8.7)

=
∑
dj∈D

⎡
⎣∏
ti∈Q

P (ti|dj)
⎤
⎦P (dj |xi). (8.8)

Following Equation 8.7, the probability of a query Q given a candidate xi can
be viewed as the following generative process: 1) for a given candidate xi,
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select a document dj with probability P (dj |xi); and 2) with the selected docu-
ment dj , generate the queryQwith probability P (Q|dj). The most importance
property of this model is that documents are viewed as “hidden variables", and
they separate the query from the candidate so that candidate is not directly
modeled.

3.3 Further Reading
The 2005 Text REtrieval Conference (TREC) provided a common platform

in the Enterprise Search Track for researchers to empirically assess methods
for expert location from large collections of text documents. Since then, a sig-
ni cant amount of work has been devoted to using language models for the
problem. However, as the focus of this chapter is graphs and social networks,
we will only brie y mention a few more representative work and refer inter-
ested readers to the references wherein for more details.

Zhang et al. [67] proposed to use Probabilistic Latent Semantic Analy-
sis [29] to compute P (Q|dj) in Equation 8.7. The idea is to add a hidden
topic layer Θ = {θ1, θ2, . . . , θk} between the document dj and the query Q:
P (Q|dj) =

∑k
m=1 P (Q|θm)P (θm|dj) =

∑k
m=1

[∏
ti∈Q P (ti|θm)

]
P (θm|dj).

Here P (θm|dj) denotes the probability of generating a topic given a document,
and P (Q|θm) denotes the probability of generating the query given a topic.
In this way, the model captures the semantic meaning of both document and
query.

Dent et al. [14] proposed two improved language models for expert loca-
tion on DBLP bibliography data. The rst model adds documents weights
to Equation 8.7, i.e., P (Q|xi) =

∑
dj∈D wdj

[∏
ti∈Q P (ti|dj)

]
P (dj |xi). In

their second model, the authors explicitly introduced latent topics θk between
candidate xi and queryQ rather than implicitly using document dj as the latent
variable in Equation 8.7.

Cao et al. [8] developed a two-stage language model for the expert search
competition in the Enterprise Track of TREC 2005. Speci cally, their model is
formulated as P (xi|Q) =

∑
dj∈D P (xi, dj |Q) =

∑
dj∈D P (dj |Q)P (xi|dj ,Q).

In this equation, P (dj |Q) is the regular language model as described in Equa-
tion 8.2. P (xi|dj ,Q) characterizes the co-occurrence of the candidate and the
topic terms in the document.

4. Expert Location with Score Propagation
A candidate’s expertise can be often inferred or boosted by the skills of other

people he is connected with. There is a natural connection between this con-
cept and many popular webpage ranking algorithms such as PageRank [6] or
HITS [36]. In this chapter, we discuss how these algorithms can be used for
the expert location problem. At a high level, solutions in this category often
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embody a two-step process: 1) using language model or heuristic rules de-
scribed in Section 3 to compute an initial expertise score for each candidate;
and 2) using graph-based ranking algorithms to propagate scores computed in
the rst step and rerank experts. Candidates with no initial scores can also ob-
tain a quantitative measurement of their expertise through the propagation. In
the following, we rst brie y describe the PageRank and HITS algorithms in
order to provide some necessary background. We then discuss some represen-
tative work to better illustrate the ideas.

4.1 The PageRank Algorithm
PageRank models the probability that a web page will be visited by a ran-

dom surfer. At each time step, the surfer proceeds from his current web page
u to a randomly chosen web page v following one of two strategies: 1) When
u does not have outlinks, the surfer jumps to an arbitrary page in the Web. 2)
When u has outlinks, the surfer jumps to an arbitrary page in the Web with
probability α, and a random page that u hyperlinks to with probability 1 − α.
Here, α is a xed parameter chosen in advance.

As the surfer continues this walk from page to page, some pages are visited
more often than others. Intuitively, these are the pages with many incoming
links from other frequently visited pages. The idea behind PageRank is that
pages visited more often in this walk are more important. Using the theory
of Markov chains [43], one may argue that, when the surfer follows the above
combined process, the probability of him visiting a webpage u, denoted by
π(u), converges to a xed, steady-state quantity. We call this probability π(u)
the PageRank of u.

Next, we brie y describe how π(u) is computed in the context of Markov
chains. There, each web page corresponds to one state; the transition proba-
bility represents the probability of a random surfer moving from one page to
another. Let us use A to denote the adjacency matrix of the web graph with N
pages/nodes. If there is a hyperlink from page i to j, then Aij = 1, otherwise
Aij = 0. The transition probability matrix P that captures the move of the
random surfer described above can be derived as follows:

1. If a row in A has no 1’s, then replace each entry in this row by 1
N .

2. If a row in A has at least one 1, divide each 1 in A by the number of 1’s
in its row.

3. Multiply the resulting entries from Step 1 and 2 by 1− α.

4. Add α
N to every resulting entry from Step 3 to obtain P .

If we denote the probability distribution of the surfer’s position at time t by an
N -dimensional probability vector �πt = (π(1), . . . , π(u), . . . , π(N)), then at
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time t + 1 the distribution becomes �πtP . The following theorem shows that
this probability distribution converges to its steady-state.

Theorem 8.4 [43] For a Markov chain characterized by the transition
probability P described above, there is a unique steady-state probability vec-
tor �π = (π(1), . . . , π(u), . . . , π(N)) such that if η(u, t) is the number of visits
to state u in t steps, then

lim
t→∞

η(u, t)

t
= π(u), (8.9)

where π(u) > 0 is the steady-state probability for state u. This steady-state
probability vector �π corresponds to the principal left eigenvector of P with
eigenvalue being equal to 1.

We call π(u) the PageRank of the corresponding web page u. Following Theo-
rem 8.4, we can compute �π with the following standard eigenvalue/eigenvector
equation.

�πP = 1�π. (8.10)

Next we illustrate HITS, another important web page ranking algorithm that
is often used for expert location.

4.2 HITS Algorithm
There are two types of web pages useful as results for broad-topic searches.

A broad topic search is conceptually an informational query such as “KDD
conference". In this case, the web page on www.sigkdd.org is an authorita-
tive source for the query. We call such a page the authority. On the other hand,
there are many other pages that contain lists of links to authoritative pages on a
speci c topic. We call such pages hubs. A good hub is one that points to many
good authorities; a good authority page is one that is linked to by many good
hubs. Therefore, each web page can be assigned two scores – an authority
score and a hub score. This circular de nition of hubs and authorities leads to
an iterative computation of the scores.

Let �h and �a be the vector of hub and authority scores of all pages, respec-
tively. Let A denote the adjacency matrix of the web graph. The entry Aij is
1 if there is a hyperlink from page i to page j, and 0 otherwise. Then the hub
and authority scores are updated as follows:

�h ← A�a (8.11)
�a ← AT�h,

where AT is the transpose of the matrix A. Now the left hand side of each
line of Equation 8.11 is a vector that is the right hand side of the other line in
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Equation 8.11. Substituting these into one another, we have

�h ← AAT�h, (8.12)
�a ← ATA�a.

Replacing ← with = and introducing eigenvalues, the rst line of Eq. 8.12
becomes the equation for the eigenvectors of AAT . The second becomes the
equation for the eigenvectors of ATA:

�h =
1

λh
AAT�h,

�a =
1

λa
ATA�a,

where λh denotes the eigenvalue of AAT and λa denotes the eigenvalue of
ATA. Thus, the hub and authority scores �h and �a correspond to the (principal)
eigenvectors of AAT and ATA.

Having described the PageRank and HITS algorithms, we are ready to dis-
cuss how they are employed to solve the traditional expertise identi cation
problem in the presence of networks.

4.3 Expert Score Propagation
A common way for people to nd information within an organization is to

ask other colleagues, following referrals until someone with the right informa-
tion is found. Since this communication is often done through emails, Camp-
bell et al. [7] and Dom et al. [15] utilized the email communication network
to re ne their expertise identi cation. In this network, each node corresponds
to a person and each directed edge points from a sender to a receiver. Be-
cause our knowledge of expertise determines whom we want to send questions
to, those who can provide high quality information about certain topics tend
to receive more emails regarding those topics. Therefore, people who have
received many email inquiries are de ned as the authorities or experts, and
people who are able to forward questions to many experts are de ned as the
hubs. Consequently, the authority score computed from the HITS algorithm
on this network can be used to rank the individuals in the network.

Zhang et al. [68] employed both PageRank and HITS on community-based
question-answering networks such as Yahoo! Answers and Google Groups. In
these networks, a node represents a user and an edge is drawn from the user
who made the initial post (or questions) to everyone who replied to it. A user
A who replied to another user B’s question often indicates that A has more
knowledge on the subject than B. Additionally, if user B answered questions
from C , then A’s expertise score should be boosted because he can answer
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a question from someone who himself has a certain level of expertise. This
simple idea leads to their PageRank-style algorithm:

Algorithm 1 Assume user A has answered questions for users U1, . . . , Un,
then the expertise ranking score of A, denoted by ER(A), is computed as
follows:

ER(A) = (1− α) + α

(
n∑

i=1

ER(Ui)

C(Ui)

)
.

In the above equation, C(Ui) is the total number of users who have helped Ui

(recall that there is a edge from Ui to each of his helpers), and α is the damping
factor which can be set between 0 and 1.

Loosely speaking, this score indicates the probability that a user will receive
help requests from other regular users and experts in the network. The authors
also used a similarly adaptation of the HITS algorithm. In their context, a good
hub is a user who is helped by many experts. Similarly, a good authority (a.k.a.
expert) is a user who helps many good hubs. The authority score computed by
HITS is used to quantify the expertise of a user.

Zhang et al. [66] considered expertise location in academic collaboration
networks. They rst calculated the initial expert scores from the candidates’
personal information using probabilistic information retrieval models. Then
they used a belief propagation model [17] to update the scores. The intuition
behind their propagation model is similar to what we have described in PageR-
ank and HITS – if a person has tight connections with many other experts on a
topic, then it is likely that this person is also an expert on that topic. This idea
is captured in the following algorithm.

Algorithm 2 The expert score of a user vi, denoted by s(vi), is updated
using the following rules:

s(vi)
t+1 = s(vi)

t +
∑
vj∈U

∑
e∈Rji

w ((vj , vi), e) s(vj)
t.

In the above equation, w ((vj , vi), e) is the propagation coef cient and e ∈ Rji

is one kind of relationship from person vj to vi. U denotes the set of neighbors
to vi and Rji is the set of all relationships between vj and vi.

Karimzadehgan et al. [33] utilized the organizational hierarchy in an orga-
nization to tackle the expert nding problem. The basic observation is that
those in close proximity to each other in the hierarchy tend to have similar
topic knowledge. Consequently, propagating expertise scores among neigh-
bors, (e.g., managers, peers) in an organization would improve the retrieval
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performance. Their hierarchy-based algorithm works as follows. First, they
build an expertise pro le for each employee using the content of their emails.
Second, they used language models to calculate for each employee an initial
expertise score, denoted by p(q|ej), where q is the topic and ej is the exper-
tise pro le of employee ej . Finally, each employee’s score is locally smoothed
with their neighbors’ scores using the following algorithm.

Algorithm 3 Employee ej’s expertise score p(q|ej) on a given topic q is
smoothed using the following equation:

psmooth(q|ej) = αp(q|ej) + 1− α

Nj

Nj∑
i=1

p(q|ei),

where α is weighting parameter and Nj is the number of neighbors for em-
ployee ej . p(q|ej) and p(q|ei) are the initial scores for employee ej and his
neighbor ei, respectively.

In their multi-step propagation algorithm, the scores are computed by consid-
ering all neighbors within 2-hops or 3-hops away from ej .

4.4 Further Reading
Lu et al. [42] adopted the same propagation model used by Zhang et al. [66]

in the context of user-interactive question answering (UIQA) networks. Jur-
czyk and Agichtein [32, 31] also leveraged HITS to estimate a user’s authority
score in an UIQA service. These solutions can be potentially used for ranking
answers, nding experts, and detecting spam. Fu et al. [20] rst selected a
subset of top candidates according to their probability of being experts for a
certain topic. Then they utilized propagation models on social networks to dis-
cover other potential experts. Jiao et al. [30] focused on discussion groups and
modi ed PageRank algorithm to rerank experts. Seo and Croft [53] focused
on the hierarchical structures of email and discussion threads, and devised a
modi ed PageRank algorithm to rank experts.

Serdyukov et al. [54] studied topic-speci c expertise graphs where both
documents and candidate experts are vertices and the directed edges denote
the authorship, organizational connections, or other rich interactions among
documents and candidates. The authors considered the expert location as an
in nite or an absorbing process of consulting with both documents and peo-
ple. They proposed a multi-step relevance propagation models to solve the
problem.

Some work has also been devoted to studying the expert location problem
in evolving graphs. For instance, Li and Tang [41] developed a random walk
model that incorporates the temporal information in a forward-and-backward
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propagation process. Berberich et al. [5] introduced T-Rank, a modi ed ver-
sion of PageRank that considers the temporal freshness (i.e., timestamps of the
most recent updates) and activity (i.e., update rates) of the nodes and edges in
the graph.

5. Expert Team Formation
In this section, we discuss the expert-team formation problem in social net-

works. The objective is to nd a group of experts in the network who can
collectively perform a task in an effective manner.

Most of the formulations we discuss in this section consider each expert to
be associated with a set of skills. These skills can be provided as part of the
input or can be pre-computed using the approaches we discussed in Section 3
and 4. Apart from the skills, the communication/collaboration cost, i.e., the
overhead incurred when the team members work together, also plays an im-
portant role in the overall performance of the team. This cost is in uenced by
various factors including the personality of individual team members and their
social connections. We begin with a brief introduction to some metrics that can
be used to quantify these factors. We will provide formal de nition of the cost
when we discuss the concrete algorithms.

5.1 Metrics
Many methodologies have been developed to measure the personality of an

individual. We summarize some of them below.
TheMyers-Briggs Type Indicator (MBTI): MBTI is a frequently-employed

personality assessment tool. It can help people to identify the sort of jobs
where they would be “most comfortable and effective". According to Hammer
and Huszczo [28], this metric can be used in improving and predicting team
performance. Also, Chen and Lin in [11] used MBTI to evaluate candidates’
interpersonal relationships as team members.

Herrmann Brain Dominance Instrument (HBDI): HBDI is another index
that re ects individual’s af nity for creativity, facts, form and feelings. Despite
the fact that this metric has been used in several experimental settings [4], it
appears that the obtained results are very often subjective. This has raised some
questions related to the validity of the measure [21].

Kolbe Conative Index (KCI): KCI is a psychometric system that measures
conation, i.e., the way an individual instinctively approaches problem solv-
ing, arranges ideas or objects, and uses time or energy. This system was rst
presented by Kolbe [38, 37]. Several studies have shown that the KCI index
is effective in predicting team’s performance. For example, Fitzpatrick and
Askin [18] used KCI to measure individuals’ drive and temperament, which in
turn re ects the quality of the team.
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In addition to personality measurements, social metrics have also been stud-
ied. These metrics assess the impact of the network structure among the team
members on the performance of the team. For example, Lappas et al. [40]
focused on the social graph constructed by the team members. They used the
diameter of the graph as well as the cost of the minimum spanning tree of the
graph to measure the communication overhead of the team. Gaston et al. [24]
also conducted an experimental study of how different graph structures among
the individuals affect the performance of a team.

5.2 Forming Teams of Experts
In this section, we take Lappas et al.’s work [40] as an example to illus-

trate the computational aspects of expert team-formation process in a social
network.

In their work, the authors assumed that there exists a pool of n experts
X = {1, . . . , n}, where each expert i has a set of skills Xi. They also as-
sumed that the experts are organized in a weighted and undirected social graph
G = (X , E). The weights of the edges of G should be interpreted as follows: a
low-weight edge between nodes i, j implies that expert i and expert j can col-
laborate and/or communicate more easily than two experts that are connected
via a high-weight edge. These weights can be instantiated in different ways in
different application domains. For example, in a company, the weight between
two employees may correlate to the length of the path from one employee to
another through the organizational chart. In a scienti c research community,
the weight between two scientists is related to the total number of publications
they have coauthored. Interpersonal relationships among individuals as mea-
sured by the personality metrics described in the previous section can also be
used to calculate the weights.

Given a task T that requires a set of skills, the goal is to nd a set of individ-
uals X ′ ⊆ X that can successfully complete the task. In the formulation of the
problem, individuals in X ′ are required to collectively have all the necessary
skills to perform T , as well as be able to work effectively together as a team.
Lappas et al. measured the effectiveness of collaboration using the notion of
the communication cost incurred by the subgraph in G that involves only the
team members X ′. We denote this subgraph as G[X ′]. The formal problem
de nitions are the following.

Problem 1 [Team Formation] Given a set of n individuals denoted
by X = {1, . . . , n}, a graph G (X , E), and task T , nd X ′ ⊆ X , so that
(∪i∈X ′Xi) ∩ T = T , and the communication cost Cc (X ′) is minimized.

In the above de nition, (∪i∈X ′Xi)∩ T = T means that the skills possessed
by the team members in X ′ satisfy the requirement of the task T . The com-
munication cost is purposefully left unde ned though. Lappas et al. focused
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on two instantiations of the communication-cost function. The rst commu-
nication cost is modeled as the diameter of the subgraph of G de ned by the
members of X ′. The second version the communication cost is measured as
the cost of the minimum spanning tree that spans all the nodes in X ′.
Diameter (R): Given graph G (X , E) and a set of individuals X ′ ⊆ X , we

de ne the diameter communication cost of X ′, denoted by Cc-R (X ′),
to be the diameter of the subgraph G [X ′]. Recall that the diameter of a
graph is the largest shortest path between any two nodes in the graph.

Minimum Spanning Tree (Mst): Given graph G (X , E) and X ′ ⊆ X , we
de ne the Mst communication cost of X ′, denoted by Cc-Mst (X ′),
to be the cost of the minimum spanning tree on the subgraph G [X ′].
Recall that the cost of a spanning tree is simply the sum of the weights
of its edges.

The Team Formation problem with communication function Cc-R is
called the Diameter-Tf problem. Similarly, the Team Formation prob-
lem with communication function Cc-Mst is called the Mst-Tf problem.
The following result is true for the complexity of the two problems.

Proposition 1 ([40]) Both theDiameter-Tf and theMst-Tf problems
are NP-complete.

For the Diameter-Tf problem, Lappas et al. proposed the RarestFirst
algorithm, with pseudocode described in Algorithm 6. First, for every skill a
required by the task T , the algorithm computes S(a), the support of a, which
is the set of individuals in X that have this skill. Then, the algorithm picks
the skill arare ∈ T with the lowest-cardinality support S (arare). Note that at
least one individual from the set S (arare) needs to be included in the solution.
Among all candidates from the set S (arare), the algorithm picks the one that
leads to the smallest diameter subgraph, when connected to its closest individ-
ual in all other support groups S (a), a ∈ T and a 	= arare.

To understand Algorithm 6, we rst introduce some notations. For every
two nodes i, i′ ∈ X , we de ne the distance function d(i, i′) to be the weight
of the shortest path between i and i′ in G. Note that this distance function
between the nodes is a metric and thus satis es the triangle inequality. For
every pair of nodes, we use Path(i, i′) to represent the set of nodes that are
along the shortest path from i to i′. We also de ne the distance between a
node i ∈ X and a set of nodes X ′ ⊆ X to be d(i,X ′) = mini′∈X ′ d(i, i′). In
this case, we use Path(i,X ′) to represent the set of nodes that are along the
shortest path from i to the node j = argmini′∈X ′ d(i, i′).

Armed with these notations, we can take a further look at Algorithm 6. In
line 6, d

(
i, S (a)

)
is simply mini′∈S(a) d(i, i′). Also, Path (i∗, S (a)) in line
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Algorithm 6 The RarestFirst algorithm for the Diameter-Tf problem.
Input: Graph G (X , E); individuals’ skill vectors {X1, . . . ,Xn} and task
T .
Output: Team X ′ ⊆ X and subgraph G [X ′].

1: for every a ∈ T do
2: S(a) = {i | a ∈ Xi}
3: arare ← argmina∈T |S(a)|
4: for every i ∈ S (arare) do
5: for a ∈ T and a 	= arare do
6: Ria ← d

(
i, S (a)

)
7: Ri ← maxaRia

8: i∗ ← argminRi

9: X ′ = i∗ ∪ {Path (i∗, S (a)) | a ∈ T}

9 refers to the set of nodes in the graph that are along the shortest path from
i∗ to i′, where i′ is such that i′ ∈ S(a) and d

(
i∗, S (a)

)
= d(i∗, i′). If all-

pairs shortest path have been pre-computed, and hashtables are used for stor-
ing the skills of every individual, and a different set of hashtables are used for
storing the individuals that posses a speci c attribute, then, the running time
of the RarestFirst algorithm is O (|S (arare)| × n). A worst-case analysis
suggests that |S (arare)| = O (n). Thus the worst-case running time of the
RarestFirst is O (n2

)
. However, in practice, the running time of the algo-

rithm is much less that this worst-case analysis suggests.
In fact, RarestFirst is a 2-approximation algorithm for the Diameter-

Tf problem. This is mostly due to the fact that the employed distance d is a
metric. Therefore the following proposition is true.

Proposition 2 For any graph-distance function d that satis es the triangle
inequality, the Cc-R cost of the solution X ′, given by RarestFirst for a
given task, is at most twice the Cc-R cost of the optimal solution X ∗. That is,
Cc-R (X ′) ≤ 2 ·Cc-R (X ∗).

For the Mst-Tf problem Lappas et al. proposed the EnhancedSteiner al-
gorithm. This algorithm starts by rst enhancing graph G with additional nodes
and edges to form the enhanced graph H . Then, SteinerTree is evoked to
solve the Steiner Tree problem (to be described later) on the enhanced
graph H . The pseudocode describing this two steps of the algorithm is shown
in Algorithm 7.

Let the task to be performed require k skills, i.e., T = {a1, . . . , ak}. Routine
EnhanceGraph (line 1 of Algorithm 7) makes a linear pass over the graph G
and enhances it as follows: an additional node Yj is created for every skill
aj ∈ T . Each such new node Yj is connected to a node i ∈ X if and only if
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Algorithm 7 The EnhancedSteiner algorithm for the Mst-Tf problem.
Input: Graph G (X , E); individuals’ skill vectors {X1, . . . ,Xn} and task
T .
Output: Team X ′ ⊆ X and subgraph G [X ′].

1: H ←EnhanceGraph
(
G,T

)
2: XH ←SteinerTree(H, {Y1, . . . , Yk})
3: X ′ ← XH \ {Y1, . . . , Yk}

aj ∈ Xi (node i has the skill aj). The distance between node Yj and nodes
i ∈ S(aj) are set to be d(Yj , i) = D where D is a large real number, larger
than the sum of all the pairwise distances of the nodes in the graph G. Finally,
every node i ∈ X that has abilities Xi is replaced by a clique Ci of size |Xi|.
Each node in the clique Ci should be considered as a copy of individual i that
has only a single distinct skill from the set Xi. The distance between every
two nodes in the clique Ci is set to zero. Each node in the clique Ci maintains
all the existing connections of node i to the rest of the graph – including the
connections to nodes {Y1, . . . , Yk}.

The second step of the algorithm solves the Steiner Tree problem on
the enhanced graph H . In the standard Steiner Tree problem, we are given
an undirected graph with non-negative edge costs. The nodes of this graph
are partitioned into two disjoint sets: the required and the Steiner nodes [61].
The Steiner Tree problem then asks for the minimum-cost tree in the in-
put graph that contains all required nodes and any subset of the Steiner nodes.
There exist many algorithms for solving this classic Steiner Tree prob-
lem. So we use SteinerTree to collectively refer to any algorithm for the
problem. Lappas et al. used an approximation algorithm due to Takahashi and
Matsuyama [57]. In line 2 of Algorithm 7, the SteinerTree takes as input the
enhanced graph H , and the k required nodes {Y1, . . . , Yk}, then it produces the
set of nodes XH that participate in the resulting Steiner tree.

In a nal step (line 3 of Algorithm 7), the algorithm removes from set XH

the arti cially added nodes Y1, . . . , Yk (and their incident edges) to obtain the
nal solution X ′. The overall running time of the EnhancedSteiner algo-

rithm is O (k × |E|).
The EnhancedSteiner algorithm is in fact motivated by the obvious simi-

larity between the Mst-Tf problem and the Group Steiner Tree (Gst)
problem. In the Gst problem the input again consists of an undirected graph,
with non-negative edge weights and � subsets of the vertex set V . These �
subsets are denoted by g1, . . . , g� ⊆ V . The objective is to nd the minimum
cost subtree of the graph that contains at least one vertex from each subset
gi. If one thinks of every subset gi as the set of nodes that have a particular
skill, then the similarity between the Mst-Tf and the Gst problems becomes
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apparent. Therefore, instead of the EnhancedSteiner algorithm any other
(approximation) algorithm for the Gst problem can also be used to solve the
Mst-Tf problem. We have picked the EnhancedSteiner algorithm because
it is simple, intuitive and works well in practice. The best approximation ratio
achieved by an algorithm is O(log3 n log k) [22]. For a review of some recent
approximation algorithms for the Gst problem see [10, 16, 22] and references
therein.

5.3 Further Reading
In the Operations Research community, the team-formation problem is of-

ten formulated as an integer linear programming problem (ILP). These formu-
lations are then solved using standard combinatorial-optimization techniques
such as simulated annealing [2], branch-and-cut [69] or genetic algorithms [63].
The common characteristic of all these studies is that the organizational or so-
cial bonds among individuals are ignored and the focus is on their matching
experts skills with the task requirements.

In practice, team formation within large organizations relies on manage-
rial decisions that are usually made in an ad-hoc manner. Managers tend
to select persons they are acquainted with as project-team members without
rigorous analysis. As part of the academic efforts to overcome these disad-
vantages, Tsai et al. [59] suggested a model that utilizes Taguchi’s parame-
ter design (http://en.wikipedia.org/wiki/Taguchi_methods) to form
teams. This method has been shown to achieve robust performance as well as
signi cantly reduce project cost and duration. Tseng et al. [60] suggested to
use fuzzy set theory and grey decision theory to form a multi-functional team.
Each member in the team is required to be competent in his/her work and also
able to share responsibility with other members.

In the spirit of Lappas et al., the social-network structure among individuals
is taken into account in other team-formation methodologies. For example,
Wi et al. [64] proposed a set of social-network measures for identifying the
effectiveness of a team and proposed a genetic algorithm for nding a good
team of experts. In another piece of work along these lines, Cheatham and
Cleereman [9] used social-network information among individuals to construct
teams of diverse individuals that share similar interests and aptitudes.

6. Other Related Approaches
In this section we brie y introduce several other approaches for expert lo-

cation in networks. These approaches do not fall in the three scenarios we
de ned in Section 2. But they could be valuable additions to the existing ex-
pert location literature. The rst one leverages multi-agent systems to discover
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A A

A A

Figure 8.2. A sketch of an Agent-based referral system

experts; and the second one identi es the most in uential nodes in a profes-
sional network and views those nodes as the experts.

6.1 Agent-based Approach
A large body of work solves the expert-location problem via the use of re-

ferrals. Such systems typically rely upon agents – autonomous entities who
exchange information with others and locate the appropriate expert on a given
topic. Figure 8.2 sketches the architecture of such a system with four agents
(the dark nodes marked with letter A). Each user is assigned an agent to learn
his preferences and expertise. Each agent interacts with a different part of the
network, gathering information on the expertise of the nodes/users that it has
access to. Once a user submits a request for an expert on a speci c topic, his
agent examines the local database rst. If it cannot nd the proper candidates,
the agent forwards the request to other agents, and so on.

Some representative systems include the NetExpert system by Sanguesa
and Pujol [51], the Referral Web by Kautz et al. [34], the Yenta system by
Foner [19], and many others by Yu and Singh [65], Pujol et al. [48] and Pushpa
et al. [49].

6.2 In uence Maximization
Another relevant problem is in uence maximization, which has its roots in

viral marketing [50]. The idea is as follows. Assume that we can estimate the
extent to which individuals in uence one another in a social network and we
want to market a new product that we hope will be adopted by a large fraction
of the network. We can select a few “in uential" individuals and convince them
to adopt the new product rst. By doing so, we hope they can trigger a cascade
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of in uence by which friends will recommend the product to other friends,
and ultimately many people will try it. The goal of in uence maximization
is to identify such a small set of key individuals so that the expected number
of individuals who will adopt the new product at the end of this process is
maximized. Mapping this use case to the scenario of expert location, we can
view those most in uential nodes in a professional network (e.g., academic
network in a speci c area) as the experts since their work/theories are widely
adopted by other researchers in the same eld.

There are two most widely studied models on how the adoption spreads
through a social network: the linear threshold model and the independent cas-
cade model. Granovetter and Schelling [27, 52] were among the rst to propose
models that uses node-speci c thresholds. Many models of this type have been
studied but the linear threshold model is one of the most important ones. In
the model, a node v is in uenced by his neighbor u according to a weight wu,v

such that
∑

u∈Neighbor of v wu,v < 1. The adoption process proceeds as follows.
Each node v chooses a threshold θv uniformly at random from the interval
[0, 1]. This threshold represents the weighted fraction of v’s neighbors that
must become active in order for v to become active. Here the “active" means
the node adopts the product or new ideas and “inactive" means the node does
not adopt the product or new ideas. Given a random choice of the thresholds,
and an initial set of active nodes A0 (with all other nodes inactive), the process
unfolds deterministically in discrete steps. In step t, all nodes that were active
in step (t − 1) remain active, and we activate any node v for which the total
weight of his active neighbors is at least θv:

∑
u∈Neighbor of v wu,v ≥ θv. Thus,

the threshold θv represents the latent tendency of a node to adopt the product or
new ideas when his neighbors do. The fact that these thresholds are randomly
selected is meant to model our lack of knowledge of their true values.

The independence cascade model was originally investigated by Golden-
berg, Libai, and Muller [25, 26]. The process proceeds in discrete steps with
the following randomized rule. When node u rst becomes active in step t,
it is given a single chance to activate each of his inactive neighbor v. It suc-
ceeds with a probability pu,v. If u succeeds, then v will become active in step
(t + 1). However, no matter whether u succeeds or not, it cannot make any
further attempts to active v in subsequent rounds. The process runs until no
more activations are possible.

The optimization problem of selecting the most in uential nodes with both
models is NP-hard. Kempe [35] developed the rst provable approximation
guarantees for ef cient algorithms. Using an analysis framework based on
submodular functions, they showed that a natural greedy strategy obtains a
solution that is provably within 63% of optimal for several classes of models.
The authors also proposed a general framework that simultaneously includes
both of these models as special cases. Many variations have been investigated
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since then. Due to page constraints, we are not able to enumerate all of them.
We refer interested readers to Jon Kleinberg’s publication list (http://www.
cs.cornell.edu/home/kleinber/) for more details.

7. Expert Location Systems
The popularity of the expert-location problem in different contexts has lead

to the implementation of many relevant systems. This section brie y overviews
some of them. We also refer interested readers to MITRE (http://www.
mitre.org)’s technical report [44] for the comparisons of several commer-
cial tools.

A large body of traditional systems manage the skills of individuals in re-
lational database systems. The database contains a set of expert “pro les" or
backgrounds of individuals who are knowledgeable on particular topics. By
searching the database, we can nd certain experts or to match jobs with indi-
vidual capabilities. Systems in this category include but are not limited to: the
Searchable Answer Generating Environment(SAGE) and the Expert Seeker by
Becerra-Fernandez [3]; the CONNEX by Hewlett-Packard; the SPUD system
by Microsoft [13], and the OntoProPer by Sure et al. [56].

The Text REtrieval Conference (TREC) provided a common platform for
researchers to empirically evaluate methods for expert location from large col-
lections of text corpus. It has motivated a signi cant number of systems, most
of which use variations of language models to build expert pro les and dis-
cover the right candidates. Interested readers are referred to Section 3 and
TREC website (http://trec.nist.gov/) for more details.

As social networks become more popular, many systems start to utilize the
connections among individuals to identify experts. A featured example is the
ArnetMiner system developed by Tang et al. [58] for academic search. This
system employs both language models and belief propagation models to rank
experts. Given a topical query, the system returns a list of experts on this topic.
The system also suggests the top conferences and papers on this topic. Other
examples of systems that make use of the information encoded in an underlying
social network include Spree by Metze et al. [46] and Expertise Recommender
by McDonald et al. [45].

There exists another body of work built upon agent-based architecture to
search experts. Such systems include the ReferralWeb [34], Yenta [19], Net-
Expert [51], ContactFinder [39], and the (unnamed) ones by Vivacqua [62],
Crowder et al. [12], Garro and Palopoli [23] and Sugawara [55].

8. Conclusions
In this chapter, we surveyed three main aspects of the expert-location prob-

lem:
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Expert location without graph constraints: it focuses on identifying the
degree of expertise of different individuals without graph/network con-
straints.

Expert location with score propagation: it models the propagation of
expertise among people in the network.

Expert team formation: it considers the problem of identifying a group
of experts that can collectively perform a given task while minimizing
the communication/collaboratino cost incurred over the network.

We have also highlighted some existing expert-location systems. With the
proliferation of expertise networks, e.g., email communication network, user-
interactive question answering network, organization hierarchy, social network,
etc., we expect to see more intelligent and practical expert-location solutions
that capture both individuals’ skill sets as well as their social interactions to
maximize the quality the search results.
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1. Introduction
Social networks are a popular way to model the interactions among the peo-

ple in a group or community. They can be visualized as graphs, where a vertex
corresponds to a person in some group and an edge represents some form of
association between the corresponding persons. The associations are usually
driven by mutual interests that are intrinsic to a group. However, social net-
works are very dynamic, since new edges and vertices are added to the graph
over time. Understanding the dynamics that drive the evolution of social net-
work is a complex problem due to a large number of variable parameters. But,
a comparatively easier problem is to understand the association between two
speci c nodes. For instance, some of the interesting questions that can be
posed are: How does the association pattern change over time? What are the
factors that drive the associations? How is the association between two nodes
affected by other nodes? The speci c problem instance that we address in this
article is to predict the likelihood of a future association between two nodes,
knowing that there is no association between the nodes in the current state of
the graph. This problem is commonly known as the Link Prediction problem.

More formally, the link prediction task can be formulated as followed (based
upon the de nition in Liben-Nowell and Kleinberg [36]): Given a social net-
work G(V,E) in which an edge e = (u, v) ∈ E represents some form of
interactions between its endpoints at a particular time t(e). We can record
multiple interactions by parallel edges or by using a complex timestamp for
an edge. For time t ≤ t′ we assume that G[t, t′] denotes the subgraph of G
restricted to the the edges with time-stamps between t and t′. In a supervised
training setup for link prediction, we can choose a training interval [t0, t′0] and
a test interval [t1, t′1] where t′0 < t1. Now the link prediction task is to output a
list of edges not present in G[t0, t

′
0], but are predicted to appear in the network

G[t1, t
′
1].

Link prediction is applicable to a wide variety of application areas. In the
area of Internet and web science, it can be used in tasks like automatic web
hyper-link creation [3] and web site hyper-link prediction [65]. In e-commerce,
one of the most prominent usages of link prediction is to build recommenda-
tion systems [25, 37, 35]. It also has various applications in other scienti c
disciplines. For instance, in bibliography and library science, it can be used
for de-duplication [39] and record linkage [4]; in Bioinformatics, it has been
used in protein-protein interaction (PPI) prediction [6] or to annotate the PPI
graph [18]. In security related applications, it can be used to identify hid-
den groups of terrorists and criminals. In many of the above applications, the
graphs that we work on are not necessarily social network graphs, rather they
can be Internet, information networks, biological entity networks, and so on.
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In this article, we present a survey of existing approaches to link prediction,
with focus mainly on social network graphs. We classify the extant approaches
into several groups. One group of the algorithms computes a similarity score
between a pair of nodes so that a supervised learning method can be employed.
In this class we also include methods that use a kernel matrix, and then employ
a maximum margin classi er. Another class of algorithms consists of those
based on Bayesian probabilistic models, and probabilistic relational models.
Beside these, there are algorithms that are based on graph evolution models or
on linear algebraic formulations. Several methods span multiple classes in the
above classi cation scheme. After a brief overview, we discuss each group of
methods in more detail below.

2. Background
Liben-Nowell and Kleinberg [36] proposed one of the earliest link predic-

tion models that works explicitly on a social network. Every vertex in the graph
represents a person and an edge between two vertices represents the interaction
between the persons. Multiplicity of interactions can be modeled explicitly by
allowing parallel edges or by adopting a suitable weighting scheme for the
edges. The learning paradigm in this setup typically extracts the similarity be-
tween a pair of vertices by various graph-based similarity metrics and uses the
ranking on the similarity scores to predict the link between two vertices. They
concentrated mostly on the performance of various graph-based similarity met-
rics for the link prediction task. Later, Hasan et. al. [22] extended this work
in two ways. First, they showed that using external data outside the scope of
graph topology can signi cantly improve the prediction result. Second, they
used various similarity metric as features in a supervised learning setup where
the link prediction problem is posed as a binary classi cation task. Since then,
the supervised classi cation approach has been popular in various other works
in link prediction [10, 58, 15].

The link prediction problem has also been studied previously in the context
of relational data [53, 46, 47] and also in the Internet domain [50], where ex-
plicit graph representations were not used. The prediction system proposed in
these works can accept any relational dataset, where the objects in the dataset
are related to each other in any complex manners and the task of the system is
to predict the existence and the type of links between a pair of objects in the
dataset. Probabilistic relational models [21], graphical models [40], stochas-
tic relational models [6, 61, 20], and different variants of these are the main
modeling paradigm used in these works. The advantages of these approaches
include the genericity and ease with which they can incorporate the attributes
of the entities in the model. On the down side, they are usually complex, and
have too many parameters, many of which may not be that intuitive to the user.
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The research on social network evolution [7, 32, 34] closely resembles the
link prediction problem. An evolution model predicts the future edges of a net-
work, taking into account some well known attributes of social networks, such
as the power law degree distribution [7] and the small world phenomenon [32].
This remains the main difference between evolution models and the link pre-
diction models. The former concentrate on the global properties of the network
and the latter model the local states of the network to predict the probability of
the existence of a link between a speci c pair of nodes in the network. Never-
theless, the ideas from these models have been instrumental for some research
works [29] that directly addressed the task of link prediction.

One of the main challenges of link prediction concerns the evolution of In-
ternet scale social networks like facebook, mySpace, ickr, and so on. These
networks are huge in size and highly dynamic in nature for which earlier algo-
rithms may not scale and adapt well—more direct approaches are required to
address these limitations. For instance, Tylenda et. al. [56] shows that utilizing
the time stamps of past interactions, which explicitly utilize the lineage of inter-
actions, can signi cantly improve the link prediction performance. Recently,
Song et. al. [52] used matrix factorization to estimate similarity between the
nodes in a real life social network having approximately 2 millions nodes and
90 millions edges. Any traditional algorithm that aims to compute pair-wise
similarities between vertices of such a big graph is doomed to fail. Recently,
the matrix based factorization works have been extended to the more richer
higher-order models such as tensors [1].

Having outlined the background methods, we now review the existing meth-
ods to link prediction. We begin with feature-based methods that construct
pair-wise features to use in a classi cation task. Next we consider Bayesian
approaches, followed by the probabilistic relational models. After reviewing
methods based on linear algebra, we present some recent trends and directions
for future work.

Notation. Typically, we will use small letters, like x, y, z to denote a node
in a social network, the edges are represented by the letter e. For a node x,
Γ(x) represents the set of neighbors of x. degree(x) is the size of the Γ(x).
We use the letter A for the adjacency matrix of the graph.

3. Feature based Link Prediction
We can model the link prediction problem as a supervised classi cation

task, where each data point corresponds to a pair of vertices in the social net-
work graph. To train the learning model, we can use the link information from
the training interval ([t0, t′0]). From this model, predictions of future links in
the test interval ([t1, t′1]) can be made. More formally, assume u, v ∈ V are
two vertices in the graph G(V,E) and the label of the data point 〈u, v〉 is y〈u,v〉.
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Note that we assume that the interactions between u and v are symmetric, so
the pair 〈u, v〉 and 〈v, u〉 represent the same data point, hence, y〈u,v〉 = y〈v,u〉.
Now,

y〈u,v〉 =
{

+1, if 〈u, v〉 ∈ E
−1, if 〈u, v〉 /∈ E

Using the above labeling for a set of training data points, we build a classi-
cation model that can predict the unknown labels of a pair of vertices 〈u, v〉

where 〈u, v〉 /∈ E in the graph G[t1, t
′
1].

This is a typical binary classi cation task and any of the popular supervised
classi cation tools, such as naive Bayes, neural networks, support vector ma-
chines (SVM) and k nearest neighbors, can be used. But, the major challenge
in this approach is to choose a set of features for the classi cation task. Next
we will discuss the set of features that have been used successfully for super-
vised link prediction tasks.

3.1 Feature Set Construction
Choosing an appropriate feature set is the most critical part of any machine

learning algorithm. For link prediction, each data point corresponds to a pair of
vertices with the label denoting their link status, so the chosen features should
represent some form of proximity between the pair of vertices. In existing
research works on link prediction, majority of the features are extracted from
the graph topology. Also, some works develop a feature set constructed from a
graph evolution model. Besides these, the attributes of vertices and edges can
also be very good features for many application domains.

The features that are based on graph topology are the most natural for
link prediction. Here we call them graph-topological feature. In fact, many
works [36, 29] on link prediction concentrated only on the graph topological
feature-set. Typically, they compute the similarity based on the node neigh-
borhoods or based on the ensembles of paths between a pair of nodes. The
advantage of these features are that they are generic and are applicable for
graphs from any domain. Thus, no domain knowledge is necessary to compute
the values of these features from the social network. However, for large social
networks, some of these features may be computationally expensive. Below we
explain some of the popular graph topological features under two categories:
(1) Node neighborhood based and (2) Path based. Majority of these features
are adapted from [36, 22]. Following that we discuss a set of features that are
extracted from the vertex or edge properties of the graph.

3.1.1 Node Neighborhood based Features.

Common Neighbors. For two nodes, x and y, the size of their common
neighbors is de ned as |Γ(x) ∩ Γ(y)|. The idea of using the size of common
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neighbors is just an attestation to the network transitivity property. In simple
words, it means that in social networks if vertex x is connected to vertex z and
vertex y is connected to vertex z, then there is a heightened probability that
vertex x will also be connected to vertex y. So, as the number of common
neighbors grows higher, the chance that x and y will have a link between them
increases. Newman [41] has computed this quantity in the context of collabo-
ration networks to show that a positive correlation exists between the number
of common neighbors of x and y at time t, and the probability that they will
collaborate in the future.

Jaccard Coef cient. The common neighbors metric is not normalized,
so one can use the Jaccard Coef cient, which normalizes the size of common
neighbors as below:

Jaccard-coef cient(x,y) =
|Γ(x) ∩ Γ(y)|
|Γ(x) ∪ Γ(y)| (9.1)

Conceptually, it de nes the probability that a common neighbor of a pair of
vertices x and y would be selected if the selection is made randomly from
the union of the neighbor-sets of x and y. So, for high number of common
neighbors, the score would be higher. However, from the experimental results
of four different collaboration networks, Liben-Nowell et. al. [36] showed that
the performance of Jaccard coef cient is worse in comparison to the number
of common neighbors.

Adamic/Adar. Adamic and Adar [2] proposed this score as a metric of
similarity between two web pages. For a set of features z, it is de ned as
below. ∑

z : feature shared by x,y

1

log(frequency(z))
(9.2)

For link prediction, [36] customized this metric as below, where the common
neighbors are considered as features.

adamic/adar(x, y) =
∑

z∈Γ(x)∩Γ(y)

1

log |Γ(z)| (9.3)

In this way, Adamic/Adar weighs the common neighbors with smaller degree
more heavily. From the reported results of the existing works on link predic-
tion, Adamic/Adar works better than the previous two metrics.

3.1.2 Path based Features.

Shortest Path Distance. The fact that the friends of a friend can become
a friend suggests that the path distance between two nodes in a social network
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can in uence the formation of a link between them. The shorter the distance,
the higher the chance that it could happen. But, also note that, due to the small
world [59] phenomenon, mostly every pair of nodes is separated by a small
number of vertices. So, this feature sometimes does not work that well. Hasan
et. al. [22] found this feature to have an average rank of 4 among 9 features
that they used in their work on link prediction in a biological co-authorship
network. Similar nding of poor performance by this feature was also reported
in [36].

Katz. Leo Katz proposed this metric in [31]. It is a variant of shortest
path distance, but generally works better for link prediction. It directly sums
over all the paths that exist between a pair of vertices x and y. But, to penalize
the contribution of longer paths in the similarity computation it exponentially
damps the contribution of a path by a factor of βl, where l is the path length.
The exact equation to compute the Katz value is as below:

katz(x,y) =
∞∑
l=1

βl . |paths〈l〉x,y| (9.4)

where |paths〈l〉x,y| is the set of all paths of length l from x to y. Katz generally
works much better than the shortest path since it is based on the ensemble of
all paths between the nodes x and y. The parameter β(≤ 1) can be used to
regularize this feature. A small value of β considers only the shorter paths
for which this feature very much behaves like features that are based on the
node neighborhood. One problem with this feature is that it is computationally
expensive. It can be shown that the Katz score between all the pairs of ver-
tices can be computed by nding (I − βA)−1 − I , where A is the adjacency
matrix and I is an identity matrix of proper size. This task has roughly cubic
complexity which could be infeasible for large social networks.

Hitting Time. The concept of hitting time comes from random walks on
a graph. For two vertices, x and y in a graph, the hitting time, Hx,y de nes
the expected number of steps required for a random walk starting at x to reach
y. Shorter hitting time denotes that the nodes are similar to each other, so
they have a higher chance of linking in the future. Since this metric is not
symmetric, for undirected graphs the commute time, Cx,y = Hx,y +Hy,x, can
be used. The bene t of this metric is that it is easy to compute by performing
some trial random walks. On the downside, its value can have high variance;
hence, prediction by this feature can be poor [36]. For instance, the hitting time
between x and y can be affected by a vertex z, which is far away from x and
y; for instance, if z has high stationary probability, then it could be hard for
a random walk to escape from the neighborhood of z. To protect against this
problem we can use random walks with restart, where we periodically reset the
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random walk by returning to x with a xed probability α in each step. Due to
the scale free nature of a social network some of the vertices may have very
high stationary probability (π) in a random walk; to safeguard against it, the
hitting time can be normalized by multiplying it with the stationary probability
of the respective node, as shown below:

normalized-hitting-time(x,y) = Hx,y . πy +Hy,x . πx (9.5)

Rooted Pagerank. Chung and Zhao [13] showed that the Pagerank [11]
measures that is used for web-page ranking has inherent relationship with the
hitting time. So, pagerank value can also be used as a feature for link predic-
tion. However, since pagerank is an attribute of a single vertex, it requires to
be modi ed so that it can represent a similarity between a pair of vertices x
and y. The original de nition of pagerank denotes the importance of a vertex
under two assumptions: for some xed probability α, a surfer at a web-page
jumps to a random web-page with probability α and follows a linked hyperlink
with probability 1 − α. Under this random walk, the importance of an web-
page v is the expected sum of the importance of all the web-pages u that link
to v. In random walk terminology, one can replace the term importance by
the term stationary distribution. For link prediction, the random walk assump-
tion of the original pagerank can be altered as below: similarity score between
two vertices x and y can be measured as the stationary probability of y in a
random walk that returns to x with probability 1 − β in each step, moving to
a random neighbor with probability β. This metric is assymetric and can be
made symmetric by summing with the counterpart where the role of x and y
are reversed. In [36], it is named as rooted pagerank. The rooted pagerank
between all node pairs (represented as RPR) can be derived as follows. Let D
be a diagonal degree matrix with D[i, i] =

∑
j A[i, j]. Let, N = D−1A be the

adjacency matrix with row sums normalized to 1. Then,

RPR = (1− β)(I − βN)−1

3.1.3 Features based on Vertex and Edge Attributes. Vertex and
edge attributes play an important role for link prediction. Note that, in a social
network the links are directly motivated by the utility of the individual rep-
resenting the nodes and the utility is a function of vertex and edge attributes.
Many studies [22, 15] showed that vertex or edge attributes as proximity fea-
tures can signi cantly increase the performance of link prediction tasks. For
example, Hasan et. al. [22] showed that for link prediction in a co-authorship
social network, attributes such as the degree of overlap among the research key-
words used by a pair of authors is the top ranked attribute for some datasets.
Here the vertex attribute is the research keyword set and the assumption is that
a pair of authors are close (in the sense of a social network) to each other, if
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their research work evolves around a larger set of common keywords. Simi-
larly, the Katz metric computed the similarity between two web-pages by the
degree to which they have a larger set of common words where the words in
the web-page are the vertex attributes. The advantage of such a feature set is
that it is generally cheap to compute. On the down-side, the features are very
tightly tied with the domain, so, it requires good domain knowledge to identify
them. Below, we will provide a generic approach to show how these features
can be incorporated in a link prediction task.

Vertex Feature Aggregation. Once we identify an attribute a of a node
in a social network, we need to devise some meaningful aggregation function,
f . To compute the similarity value between the vertices x and y, f accepts the
corresponding attribute values of these vertices to produce a similarity score.
The choice of function entirely depends on the type of the attribute. In the
followings we show two examples where we aggregated some local metric of
a vertex.

Preferential Attachment Score: The preferential attachment concept [8]
is akin to the well known rich gets richer model. In short, it proposes
that a vertex connect to other vertices in the network based on the prob-
ability of their degree. So, if we consider the neighborhood size as fea-
ture value, then multiplication can be an aggregation function, which is
named as preferential attachment score:

preferential attachment score(x, y) = Γ(x) . Γ(y) (9.6)

Actually, the summation function can also be used to aggregate the fea-
ture values. In Hasan et. al. [22], the authors show that the summation
of the neighbor-count of a pair of vertices is a very good attribute, which
stands out as the second ranked feature in the link prediction task in a
co-authorship network.

Clustering Coef cient Score: Clustering coef cient of a vertex v is de-
ned as below.

clustering coef.(v) =
3× # triangles adjacent to u

# possible triples adjacent to u
(9.7)

To compute a score for link prediction between the vertex x and y, one
can sum or multiply the clustering coef cient score of x and y.

Kernel Feature Conjunction. In many domains, there could be numerous
vertex attributes or the attributes could be complex or attribute values between
a pair of instances may have no apparent match between them, hence direct
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application of aggregation function to each such attributes could be either cum-
bersome or misleading. In such a scenario, one can use pairwise kernel based
feature conjunction [43, 9]. The basic idea is to obtain a kernel function that
computes the similarity between two pairs of instances from the feature space
which is expanded through Cartesian product. More details on this approach
will be given below in Section 3.2.

Extended Graph Formulation. For a categorical vertex attribute, we can
make an extended graph where the social network is extended by additional
vertices where each additional vertex represents a speci c attribute. The ad-
ditional vertices can have a link among themselves based on co-existence of
other similarity properties. Moreover, an original vertex can also be connected
to an attribute vertex if that vertex shares that attribute value. This process can
be repeated for any number of vertex attributes. Now, all the graph topological
metrics can be deployed in the extended graph to compute a similarity score
which considers both attributes and graph topology. For example, for link
prediction in a co-authorship network, Hasan et. al. [22] considered an author-
keyword extended graph where an additional vertex is added for each keyword.
Each keyword node is connected to an author node, if that keyword is used by
the authors in any of his papers. Moreover, two keywords that appear together
in any paper are also connected by an edge. In this way, if two vertices do
not have any matching values for an attribute, they can still be similar through
the similarity link among the attributes values. Say, an author x is connected
to a keyword node, named machine learning and the author y is connected to
another keyword node, named information retrieval and if machine learning
and information retrieval are connected to each other in this extended graph,
attribute based similarity between node x and y can be inferred through the
extended graph.

Generic SimRank. In the above extended graph, we use the concept that
“two objects are similar if they are similar to two similar objects”. Jeh and
Widom [27] suggested a generic metric called SimRank which captures this
notion recursively. The simRank score is the xed point of the following re-
cursive equation.

simRank(x,y) =

{
1 if x = y

γ .
∑

a∈Γ(x)

∑
b∈Γ(y) simRank(a,b)

|Γ(x)| . |Γ(y)| otherwise

Note that, if we apply simRank in the extended graph, the similarity score
considers both the graph topological and attribute based similarity.
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3.2 Classi cation Models
There exist a plethora of classi cation models for supervised learning, such

as decision trees, naive Bayes, neural networks, SVMs, k nearest neighbors,
and ensemble methods like bagging and boosting. Also regression models like
logistic regression can also be used for this task [38]. Although their perfor-
mances are comparable, some usually work better than others for a speci c
data set or domain. In [22], the authors found that for a co-authorship so-
cial network, bagging and support vector machines have marginal competitive
edge. However, learning a model for a link prediction task has some speci c
challenges that may make some models more attractive than others.

In this section we rst discuss the speci c challenges when modeling link
prediction as a classi cation task. We then discuss supervised learning models
that are custom-made to cope with some of these challenges.

Figure 9.1. Logarithmic plot of actual and possible collaborations between DBLP authors,
1995-2004 [49].

Challenges for Link Prediction as Classi cation. The rst challenge in
supervised link prediction is extreme class skewness. The number of possible
links is quadratic in the number of vertices in a social network, however the
number of actual links (the edges in the graph) added to the graph is only
a tiny fraction of this number. This results in large class skewness, causing
training and inference to become dif cult tasks. Hasan et. al. [22] reported very
good performance of link prediction on DBLP and BIOBASE datasets, but they
ignored the class distribution and reported cross validation performance from a
dataset where the population is balanced. It is fair to say that the performance
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would drop (sometimes signi cantly) if the original class distribution were
used. Rattigan an Jensen [49] studied this problem closely. As illustrated in
Figure 9.1, they showed that in the DBLP dataset, in the year 2000, the ratio
of actual and possible link is as low as 2 × 10−5. So, in a uniformly sampled
dataset with one million training instances, we can expect only 20 positive
instances. Even worse, the ratio between the number of positive links and the
number of possible links also slowly decreases over time, since the negative
links grow quadratically whereas positive links grow only linearly with a new
node. As reported in [49], for a period of 10 years, from 1995 to 2004 the
number of authors in DBLP increased from 22 thousand to 286 thousand, thus
the possible collaborations increased by a factor of 169, whereas the actual
collaborations increased by only a factor of 21.

Figure 9.2. Schematic of the effect of large class skew on a model’s ability to discriminate
between classes. In rst case (top), the two distributions are easily distinguished. In the sec-
ond case (bottom), large class skew makes the discrimination really dif cult. Image taken
from [49].

The problem of class skew in supervised learning is well known in machine
learning. The poor performance of a learning algorithm in this case results
from both the variance in the models estimates and the imbalance in the class
distribution. Even if a low proportion of negative instances have the predictor
value similar to the positive instances, the model will end up with a large raw
number of false positives. We borrowed the following schematic explanation
(see Figure 9.2) from [49]. For a hypothetical dataset, let us consider a pre-
dictor s measured on the instance pairs. Also assume that the values of s are
drawn from a normal distribution with different means for positive (linked) and
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negative (not-linked) object pairs. In presence of large class skew, the entirety
of the positive class distribution is “swallowed” by the tail of the negative class,
as shown in Figure 9.2.

To cope with class skew, existing research suggests several different ap-
proaches. These methods include the altering of the training sample by up-
sampling or down-sampling [12], altering the learning method by making the
process active [16] or cost-sensitive [28], and also more generally by treating
the classi er score with different thresholds [48]. For kernel based classi ca-
tion, there exist some speci c methods [63, 57] to cope with this problem. In
general, learning from imbalanced datasets is a very important research con-
sideration and we like to refer the reader to [60], which has a good discussion
of various techniques to solve this.

The second challenge in supervised link prediction is model calibration [42],
which is somewhat related to the class imbalance problem. However, model
calibration is worth mentioning in its own merit because in the application do-
main of link prediction, calibrating the model is sometimes much more crucial
than nding the right algorithm to build the classi cation model. Model cali-
bration is the process to nd the function that transforms the output score value
of the model to a label. By varying (or biasing) the function we can control
the ratio of false positive error and false negative error. In many application
domains of link prediction, such as for detecting social network links in a ter-
rorist network, the cost of missing a true link could be a catastrophic. One the
other hand, in online social networks, recommending (predicting) a wrong link
could be considered a more serious mistake than missing a true link. Based on
these, the system designer needs to calibrate the model carefully. For some
classi ers, calibration is very easy as the model predicts a score which can be
thresholded to convert to a +1/-1 decision. For others, it may requires some
alteration in the output of the model.

Another problem of link prediction is the training cost in terms of time
complexity. Most of the social networks are large and also due to the class
imbalances, a model’s training dataset needs to consists of a large number of
samples so that the rare cases [60] of the positive class are represented in the
model. In such a scenario, classi cation cost may also become a considera-
tion while choosing the model. For instance, running an SVM with millions of
training instances could be quite costly in terms of time and resources, whereas
Bayesian classi cation is comparably much cheaper.

Another important model consideration is the availability of dynamic updat-
ing options for the model. This is important for social networks because they
are changing constantly and a trade off between completely rebuilding and up-
dating the model may be worth considering. Recently, some models have been
proposed that consider dynamic updates explicitly.
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Above we also discussed how vertex attributes can be used for the task of
link prediction. In supervised classi cation of link prediction, this is some-
times tricky because an instance in the training data represents a pair of ver-
tices, rather than a single vertex. If the proposed model provides some options
to map vertex attributes to pair attributes smoothly, that also makes the model
an excellent choice for the link prediction task. Below we discuss a couple of
supervised models that address some of the above limitations more explicitly.

3.2.1 Chance-Constrained with Second-Order Cone Programming.
To explicitly handle imbalanced datasets, Doppa et. al. [15] proposed a sec-
ond order cone programming (SOCP) formulation for the link prediction task.
SOCP can be solved ef ciently with methods for semi-de nite programs, such
as interior point methods. The complexity of SOCP is moderately higher than
linear programs but they can be solved using general purpose SOCP solvers.
The authors discussed two algorithms, named CBSOCP (Cluster-based SOCP
formulation) and LBSOCP (Speci ed lower-bound SOCP).

In CBSOCP, the class conditional densities of positive and negative points
are modeled as mixture models with component distribution having spherical
covariances. If k1 and k2 denotes the number of components in the mixtures
models for the positive and negative class, CBSOCP rst nds k1 positive clus-
ters and k2 negative clusters by estimating the second order moment (μ, σ2) of
all the clusters. Given these positive and negative clusters, it obtains a discrim-
inating hyperplane (wTx−b = 0), like in SVM, that separates the positive and
negative clusters. The following two chance-constraints are used.

Pr(wTXi − b ≥ 1) ≥ η1 : ∀i ∈ {1 . . . k1}
Pr(wTXj − b ≤ −1) ≥ η2 : ∀j ∈ {1 . . . k2}

Here Xi and Xj are random variables corresponding to the components of
the mixture models for positive and negative classes, and η1 and η2 are the
lower bound of the classi cation accuracy of these two classes. The chance-
constraints can be replaced by deterministic constraints by using multinomial
Chevyshev inequality (also known as Chevishev-Cantelli inequality) as below:

minw,b,ξi

∑k
i=1 ξi

s.t. yi(w
Tμi − b) ≥ 1− ξi + κ1σiW, ∀i = 1, . . . , k1

yj(w
Tμj − b) ≥ 1− ξj + κ2σjW, ∀j = 1, . . . , k2

ξi ≥ 0 ∀i = 1, . . . , k1 + k2
W ≥ ‖w‖2

where, k = k1 + k2, κi =
√

ηi
1−ηi and W is a user-de ned parameter which

lower bounds the margin between the two classes. By solving the above SOCP
problem, we get the optimum values of w and b, and a new data point x can be
classi ed as sign(wT x− b).
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LBSOCP imposes lower bounds on the desired accuracy in each class, thus
controlling the false positive and false-negative rates. It considers the following
formulation:

minw,b
1
2‖w‖2

s.t. Pr(X ∈ H2) ≤ 1− η1
Pr(X ∈ H1) ≤ 1− η2
X1 ∼ (μ1,Σ1),X2 ∼ (μ2,Σ2)

where H1 and H2 denote the positive and negative half-spaces, respectively.
The chance constraints specify that the probability that false-negative and false-
positive rate should not exceed 1 − η1 and 1 − η2, respectively. Like before,
using Chevyshev inequality, this can be formulated using a SOCP problem as
below:

minw,b,t t
s.t. t ≥ ‖w‖2

wTμ1 − b ≥ 1 + κ1‖CT
1 w‖2

b− wTμ2 ≥ 1 + κ2‖CT
2 w‖2

where, κi =
√

ηi
1−ηi , and C1 and C2 are square matrices such that Σ1 =

C1C
T
1 and Σ2 = C2C

T
2 . Note that such matrices exist since Σ1 and Σ2 are

positive semi-de nite. After solving this above problem, the optimal value of
w and b can be obtained which can be used to classify new data point x as
sign(wTx− b).

The strength of above two SOCP formulations is that they allow an explicit
mechanism to control the false positive and false negative in link prediction.
So, they are well suited for the case of imbalanced classi cation. Also they
are scalable. Authors in [15] show that they perform signi cantly better than a
traditional SVM classi er.

3.2.2 Pairwise Kernel Approach. In Section 3.1, we discussed the
pairwise kernel technique for automatically converting the vertex attributes to
pair attributes; this technique has been used to build kernel based classi ers for
link prediction [30]. The main objective is to build a pair-wise classi er [43,
30]. Standard binary classi cation problem aims to learn a function f : V →
{+1,−1}, where V indicates the set of all possible instances. On the other
hand, in the (binary) pairwise classi cation, the goal is to learn a function
f : V (1) × V (2) → {+1,−1}, where V (1) and V (2) are two sets of possible
instances. There also exists a matrix F of size |V (1)| × |V (2)| whose elements
are +1 (link exist) and -1 (link does not exist). For link prediction task, V (1) =
V (2) = V the vertex set of the social network G(V,E) and the matrix F is just
the adjacency matrix of the graph G. For pairwise classi cation using kernels,
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we also have two positive semi-de nite kernel matrices, K(1) and K(2) for
V (1) and V (2) respectively. For link prediction task, K(1) = K(2) = K. K
is a kernel matrix of size |V | × |V |, in which each entry denotes the similarity
between the corresponding pair of nodes in the social network. To compute K,
any function that maps a pair of nodes to a real number can be used as long as
K remains semi-de nite.

Generally, the assumption that drives pair-wise classi cation is that the sim-
ilarity score between a pair of instances (an instance itself is a pair) is higher if
the rst elements from both the instances are similar and also the second ele-
ments from both the pairs are similar. So, if v(1)i1

, v
(1)
j1
∈ V (1), v(2)i2

, v
(2)
j2
∈ V (2)

and (v
(1)
i1

, v
(2)
i2

) and (v
(1)
j1

, v
(2)
j2

) are similar, we expect v(1)i1
and v

(1)
j1

are similar
and v

(2)
i2

and v
(2)
j2

are similar. To model this expectation in the kernel frame-
work, [43] proposed to consider the pairwise similarity to be the product of
two instance-wise similarities, i.e.,

k⊗((v
(1)
i1

, v
(2)
i2

), (v
(1)
j1

, v
(2)
j2

)) = [K(1)]i1,j1 [K
(2)]i2,j2

Since the product of Mercer kernels is also a Mercer kernel [51], the above sim-
ilarity measure is also a Mercer kernel if the element-wise kernels are Mercer
kernels. Using the above formulation, the kernel for the pair-wise classi er is
just the Kronecker product of the instance kernel matrices: K⊗ = K(1)⊗K(2).
This pairwise kernel matrix can be interpreted as a weighted adjacency matrix
of the Kronecker product graph [26] of the two graphs whose weighted ad-
jacency matrices are the instance-wise kernel matrices. [30] named it as Kro-
necker Kernel and proposed an alternative that is based on Cartesian product
graph, hence named Cartesian kernel. The difference between them is just the
way how these two product graphs are formed. In case of Kronecker product,
if (v(1)i1

, v
(2)
i2

) and (v
(1)
j1

, v
(2)
j2

) are node pairs in the product graph, there exist a
link between the pair v(1)i1

and v
(1)
j1

and also a link between the pair v(2)i2
and

v
(2)
j2

. On the other hand, for the case of Cartesian product a link between these
two pairs in the product graph exists if and only if v(1)i1

= v
(1)
j1

in the rst graph
and there is a link between v

(2)
i2

and v
(2)
j2

in the second graph or a link exists
between v

(1)
i1

and v
(1)
j1

in the rst graph and v
(2)
i2

= v
(2)
j2

in the second graph.
Based on this, Cartesian kernel is de ned as below:

k⊗((v
(1)
i1

, v
(2)
i2

), (v
(1)
j1

, v
(2)
j2

)) = δ(i2 = j2)[K
(1)]i1,j1 + δ(i1 = j1)[K

(2)]i2,j2

For link prediction on undirected graphs, both the instance matrices are the
same and also the element pairs in an instance are exchangeable. The Kro-
necker kernel can be made symmetric as below:

kSYM
⊗ ((vi1 , vi2), (vj1 , vj2)) = [K]i1,j1 [K]i2,j2 + [K]i1,j2 [K]i2,j1



Link Prediction in Social Networks 259

And for Cartesian kernel it is as shown below:

kSYM⊗ ((vi1 , vi2), (vj1 , vj2)) = δ(i2 = j2)[K]i1,j1 + δ(i1 = j1)[K]i2,j2
+δ(i2 = j1)[K]i1,j2 + δ(i1 = j2)[K]i2,j1

The advantage of Cartesian kernel over the Kronecker kernel is that it has many
more zero entries (an entry is zero if the two pairs do not share at least one
instance). So, the training time is much faster. [30] showed via experiments
that its performance is comparable with respect to the Kronecker kernel.

4. Bayesian Probabilistic Models
In this section, we will discuss supervised models that use Bayesian con-

cepts. The main idea here is to obtain a posterior probability that denotes the
chance of co-occurrence of the vertex pairs we are interested in. An advantage
of such model is that the score itself can be used as a feature in classi ca-
tion, as we discussed in section 3.2. Contenders in this category are the al-
gorithms proposed by Wang, Satuluri and Parthasarathy [58] and by Kashima
and Abe [29]. The former uses a MRF based local probabilistic model and
the later uses a parameterized probabilistic model. [58] also takes the output
from the probabilistic method and uses it as a feature in a subsequent steps that
employs several other features (Katz, vertex attribute similarity) to predict a
binary value.

4.1 Link Prediction by Local Probabilistic Models
Wang et. al. [58] proposed a local probabilistic model for link prediction that

uses Markov Random Field (MRF), an undirected graphical model. To predict
the link between a pair of nodes x and y, it introduces the concept of central
neighborhood set, which consists of other nodes that appear in the local neigh-
borhood of x or y. Let {w, x, y, z} be one such set, then the main objective
of this model is to compute the joint probability P ({w, x, y, z}), which repre-
sents the probability of co-occurrence of the objects in this set. This probabil-
ity can be marginalized (in this example, over all possible w and z) to nd the
co-occurrence probability between x and y. There can be many such central
neighborhood sets (of varying size) for the pair x and y, which makes learning
the marginal probability (p(x, y)) tricky. The authors exploited MRFs to solve
the learning problem; their approach has three steps, as described below.

The rst step is to nd a collection of central neighborhood sets. Given two
nodes x and y, their central neighborhood sets can be found in many ways.
The most natural way is to nd a shortest path between x and y and then all
the nodes along this path can belong to one central neighborhood set. If there
exist many shortest paths of the same length, all of them can be included in
the collection. Finding shortest path of arbitrary length can be costly for very
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large graphs. So in [58] the authors only considered shortest paths up to length
4. Let us assume that the set Q contains all the objects that are present in any
of the central neighborhood set.

The second step is to obtain the training data for the MRF model, which is
taken from the event log of the social network. Typically a social network is
formed by a chronological set of events where two or more actors in the net-
work participate. In case of co-authorship network, co-authoring an article by
two or more persons in the network is an event. Given an event-list, [58] forms
a transaction dataset, where each transaction includes the set of actors partic-
ipates in that event. On this dataset, they perform a variation of itemset min-
ing, named non-derivable itemset mining, which outputs all the non-redundant
itemsets (along with their frequencies) in the transaction data. This collection
is further re ned to include only those itemsets that contain only the objects
belonging to the set Q. Assume this collection is the set VQ.

In the nal step, an MRF model (say, M ) is trained from the training data.
This training process is translated to a maximum entropy optimization problem
which is solved by iterative scaling algorithm. If PM (Q) is the probability
distribution over the power set of Q, we have

∑
q∈℘(Q) PM (q) = 1, where

℘(Q) denotes the power-set of Q. Each itemset along with its associated count
in the set VQ imposes a constraint on this distribution by specifying a value for
that speci c subset (of Q). Together, all these counts restrict the distribution
to a feasible set of probability distributions, say P. Since, the itemset counts
come from empirical data, P is non-empty. But, the set of constraints coming
through VQ typically under-constrains the target distribution, for which we
adopt the maximum entropy principle so that a unique (and unbiased) estimate
of PM (Q) can be obtained from the feasible distribution set P. Thus, we are
trying to solve the following optimization problem,

PM (Q) = argmax
p∈P

H(p)

where, H(p) = −∑x p(x) log p(x). The optimization problem is feasible
and a unique target distribution exists only if the constraints are consistent (in
this case, the frequency constraints are consistent since they are taken from the
itemset support value). The solution has the following product form:

PM (Q) = μ0

∏
j:Vj∈VQ

μ
I(constraint Vj satis es)
j

Here, μj : j ∈ {1 . . . |VQ|} are parameters associated with each constraint,
I is an indicator function which ensures that a constraint is considered in
the model only if it is satis ed and μ0 is a normalizing constant to ensure∑

q∈℘(Q) PM (q) = 1. The value of the parameters can be obtained by an
iterative scaling algorithm; for details, see [44].
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Once the model PM (Q) is built, one can use inference to estimate the joint
probability between the vertex x and y. The advantage of a local mode is
that the number of variables in the set VQ is small, so exact inference is feasi-
ble. [58] used the Junction Tree algorithm as an inference mechanism.

4.2 Network Evolution based Probabilistic Model
Kashima et. al. [29] proposed an interesting probabilistic model of network

evolution which can be used for link prediction. The connection between these
two problems is emphasized in [36] that we quote here: “a network model
is useful to the extent that it can support meaningful inference from observed
network data”. Motivated from this statement, the authors in [29] showed that
by having tunable parameters in an evolution model naturally gives rise to a
learning algorithm for link prediction. First we discuss the network evolution
model and later show how they use the model to perform link prediction.

The proposed evolution model considers only the topological (structural)
properties of the network. For a graph G(V, φ), where V is the set of nodes and
φ : V × V → [0, 1] is an edge label function, φ(x, y) denotes the probability
that an edge exists between node x and y in G. In particular, φ(x, y) = 1
denotes that an edge exists and φ(x, y) = 0 denotes that an edge does not
exist. φ(t) denotes the edge label function at time t, which changes over time;
further, the model is Markovian, i.e., φ(t+1) depends only on φ(t). In this
model V remains xed. The model evolves over the time as below: An edge
label is copied from node l to node m randomly with probability wlm. First,
the model decides on l and m, then chooses an edge label uniformly from one
of l’s |V | − 1 edge labels (excluding φ(l,m)) to copy as m’s edge label. The
model satis es the following probability constraints.

∑
lm

wlm = 1, wlm > 0, wll = 0

The above idea closely resembles the transitivity property of social network –
a friend of a friend becomes a friend. Through the edge label copying process,
l can become friend of one of m’s friend. The learning task in the above model
is to compute the weights wij and the edge labels φ(t+1) given the edge label
φ(t) from training dataset.

There are two possible ways for φ(t)(i, j) to assume a particular edge label.
The rst is that node k copied one of its edge label to either node i or to node
j. The other is that, copying happened elsewhere and φ(t+1)(i, j) = φ(t).
Following this, we have:
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φ(t+1)(i, j) = 1
|V |−1

∑
k �=i,j

wkjφ
(t)(k, i) I

(
φ(t)(k, j) = 1

)
+ 1
|V |−1

∑
k �=i,j

wkiφ
(t)(k, j) I

(
φ(t)(k, i) = 1

)

+

⎛
⎝1− 1

|V |−1
∑
k �=i,j

(wkj + wki)

⎞
⎠φ(t)(i, j)

(9.8)

Note that, for the case when the copy happens if k copies its label to node i,
then k should already have an edge with j and if k copies its label to node
j, it should already have an edge with i. This requirement is manifested by
the indicator function I , which assumes a value 0 if the condition inside the
parenthesis is not satis ed. By iterative application of this equation on the
edge labels, the network structure evolves over time.

For the task of link prediction, the model considers that the current network
is in an stationary state, i.e., φ(∞)(k, i) = φ(t+1)(k, i) = φ(t)(k, i); by plug-
ging this assumption in Equation 9.8, we obtain the following equation

φ(∞)(i, j) =

∑
k �=i,j

(
wkjφ

(∞)(k, i) + wkiφ
(∞)(k, j)

)
∑

k �=i,j (wkj + wki)
(9.9)

The log-likelihood for the edge label φ(i, j) can be written as

Lij = φ(∞)(i, j) log
∑

k �=i,j (wkjφ
(∞)(k,i)+wkiφ

(∞)(k,j))
∑

k �=i,j (wkj+wki)(
1− φ(∞)(i, j)

)
log

(
1−

∑
k �=i,j (wkjφ

(∞)(k,i)+wkiφ
(∞)(k,j))

∑
k �=i,j (wkj+wki)

)
(9.10)

Total log-likelihood for the known edge labels is de ned as:

L(W ) =
∑

(i,j)∈E train

Lij (9.11)

Now, the parameter estimation process is mapped to the following constrained
optimization problem:

Maximizew,φ(∞)(i,j) for (i,j)∈E train L(W )

s. t.

φ(∞)(i, j) =

∑
k �=i,j

(
wkjφ

(∞)(k, i) + wkiφ
(∞)(k, j)

)
∑
k �=i,j

(wkj + wki)
,∀(i, j) ∈

Etrain, and
∑
l,m

wlm = 1, wlm ≥ 0
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The above optimization problem can be solved by an Expectation Maxi-
mization type transductive learning; for details, see [29].

The bene t of this model is that it is very generic and can be applied to any
social network. Further, the EM based learning yields an ef cient algorithm.
However, the performance of the algorithm entirely depends on the degree to
which the network agree to the proposed graph evolution model.

4.3 Hierarchical Probabilistic Model
Clauset et. al. [14] proposed a probabilistic model which considers the hi-

erarchical organization in the network, where vertices divide into groups that
further subdivide into groups of groups and so forth over multiple scales. The
model infers hierarchical structure from network data and can be used for pre-
diction of missing links. It is proposed as a probabilistic model for hierarchical
random graphs. The learning task is to use the observed network data to t the
most likely hierarchical structure through statistical inference – a combination
of the maximum likelihood approach and a Monte Carlo sampling algorithm.

Let G be a graph with n vertices. A dendogram D is a binary tree with n
leaves corresponding to the vertices of G. Each of the n−1 internal nodes of D
corresponds to the group of vertices that are descended from it. A probability
pr is associated with each internal node r. Then, given two vertices i,j of G,
the probability pij that they are connected by an edge is pij = pr where r is the
lowest common ancestor in D. The combination, (D, {pr}) of the dendogram
and the set of probabilities then de nes a hierarchical random graph.

The learning task is to nd the hierarchical random graph or graphs that best
ts the observed real world network data. Assuming all hierarchical graphs are
a priori equally likely, the probability that a given model, (D, {pr}) is the
correct explanation of the data is, by Bayes theorem, proportional to the poste-
rior probability or likelihood, L with which the model generates the observed
network. The goal is to maximize L.

Let Er be the number of edges in G whose endpoints have r as their lowest
common ancestor in D, and let Lr and Rr, respectively, be the numbers of
leaves in the left and right subtrees rooted at r. Then, the likelihood of the
hierarchical random graph is L(D, {pr}) =

∏
r∈D

pEr
r (1− pr)

LrRr−Er , with

the convention that 00 = 1. If we x the dendogram D, it is easy to nd the
probabilities {p̄r} that maximize L(D, {pr}), which is:

p̄r =
Er

LrRr
(9.12)
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the fraction of the potential edges between the two subtrees of r that actually
appear in the graph G. The logarithm of the likelihood is:

logL(D) = −
∑
r∈D

LrRrh(p̄r) (9.13)

where, h(p) = −p log p−(1−p) log(1−p). Note that each term−LrRrh(p̄r)
is maximized when p̄r is close to 0 or close to 1. In other words, high-
likelihood dendograms are those that partition the vertices into groups between
which connections are either very common or very rare.

The choice among the dendograms are made by a Markov chain Monte
Carlo sampling method with probabilities proportional to their likelihood. To
create the Markov chain, the method rst creates a set of transitions between
possible dendograms through rearrangement. For rearrangement, the method
chooses an internal node of a dendogram and then chooses uniformly among
various con guration of the subtree at that node; for details, see [14]. Once
the transition criteria is known the sampling process initiates a random walk.
A new rearrangement is accepted according to the Metropolis-Hastings sam-
pling rule, i.e., for a transition from a dendogram D to another rearranged
dendogram D′, the transition is accepted if Δ logL = logL(D′) − logL(D)
is nonnegative, otherwise it is accepted with a probability L(D′)/L(D). Au-
thors proved that the random walk is ergodic and at stationary distribution the
dendogram are sampled according to their probability of likelihood.

For the task of link prediction, a set of sample dendograms are obtained at
regular intervals once the MCMC random walk reaches an equilibrium. Then,
for the pair of vertices x and y for which no connection exists, the model com-
putes a mean probability pxy that they are connected by averaging over the
corresponding probability pxy in each of the sampled dendograms. For a bi-
nary decision, a model calibration can be made through a calibration dataset.
The unique nature of the hierarchical random graph model is that it allows an
hierarchy in the model. Also, it allows to sample over the set of hierarchical
structures to obtain a consensus probability. On the downside, it may not be
that accurate unless MCMC converges to the stationary distribution in a rea-
sonable number of steps. Also for large graphs the entire process could be very
costly.

5. Probabilistic Relational Models
In earlier sections, we discussed that the vertex attributes play a signi cant

role in link prediction task. We also showed how different link prediction
methods try to incorporate the vertex attributes in the prediction model to ob-
tain better performance. However, in most of the cases, these approaches are
not generic, and thus, are not applicable in all possible scenarios. Probabilis-
tic Relational model (PRM) is a concrete modeling tool that provides a sys-
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tematic way to incorporate both vertex and edge attributes to model the joint
probability distribution of a set of entities and the links that associate them.
The bene t of a PRM is that it considers the object-relational nature of struc-
tured data by capturing probabilistic interactions between entities and the links
themselves. So, it is better than a at model which discards such relational in-
formation. There are two pioneering approach of PRM, one based on Bayesian
networks, which consider the relation links to be directed [21], and the other
based on relational Markov networks, which consider the relation links to be
undirected [53]. Though both are suitable for link prediction task, for most
networks an undirected model seems to be more appropriate due to its exibil-
ity.

As an example consider the link prediction problem in a co-authorship net-
work. The only entities that other (non-relational) models consider is the per-
son. However, in PRM we can mix heterogeneous entities in the model. So
it is entirely possible to include other relevant objects in this model, such as
article, conferenceVenue, and institution. Similar to a database schema, each
of these objects can have attributes. For example, a person may have attributes
like name, af liationInstitute, status (whether (s)he is a student, an employee
or a professor); an article may have publicationYear, conferenceVenue; an in-
stitute may have location, and a conference venue may have attributes like
ResearchKeywords and so on. Then there can be relational links between these
entities. Two person can be related by an advisor/advisee relationship. A per-
son can be related to a paper by an author relationship. A paper can be related
to a conference venue by publish relationship. In this way, the model can in-
clude a complete relational schema similar to an object relational database.

PRM was originally designed for the attribute prediction problem in rela-
tional data. For link prediction task, it was extended [21, 53] so that the links
are rst-class citizens in the model, so additional objects, named link objects
are added in the relational schema. Any link object, l, is associated with a tu-
ple of entity objects (o1, . . . ok) that participate in the relation (for most of the
cases, links will be between a tuple of two entity objects). Following the ex-
ample in the previous paragraph, one of the link object can be advisor/advisee
object that relates two persons. The model also allows the link objects to have
attributes. Now, consider a object named potentialLink that relates two per-
sons. It has a binary attribute named exist which is true if there exists a link
between the associated objects, and false otherwise. The link prediction task
now reduces to the problem of predicting the existence attribute of these link
objects.

In the training step of the model, a single probabilistic model is de ned over
the entire link graph, including both object labels and links between the objects.
The model parameters are trained discriminatively, to maximize the probability
of the (object) and the link labels given the known attributes. The learned
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model is then applied using probabilistic inference, to predict and classify links
using observed attributes and links.

5.1 Relational Bayesian Network
A Relational Bayesian Network (RBN) is the relational counterpart of a

Bayesian network (BN). Hence, the model graph of RBN GD
M = (VM , EM ) is

a directed acyclic graph with a set of conditional probability distribution (CPD)
to represent a joint distribution over the attributes of the item types. Each CPD
corresponding to an attribute X represents P (X|pa(X)), where pa(X) are
the parents of X in the network. In RBN, like BN, the joint probability dis-
tribution can be factorized according to the dependencies in the acyclic graph
structure. RBN has closed-form parameter estimation techniques, which make
the learning of the model parameters very ef cient. The learning process is
almost identical to BN. As for inference, RBN adopts belief propagation [21],
which could perform poorly in many cases.

5.2 Relational Markov Network
Relational Markov Network (RMN) is the relational counterpart of undi-

rected graphical models or Markov Networks [45]. Let V denotes a set of
discrete random variables, and v is an instantiation of the variables in V . A
Markov network for V de nes a joint distribution over V through an undi-
rected dependency network and a set of parameters. For a graph G, if C(G) is
the set of cliques (not necessarily maximal), the Markov network de nes the
distribution p(v) = 1

Z

∏
c∈C(G) φc(vc), where Z is the standard normalizing

factor, vc is the vertex set of the clique c, and φc is a clique potential function.
RMN speci es the cliques using the notion of a relational clique template,
which speci es tuples of variables in the instantiation using a relational query
language.

Given a particular instantiation I of the schema, the RMN M produces
an unrolled Markov network over the attributes of entities in I (see [55] for
details). The cliques in the unrolled network are determined by the clique
template C . There exists one clique for each c ∈ C(I), and all of these cliques
are associated with the same clique potential φC . Tasker et. al. [54] show how
the parameters of a RMN over a xed set of cliques can be learned from data.
In a large network with a lot of relational attributes, the network is typically
large, so exact inference is typically infeasible. So, like RBN, RMN also uses
belief propagation for inference.

Besides the above two, their exists several other relational models that can
be used for link prediction. These are several Bayesian relational models
such as DAPER (Directed Acyclic Probabilistic Entity Relationship) [24], re-
lational dependency network [23], parametric hierarchical Bayesian relational



Link Prediction in Social Networks 267

model [62], non-parametric hierarchical Bayesian relational model [61] and
stochastic relational model [64]. For details on these, we encourage the read-
ers to read the respective references.

6. Linear Algebraic Methods
Kunegis et. al. [33] proposed a very general method that generalizes several

graph kernels and dimensionality reduction methods to solve the link predic-
tion problem. This method is unique in the sense that it is the only method that
proposes to learn a function F which works directly on the graph adjacency or
the graph Laplacian matrix.

Let A and B be two adjacency matrices of the training and test set for the
link prediction. We assume that they have the same vertex set. Now, consider a
spectral transformation function F that maps A to B with minimal error given
by the solution to the following optimization problem:

minF ‖ F (A)−B‖F (9.14)
s.t. F ∈ S

where ‖ . ‖F denotes the Frobenius norm. Here, the constrain ensures that
the function F belongs to the family of spectral transformation functions (S).
Given a symmetric matrix A = UΛUT , for such an F , we have F (A) =
UF (Λ)UT , where F (A) applies the corresponding function on reals to each
eigenvalue separately. Note that the above formulation of link prediction is
a form of transductive learning as the entire test data is available to learn the
model parameters.

The optimization problem in ( 9.14) can be solved by computing the eigen-
value decomposition A = UΛUT and using the fact that the Frobenius norm
is invariant under multiplication by an orthogonal matrix

‖ F (A)−B‖F
= ‖UF (Λ)UT −B‖F
= ‖ F (Λ)−UTBU‖F (9.15)

Since, the off-diagonal entries in the expression ( 9.15) are not dependent on
the function F , the desired optimization function on the matrix can be trans-
formed into an optimization function on real numbers as below:

minf
∑
i

(
f(Λii)−UT

.iBU.i

)2 (9.16)

So, the link prediction problem thus reduces to a one-dimensional least square
curve tting problem.
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Now, the above general method can be used to t many possible spectral
transformation functions. In particular, we are looking for a function F that
accepts a matrix and return another matrix which is suitable for link prediction,
i.e., the entries in the returned matrix should encode the similarity between the
corresponding vertex pairs. There are many graph kernels which can be used
for the function F .

Exponential Kernel. For an adjacency matrix of an unweighted graph, A,
the powers, An denotes the number of paths of length n connecting all node
pairs. On the basis that the nodes connected by many paths should be consider
nearer to each other than nodes connected by few paths, a function F for link
prediction can be as below:

FP (A) =
d∑

i=0

αiA
i (9.17)

The constant αi should be decreasing as α grows larger to penalize longer
paths. Now an exponential kernel can be expressed as below which models the
above path counting.

exp(αA) =

∞∑
i=0

αi

i!
Ai (9.18)

Von-Neumann Kernel. It is de ned similar to the exponential kernel

(I− αA)−1 =

∞∑
i=0

αiAi (9.19)

it also models a path counting kernel.

Laplacian kernels. The generic idea proposed in this method is not con-
ned to use functions on adjacency matrix. In fact, one is also allowed to use

functions that apply on the Laplacian matrix, L which is de ned as L = D−A,
where D is the diagonal degree matrix. The normalized Laplacian matrix, L
is de ned as L = I−D−1/2LD−1/2. While using Laplacian matrices, the en-
tire formulation proposed in this method remains the same except that instead
of an adjacency matrix we use a Laplacian matrix. Many graph kernels are
de ned on the Laplacian matrix. For example, by taking the Moore-Penrose
pseudo-inverse of the Laplacian we can obtain the commute time kernel:

FCOM (L) = L+

FCOM (L) = L+
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by applying regualrization, we can obtain regularized commute time kernels:

FCOMR(L) = (I+ αL)−1

FCOMR(L) = (I+ αL)−1

We can also obtain heat diffusion kernels as below:

fHEAT (L) = exp(−αL)
fHEAT (L) = exp(−αL)

Link Prediction Function Real Function
FP (A) =

∑d
i=0 αiA

i f(x) =
∑d

i=0 αix
i

FEXP (A) = exp(αA) f(x) = eαx

FNEU (A) = ((I)− αA)−1 f(x) = 1
1−αx

FCOM (L) = L+ f(x) = x( − 1) when x > 0, f(x) = 0, otherwise
FCOMR(L) = ((I) + αL)−1 f(x) = 1

1+αx

FHEAT (L) = (exp)(−αL) f(x) = e−αx

Table 9.1. One dimensional link prediction functions

For some of the above functions, the corresponding one dimensional func-
tion on reals is shown in Table 9.1.

The advantage of this method is its genericity and simplicity. The number
of parameters to learn in this model is much less compared to many other mod-
els that we discussed. On the downside, this model cannot incorporate vertex
based attributes. Morevoer, The computational cost of this method mostly de-
pends on the cost of eigen-decomposition of A, which could be costly for large
matrices. However, ef cient methods for this task are available [19].

7. Recent development and Future Works
In recent years, the works on link prediction has evolved over various as-

pects. One of the main aspects among these is to consider the time in the
model, which can be named as time-aware link prediciton [56, 5]. Some of
the algorithms that we discussed in this survey can be extended to consider the
temporal attribute of a link. For example, algorithms that perform supervised
learning by using a set of features can directly consider the temporal properties
in the feature value calculation. For instance, while computing Jaccard coef -
cient between two nodes, one can rede ne the similariy metric so that recent
association is weighted more than the past associations. But, the approach is
somewhat ad-hoc because the desired (or optimal) temporal weighting mecha-
nism is not available and for different metrics different weighting may apply. In
case of relational model, we can always include time in the relational schema
just as an edge attribute. However, in the context of link prediction, the model
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needs to accord special treatment for the time attribute, so that progression of
the time can be captured in the model properly instead of just matching the
time values. Tylenda et. al. [56] showed that considering the time stamp of the
previous interactions signi cantly improves the accuracy of the link prediction
model. Ahmed et. al. [5] proposed an scalable solution to a slightly different
problem from link prediction, where they nd how links in the network vary
over time. They use a temporally smoothed l1-regularized logistic regression
formalism to solve this problem. Techniques like these can be borrowed to
perform time-aware link prediction in a more principled manner.

Another important concern is the scalability of the proposed solutions for
link prediction. Social networks are large and many of the proposed solutions,
speci cally, the probabilistic methods that consider the entire graph in one
model is too large for most of the inference mechanisms to handle. Technique
such as kernel based methods are also not scalable, because it is practically
impossible to obtain a kernel matrix for such a large graph data. Note that a
kernel matrix in this case is not of size |V | × |V |, but of size |V 2| × |V 2|.
For most of the real-life social networks, |V | is in the range of several millions
to even billions, for which this approach is just not feasible. Even for the
methods that perform feature based classi cation, computation of some of the
features are very costly. Specially features such as Katz and rooted pagerank
may require signi cant time to compute their values for a large number of
vertex pairs. So, an approximate solution for these features can be a good
research topic (see for example [52]).

Game theoretic concepts are very prominent in modeling various social
problems, however these have surprisingly been ignored in the link prediction
task. The closest work is the local connection game proposed by Fabrikant et.
al.[17]. In this game the edges have constant cost and the players try to min-
imize their cost plus the sum of distances to all other pairs. However, such a
local connection model may not be practical in the social network domain be-
cause the utility function partly considers a global objective which minimizes
the distances to all pairs. So, it may not yield good result for the link predic-
tion task. An interesting alteration to this model that considers the utility of a
person in the network from more subjective viewpoint is worth considering.
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Abstract In this chapter, we survey the literature on privacy in social networks. We focus
both on online social networks and online af liation networks. We formally
de ne the possible privacy breaches and describe the privacy attacks that have
been studied. We present de nitions of privacy in the context of anonymization
together with existing anonymization techniques.
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1. Introduction
With the proliferation of online social networks, there has been increasing

concern about the privacy of individuals participating in them. While disclos-
ing information on the web is a voluntary activity on the part of the users, users
are often unaware of who is able to access their data and how their data can
potentially be used. Data privacy is de ned as "freedom from unauthorized
intrusion" [28]. However, what constitutes an unauthorized intrusion in social
networks is an open question. Because privacy in social networks is a young

eld, in this chapter, we mainly aim at identifying the space of problems in
this emerging area rather than proposing solutions. We present existing work
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when appropriate, but many of these problems have not yet been addressed in
the research literature. One of the contributions of this chapter is in cataloging
the different types of privacy disclosures in social networks. These are studied
in the research literature but they are often not explicitly formalized.

We focus on two scenarios for privacy in social networks: privacy breaches
and data anonymization. In the rst scenario, an adversary is interested in
learning the private information of an individual using publicly available social
network data, possibly anonymized. In the second scenario, a data provider
would like to release a social network dataset to researchers but preserve the
privacy of its users. For this purpose, the data provider needs to provide a
privacy mechanism, so that researchers can access the (possibly perturbed) data
in a manner which does not compromise users’ privacy. A common assumption
in the data anonymization literature is that the data is described by a single table
with attribute information for each of the entries. However, social network
data can exhibit rich dependencies between entities which can be exploited for
learning the private attributes of users, and we explore the consequences of this
possibility.

In Section 2, we discuss the different types of privacy breaches: private in-
formation that can leak from a social network. We de ne the types of queries
for each type of disclosure, and ways to measure the extent to which a disclo-
sure has occurred in an online or anonymized social network. We are abstract-
ing these de nitions from the types of privacy breaches that have been studied
in data anonymization. The de nitions can be applied both in the anonymiza-
tion scenario and in the scenario of an intrusion in an online social network.
We also provide pointers to work which studies these privacy breaches in the
context of anonymization. We present privacy de nitions in Section 3 and pri-
vacy mechanisms for publishing social network data in Section 4.

In the context of this book chapter, when we refer to social networks, we
generally mean online social networks. This includes online sites such as Face-
book, Flickr, LinkedIn, etc., where individuals can link to, or "friend," each
other, and which allow rich interactions such as joining communities or groups
of interest, or participating in discussion forums. These sites often also include
online services which allow users to create pro les and share their preferences
and opinions about items, such as tagging articles and postings, commenting
on photos, and rating movies, books or music. Thus, we view a social network
as a multi-modal graph in which there are multiple kinds of entities, including
people, groups, and items, but where at least one type is an individual and the
links between individuals represent some sort of social tie. Each node of an
individual has a pro le, and pro les can have personal attributes, such as age,
gender, political af liation, etc. Our view is informed by the link mining and
statistical relational learning research communities [22, 23], which study the
mining of interconnected relational data.
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Social network groups:

Group 1: Espresso lovers

Group 2: Yucatan

Ana

Bob

Chris

Don

Emma

Fabio

Gina

Friendship network:

Figure 10.1. A toy social network.

We concentrate on networks which have two types of commonly occurring
links - user-user links, and user-group links. More formally, we represent the
social network as a graph G = (V,Ev ,H,Eh), where V is a set of n nodes
which represent user pro les, such as the one in Figure 10.2. Each node can
have a set of properties v.A. An edge ev(vi, vj) ∈ Ev is a social link and
represents a relationship between the nodes vi and vj such as friendship. Rela-
tionships can be of different types (such as in a multiplex network), and there
can be more than one relationship between a pair of users. We use H to de-
note both formal online groups and other online content for which users have
preference, such as photos, movies, fan pages, etc. We refer to H as af liation
groups. An edge eh(vi, hj) ∈ Eh represents an af liation link of the member-
ship of node vi to af liation group hj . Social links, af liation links and groups
also can have attributes, ev.A, eh.A and h.A, respectively. We also de ne P
to be a set of real-world entities which represent actual people.

As a running example, we consider the social network presented in Fig-
ure 10.1. It consists of seven pro les which describe a collection of individuals
(Ana, Bob, Chris, Don, Emma, Fabio, and Gina), along with their friendship
links and their af liation groups of interest. Users are linked by a friendship
link, and in this example they are reciprocal. There are two groups that users
can participate in: the "Espresso lovers" af liation group and the "Yucatan"
af liation group. These individuals also have personal attributes on their pro-

les: name, age, gender, zip code and political views (see Figure 10.5 on page
288). User-group af liations can also be represented as a bipartite graph, such
as the ones in Figure 10.6 (page 298) and Figure 10.7(a) (page 299).
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Figure 10.2. A hypothetical Facebook pro le.

In this chapter, we focus on both privacy breaches in online social networks
and privacy-preserving techniques for publishing social network data. In addi-
tion, there are other existing surveys on privacy preservation in social networks
that focus on different aspects [12, 25, 34, 47, 52]. The surveys on privacy-
preserving data publication for networks cover privacy attacks, edge modi -
cation, randomization and generalization privacy-preserving strategies for net-
work structure [34, 47, 52] and richer graphs [47]. Clarkson et al. [12] discuss
anonymization techniques which aim to prevent identity disclosure. The sur-
vey of Hay et al. [25] concentrates on privacy issues with network structure,
and it covers attacks and their effectiveness, anonymization strategies, and dif-
ferential privacy for private query answering.

2. Privacy breaches in social networks
When studying privacy, it is important to specify what de nes a failure to

preserve privacy. A privacy breach occurs when a piece of sensitive infor-
mation about an individual is disclosed to an adversary, someone whose goal
is to compromise privacy. Traditionally, two types of privacy breaches have
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been studied: identity disclosure and attribute disclosure. We discuss these
two types in the context of social networks. We also present two more disclo-
sure types, speci c to network data: social link disclosure and af liation link
disclosure.

2.1 Identity disclosure
Identity disclosure occurs when an adversary is able to determine the map-

ping from a pro le v in the social network to a speci c real-world entity p.
Before we are able to provide a formal de nition of identity disclosure, let us
consider three questions related to the identity of p in which an adversary may
be interested.

Definition 10.1 Mapping query. In a set of individual pro les V in a
social networkG, nd which pro le v maps to a particular individual p. Return
v.

Definition 10.2 Existence query. For a particular individual p, nd if this
individual has a pro le v in the network G. Return true or false.

Definition 10.3 Co-reference resolution query. For two individual pro-
les vi and vj , nd if they refer to the same individual p. Return true or false.

A simple way of de ning identity disclosure is to say that the adversary
can answer the mapping query correctly and with full certainty. However, un-
less the adversary knows unique attributes of individual p that can be matched
with the observed attributes of pro les in V , this is hard to achieve. One way
of formalizing identity disclosure for an individual p is to assoicate a random
variable v̂p which ranges over the pro les in the network. We assume that the
adversary has a way of computing the probability of each pro le vi belong-
ing to individual p, Pr(v̂p = vi). In addition, we introduce a dummy pro le
vdummy in the network which serves the purpose of absorbing the probabil-
ity of individual p not having a pro le in the network. We assume that p has
exactly one pro le, and the true pro le of p in V ∪ {vdummy} is v∗. We use
the shorthand Prp(vi) = Pr(v̂p = vi) to denote the probability that vi corre-
sponds to p; Prp provides a mapping Prp : V ∪ {vdummy} → R. We leave
it open as to how the adversary constructs Prp. Then we can de ne identity
disclosure as follows:

Definition 10.4 Identity disclosure with con dence t. In a set of individ-
ual pro les V in a social networkG, identity disclosure occurs with con dence
t when Prp(v∗) ≥ t and v∗ 	= vdummy .

An alternative de nition of identity disclosure considers that the possible
values of vi can be ranked according to their probabilities.
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Definition 10.5 Identity disclosure with top-k con dence. In a set of
individual pro les V in a social networkG, identity disclosure occurs with top-
k con dence when v∗ appears in the top k pro les (or top p% = k ∗ 100/|V |),
in the list of pro les ranked by Prp from high to low.

The majority of research in social network privacy has concentrated on iden-
tity disclosure [4, 8, 26, 27, 30, 35, 41, 45, 48, 51, 53]. We discuss it in more
detail in Section 4.

2.2 Attribute disclosure
A common assumption in the privacy literature is that there are three types

of possibly overlapping sets of personal attributes:

Identifying attributes - attributes, such as social security number (SSN),
which identify a person uniquely.

Quasi-identifying attributes - a combination of attributes which can iden-
tify a person uniquely, such as name and address.

Sensitive attributes - attributes that users may like to keep hidden from
the public, such as politic af liation and sexual orientation.

Attribute disclosure occurs when an adversary is able to determine the value
of a sensitive user attribute, one that the user intended to stay private. This
attribute can be an attribute of the node itself, the node’s links or the node’s
af liations. Without loss of generality, here we discuss the attributes of the
node itself. Again, to make this de nition more concrete, we assume that each
sensitive attribute v.as for pro le v has an associated random variable v.âs
which ranges over the possible values for v.as. Let the true value of v.as be
v.a∗. We also assume that the adversary can map the set of possible sensitive
attribute values to probabilities, Pra(v.âs = v.a) : v.a→ R, for each possible
value v.a. Note that this mapping can be different for each node/pro le. Now,
we can de ne attribute disclosure as follows:

Definition 10.6 Attribute disclosure with con dence t. For a pro le v
with a hidden attribute value v.as = v.a∗, attribute disclosure occurs with
con dence t when Pra(v.âs = v.a∗) ≥ t.

Similarly to identity disclosure, there is an alternative de nition of attribute
disclosure which considers that the possible values of v.As can be ranked ac-
cording to their probabilities.

Definition 10.7 Attribute disclosure with top-k con dence. For a pro le
v with a hidden attribute value v.as = v.a∗, attribute disclosure occurs with
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top-k con dence when a∗ appears in the top k values of the list of possible
values ranked by their probabilities Pra.

Clearly, if an adversary can see the identifying attributes in a social network,
then answering the identity mapping query becomes trivial, and identity dis-
closure with con dence 1 can occur. For example, if a pro le contains a SSN,
then identifying the real person behind the pro le is trivial since there is a one-
to-one mapping between individuals and their social security numbers. There-
fore, in order to prevent identity disclosure, the identifying attributes have to
be removed from the pro les.

Sometimes, a combination of attributes, referred to as quasi-identifying at-
tributes, can lead to identity disclosure. What constitutes quasi-identifying
attributes depends on the context. For example, it has been observed that 87%
of individuals in the U.S. Census from 1990 can be uniquely identi ed based
on their date of birth, gender and zip code [43]. Another example of quasi-
identi ers is a combination of a person’s name and address.

Similarly, matching records from different datasets with quasi-identifying
attributes can lead to further privacy breaches. This is known as a linking at-
tack. If the identities of users in one dataset are known and the second dataset
does not have the identities but it contains sensitive attributes, then the sensi-
tive attributes of the users from the rst dataset can be revealed. For exam-
ple, matching health insurance records, in which the identifying information
is removed, with public voter registration records can reveal sensitive health
information about voters. Using this attack, Sweeney was able to identify the
medical record of the governor of Massachusetts [43].

In the context of social and af liation networks, there has not been much
work on sensitive attribute disclosure. Most studies look at how attributes can
be predicted [40, 33, 50], and very few on how they can be protected [8]. We
discuss this work in more detail in Section 4.

2.3 Social link disclosure
Social link disclosure occurs when an adversary is able to nd out about the

existence of a sensitive relationship between two users, a relationship that these
users would like to remain hidden from the public. Similarly to the previous
types of disclosures, we assume that there is a random variable êi,j associated
with the link existence between two nodes vi and vj , and an adversary has a
model for assigning a probability to êi,j , Pr(êi,j = true) : ei,j → R.

Definition 10.8 Social link disclosure with con dence t. For two pro les
vi and vj , a social link disclosure occurs with con dence t when ev(vi, vj) ∈
Ev and Pr(êi,j = true) ≥ t.
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Figure 10.3. Sensitive link examples.

Note that since the link existence êi,j has only two possible values, true and
false, the top-k de nition does not apply to social link disclosure.

Examples of sensitive relationships can be found in social networks, com-
munication data, disease data and others. In social network data, based on the
friendship relationships of a person and the public preferences of the friends
such as political af liation, it may be possible to infer the personal preferences
of the person in question as well. In cell phone communication data, nding
that an unknown individual has made phone calls to a cell phone number of a
known organization can compromise the identity of the unknown individual. In
hereditary disease data, knowing the family relationships between individuals
who have been diagnosed with hereditary diseases and ones that have not, can
help infer the probability of the healthy individuals to develop these diseases.
Figure 10.3 presents a summary of these examples.

Researchers have studied attacks that expose sensitive links in social net-
works [4, 6, 31, 49]. Sensitive edge properties, such as link strength (or
weight), have also been the focus of recent work [16, 37].

2.4 Af liation link disclosure
Another type of privacy breach in relational data is af liation link disclosure

whether a person belongs to a particular af liation group. Whether two users
are af liated with the same group can also be of sensitive nature. Sometimes,
af liation link disclosure can lead to attribute disclosure, social link disclo-
sure, or identity disclosure. Thus, hiding af liations is a key to preserving the
privacy of individuals.
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As before, we assume that there is a random variable êv,h associated with
the existence of an af liation link between a pro le v and a group h, and that an
adversary has a way of computing the probability of êv,h, Pr(êv,h = true) :
ev,h → R.

Definition 10.9 Af liation link disclosure with con dence t. For a pro-
le v and an af liation group h, an af liation link disclosure occurs with con-
dence t when eh(v, h) ∈ Eh and Pr(êv,h = true) ≥ t.

One type of disclosure can lead to another type. For example, Wondracek et
al. [45] show a de-identi cation attack in which af liation link disclosure can
lead to the identity disclosure of a supposedly anonymous Internet user. An
adversary starts the attack by crawling a social networking website and col-
lecting information about the online social group memberships of its users. It
is assumed that the identities of the social network users are known. Accord-
ing to the collected data, each user who participates in at least one group has
a group signature, which is the set of groups he belongs to. Then, the adver-
sary applies a history stealing attack (for more details on the attack, see [45])
which collects the web browsing history of the target Internet user. By nding
the group signatures of social network users which match the browsing history
of the Internet user, the adversary is able to nd a subset of potential social
network users who may be the Internet user. In the last step of the attack, the
adversary looks for a match between the id’s of the potential users and the
browsing history of the target individual, which can lead to de-identi cation of
the Internet user.

Another example of af liation link disclosure leading to identity disclosure
is in search data. If we assume that users posing queries to a search engine
are the individuals in the social network, and the search queries they pose are
the af liation groups, then disclosing the links between users and queries can
help an adversary identify people in the network. Users interact with search
engines in an uninhibited way and reveal a lot of personal information in the
text of their queries. There was a scandal in 2006 when AOL, an Internet Ser-
vice provider, released an "anonymized" sample of over half a million users
and their queries posed to the AOL search engine. The release was well-
intentioned and meant to boost search ranking research by supplementing it
with real-world data. Each user was speci ed by a unique identi er, and each
query contained information about the user identi er, search query, the website
the user clicked on, the ranking of that website in the search results, and the
timestamp of the query.

One of the problems with the released data was that even though it was
in a table format (Table 10.1), its entries were not independent of each other.
Shortly after the data release, New York Times reporters linked 454 search
queries made by the same individual which gave away enough personal infor-
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Table 10.1. A snapshot of the data released by AOL. Here, we are omitting the timestamps
included in the data.

User ID Search query Clicked website Ranking

4417749 clothes for age 60 http://www.news.cornell.edu 10
4417749 dog who urinate on everything http://www.dogdayusa.com 6
4417749 landscapers in lilburn ga.
4417749 pine straw in lilburn ga. http://gwinnett-online.com 9
4417749 gwinnett county yellow pages http://directory.respond.com 1
4417749 best retirement place in usa http://www.amazon.com 7
4417749 mini strokes http://www.ninds.nih.gov 1

mation to identify that individual – Thelma Arnold, a 62-year old widow from
Lilburn, Georgia [5]. Her queries included names of people with the same last
name as hers, information about retirement, her location, etc.

Af liation link disclosure can also lead to attribute disclosure, as illustrated
in a guilt-by-association attack [14]. This attack assumes that there are groups
of users whose sensitive attribute values are the same, thus recovering the sen-
sitive value of one user and the af liation of another user to the group can help
recover the sensitive value of the second user. This attack was used in the Bit-
Torrent le-sharing network to discover the downloading habits of users [11].
Communities were detected based on social links, and monitoring only one
user in each community was enough to infer the interests of the other people in
the community. In this case the sensitive attribute that users would like to keep
private is whether they violate copyrights. This attack has also been applied
to identifying fraudulent callers in a phone network [14]. Cormode et al. [13]
study data anonymization to prevent af liation link disclosure. They refer to
af liation links as associations (see Section 4.2).

3. Privacy de nitions for publishing data
The goal of data mining is discovering new and useful knowledge from

data. Sometimes, the data contains sensitive information, and it needs to be
sanitized before it is published publicly in order to address privacy concerns.
Data sanitization is a complex problem in which hiding private information
trades off with utility reduction. The goal of sanitization is to remove or perturb
the attributes of the data which help an adversary infer sensitive information.
The solution depends on the properties of the data and the notions of privacy
and utility in the data.

Privacy preservation in the context of social network data is a relatively new
research eld. Rather than assuming data which is described by a single ta-
ble of independent records with attribute information for each, it takes into
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Figure 10.4. Anonymization scenario.

consideration more complex real-world datasets. As discussed earlier, rela-
tional data, often represented as a multi-graph, can exhibit rich dependencies
between entities. The challenge of sanitizing graph data lies in understanding
these dependencies and removing sensitive information which can be inferred
by direct or indirect means.

One way in which data providers can sanitize data is by anonymization.
Figure 10.4 shows a typical scenario in which a data owner is interested in
providing researchers with valuable data and in order to meet privacy con-
cerns, she consults a privacy analyst before publishing a perturbed version of
the data. In the process of anonymizing the data, the identifying information
is removed and other attributes are perturbed. Anonymizing techniques have
been criticized as often being ad hoc and not providing a principled way of
preserving privacy. There are no guarantees that an adversary would not be
able to come up with an attack which uses background information and prop-
erties of the data, such as node attributes and observed links, to infer the private
information of users. Another way of sanitizing data is by providing a private
mechanism for accessing the data, such as allowing algorithms which are prov-
ably privacy-preserving to run on it. Next, we will discuss privacy preservation
de nitions. Some of these de nitions were not developed speci cally for net-
work data but we provide examples from the social network domain.

To formalize privacy preservation, Chawla et al. [9] proposed a framework
based on the intuitive de nition that “our privacy is protected to the extent we
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5-anonymity
applied to data

Identifier Quasi-identifiers Sensitive

Name Age Sex Zip Pol. views

Ana 21 F 20740 liberal

Bob 25 M 83222 liberal

Chris 24 M 20742 liberal

Don 29 M 83209 conservative

Emma 24 F 20640 liberal

Fabio 24 M 20760 liberal

Gina 28 F 83230 liberal

Halle 29 F 83201 conservative

Ian 31 M 83220 conservative

John 24 M 20740 liberal

Equiv.
class

Quasi-identifiers Sensitive

Age Sex Zip Pol. views

C1 [21,24] * 20*** liberal

C2 [25,31] * 832** liberal

C1 [21,24] * 20*** liberal

C2 [25,31] * 832** conservative

C1 [21,24] * 20*** liberal

C1 [21,24] * 20*** liberal

C2 [25,31] * 832** liberal

C2 [25,31] * 832** conservative

C2 [25,31] * 832** conservative

C1 [21,24] * 20*** liberal

Figure 10.5. 5-anonymity applied to data with 10 records.

blend in the crowd.” Obviously, with the richness of information in online so-
cial network pro les, this is hard to achieve and users are easily identi able.
We will look at a simpler case when a data provider is interested in releas-
ing a dataset with online social network pro les. To give a avor of existing
work, we present four existing privacy preservation approaches which make
the de nition of "blending in the crowd" more concrete.

3.1 k-anonymity
k-anonymity protection of data is met if the information for each person

contained in the data cannot be distinguished from at least k− 1 other individ-
uals in the data. k-anonymity can be achieved by suppressing and generalizing
the attributes of individuals in the data. Suppressing an attribute value means
deleting it from the perturbed data. Generalizing an attribute means replacing
it with a less speci c but semantically consistent value. One can see that sup-
pression is a special case of generalization, and that suppressing all attributes
would guarantee k-anonymity. This is why a notion of utility in the data has to
be incorporated whenever sanitizing data. The actual objective is to maximize
utility by minimizing the amount of generalization and suppression. Achieving
k-anonymity by generalization with this objective as a constraint is an NP-hard
problem [3]. k-anonymity has been studied mostly for table data, so we begin
by presenting its de nition using only the nodes V and their attributes V.A
i.e., disregarding links and af liation groups.

Definition 10.10 k-anonymity. A set of records V satis es k-anonymity if
for every tuple v ∈ V there exist at least k− 1 other tuples vi1 , vi2 , ..., vik−1

V such that vi1 .Aq = vi2 .Aq = ... = vik−1
.Aq where Aq ∈ A are the quasi-

identifying attributes of the pro le.
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Figure 10.5 shows an example of applying 5-anonymity to the data of 10
individuals. The data includes their names, ages, genders and zip codes. The
perturbed data meets a 5-anonymity constraint because each individual is in-
distinguishable from at least 4 other individuals. Here, the assumption is that
name is an identifying attribute, therefore it has been suppressed. Three of
the attributes, Age, Sex and Zip code, are quasi-identi ers, therefore, they have
been generalized. The sensitive attributes remain the same.

k-anonymity provides a clustering of the nodes into equivalence classes
such that each node is indistinguishable in its quasi-identifying attributes from
some minimum number of other nodes. In the previous example, there were
two equivalence classes: class C1 of individuals whose age is in the range
[21, 24] years and have a zip code 20 ∗ ∗∗, and class C2 of individuals whose
age is in the range [25, 31] years and have a zip code 832 ∗ ∗. Note, how-
ever, that these equivalent classes are based on node attributes only, and inside
each equivalence class, there may be nodes with different identifying structural
properties and edges. This makes it hard to de ne k-anonymity for nodes in
social networks. We discuss some approaches later in Section 4.

k-anonymity ensures that individuals cannot be uniquely identi ed by a
linking attack. However, it does not necessarily prevent sensitive attribute dis-
closure. Here, we present two possible attacks on k-anonymized data [38].
The rst one can occur when there is little diversity in the sensitive attributes
inside an equivalence class. In this case, the sensitive attribute of everyone
in the equivalence class becomes known with high certainty. For example, if
an adversary wants to gure out Ana’s political views knowing that her age
is 21 and her zip code is 20740, then he can gure out that her record is in
equivalence class C1. There is no diversity in the sensitive attribute value of
equivalence class C1, i.e., everyone in C1 has liberal political views, there-
fore, the adversary is able to infer Ana’s political views even though he does
not know which row corresponds to her. This is known as the homogeneity
attack [38].

The second problem with k-anonymity is that in the presence of back-
ground knowledge, attribute and identity disclosure can still occur. For ex-
ample, knowing that someone’s friends are liberal, makes it highly likely that
this person is liberal as well. In our toy example, the knowledge that Gina’s
friends, Emma and Fabio, belong to equivalence class C1 where everyone is
liberal, can help an adversary infer with high certainty that Gina is liberal as
well. This is known as the background attack [38].

There are a number of de nitions derived from k-anonymity tailored to
structural properties of network data. Some examples of such de ntions in-
clude k-degree anonymity [35], K-Candidate anonymity [27], k-automorphism
anonymity [53], k-neighborhood anonymity [51, 47], and (k,l)-grouping [13].
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We introduce the intuition behind them, together with their de nitions in Sec-
tion 4.1.1 and Section 4.2, privacy mechanisms for networks.

3.2 l-diversity and t-closeness
A privacy de nition which alleviates the problem of sensitive attribute dis-

closure inherent to k-anonymity is l-diversity [38]. As its name suggests, l-
diversity ensures that the sensitive attribute values in each equivalence class
are diverse.

Definition 10.11 l-diversity. A set of records in an equivalence class C
is l-diverse if it contains at least l "well-represented" values for each sensitive
attribute. A set of nodes V satisfy l-diversity if every equivalence class C ′ ⊆ V
is l-diverse.

There are a number of ways to de ne "well-represented." Some examples
include using frequency counts and measuring entropy. However, even in the
case of l-diverse data, it is possible to infer sensitive attributes when the sensi-
tive distribution in a class is very different from the overall distribution for
the same attribute. If the overall distribution is skewed, then the belief of
someone’s value may change drastically in the anonymized data (skewness at-
tack) [32]. For example, only 30% of the records in Figure 10.5 have conser-
vative political views. However, in equivalence class C2 this number becomes
60%, thus the belief that a user is conservative increases for users in C2. An-
other possible attack, known as the similarity attack [32], works by looking
at equivalent classes which contain very similar sensitive attribute values. For
example, if Age is a sensitive attribute and an adversary wants to gure out
Ana’s age knowing that she is in equivalence class C1 (based on her Zip code),
then he would learn that she is between 21 and 24 years old which is a much
tighter age range than the range in the whole dataset.

This leads to another privacy de nition, t-closeness, which considers the
sensitive attribute distribution in each class, and its distance to the overall at-
tribute distribution. The distance can be measured with any similarity score for
distributions.

Definition 10.12 t-closeness. A set of records in an equivalence class C
is t-close if the distance between the distribution of a sensitive attribute As in
C and its distribution in V is no more than a threshold t. A set of nodes V
satisfy t-closeness if every equivalence class C ′ ⊆ V is t-close.

Just like with k-anonymity, sanitizing data to meet either l-diversity or t-
closeness comes with a computational complexity burden. There are other
privacy de nitions of this avor but they have all been criticized for being ad
hoc. While they guarantee syntactic properties of the released data, they come
with no privacy semantics [18].
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3.3 Differential privacy
The notion of differential privacy was developed as a principled way of

de ning privacy, so that "the risk to one’s privacy [...] should not substantially
increase as a result of participating in a database" [17]. This shifts the view on
privacy from comparing the prior and posterior beliefs about individuals before
and after publishing a database to evaluating the risk incurred by joining a
database. It also imposes a guarantee on the data release mechanism rather than
on the data itself. Here, the goal is to provide statistical information about the
data while preserving the privacy of users in the data. This privacy de nition
gives guarantees that are independent of the background information and the
computational power of the adversary.

Returning to our running example, if the social network data set is released
using a differentially private mechanism, this would guarantee that Ana’s par-
ticipation in the social network does not pose a threat to her privacy because the
statistics would not look very different without her participation. It does not
guarantee that one cannot learn sensitive information about Ana using back-
ground information but such guarantee is impossible to achieve for any kind of
dataset [17].

Definition 10.13 ε-differential privacy. A randomized function K satis-
es ε-differential privacy if for all data setsD1 andD2 differing in at most one
element, and any subset S of possible outcomes in Range(K),

P (K(D1) ∈ S) ≤ exp(ε)× P (K(D2) ∈ S). (10.1)

Here, one can think of a pro le in the social network as being an element,
and V being the data set, thus D1 ⊆ V and D2 ⊆ V . The randomized function
K can be thought of as an algorithm which returns a random variable, possibly
with some noise. When developing a differentially private algorithm, one has
to keep in mind the utility of the data and incorporate the desired knowledge
in the algorithm. Range(K) is the output range of algorithm K. A common
way of achieving ε-differential privacy is by adding random noise to the query
answer.

One type of algorithm that has been proven to be differentially private is
a count query to which one adds Laplacian noise [20]. For example, if the
count query is K ="How many people are younger than 22?", then the output
range of the query is Range(K) = {1, ..., n} where n is the size of the social
network. The count query is considered a low-sensitivity query because it has a
sensitivity of ΔK = 1 for any D1 and D2 differing in one element. Sensitivity
is de ned as

ΔK = max
D1,D2

||K(D1)−K(D2)|| (10.2)

for any D1 and D2 which differ in at most one element. Note that this query
has the same sensitivity not only for our speci c data but for any data in this
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format. The Laplacian noise, which is added to the answer, is related to the
sensitivity of the query.

A mean query, such as K ="What is the average age of people in the social
network?", has an even lower sensitivity for large data sets because remov-
ing any pro le from the social network would change the output of the query
by at most ΔK = max(age)/n. There are also queries, such as median
queries, which have high sensitivity and require different techniques for gen-
erating noise.

A similar and somewhat weaker de nition of differential privacy is the one
of (ε, δ)-differential privacy which was developed to deal with very unlikely
outputs of K [19].

Definition 10.14 (ε,δ)-differential privacy. A randomized functionK sat-
is es ε-differential privacy if for all data sets D1 and D2 differing in at most
one element, and any subset S of possible outcomes in Range(K),

P (K(D1) ∈ S) ≤ exp(ε)× P (K(D2) ∈ S) + δ. (10.3)

Generally, ε and δ are considered to be very small numbers and are picked
according to different considerations, such as the size of the database.

4. Privacy-preserving mechanisms
So far, we have discussed existing notions of privacy preservation related

to the user pro les, mostly ignoring the structural properties of the social net-
work. Next, we discuss how privacy preservation can be achieved considering
the network structure: the links between users Ev, and af liation links Eh to
af liation groups of users H . First, we present existing privacy mechanisms
for social networks in Section 4.1. Section 4.2 includes overview of the mech-
anisms for af liation networks. Finally, we describe research which considers
both types of networks in Section 4.3. Except for the privacy mechanisms
based on differential privacy, each mechanism was developed to counterattack
a speci c adversarial attack and background knowledge which we also present.

4.1 Privacy mechanisms for social networks
The majority of research in this area considers anonymization which strips

off all the personal attributes from user pro les but keeps some of the structure
coming from the social links between users [4, 26, 27, 35, 51, 53]. We describe
this research in Section 4.1.1. In Section 4.1.2, we mention approaches to
anonymizing data which consider that there is utility in keeping both attribute
and structural information [8, 49].

4.1.1 Anonymizing network structure. One naive way of anonymiz-
ing a social network is by removing all the attributes of the pro les, and leaving
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only the social link structure. This creates an anonymized graph which is iso-
morphic to the original graph. The intuition behind this approach is that if there
are no identifying pro le attributes, then attribute and identity disclosures can-
not occur, and thus the privacy of users is preserved. Contrary to the intuition,
this not only removes a lot of important information but it also does not guar-
antee the privacy of users. Two types of attacks have been proposed which
show that identity and social link disclosures would occur when it is possible
to identify a subgraph in the released graph in which all the node identities are
known [4]. The active attack assumes that an adversary can insert accounts
in the network before the data release, and the passive attack assumes that a
number of friends can collude and share their linking patterns after the data
release.

In the active attack an adversary creates k accounts and links them randomly,
then he creates a particular pattern of links to a set of m other users that he is
interested to monitor. The goal is to learn whether any two of the monitored
nodes have links between them. When the data is released, the adversary can
ef ciently identify the subgraph of nodes corresponding to his k accounts with
provably high probability. Then he can recover the identity of the monitored
m nodes and the links between them which leads to social link disclosure for
all
(m
2

)
pairs of nodes. With as few as k = Θ(log n)) accounts, an adversary

can recover the links between as many as m = Θ(log2 n) nodes in an arbitrary
graph of size n. The passive attack works in a similar manner. It assumes that
the exact time point of the released data snapshot is known and that there are k
colluding users who have a record of what their links were at that time point.

Another type of structural background information that has been explored
is similar in spirit to the linking attack mentioned in Section 2. The existence
of an auxiliary social network in which the identity of users is known can help
an adversary identify nodes in a target social network [41]. Starting from a set
of users which form a clique both in the target and the auxiliary networks, an
adversary expands the matching by nding the most likely nodes that corre-
spond to each other in the two networks by using structural information, such
as number of user friends (node degree), and number of common neighbors.
To validate this attack, it has been shown that the discovered matches some-
times correspond to matches found using descriptive user attributes such as
username and location in the social networks of Twitter and Flickr [41].

Structural privacy. Starting from the idea that certain subgraphs in the so-
cial network are unique, researchers have studied the mechanism of protecting
individuals from identity disclosure when an adversary has background infor-
mation about the graph structure around a node of interest [26, 27, 35, 48, 51,
53]. Each node has structural properties (subgraph signature) that are the same
as the ones of a small set of other nodes in the graph, called a candidate set for
this node [27]. Knowing the true structural properties of a node, an adversary
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may be able to discover the identity of that node in the anonymized network.
Structure queries can be posed to the network to discover nodes with speci c
subgraph signatures.

Looking at the immediate one-hop neighbors, each node has a star-shaped
subgraph in which the size of the subgraph is equal to the degree of the node
plus one. With the assumption that identity disclosure can occur based on a
node’s degree, the degree becomes an identifying attribute that a data provider
would like to hide. In our toy network (Figure 10.1), Ana and Don would be in
each other’s candidate sets because they both have degree 2; Emma, Gina and
Fabio appear in the same candidate set for either of the three nodes; Bob and
Chris are uniquely identi able because they are the only ones in the network
with degrees four and one, respectively. The notion of k-degree anonymity [35]
was formulated to protect individuals from an adversary who has background
information of user’s node degrees. It states that each node should have the
same degree as at least k − 1 other nodes in the anonymized network.

Adding the links between the one-hop neighbors of a node, sometimes re-
ferred to as the 1.5-hop neighborhood, creates a richer structural signature.
Based on this, Ana and Don still have the same subgraph signature, and so do
Emma and Fabio. However, Gina has a unique signature and is easily identi-

able by an adversary who has knowledge of her true 1.5-hop neighborhood
structure. Zhou and Pei [51] formalize the desired property to protect individ-
uals from this type of attack. A graph satis es k-neighborhood anonymity if
every node in the network has a 1.5-hop neighborhood graph isomorphic to the
1.5-hop neighborhood graph of at least k − 1 other nodes. The name of this
property was given by Wu et al. [47].

In our example, Ana and Don become uniquely identi able once we look
at their 2-hop neighborhoods. Emma and Fabio have isomorphic signatures
regardless of the size of the neighborhood for which the adversary has back-
ground information. This leads to the most general privacy preservation de -
nitions of k-candidate anonymity [27] and k-automorphism anonymity [53].

Definition 10.15 K-Candidate anonymity. An anonymized graph satis-
es K-Candidate Anonymity with respect to a structural query Q if there is a
set of at least K nodes which match Q, and the likelihood of every candidate
for a node in this set with respect to Q is less than or equal to 1/k.

K-Candidate anonymity [27], considers the structural anonymity of users
given a particular structural query, i.e., a subgraph signature. Hay et al. de ne
three types of structural queries, vertex re nement queries, subgraph queries
and hub ngerprint queries [27, 26]. Zou et al. [53] assume a much more
powerful adversary who has knowledge of any subgraph signature of a target
individual. They propose the notion of k-automorphism anonymity to fend off
such an adversary.
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Definition 10.16 k-automorphism anonymity. An anonymized graph is
k-automorphic if every node in the graph has the same subgraph signature (of
arbitrary size) as at least k − 1 other graph nodes, and the likelihood of every
candidate for that node is less than or equal to 1/k.

Anonymization. The anonymization strategies for social network structure
fall into four main categories:

Edge modi cation. Since complete removal of the links to keep struc-
tural properties private would yield a disconnected graph, edge modi-

cation techniques propose edge addition and deletion to meet desired
constraints. Liu and Terzi anonymize the network degree sequence to
meet k-degree anonymity [35]. This is easy to achieve for low-degree
nodes because the degree distribution in social networks often follows a
power law. For each distinguishable higher-degree node, where distin-
guishable is de ned as a degree for which there are less than k nodes
with that degree, the anonymization algorithm increases its degree ar-
ti cially so that it becomes indistinguishable from at least k − 1 other
nodes. The objective function of the algorithm is to minimize the number
of edge additions and deletions. We discuss another edge modi cation
algorithm [51] with a similar objective but a stronger privacy guarantee
in Section 4.1.2. Zou et al. [53] propose an edge modi cation algorithm
that achieves k-automorphism anonymity.

Randomization. Anonymization by randomization can be seen as a
special case of anonymization by edge modi cation. It refers to a mech-
anism which alters the graph structure by removing and adding edges
at random, and preserves the total number of edges. Hay et al. [27]
show that if this is performed uniformly at random, then it fails to keep
important graph metrics of real-world networks. Ying and Wu [48] pro-
pose spectrum-preserving randomization to address this loss of utility.
The graph’s spectral properties are the set of eigenvalues of the graph’s
adjacency matrix to which important graph properties are related. Pre-
serving this spectrum guides the choice of random edges to be added and
deleted. However, the impact of this approach on privacy is unclear.
Two recent studies have presented algorithms for reconstructing random-
ized networks [44, 46]. Wu et al. [46] take a low rank approximation
approach and apply it to a randomized network structure, such that ac-
curate topological features can be recovered. They show that in practice
reconstruction may not pose a larger threat to privacy than randomization
because the original network is more similar to the randomized network
than to the reconstructed network. Vuokko and Terzi [44] consider re-
construction mechanisms for networks where randomization has been
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applied both to the structure and attributes of the nodes. They identify
cases in which reconstruction can be achieved in polynomial time. The
effect of both reconstruction strategies on privacy has not been assessed.

Network generalization. One way to alleviate an attack based on struc-
tural background information is by publishing the aggregate information
about the structural properties of the nodes [26]. In particular, one can
partition the nodes and keep the density information inside and between
parts of the partition. Nodes in each partition have the same structural
properties, so that an adversary coming with a background knowledge is
not able to distinguish between these nodes. In practice, sampling from
the anonymized network model creates networks which keep many of
the structural properties of the original network, such as degree distri-
bution, path length distribution and transitivity. Network generalization
strategies for other network types are discussed in Section 4.1.2 [8, 49]
and Section 4.3 [6].

Differentially private mechanisms. Differentially private mechanisms
refer to algorithms which guarantee that individuals are protected under
the de nition of differential privacy (see Section 3.3). Hay et al. [24]
propose an ef cient algorithm which allows the public release of one
of the most commonly studied network properties, degree distribution,
while guaranteeing differential privacy. The algorithm involves a post-
processing step on the differentially private output, which ensures a more
accurate result. The empirical analysis on real-world and synthetic net-
works shows that the resulting degree-distribution estimate exhibits low
bias and variance, and can be used for accurate analysis of power-law
distributions, commonly occurring in networks.

4.1.2 Anonymizing user attributes and network structure. So far,
we have discussed anonymization techniques which perturb the structure of the
network but do not consider attributes of the nodes, such as gender, age, na-
tionality, etc. However, providing the (perturbed) structure of social networks
is often not suf cient for the purposes of the researchers who study them. In
another line of privacy research, the assumption is that anonymized data will
have utility only if it contains both structural properties and node attributes.

Anonymization. Zhou and Pei [51] assume that each node has one attribute
which they call a label. They show that achieving k-neighborhood anonymity
is NP -hard and propose a greedy edge modi cation and label generaliza-
tion algorithm. The algorithm extracts the 1.5-neighborhood signatures for
all nodes in the graph and represents them concisely using DFS trees. Then
it clusters the signatures and anonymizes the ones in each cluster to achieve
k-neighborhood anonymity. The objective function of the algorithm is simi-
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lar to the one of Liu and Terzi [35], the minimization of the number of edge
additions.

Zheleva and Getoor [49] study the problem of social link disclosure in
graphs with multiplex relations. The assumption is that an adversary has an
accurate statistical model for predicting sensitive relationships if given the at-
tributes of nodes and edges in the original data, therefore attributes have to
be perturbed in the released data. They propose anonymization by general-
ization of the data as a two-step process. In the rst step, nodes are treated
as a table of records, and their attributes are anonymized to guarantee the pri-
vacy of users, for example, to meet one of the privacy de nitions described
earlier. Using k-anonymity, this creates a partition of the network nodes into
equivalence classes. In the second step, the structure of the network is partially
preserved by keeping aggregate structural information inside and between the
equivalence classes.

Campan and Truta [8] also take a network generalization approach to the
process of anonymizing a social network. Their greedy algorithm optimizes
a utility function using the attribute and structural information simultaneously
rather than as a two-step process. They introduce a structural information loss
measure, and adopt an existing measure of attribute information loss. The
anonymization algorithm can be adjusted to preserve more of the structural
information of the network or the nodes’ attribute values.

4.2 Privacy mechanisms for af liation networks
Next, we concentrate on af liation networks and discuss privacy-preserving

techniques developed speci cally for this type of network. The af liation net-
work is represented as a bipartite graph with two types of nodes V and H ,
and the af liation links between them Eh. Figure 10.6 shows an illustration of
this graph where on the left-hand side there are users, and on the right-hand
side there are movies that the users rated. The af liation links have a weight
corresponding to the movie ratings for each user, on a scale from 1 to 5.

Net ix, an online movie rental company, set up a competition aimed at im-
proving their movie recommendation systems. They released a dataset with
around 100 million dated ratings from 480 thousand randomly-chosen Net ix
customers. To protect customer privacy, each customer id has been replaced
with a randomly-assigned id. However, this naive anonymization was found
to be vulnerable under a linking attack [40]. Using the dates of user ratings
and matching the records released by Netflix and user pro les in IMDB,
an online movie database, Narayanan and Shmatikov [40] were able to achieve
identity and sensitive attribute disclosure for some of the users in the Net ix
dataset.
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The Godfather

Amelie

Affiliation network:

Figure 10.6. An af liation network as a bipartite graph between three users and two movies.
The af liation links show the ratings that users gave to the movies on a scale from 1 to 5.

A related problem is the problem of releasing a search query graph in which
user information is contained in the af liation links between search engine
queries and clicked website URLs [30]. In particular, there is a bipartite graph
of (query,URL) pairs.Here, the links have a weight corresponding to the num-
ber of users who posed a particular query and clicked on the particular URL. In
addition, there are links between queries with a weight equal to the number of
users who posed the rst query and then reformulated it into the second query.
Each query also has counts of the number of times the query was posed to the
search engine. The utility in such data is in using it for learning better search
ranking algorithms. Figure 10.7(a) shows an example a user-query graph. Fig-
ure 10.7(b) shows its reformulation into a search query graph where individual
users are not represented explicitly but only as aggregate numbers.

4.2.1 Anonymization. Two types of privacy mechanisms for af liation
networks have been studied in the research literature:

Network generalization. Cormode et al. [13] propose a privacy de ni-
tion for af liation networks, (k,l)-grouping, tailored to prevent sensitive
af liation link disclosure. The authors make the assumption that af lia-
tion links can be predicted based on node attributes and the structure of
the network. They show why existing table anonymization techniques
fail to preserve the structural properties of the network, and propose a
greedy anonymization algorithm which keeps the structure intact but
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Figure 10.7. a) User-query graph representing the users, their queries, the websites they
clicked on and the ranking of each website, and b) its reformulation into a search query graph.
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generalizes node attributes. The algorithm requires that each node is
indistinguishable from at least k − 1 other nodes in terms of node prop-
erties, and each af liation group is indistinguishable from at least l − 1
other af liation groups, the basis of (k, l)-grouping. The utility is in
being able to answer accurately aggregate queries about users and af li-
ation groups.

Differentially private mechanisms. A private mechanism for a recom-
mender system has been developed speci cally for the movie recom-
mendation setting [39]. The system works by providing differentially
private mechanisms for computing counts, rating averages per movie
and per user, and the movie-movie covariances in the data. These statis-
tics are suf cient for computing distances based on k-nearest neighbor
for predicting the ratings associated with new af liation links. Using
the statistics released by the mechanism, the algorithm performs with an
accuracy comparable to the one in the original data.
Korolova et al. [30] have proposed an (ε,δ)-differentially private algo-
rithm which allows the publication of a search query graph for this pur-
pose. Here the search logs are the database, and pairs of databases D1

and D2 are considered to differ in one element when one database ex-
cludes the search logs of exactly one user. The algorithm keeps only a
limited number of queries and clicks for each user and allows for two
types of functions on the graph which are suf cient for evaluating rank-
ing algorithms. The rst function gives a search query and its noisy
count if it exceeds a pre-speci ed threshold. The second function pub-
lishes the noisy weight of the (query,URL) link for the top URLs for
each query which was safe to publish according to the rst function.

4.3 Privacy mechanisms for social and af liation
networks

There has not been much research on the privacy implications of the inter-
play between social and af liation networks. It is obvious that they inherit all
the privacy issues discussed so far for either type of network. What is not so
obvious is that the complex dependencies these networks create can allow an
adversary to learn private information in intricate ways. In particular, one can
use the social environment of users to learn private information about them.
One type of attack, which we call an attribute inference attack, assumes that
an attribute is sensitive only for a subset of the users in the network and that the
other users in the network are willing to publish it publicly [50]. The analogy
in real-world social networks is the existence of private and public pro les.
The attack works by creating a statistical model for predicting the sensitive
attribute using the publicly available information and applying that model to
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predict the users with private pro les. In its basic form, the attack assumes that
besides the network structure, the only user attributes that are available are the
sensitive attribute value for the public pro les. Naturally, using other pro le
attributes can create even more powerful statistical models, as Lindamood et al.
show [33]. An adversary succeeds when he can recover the sensitive attribute
values for a subset of the nodes with high probability.

By taking into account all social and af liation links, often declared publicly
in online social networks, the model can use link-based classi cation tech-
niques. Link-based classi cation breaks the assumption that data comprises of
independent and identically distributed (iid) nodes and it can take advantage
of autocorrelation, the property that attributes of linked objects often corre-
lated with each other. For example, political af liations of friends tend to be
similar, students tend to be friends with other students, etc. A comprehensive
survey of models for link-based classi cation can be found in the work by Sen
et al. [42]. The results of Zheleva and Getoor [50] suggest that link-based clas-
si cation can predict sensitive attributes with high accuracy using information
about online social groups, and that social groups have a higher potential for
leaking personal information than friendship links.

4.3.1 Anonymization. Bhagat et al. [6] consider attacks for sensitive
social link disclosure in social and af liation networks, to which they refer as
rich interaction graphs. Two nodes participating in the same group is also con-
sidered as a sensitive social link between the two users. Bhagat et al. represent
the social and af liation networks as a bipartite graph, in which one type of
nodes are the users and the other type of nodes are af liation groups. Social
links are represented as af liation groups of size two.

They propose two types of network generalization techniques to prevent
social link disclosure. The rst technique, a uniform list approach, keeps the
structure intact, in a manner similar to (k, l)-groupings [13]. It divides nodes
into classes of size m ensuring that each node’s interactions fall on nodes of
different classes. Each class is split into label lists of size k, thus ensuring
that the probability of a link between two users (through a social link or a
common af liation group) is at most 1/k. If the adversary has a background
knowledge of the identities of r of the nodes and k is equal to m, then this
probability becomes 1/(k−r). The second technique, a partitioning approach,
also divides the nodes into classes of size m so that each node’s interactions fall
on nodes of different classes. However, it does not keep the original network
structure, and publishes only the number of edges between partitions. The
probability of a link between two users is guaranteed to be at most 1/m with
or without background knowledge. The utility of the anonymized graph is in
allowing accurate structural and attribute analysis of the graph.
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5. Related literature
Research on privacy in online social networks is a very young eld which

discovers and addresses some of the challenges of preserving the privacy of
individuals in an interconnected world [4, 6, 8, 26, 27, 31, 30, 33, 35, 41, 48,
50, 49, 51, 53]. However, privacy research has a longer history in the data min-
ing, database and security communities. For example, privacy-preserving data
mining aims at creating data mining algorithms and systems which take into
consideration the sensitive content of the data [28, 2]. Chen et al. [10] provide
a comprehensive, recent survey of the eld of privacy-preserving data pub-
lishing. The database and security communities have studied interactive and
non-interactive mechanisms for sharing potentially sensitive data [17]. Most of
this research assumes that there are one or more data owners who would like
to provide data access to third parties while meeting privacy constraints. In
contrast, access to data in online social networks is often freely available, and
users can specify their personal privacy preferences. Addressing the new pri-
vacy challenges in this area is an active area of research [29]. The unexpected
threats of freely publishing personal data online is exempli ed by a number of
researchers [1, 33, 41, 50]. boyd points out many privacy concerns and ethical
issues, related to the analysis of large online social network data [15]. Measur-
ing the privacy of social network users and enabling them to personalize their
online privacy preferences has also been the focus of recent work [36, 21].
Privacy in dynamic social networks has also received recent attention [7, 53].

6. Conclusion
Here, we presented the possible privacy breaches in online social networks,

together with existing privacy de nitions and mechanisms for preserving user
privacy. While initial steps have been taken in understanding and overcoming
some of the challenges of preserving privacy online, many open problems re-
main. In particular, some exciting new directions include studying the effect of
different types of privacy disclosures on each other, privacy-preserving tech-
niques that prevent sensitive attribute disclosure in networks, a comparison
between existing anonymization techniques in terms of utility, and privacy-
preserving techniques that meet the individual privacy expectations of online
social network users rather than privacy de nitions imposed by a data publisher
or an online service provider.
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Abstract With today‘s ubiquity and popularity of social network applications, the abil-
ity to analyze and understand large networks in an ef cient manner becomes
critically important. However, as networks become larger and more complex,
reasoning about social dynamics via simple statistics is not a feasible option.
To overcome these limitations, we can rely on visual metaphors. Visualization
nowadays is no longer a passive process that produces images from a set of num-
bers. Recent years have witnessed a convergence of social network analytics and
visualization, coupled with interaction, that is changing the way analysts under-
stand and characterize social networks. In this chapter, we discuss the main
goal of visualization and how different metaphors are aimed towards elucidating
different aspects of social networks, such as structure and semantics. We also
describe a number of methods where analytics and visualization are interwoven
towards providing a better comprehension of social structure and dynamics.

Keywords: Information visualization, visual analytics, semantic ltering, centrality

1. Introduction
Visualization is becoming an important tool to gain insight on the structure

and dynamics of complex social networks. Since the inception of sociograms,
it was soon recognized that understanding social networks by looking at a list
of statistics was impractical. To this end, a multitude of visual representations
have been proposed. The vast majority of these metaphors are, not surprisingly,
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variations of the sociogram, where actors in a network are represented with
graphical elements and links are represented as lines between these elements.
This representation is easy to understand and provides detailed information
about the actual relations modeled in the data. Graph drawing software, often
at the core of visualization algorithms, has evolved from software of academic
interest to widely spread interactive applications. Now, online social network-
ing sites provide their own or third-party interactive visualizations for casual
users to explore portions of their networks. These include tools for music dis-
covery such as liveplasma (liveplasma.com), musicovery (musicovery.com),
Lastfm’s widget galleries (lastfm.com), tools for visualizing and generating
maps of people’s own circle of friends, such as a myriad of facebook applica-
tions (facebook.com), lastfm’s friend sociomap (lastfm.com) and generic vi-
sualization sites such as IBM’s Many Eyes (manyeyes.alphaworks.ibm.com/).
But there has been an explosion of tools that incorporate analysis and visu-
alization, such as Pajek, JUNG, Tulip, visone, among others, as surveyed by
Freeman [13], Klovdahl [25] and Brandes et al. [5].

Many of these tools are designed for graph analysis in general, and of-
ten combine node-link diagrams with standard statistic visualizations, such as
scatterplots and histograms. Although these structural visualizations remain
popular, today’s technology has made the visualizations more sophisticated,
spanning other dimensions beyond the graph structure of the networks, such
as semantic and temporal dimensions, essential for understanding social dy-
namics, and have become interactive, allowing users to form hypotheses and
validate inferences both analytically and visually.

We witness today a convergence of analytics and visualization, glued to-
gether with interaction. Traditional pipelines where analysis is often a pre-
processing step and visualization a presentation tool are being replaced by an
iterative approach, where visualization contrasts both raw data and a large,
complex set of derived quantities from automated analysis. An analyst gains
insight on the social structure while interacting with these visualizations, clus-
tering and ltering the data in the search of more appropriate analytic tools,
whose results are fed back into the visualization process, and so on.

In this chapter, we present a taxonomy of visualizations for social networks,
based on the type of insight provided to the analyst, such as structural, semantic
or statistical. We then describe the current trend of combining analytics with
visualization and provide two example techniques. In the rst one, seman-
tic and structural ltering are coupled with novel visualizations to understand
both the structure and dynamics of social networks. In the second example,
centrality analysis not only provides interesting statistics on the network, but
is also actively exploited to support novel views and lters not envisioned in
the previous generation of visualization tools.



Visualizing Social Networks 309

(a) Structural (b) Semantic

(c) Statistical (d) Temporal

Figure 11.1. Example of different types of visualization (a) Structural, typically a node-link
diagram. (b) Semantic, where nodes and links can represent different aspects of the social
network. (c) Statistical, useful for depicting the distribution of social network metrics and (d)
Temporal, a particular case of a semantic diagram that uses time as the main attribute.

2. A Taxonomy of Visualizations
We can classify the visualization of social networks in four main groups,

depending on the main focus of the predominant visual task for which the
visualization metaphor is envisioned. These are: structural, the most common
representation thus far, semantic, which emphasizes the meaning of the entities
and relationships over their structure, temporal and statistical.

2.1 Structural Visualization
A structural visualization of the social networks focuses precisely on that,

its structure. The structure can be thought of as the topology of a graph that
represents the actors and relationships in a social network. There are two
predominant approaches to structural visualization: node-link diagrams and
matrix-oriented methods. While node-link diagrams are easy to interpret and
depict explicitly the links between nodes, matrix-oriented representations usu-
ally make a better use of limited display area, critical for today’s availability
of visualizations in a multitude of devices. In the recent years, we have seen
efforts to combine the best of the two types into a series of hybrid representa-
tions.
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2.1.1 The value of network layout in visualization. The purpose of
a visualization is to allow users to gain insight on the complexity of social dy-
namics. Therefore, an aspect such as the layout of network elements must be
evaluated with respect to its value toward that goal. Numerous layout algo-
rithms have been proposed, each of them with its strengths and weaknesses. In
general, we can highlight a number of high level properties that a layout must
satisfy: (1) The positioning of nodes and links in a diagram should facilitate
the readability of the network. (2) The positioning of nodes should help un-
cover any inherent clusterability of the network, i.e., if a certain group of nodes
is considered to be a cluster, the user should be able to extract that information
from the layout, and (3), the position of nodes should result in a trustwor-
thy representation of the social network, or, in layman terms, the visualization
should not lie [40].

To satisfy these high-level properties, layout algorithms are often formulated
in terms of low-level properties. The most widely property is the proximity of
nodes, which simply states that if two nodes are highly interconnected, they
should appear together. This has been the basis for force-directed methods, as
described below. On the other hand, readability is often achieved by ensuring
minimal overlap between nodes and edge crossings. Social networks, in par-
ticular, suffer greatly from readability, since the power law that governs their
structure dictates that most edges occur between a few central nodes and a very
large number of not-so-central nodes. Current unsupervised algorithms fail to
provide a readable graph and result in an uninformative “hair ball”.

For completeness, we summarize some of the most representative layout
algorithms, but we do not intend it to be a thorough survey. For a survey, refer
to [20, 15].

2.1.2 Node-link Diagrams. As pointed out by Freeman, the sociogram
has become a de facto standard for visualizing social networks [13]. In such
a representation, actors are represented as nodes, taking geometric forms, and
relationships are represented using lines between these forms. Different prop-
erties of the network can be encoded visually via geometric properties, such as
color, shape, size and thickness.

One of the current challenges in social network visualization is the place-
ment or layout of these nodes in an effective way. For simple structures, simple
aesthetic choices can be made to provide an insightful image of the social net-
work. In fact, the rst visualizations of social networks were drawn by hand.
However, as social networks grow in complexity and size, nding a good lay-
out becomes increasingly challenging. For this reason, graph layout algorithms
research has a signi cant impact on the development of social network visual-
izations.
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Property-based Layouts. The simplest layout of a social network assigns the
value of a node property as a location in a coordinate system. This layout is
simple to compute and helps discover patterns in the distribution of that prop-
erty along the network, but it may obscure its global structure. This method
was recently used by Aris and Shneiderman as the layout for semantic sub-
strates [1], described later on as a semantic visualization

Due to their simplicity, radial layouts are popular, where nodes are placed
in a circle and links are drawn as secant lines through the circle. Namata et
al. combine radial and other layouts to provide visual feedback to the user
[30]. Nonetheless, radial layouts do not necessarily convey the structure of
the network, and, when edges are drawn in such a layout, clutter overcomes
the visualization. To improve the readability of radial layouts, Holten bundles
related edges together, according to a hierarchical structure in the network [21].

An improvement of the radial layout is the target sociograms, as introduced
by Northway [32], which uses a a property, typically a centrality measure, as
a radius. In this sociogram, nodes are arranged in concentric circles, so that
most important nodes are drawn near the center of the circles, while peripheral
nodes are drawn in the outer circles [13]. This technique has been embodied
successfully in visone, a system for visual analysis of social networks, using a
variety of network centralities [8] and generalized for graph layout by Brandes
et al. [6].
Force-directed and Energy-based Layouts. A force-directed layout draws

analogies from a physical structure of rods and springs connecting spheres
with the links and nodes in a network. Forces are designed to satisfy low-level
properties that guarantee minimal overlap of nodes and proximity of related
nodes. For example, attractive forces are often de ned between any pair of
connected nodes, while repulsive forces are de ned between all pairs of nodes.
The equilibrium state of such a system of forces results in the “optimal” place-
ment of nodes under that de nition. As an alternative to compute the layout
as displacements of nodes, one can iteratively update the location of nodes to
minimize an energy function directly. This energy function is formulated to
satisfy the aesthetic criteria of good graph layouts. A comprehensive survey of
these methods appears on Brandes et al. [4].

Although widely used, and easy to implement, force-directed layouts suffer
from two main limitations. On one hand, they are expensive to compute, since
the time to compute grows cubically with the number of nodes in the network.
This makes them impractical even for simple real-life social networks, in the
order of only thousands of nodes. On the other hand, maybe more critically,
a force directed layout often results in a “hairball” for most moderately sized
networks, due to the power law distribution. Brandes and Pich presented an ex-
perimental study that shows that multidimensional scaling approaches to graph
layout can satisfy aesthetic properties better than force-directed placement [7].
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(a) Rapid graph layout (b) Path Visualization (c) Node-trix visualization.
[29] [36] [19]

Figure 11.2. Hybrid visualization spaces. (a) Rapid layout of a large network using space
lling curves (b) Hybrid path diagram and matrix representation that improves both readability

and scalability of the visualization. (c) Node-trix visualization combines a node-link diagram
with an adjacency matrix to improve the readability of dense sub-networks

Spectral layouts. This type of algorithms are based on spectral algebra on
key matrices that can be extracted from the social structure. It was shown that
the eigenvectors of certain matrices can be used as lower dimensional, typically
2D, embeddings of the graph. The most widely application of this technique
uses the eigenvectors of the adjacency matrix. In other cases, the eigenvectors
of the Laplacian matrix are used as the embedding coordinates [26].

2.1.3 Matrix-oriented Techniques. Matrix-oriented techniques are
visualization metaphors designed to represent a social network via an explicit
display of its adjacency or incidence matrix. In this visualization, each link is
represented as a grid location with cartesian coordinates corresponding to the
nodes in the network. Color and opacity are often used to represent important
structural or semantic quantities. Consequently, a visual representation of the
adjacency matrix is much more compact than a node-link diagram and overlap
free, since each link is represented without overlap.

One of the challenges with this matrix representation is enabling the users
to visually identify local and global structures in the network. In general, this
depends on the way the nodes are ordered along the axes of the matrix view.
When the order of nodes is arbitrary, the matrix view may not exhibit the clus-
tering present in the data. Reordering of a matrix is a complex combinatorial
problem, and depends on a given objective function. In general, if we follow
the high-level desired properties of a good network visualization, it should re-
tain clusters in close proximity. This problem has been addressed as a form
of clustering, and formulated in techniques such as generalized blockmodeling
[11].
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2.1.4 Hybrid Techniques. Node-link diagrams are easy to interpret
when compared to adjacency matrix diagrams, but the latter are usually more
effective to show overall structure where the network is dense. This observa-
tion has led to a number of hybrid techniques, which combine matrix-oriented
techniques with node-link diagrams in an attempt to overcome the issues asso-
ciated with each of them.

Muelder and Ma present a rapid graph layout to depict large networks in
a constrained screen space [29]. To this end, a hybrid approach is proposed,
where nodes are rst positioned in 2D space along a space- lling curve. The
position of a node along the curve is determined via a clustering analysis to
ensure the close proximity of related nodes. An example is shown in Fig-
ure 11.2(a).

Adjacency matrices are often dif cult to read. For example, it becomes
dif cult to follow paths between two actors of interest without effort. Shen
and Ma solve this problem with a hybrid matrix, where a basic layer depicts
an adjacency graph, while enabling path navigation on a different layer. Us-
ing transportation maps as metaphors, this visualization shows paths between
multiple pairs of nodes in a readable manner [36]. An example is shown in
Figure 11.2(b), which depicts the paths between a few nodes of interest in the
friendship network of a hi-tech rm.

Henry and Fekete propose Mat-Link, a hybrid representation that intro-
duces explicit links over more traditional adjacency matrix representations
[18]. Henry et al. take this idea further in Node-Trix, a hybrid that represents
small dense communities within a social network as an adjacency matrix, and
connects these within a node-link diagram [19]. This methodology avoids the
issues associated with displaying dense networks using links, but retains the
readability of the connections among clusters of nodes.

2.2 Semantic and Temporal Visualization
Structural visualizations, although unify the depiction of both overviews

and detail information, are less effective when the social network becomes
large. Node-link diagrams become rapidly cluttered and algorithmic layouts
often result in "hairballs", as highly connected nodes tend to concentrate in
the center of the display. For this reason, recent approaches have focused on
a different aspect of social networks: semantics. Instead of highlighting the
explicit relationships found in the data, these represent high level attributes
and connections of actors and links, either as speci ed explicitly in the data, or
implicitly inferred from cross-referencing external sources.

2.2.1 Ontology-based Visualization. One such semantic visualization
is the use of ontologies to represent the types of actors and relationships in a
social network. An example is Ontovis, where a typical node-link diagram
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is enhanced with a high-level graphical representation of the ontology [38].
An ontology is a graph whose nodes represent node types and links represent
types of representations. Once an ontology is known, either given explicitly or
extracted from the data itself, a social network can be represented implicitly
by the relationships in this graph. The goal in this type of visualization is not
necessarily to discover the structural properties of the network, but rather the
distribution of attributes of nodes and links.

Although it does not rely on an onthology, Wattenberg’s PivotGraph has a
similar goal. Instead of using nodes and links to represent structural informa-
tion, a PivotGraph summarizes node attributes and their relationships. Using a
pivot table as an interaction metaphor, this visualization proves effective to ex-
plore multivariate graphs [46]. Another type of visualization that relies on the
meaning of actors and links are semantic substrates, as proposed by Aris and
Shneiderman [1]. A semantic substrate is a spatial layout of the network where
the position of nodes depends on the values of a given node attribute. Multiple
semantic substrates can be displayed simultaneously and connected together
depending on the values of certain links of interest. Because the placement of
the nodes no longer follows the structure of the network, but the actual val-
ues of node attributes, it is a more appropriate metaphor for semantic queries.
Aris and Shneiderman report successful uses of this approach in the study of
legal precedent data, which forms a network of legal court cases from 1978 to
2005 regarding ’regulatory takings’, linked whenever a given court case cites
another.

2.2.2 Temporal Visualization. A special type of semantic informa-
tion that has captured the attention of social network visualization researchers
is time. Since social interaction is a time-dependent phenomenon, it is only
natural to represent the temporal dimension using visual means. Nonetheless,
the visualization of dynamic networks has not been explored in depth. One
can argue that one of the reasons for this lack of treatment is that handling
the temporal dimension from a structural point of view alone is limited and
insuf cient. A semantic approach, as the ones suggested above, seems more
appropriate. However, time as a dimension deserves a treatment different from
other data-speci c node attributes. One of the dif culties to represent time is
a shortage of dimensions to depict a dynamic network in a 2D display. As
an alternative, one can represent time along precisely a temporal dimension.
Moody et al. considers two types of such dynamic visualizations: ipbooks,
where nodes remain static while the edges vary over time, and movies, where
nodes are allowed to move as the relationships change [28].

Shen et al. present Mobivis, which enhances an ontology-based visual-
ization with an interactive timechart [37]. This timechart is a pixel-oriented
metaphor that incorporates temporal information of actors in a network. One of
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Figure 11.3. Statistical Visualization of the Kazaa social network. Left: scatterplot matrix of
three centrality metrics. Right: Edge correlation plots of the same metrics.

the challenges when designing temporal visualizations is the incorporation of
the possibly disparate scales and variable granularity of the temporal data. Mo-
bivis addresses this problem via interactive ltering and multiscale timecharts.

Viegas et al. propose PostHistory, which helps visualize the dynamic social
network that arises from email exchanges [44]. The visualization combines
a pixel-oriented technique, similar to the timechart in Mobivis, which shows
both relevance and quantity of emails over time using color and size, respec-
tively. Simultaneously, a visualization displays the inferred social network of
email contacts in an ego-centric hierarchical fashion. Because the actual struc-
ture of links are not represented explicitly, these visualizations do not suffer
from clutter and can be quite effective for dynamic networks.

One can also think of dynamic social networks as the connection between
actors and events. This observation has led to approaches such as the one de-
scribed by Kang et al., where a bipartite graph describes the dynamic changes
in participation of a number of actors in different events over time [24].

2.3 Statistical Visualization
An important aspect of visualization is the interplay between analytical and

visual tools to gain insight. This is at the core of visual analytics. For this
reason, analysts often explore summary visualizations to understand the distri-
butions of variables of interest. These variables often correspond to network
statistics that represent the structure of the network, such as degree, central-
ity and the clustering coef cient. While the rst two describe the importance
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across the network, the latter metric indicates how clusterable are the nodes in
a network.

A way to understand these distributions is via visual summaries, such as
histograms. Additional insight can be gained through the analysis of the joint
distribution between two variables, typically via scatterplots, where points are
mapped in a cartesian coordinate system depending on the values of two vari-
ables of interest. This approach, although widely used and practical, is limited
to two-dimensional joint distributions. In general, network statistics form an
N -dimensional space, where a node or an edge is an observation, and each
variable corresponds to a attribute or metric. Visualizing such space is thus dif-

cult. Here we highlight two common approaches to the problem. Scatter plot
matrices, such as the one depicted in Figure 11.3, shows the joint distribution
of all pairs of variables in the N -dimensional space. Each location ij shows
the joint distribution of variables i and j, in this case degree, betweenness and
Markov centrality. A closer look at this visualization helps us see a seemingly
high correlation between Markov centrality and degree, skewed only by a se-
ries of outliers with low degree but high centrality. These outliers, however, do
not affect the correlation between betweenness centrality and degree.

Koschützki and Schreiber used a scatter plot matrix of common centrality
metrics, such as closeness, betweenness and degree, to understand the distri-
bution of importance in a biological network [27]. Dwyer et al. also perform
a similar analysis on a scatterplot matrix of centralities for social networks.
Another way of representing pairwise joint-distributions is via parallel coordi-
nates. In this case, each data point can be represented as a set of line segments,
whose endpoints are the values of each of the variables. Dwyer et al. followed
this approach in their visual analysis of network centralities [12].

In the scope of social networks, scatter plots are also useful in representing
edge correlations. In this case, one can think of a point in the 2D space as
representing an edge, whose x coordinate is the value of a given property of
one of the nodes connected to the edge and the y coordinate the value of the
same property of the node at the other end of the edge. This technique was
explored by Kahng et al. to study the betweenness centrality correlation in a
social network [23].

3. The Convergence of Visualization, Interaction and
Analytics

Recent years have witnessed an increased effort to combine automated data
analysis with visualization tools. This has been possible thanks to the prolif-
eration of consumer-grade workstations capable of complex computations and
interactive display of large graphical data.
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Visualization and Analysis. More often than not, visualization has been
described as the last stage of a long analytic process. But this is changing. Re-
cently, Perer and Shneiderman argued that a tight integration of social network
statistics and visualization is necessary for effective exploration of social net-
works [34], while Bertini et al. have proposed a novel visual analytics frame-
work where visualization and data mining are no longer ends of a pipeline, but
are interwoven [2].

Clustering is an aspect of visualization where visualization and analysis con-
verge. As mentioned above, cluster analysis of a social network drives the ma-
trix ordering for an effective adjacency matrix visual representation. The same
can be said about node-link diagrams. Noack found that modularity, a popular
measure of clusterings, is in fact an energy model minimized in force-directed
layouts [31]. This has important implications for visualization, as quality met-
rics of the visual appearance of a layout directly quanti es the quality of a
clustering, useful for analysis, and vice versa. Shi et al. use hierarchical clus-
tering and summarization to visualize large social networks [39]. Extracting
a hierarchical structure out of a network has thus clear advantages for visual-
ization. For example, Holten has shown that bundling the edges of a hierarchy
leads to more readable visualizations [21]. Systems such as Viszter [16] and
Social Action [33] enhance the visualization with an explicit representation of
communities, enabling the analyst to discover groups and interconnections at
a glance.

Visualization and Interaction. With today’s computational capabilities,
visualization has taken a more active role. Pike et al. argue that the inter-
active manipulation of a visual interface is indeed the analytic discourse, and
thus they cannot be thought of as separate entities [35]. This idea has be-
come the driving force in the visualization of online social networks, fueled
by the popularity of sites such as Facebook and Flickr. But the needs of such
systems are different than analytic tools, and have some common properties:
(1) They feature ego-centric views. The basic visualization space is no longer
the entire network, but the visual elements are now arranged in relation to a
given context. This has been formalized by van Ham and Perer as a bottom-
up methodology called “search and expand on demand” [42], where visual-
izations are produced for individual queries rather than the whole. A similar
approach is taken by Vizster, a visualization tool for online social networks
[17]. In bottom-up approaches queries become manipulations of the different
interaction tools, such as expansion and contraction of the local context on
demand. This has become a popular device for interacting with large social
networks, as embodied in tools such as touchgraph (touchgraph.com). Other
tools change the space to re ect this ego-centric view. For example, lastfm’s
friends sociomap (http://qed-portal.com/last fm/) uses a terrain metaphor to
generate views of the local circle of friends of their users. Height in this terrain
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(a) (b) (c)

Figure 11.4. Semantic ltering of a movie social network [38].

indicates the musical compatibility with others. (2) They are playful. Online
social network tools are primarily designed to help discover people and make
sense of structures of community. For this reason, many of these tools are
highly interactive and usually playful. The need for interactivity justi es the
use of practices often deemed as inef cient when generating a static, passive
visualization. For example, force-directed and energy-based layouts are com-
monly used. Tools such as Viszter and Touchgraph (touchgraph.com) rely on
force-directed layouts to represent the local structure of the network and enable
interaction to expand or contract the network on demand. Fidg’t, a tool for
visualizing online networks, uses a magnet metaphor where members of a net-
work gravitate towards each other if they share tastes. Dragging nodes around
the visualization spaces lets users identify community structures depending on
the way the layout changes over time. (3) They are dynamic. Social networks
are inherently dynamic and their structure changes constantly as the network
evolves. PostHistory and Social Fragments are examples where the visual-
ization and interaction take time as the main dimension [45]. An emerging
solution to dealing with the size and temporal complexity of social networks
is interaction. Via interactive manipulations, one can change the space and vi-
sual representations without limiting the knowledge that can be extracted from
these views.

There are two other aspects where visualization, analysis and interaction
converge. On one hand, structural and semantic ltering involves a continuous
loop of analysis and visualization, where insight is obtained by re ning visual
representations of simpli ed and ltered data. On the other hand, the analysis
of centrality and importance allows visualization practitioners to design and
test novel representations and interactive techniques for visual exploration of
social networks.
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3.1 Structural and Semantic Filtering with Ontologies
Common in current visualization tools is the depiction of global structure

as an overview of a network. Interactive tools often allow the analyst to lter
data in an attempt to overcome the issues associated with clutter and overlap.
An example of such a lter is the removal of nodes and edges that are not
important. This results in an abstract network that retains only key actors in
a network. In more complex networks, this abstraction may lter some actors
that can be considered important along different key attributes, often dependent
on the data and the task at hand. To overcome this limitation, Shen et al.
propose a series of structural and semantic abstractions based on an ontology
representation of the data [38]. The ontology associates a speci c type to nodes
and links that can be used to obtain a higher level of abstraction. The authors
compute a structural metric, based on this ontology, that speci es the disparity
of links of a given node. This disparity, measured in terms of the connectivity
variance of nodes of a given type, indicates whether a particular node has weak
or strong links to a certain type or other nodes of the same type. In addition,
analysts can interact directly with the ontology to highlight or remove nodes
and edges of a certain type. Unlike a purely structural approach, this integrated
method of interaction proves more scalable as networks become increasingly
complex.

An example is shown in Figure 11.4 for a movie network, a heterogeneous
data set that links actors, directors, movies, genres and roles, among other
types. The ontology, depicted in Figure 11.4(a), shows the relationships be-
tween the different node types. In this case, a person is represented in blue,
a movie in orange and a role in red. The size of the node indicates its dispar-
ity. Figure 11.4(a) also shows the resulting visualization of a semantic query
that selects all the people who have played any of the roles of hero, scientist,
love interest, sidekick and wimp. Even at such a small scale, clutter makes
the visualization dif cult to read. A structural ltering follows, as depicted in
Figure 11.4(b), which removes nodes of degree 1 and duplicate paths. Now
we see individual actors, such as Woody Allen, who has played three differ-
ent roles. This insight prompts the analyst to explore a different dimension of
the network, the movies where he has taken these roles and their correspond-
ing genre. This is achieved via interaction with the ontology graph, selecting
the corresponding node types. The resulting visualization is shown in Fig-
ure 11.4(c).

3.2 Centrality-based Visual Discovery and Exploration
A node centrality is a measure of the importance of a node, from a structural

point of view. Metrics such as degree, betweenness, closeness and Eigenvector
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centralities provide a ranking of the nodes in terms of the number of connec-
tions, shortest paths or length of random walks [14, 3, 4].

A rather simplistic approach is to lter nodes based on their centrality. The
use of color and size has been exploited to highlight important nodes in the
visualization. Other techniques are more aggressive, and de ne the layout of
nodes in terms of centrality. For example, Brandes et al. generalize the target
sociogram using centrality metrics, so that central nodes are positioned at the
interior of concentric nodes and peripheral nodes in the outer regions [6].

Another approach is to measure the centrality of edges. Analogous to nodes,
edges can be ranked in terms of the importance of nodes connected to them, the
number of shortest paths that go through them, or their probability of appearing
in a number of random walks through the network. van Ham and Wattenberg
use edge centralities to simplify complex networks. The visual representation
is reduced to the minimum spanning tree of edge betweenness [41]. A sim-
ilar approach is followed by Jia et al. [22], who use the maximum spanning
tree instead. Clearly, each approach highlights different structures from a net-
work that are valid for analysis and understanding. However, because some
edge centralities, such as edge betweenness, are not necessarily robust, it is not
surprising that results vary when applied to real-world social networks. Al-
though edge centralities highlight important intra-cluster and inter-cluster rela-
tionships in star-shaped graphs, they often misrepresent the interior of clusters
in dense parts of the networks.

Recently, we have provided a more robust approach, based on node cen-
trality derivatives. A centrality derivative de nes the sensitivity of a node’s
importance to the importance of all other nodes. By measuring the in uence
of a node onto all others, we can extract information that may be important to
the user. For example, we have applied this technique to discover hidden links
in a social network. A hidden link occurs when two nodes in uence mutually
to a great extent, but are not connected directly. This type of relationship often
occurs between cluster centers or representatives. As an example, we applied
this technique to a synthetic data set that “hides” the structure of a social net-
work as what seems to be two disparate groups. We de ne a centrality metric
derivative as a matrix S whose elements (i, j) are de ned as:

sij =
∂C(vi)

∂tj
(11.1)

where C(vi) is the centrality of vertex vi and tj is a parametrization variable
of node j, such as degree. This de nition assumes that centrality metric can be
de ned as a continuous function in terms of t. This is not the case for many
metrics, such as degree and betweenness, which are obtained as a sum of edges
or shortest paths. However, a certain subset of centralities, such as those based
on random walks, assume that the network can be represented as an auxiliary
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matrix M , and the centrality as a function of such matrix. For example, Eigen-
vector centralities are obtained as a closed solution of the eigenvalue problem
Mx = λx. In general, the centrality of a node vi can be expressed as a function
of the matrix M :

C(vi) = f(M)|vi (11.2)
And, as long as f is differentiable with respect to a simple parameterization t
(which is the case of the Eigenvector centralities and its many variants), C is
also differentiable with respect to that variable. Using the chain rule:

∂CE(vi)

∂tj
=

∂f

∂M

∂M

∂tj
(11.3)

where tj is an independent variable of a node. In our experiments, we use
tj =

∑
k Akj as the degree of a node, where A is the adjacency matrix. In

general, the matrix M can take the form of the adjacency matrix, such as the
case of Eigenvector centralities, an stochastic version of it, like in PageRank
or the Laplacian matrix, useful for nding low dimensional embeddings of the
network.

This process of differentiation results in a dense matrix S that encodes the
in uence between all pairs of nodes. Analyzing the sign and magnitude of this
in uence helps us extract meaningful groups. It was noted that largest mag-
nitude derivatives often occur between cluster centers while small magnitude
derivatives occur within clusters. A leaf node in a cluster has a little in uence
on the cluster center regarding its centrality. However, a peer of the cluster cen-
ter, which in all likelihood is another cluster center, has the ability to in uence
it greatly [9].

We also found that thresholding the matrix of in uence in terms of mag-
nitude for all non-edge pairs helps us identify hidden links in a network. Fig-
ure 11.5 shows a synthetic data set simulating the formation of a social network
via phone calls. In this data set, there is a hidden structure that occurs when
four people decided to switch phones, creating two identities [43]. This phe-
nomenon is very common, and computational models often contains multiple
instances of otherwise individuals in the real world. Traditional approaches to
this problem fail to recognize this relationship. In our case, as shown in Fig-
ure 11.5(a), a node-link diagram results in the familiar “hairball” and fails to
provide hints of the structure, except for an apparent concentration of nodes
along three centers (where edges are more dense). After applying centrality
derivatives, we can simplify the network by choosing only the edges with the
highest derivative magnitude. The result is shown in Figure 11.5(b). Now we
can see a clear structure of clusters. In addition, we highlight the non-edge
pairs of nodes with the highest derivatives, as shown in the grayed areas. The
corresponding nodes that form these pairs (highlighted in gray), happen to cor-
respond to the same persons. A visualization that creates this implicit link,



322 SOCIAL NETWORK DATA ANALYTICS

Figure 11.5. Discovering hidden links on a social network. Left: A synthetic social network
containing a hidden structure is visualized using a force-directed layout. A grouping of nodes
at the interior of the network is obscured by “hairball”. Right: After applying a centrality-based
analysis, we discover strong links between cluster centers that are not linked directly. These
pairings reveal the hidden structure in the network.

which is not explicit in the data set, helps us make assessments of the network
with more con dence. We can now think of this subnetwork as a collection of
four clusters, each of them centered at these node pairs [10].

4. Summary
Social network applications are clearly driving several areas of informa-

tion visualization research. In the past, visualization had a very passive role,
relegated to the presentation of an overview of the network and the result of
time-consuming, often unsupervised analysis. Now, visualization and interac-
tion have a more active role. Not only do we see new and sophisticated ways
of displaying network data, using unique combinations of analytical processes,
such as centrality analysis and community identi cation, but also we see the
visual analytics process as an interactive, iterative approach. Even when anal-
ysis fails, a visual study of a social network could bring analysts’ attention to
regions that are seemingly unimportant, but may be salient for the task at hand.

The convergence of analysis tools such as centrality and clustering analysis
and interactive techniques have led to powerful visualization solutions. Unlike
early systems, more focused towards the structural drawing of such a network,
current visualization tools offer unprecedented views of the network, with the
ability to lter and group nodes along sophisticated metrics such as random-
walk based centralities. Semantic clustering and ltering allows analysts to
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navigate through the large multi-dimensional data associated with social net-
works. A node-link diagram is no longer a faithful representation of the raw
data, often providing little insight due to clutter and overlap, but becomes a use-
ful and effective “slice” through a multi-dimensional data set. Linked views are
also becoming commonplace. We do not rely on the often misguided interpre-
tation that force-directed node layouts provide us, but we have at our disposal
a wealth of semantic and statistical views that help us understand the structure
of social networks in different spaces.

The dynamic aspect of social networks remains a challenge. As pointed out
numerous times by visualization researchers, traditional graphs and diagrams
fail to convey temporal changes in a social network. New, more effective rep-
resentations of time, beyond animations and time sliders, are required if we are
to understand how social networks form and evolve.
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Abstract The rise of online social media is providing a wealth of social network data. Data
mining techniques provide researchers and practitioners the tools needed to an-
alyze large, complex, and frequently changing social media data. This chapter
introduces the basics of data mining, reviews social media, discusses how to
mine social media data, and highlights some illustrative examples with an em-
phasis on social networking sites and blogs.
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1. Introduction
Data mining, as a young eld, has been spearheading research and devel-

opment of methods and algorithms handling huge amounts of data in solv-
ing real-world problems. Much like traditional miners extract precious metals
from earth and ore, data miners seek to extract meaningful information from
a data set that is not readily apparent and not always easily obtainable. With
the ubiquitous use of social media via the internet, an unprecedented amount
of data is available and of interest to many elds of study including sociology,
business, psychology, entertainment, politics, news, and other cultural aspects
of societies. Applying data mining to social media can yield interesting per-
spectives on human behavior and human interaction. Data mining can be used

C. C. Aggarwal (ed.), Social Network Data Analytics,
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in conjunction with social media to better understand the opinions people have
about a subject, identify groups of people amongst the masses of a population,
study group changes over time, nd in uential people, or even recommend a
product or activity to an individual.

The elections during 2008 marked an unprecedented use of social media in
a United States presidential campaign. Social media sites including YouTube1

and Facebook2 played a signi cant role in raising funds and getting candi-
dates’ messages to voters [51]. Researchers at the Massachusetts Institute of
Technology, Center for Collective Intelligence, mined blog data to show corre-
lations between the amount of social media used by candidates and the winner
of the 2008 presidential campaign [24]. This powerful example underscores
the potential for data mining social media data to predict outcomes at a na-
tional level. Data mining social media can also yield personal and corporate
bene ts. In another example, researchers developed a Group Recommendation
System (GRS) for Facebook users using hierarchical clustering and decision
tree data mining methods [7]. The GRS matches users, based on their Face-
book pro les, with Facebook groups the users are likely to join by applying
data mining methods to Facebook groups and their members.

Applying data mining techniques to social media data has gained increasing
attention with the signi cant rise of online social media in recent years. Social
media data have three characteristics that pose challenges for researchers: the
data are large, noisy, and dynamic. In order to overcome these challenges, data
mining techniques are used by researchers to reveal insights into social media
data that would not be possible otherwise. This chapter introduces the basics
of data mining, reviews social media, discusses how to mine social media data,
and highlights some illustrative examples, paving the way for addressing re-
search issues and exploring novel data mining applications.

2. Data Mining in a Nutshell
One de nition of data mining is identifying novel and actionable patterns in

data. Data mining is also known as Knowledge Discovery from Data (KDD) [28]
or Knowledge Discovery in Databases, also abbreviated as KDD [47]. Data
mining is related to machine learning, information retrieval, statistics, databases,
and even data visualization [43]. One formal de nition for data mining is found
in Princeton University’s WordNet3 where data mining is de ned as:

“data processing using sophisticated data search capabilities and statistical algo-
rithms to discover patterns and correlations in large preexisting databases; a way
to discover new meaning in data”

1http://www.youtube.com/
2http://www.facebook.com/
3http://wordnet.princeton.edu/
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The key idea behind data mining is nding new information in a data set
that is hidden or latent4. Data mining can help people better understand large
sets of data.

Supervised and unsupervised algorithms are used to identify the hidden pat-
terns in data. Supervised approaches depend on some a-priori knowledge of
the data (e.g. class labels). Unsupervised algorithms are used to characterize
data without any prior instruction as to what kinds of patterns will be discov-
ered by the algorithm. The variety of work accomplished to date pertaining to
data mining of online social media data is accomplished with some version of
either supervised or unsupervised learning algorithms. Determining whether
a supervised or an unsupervised approach would be best depends on the data
set and the particular question being investigated. Data sets can be generalized
into three types: data with labels, data without labels, and data with only a
small portion of labels.

Classi cation is a common supervised approach and is appropriate when
the data set has labels or a small portion of the data has labels. Classi cation
algorithms begin with a set of training data which includes class labels for each
data element. The algorithm learns from the training data and builds a model
that will automatically categorize new data elements into one of the distinct
classes provided with the training data. Classi cation rules and decision trees
are examples of supervised classi cation techniques.

Clustering is a common unsupervised data mining technique that is useful
when confronting data sets without labels. Unlike classi cation algorithms,
clustering algorithms do not depend on labeled training data to develop a
model. Instead, clustering algorithms determine which elements in the data
set are similar to each other based on the similarity of the data elements. Sim-
ilarity can be de ned as euclidian distance for some numerical data sets but
often in data associated with social media, cluster techniques must be able to
deal with text. In this case, clustering techniques use keywords that are repre-
sented as a vector (to represent a document) and the cosine similarity measure
is used to distinguish how similar one vector (data element) is to another.

In addition to classi cation and clustering methods, there are a variety of
mining techniques detailed in several textbooks [28, 56, 69], including associ-
ation rules, Bayesian classi cation algorithms, rule-based classi ers, support
vector machines, text mining, link analysis, and multi-relational data mining.
Additional references of speci c data mining topics can be found in [3, 18, 43,
47].

4Data mining approaches employ statistical based algorithms, data mining differs from statistics in that the
primary focus of common statistics is to organize and summarize information [25] versus identifying hidden
patterns.
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3. Social Media
We start describing social media beginning with a de nition produced from

a social media source, Wikipedia5. It de nes social media as follows:
“media designed to be disseminated through social interaction, created using
highly accessible and scalable publishing techniques. Social media uses Internet
and web-based technologies to transform broadcast media monologues (one to
many) into social media dialogues (many to many). It supports the democratiza-
tion of knowledge and information, transforming people from content consumers
into content producers.”

In [33] Kaplan and Haenlein de ne Social media as:
“a group of Internet-based applications that build on the ideological and techno-
logical foundations of Web 2.0, and that allow the creation and exchange of User
Generated Content.”

Mining social media is one type of social computing. Social computing is
“any type of computing application in which software serves as an interme-
diary or a focus for a social relation” [53]. Social computing includes ap-
plications used for interpersonal communication [53] as well as applications
and research activities related to “computational social studies [65]" or “so-
cial behavior [15]”. Social Media6 7 refers to a variety of information services
used collaboratively by many people placed into the subcategories shown in
Table 12.1.

Table 12.1. Common Social Media Subcategories

Category Examples
Blogs Blogger, LiveJournal, WordPress
Microblogs Twitter, GoogleBuzz
Opinion mining Epinions, Yelp
Photo and video Sharing Flickr, YouTube
Social bookmarking Delicious, StumbleUpon
Social networking sites Facebook, LinkedIn, MySpace, Orkut
Social news Digg, Slashdot
Wikis Scholarpedia, Wikihow, Wikipedia, Event maps

With traditional media such as newspaper, radio, and television, commu-
nication is almost entirely one-way, originating from the media source or ad-

5http://en.wikipedia.org/wiki/Social media
6Some researchers distinguish between social media and social networks [36].
7Social media can also be classi ed based on social presence/media richness and self-presentation/self-
disclosure into six categories: collaborative projects, blogs, social networking sites, content communities,
virtual social worlds, and virtual game worlds [33].
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Figure 12.1. Total Facebook Users per Year

vertiser to the masses of media consumers. Web 2.0 technologies and con-
temporary online social media changed the scene moving from one-way com-
munication driven by media providers to where now almost anyone can pub-
lish written, audio, or video content to the masses. This many-to-many me-
dia environment is signi cantly changing the way business communicate with
their customers [32, 64] and provides drastically unprecedented opportuni-
ties for individuals to communicate with extremely large numbers of people
at an extremely low cost. The many-to-many relationships present online and
manifest through social media are digitized data sets of social networks on a
scale never seen before. The resulting data provides rich opportunities for so-
ciology [44, 14] and new insights to consumer behavior and marketing [65]
amongst a host of related applications to similar elds.

The rise and popularity of social media is astounding. For example, con-
sider the popular social networking site Facebook. During the rst six years
of operation Facebook reached over 400 million active users. 8 Figure 12.1 9

illustrates the exponential growth of Facebook during its rst six years. Face-
book is ranked 2nd in the world for internet sites based on the amount of daily
internet traf c to the site. 10

The widespread use of social media is not limited to one geographic region
of the world. Orkut, a popular social networking site operated by Google11

has a majority of users from outside the United States12 and the use of social

8http://www.facebook.com/press/info.php?timeline
9Figure produced with data found at http://www.facebook.com/press/info.php?timeline.
10Ranked according to http://www.alexa.com/topsites/global, April 2010.
11http://www.google.com/
12http://www.orkut.com/MembersAll
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media among internet users is now mainstream in many parts of the world in-
cluding countries Europe, Asia, Africa, South America, and the Middle East13;
even well known organizations such as the United Nations are turning to social
media to help accomplish parts of its mission14. Social media is also driving
signi cant changes in business and companies have to decide on their strategies
for keeping pace with this new media [32].

4. Motivations for Data Mining in Social Media
The data available via social media can give us insights into social networks

and societies that were not previously possible in both scale and extent. This
digital media can transcend the physical world boundaries to study human re-
lationships [44] and help measure popular social and political sentiment at-
tributed to regional populations without explicit surveys [39, 52, 63]. Social
media effectively records viral marketing trends and is the ideal source to study
to better understand and leverage in uence mechanisms [21]. However, it is
extremely dif cult to gain useful information from social media data without
applying data mining technologies due to unique challenges.

Data mining techniques can help effectively deal with the three main chal-
lenges with social media data. First, social media data sets are large, consider
the 400 million Facebook users as an example. Without automated information
processing for analyzing social media, social network data analytics becomes
an unattainable in any reasonable amount of time. Second, social media data
sets can be noisy. For example, spam blogs or “splogs” are abundant in the blo-
gosphere, as well as excessive trivial tweets in Twitter. Third, data from online
social media is dynamic, frequent changes and updates over short periods of
time are not only common but an important dimension to consider in dealing
with social media data. Wikis are modi ed and created, friend networks ebb
and ow, and new blogs are routinely published. Other data sets may contain
some of the challenges present in social media but usually not all at once. For
example, the set of traditional web pages create a data set that is a large and
noisy but, compared to social media data, is not nearly as dynamic.

Social media enables massive production of free-form and interactive data.
Consider microblog posts, chat messages, and blog comments as examples.
Another aspect of social media data is its relational nature that can complicate
analysis. However, relational attributes are not a new problem for data min-
ing. Some data mining techniques have been designed speci cally to identify
patterns and rules based relational attributes [28]. Data mining leverages tech-

13http://www.alexa.com/topsites/countries
14http://malariaenvoy.com/tabid/61/Default.aspx?udt 373 param detail=109



Data Mining in Social Media 333

niques developed for other problem domains and allows us to apply techniques
to social media data without having to start from scratch.

Data mining can help researchers and practitioners overcome these chal-
lenges. Applying data mining techniques to large social media data sets has
the potential to continue to improve search results for everyday search engines,
realize specialized target marketing for businesses, help psychologist study be-
havior, provide new insights into social structure for sociologists, personalize
web services for consumers, and even help detect and prevent spam for all of
us [17, 36]. Additionally, the open access to data provides researches with
unprecedented amounts of information to improve performance and optimize
data mining techniques. The advancement of the data mining eld itself relies
on large data sets and social media is an ideal data source in the frontier of data
mining for developing and testing new data mining techniques for academic
and corporate data mining researchers [17].

5. Data Mining Methods for Social Media
Applying data mining methods to social media is relatively new compared

to other areas of study related to social network analytics when you consider
the work in social network analysis that dates back to the 1930s [67]. How-
ever, applications that apply data mining techniques developed by industry and
academia are already being used commercially. For example, Samepoint15,
a “Social Media Analytics” company, provides services to mine and monitor
social media to provide clients information about how goods and services per-
ceived and discussed through social media. Researchers in other organizations
have applied text mining algorithms and disease propagation models to blogs to
develop approaches for better understanding how information moves through
the blogosphere [26].

Data mining techniques can be applied to social media to understand data
better and to make use of data for research and business purposes. Repre-
sentative areas include community or group detection [7, 60, 70], information
diffusion [26], in uence propagation [1, 2, 4, 63], topic detection and moni-
toring [16, 52], individual behavior analysis [8, 44, 48], group behavior analy-
sis [59, 23], and of course, marketing research for businesses [21].

The remainder of this chapter rst discusses the issue of data representation
for mining social media, next introduces key components of mining social me-
dia, and presents some illustrative examples in terms of social networking sites
and the blogosphere.

15http://www.samepoint.biz/
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5.1 Data Representation
Similar to other social network data, it is common to use a graph represen-

tation to study social media data sets. A graph consists of a set containing
vertexes (nodes) and edges (links). Individuals are typically represented as the
nodes in the graph. Relationships or associations between individuals (nodes)
are represented as the links in the graph. The graph representation is natural
for data extracted from social networking sites where individuals create a so-
cial network of friends, classmates, or business associates. Less apparent is
how the graph structure is applied to blogs, wikis, opinion mining, and similar
types of online social media 16

In the case of blogs, one graph representation has blogs as the nodes and
can be considered a “blog network” and another graph representation has blog
posts as the nodes and can be considered a “post network” [1]. Edges in a
blog post network are formed when when a blog post references another blog
post. Other approaches used to represent blog networks account for people,
relationships, content, and time simultaneously - named internet OnLine Ana-
lytical Processing (iOLAP) [16]. Wikis can be considered from the perspective
of representing authors as nodes and edges are formed when the authors con-
tribute to an article. Alternatively, the wiki topic entries can be represented as
nodes and references to related topics entries can be represented as links in a
graph [48] or with nodes representing both topics and users and collaborations
and af liations are represented as links [31].

The graph representation enables the application of classic mathematical
graph theory [13], traditional social network analysis methods, and work on
mining graph data [3]. However, the potentially large size of a graph used
to represent social media can present challenges for automated processing as
limits on computer memory and processing speeds are maximized and often
surpassed when trying to deal with large social media data sets [3, 42, 58].
Other challenges to applying automated processes to enable data mining in
social media include identifying and dealing with spam [1, 4], the variety of
formats used in the same social media subcategory, and constantly changing
content and structure [42].

Representing online social media data as graphs enables leveraging work
done with graphs related to in uence propagation, community detection, and
link prediction. In uence propagation models consider the graph structure
characteristics such as which nodes have centrality characteristics and which
nodes form bridges in the graph etc. In uence propagation through online so-

16Although not traditionally considered social media, a large amount of citation data is available that can
be mined for interesting relationships between documents. A graph can represent relationships between
documents where a node represents the document and an edge is present when a document cites another
document [27].
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cial media is a popular research topic, [6, 19, 20, 26, 35, 57]. The purpose
of community detection is to discover the community structure in the graph.
Applying link analysis algorithms to social media data can detect groups that
are not readily apparent [36]. Link prediction is the ability to predict when new
relationships will form is known as the link prediction problem [46].

5.2 Data Mining - A Process
No matter what type of social media under study, there are a few basic items

that are important to consider to ensure that the most meaningful results are
possible. Each type of social media and each data mining purpose applied to
social media may require a unique approaches and algorithms to produce a
data mining bene t. Different data sets and data questions require different
types of tools. If it is known how the data should be organized, a classi cation
tool might be appropriate. If you understand what the data is about but cannot
ascertain trends and patterns in the data, a clustering tool may be best.

The problem itself may determine the best approach. There is no substitute
for understanding the data as much as possible before applying data mining
techniques, and second, understanding the different data mining tools that are
available. For the former, subject matter experts might be needed to help better
understand the data set. To better understand the different data mining tools
available there are a host of data mining and machine learning texts and re-
sources that are available to provide very detailed information about a variety
of speci c data mining algorithms and techniques.

Once you understand the problem and select an appropriate data mining
approach, consider any preprocessing that needs to be done. It may also be
necessary to apply a methodical procedure for creating a more sparse data set
to enable reasonable processing times. Preprocessing should include consid-
eration for anonymization and appropriate mechanism for protecting privacy.
Although social media includes vast quantities of publicly available data, it is
important to ensure individual rights and social media site copyrights are pro-
tected. The impact of spam needs to be considered along with the temporal
representation.

In addition to preprocessing, it is important to consider the impact of time.
Depending on the question and the research you may get very different results
at one time compared to another. Although the time component is an obvious
consideration for some areas such as topic detection, in uence propagation,
and network growth, less apparent is the impact of time on community detec-
tion, group behavior, and marketing. What de nes a community at one point in
time can be signi cantly different at another point in time. Group behavior and
interests will change over time, and what was selling to individuals or groups
today may not be popular tomorrow.
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With data represented as a graph, the work begins with a select number of
nodes, known as seeds. Graphs are traversed beginning with the set of seeds
and as the link structure from the seed nodes is exploited, data is collected and
the structure itself is also analyzed. Using the link structure to extend from the
seed set and gather new information is known as crawling the network. The
application and algorithms that are implemented as a crawler17 must success-
fully deal with the challenges present in dynamic social media networks such
as format changes, restricted sites, and structure errors (invalid links). As the
crawler discovers new information, it stores the new information in a repository
for further analysis later. As link information is located, the crawler updates
information about the network structure.

Some social media sites such as Technorati, Facebook, and Twitter provide
Application Programmer Interfaces (APIs) which allow crawler applications to
directly interface with the data sources. However, these sites usually limit the
number of API transactions per day depending on the af liation the API user
has with the site. For some sites, it is possible to collect data (crawl) without
using APIs. Given the vast size of the social media data available, it may be
necessary to limit the amount of data the crawler collects. Once the crawler has
collected the data, some postprocessing might be needed to validate and clean
up the data. Traditional social network analysis techniques [67] can be applied
such as centrality measures and group structure studies. In many cases, addi-
tional data will also be associated with a node or a link opening opportunities
for more sophisticated methods to consider the deeper semantics that can be
brought to light with text and data mining techniques.

We now focus on two speci c types of social media data in order to further
illustrate how data mining techniques are applied to social media. The two
areas are Social Networking Sites and Blogs. Both these areas are character-
ized by dynamic and rich data sources. Both areas offer potential value to the
broader scienti c community as well as businesses.

5.3 Social Networking Sites: Illustrative Examples
A social networking site like Facebook or LinkedIn consists of connected

users with unique pro les. Users can link to friends and colleagues and can
share news, photos, videos, favorite links etc. Users customize their pro les
depending on individual preferences but some common information might in-
clude relationship status, birthday, an e-mail address, and hometown. Users
have options to decide how much information they include in their pro le and
who has access to it. The amount of information available via a social net-
working site has raised privacy concerns and is a related societal issue [12].

17A crawler is synonymous in this context with spider.
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Figure 12.2. Hypothetical graph structure diagram for a typical social networking site. Note
links between user nodes and group nodes. Arrows indicate links to larger portions of the graph.

It is important to protect personal privacy when working with social net-
work data. Recent publications highlight the need to protect privacy as it has
been shown that even anonymizing this type of data can still reveal personal
information when advanced data analysis techniques are used [12, 45]. Privacy
settings also can limit the ability of data mining applications to consider every
piece of information in a social network. However, some nefarious techniques
can be employed to usurp privacy settings [12].

Social networking sites provide excellent sources of data for studying col-
laboration relationships, group structure, and who-talks-to-whom. The most
common graph structure based on a social networking site is intuitive; users
are represented as nodes and their relationships are represented as links. Users
can link to group nodes as well. Figure12.2 depicts a hypothetical graph rep-
resenting a portion of a social networking site network. The driving factors
for data mining social networking sites is the “unique opportunity to under-
stand the impact of a person’s position in the network on everything from their
tastes to their moods to their health.” [45]. The most common data mining
applications related to social networking sites include:

Group detection - One of the most popular applications of data mining
to social networking sites is nding and identifying a group. In general,
group detection applied to social networking sites is based on analyzing
the structure of the network and nding individuals that associate more
with each other than with other users. Understanding what groups an in-
dividual belongs to can help lead to insights about the individual such as
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what activities, goods, and services, an individual might be interested in.
Group detection can also yields interesting perspectives about the social
networking site itself, such as how many different groups are using the
social networking site. Although many social networking sites support
explicit groups, implicit groups are present in social networking sites as
well. Implicit groups are not always apparent. This presents a challenge
for identifying whether or not a group exists. Also known as “com-
munity detection,” group detection has been approached using a var-
ious strategies including node-centric, group-centric, network-centric,
and hierarchy-centric [3]. The large number of persons participating in
social network sites severely limits the ability to detect groups without
computational processes.
Latent groups that exist in a friendship network are not always easy to
distinguish. There are often more “social dimensions [59]” in a friend
network than just one. For example, a user’s friendship network may in-
clude family members, classmates, and co-workers in the same network.
A clustering approach, such as modularity maximization, can be used to
detect these subgroups. Modularity maximization permits nodes to be-
long to more than one group [61]. Principle Modularity Maximization
(PMM) is one commonly used approach to account for multiple dimen-
sions by projecting data onto principal vectors and then using clustering
algorithms (e.g., k-means) to determine community assignment. In the
case of the example, although the friendship network of the user is a
group, the subgroups of family members, classmates, and co-workers
can be partitioned out using modularity maximization by detecting these
subgroups in the user’s friendship network because these subgroups in-
teract more with each other than with other members of the friendship
network.

Group pro ling - Once a group is found, the next logical question to ask
is ‘What is this group about’ (i.e., the group pro le) [62]? The ability
to automatically pro le a group is useful for a variety purposes ranging
from purely scienti c interests to speci c marketing of goods, services,
and ideas [21, 51, 64]. With millions of groups present in online social
media, it is not practical to attempt to answer the question for each group
manually.
Advanced data mining techniques are proposed to account for changes
in the group pro le over time by de ning a topic taxonomy [60]. The
initial topic taxonomy is adapted from a general taxonomy or gener-
ated by human experts. Identifying and tracking changes using the topic
taxonomy can yield insights into how group values changes as well as
provide a mechanism for identifying similar groups amongst the other-
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wise intractable amount of social network data. To accomplish this, the
list of topics representing a group is organized into a tree. The parent-
child relationships in the topic tree de ne a taxonomy for the group.
This tree, when considered as a classi er, can be compared with alterna-
tive tree structures to identify the most accurate classi er for a particular
group. Over time, the taxonomy is adapted using a top-down approach
by comparing the current tree against possible alternative tree structures,

nding the best alternative tree, and updating the topic taxonomy with
information from the best alternative tree. As group interests change
over time, the initial tree is updated to re ect a the most current tax-
onomy that represents the group. Group taxonomies can be compared
to identify similar groups and contrasted to study differences between
groups. For example, a group interested in cooking may have tags such
as dinner, ingredients, recipes, menu, kitchen tips, appetizers, and main
course. However, over time the same group could become interested in
catering which could introduce meaningful tags to the group such as
wedding, party, events, and celebration. The changes in descriptive tags
represents a change in the group pro le (i.e., the subtle shift from cook-
ing to include catering) that could be tracked using the topic taxonomy
approach.

Recommendation systems - A recommendation system analyzes social
networking data and recommends new friends or new groups to a user.
The ability to recommend group membership to an individual is advan-
tageous for a group that would like to have additional members and can
be helpful to an individual who is looking to nd other individuals or a
group of people with similar interests or goals. Again, large numbers of
individuals and groups make this an almost impossible task without an
automated system. Additionally, group characteristics change over time.
For those reasons, data mining algorithms drive the inherent recommen-
dations made to users. From the moment a user pro le is entered into a
social networking site, the site provides suggestions to expand the user’s
social network. Much of the appeal of social networking sites is a direct
result of the automated recommendations which allow a user to rapidly
create and expand an online social network with relatively little effort on
the user’s part.

One implementation of a recommendation system serves as a good ex-
ample. Recommendations are based on user pro le data and a user’s
associated link structure which can be used to provide suggestions to
users about which group to join [7]. The rst step is to identify fea-
tures of the pro le that best match a group member to a particular group.
Next, group members are clustered to identify the most representative
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members of the group. Finally, a decision tree is created based on the
members with the most representative pro les. Pro le information can
also be mined with data from other sources to recommend events a user
may nd interesting or useful [34]. Hypothetically, perhaps a user’s pro-

le includes information about alpine skiing. The pro le information
could be used to recommend a new alpine skiing or winter sport group.

Social networking sites have been widely adopted and contain a variety of
interesting data on scale that is unprecedented to previous social network data
sets. Some users are using social networking sites for regular interpersonal
communication while abandoning more traditional communication mechanisms
such as e-mail [51]. The mass migration to, and continued use of, social net-
working sites is creating an almost innumerable amount of data that can only
be analyzed practically using data mining techniques.

5.4 The Blogosphere: Illustrative Examples
Web logs or “blogs” are user published journals available on the web18.

Blogs entries, known as posts, cover a variety of subjects from personal logs
to professional journalism reporting on current events. In some cases blogs are
considered more accurate than traditional one-to-many news media sources [29].
Blogs are typically open to the public and provide a mechanism for readers to
comment on the speci c post. The set of all blogs and blog posts is referred to
as the blogosphere. Earlier in Data Representation, we describe two common
graph structure representations used to represent blog networks, blog networks
and post networks. Lakshamanan and Oberhofer highlight clustering, matrix
factorization, and ranking as the three most commonly used techniques for data
mining in the blogosphere [42]. Applying data mining technologies to analyze
blogs and blog posts is pursued for a variety of purposes.

General information and statistics about the blogosphere are readily avail-
able19. However, the general statistics do not provide the insights and infor-
mation that are possible using data mining techniques. With over 100 million
blogs, data mining methods provide the most promising prospects for nd-
ing latent information in the blogosphere. Without data mining methods only
a small fraction of the blogosphere could be effectively analyzed. Gathering
data from the blogosphere can be accomplished with a crawler or by accessing
repositories20 21 of blog data. Using a crawler to collect data begins with a
relatively small number of seed sites related to the research area and expand-

18Video logs or “vlogs” are similar to blogs but use video as the media versus text compositions.
19http://www.blogpulse.com/
20http://technorati.com/
21http://spinn3r.com/
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ing from the seed sites to additional sites and from the additional sites to new
sites and so on. Depending on the speci c research topic, relying on large
data repositories can save the time required to crawl but can leave a data miner
beholden to rationing22 and open questions about whether or not the reposi-
tory contains the most pertinent and up-to-date posts. The most common data
mining applications related to the blogosphere include:

Blog class cation - A straightforward use of data mining related to the
blogosphere is the automated classi cation of blogs themselves [9, 5,
50]. The ability to automatically organize blogs by topic aids blog search
applications and and results can also help focus other blog-related social
network analytic purposes in one area of the blogosphere. With thou-
sands upon thousands of blogs available to choose from, it is not practi-
cal to try to categorize blog sites manually.
Bai et al [9] developed a “Folksonomy and Support Vector Machine”
to automatically classify blog posts with descriptive words (tags). The
approach preprocesses a blog post to remove super uous text and in-
formation. The remaining text is compared to a candidate tag database
and the best tags are assigned to the blog post using SVM [54] classi-

ers. Each potential tag has a tag agent (SVM classi er) that is devel-
oped using examples of previously tagged blog posts. A new blog post
is automatically tagged by a tag agent if the new blog posts is classi-

ed positively by a particular tag agent. For example, suppose there are
three tag agents that will determine (each independently) whether or not
a new blog post, call it x, should be tagged with recreation, work, and/or
education. The tag agent for recreation determines that x should not be
tagged with recreation. Next the remaining two tag agents process the
new blog post. The tag agent for work and the tag agent for education
both determine their tags apply. The resulting tags (classifcation) for x
are work and education.

Identifying in uential nodes - “A blogger is in uential if he/she has the
capacity to affect the behavior of fellow bloggers [1].” Understanding
how information is disseminated through the blogosphere can provide
interesting insights for businesses or any other entity seeking to spread
information about a product, service, or topic as fast as possible. The
bene t of being able to identify in uential bloggers, blogs, or blog posts
is that marketing efforts for goods and services could be focussed on
points of in uence that are most likely to gain support for a topic, prod-
uct, or message. One challenge is that there are a very large number

22Some repositories limit the number of data requests on a daily basis
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of bloggers and blog posts. Another challenge is understanding what
factors determine in uence.

A signi cant amount of work has been done to develop propagation
models and measurement approaches [26, 41, 55] Researchers studying
one particular blog topic in the blogosphere can leverage data mining
applications to identify in uential bloggers. Often in uence is only con-
sidered from a structural perspective (i.e. the node with the most inlinks
is most in uential). A model that combines graph based and content
based approaches is a more viable technique for identifying in uential
blogs [1]. The approach, called iFinder [1], considers in uence as a
combination of four measures: recognition, activity generation, novelty,
and eloquence. Recognition is simply measured by counting the inlinks
to a blog post. Activity generation is measured by how many comments
a blog post receives. Novelty consists of the outlinks and the in uence
value of the blog posts at the end of the out link (an outlink that points
to a in uential blog posts decreases the novelty of the blog post under
consideraton). Eloquence is an approximated by the length of the blog
post. These four factors combine to generate an in uence vector for each
blog post. The vectors are compared to determine which posts are most
in uential.

Topic detection and change - Like other online social medium data,
blog content changes over time. New posts are added, new topics are
discussed, opinions change, and new communities develop and mature.
Understanding what topics are popular in the blogosphere can provide
insights into product sales, political views, and future social attention
areas [40]. However, new topics are not easily detected amongst the
vast amount of blog posts. Additionally, blog sites are updated daily
with new information and topics that were popular a few days ago may
superseded by a new topic. Applying data mining techniques to blogs
can help detect topic trends and changes [49].

Early work accomplished by Moon and colleagues [49] proposes a three
pronged approach to identifying and tracking popular topics in the blo-
gosphere. Using a Bernoulli presence-based model, words are identi ed
that likely represent popular issues. Next blog sites with a high indegree
are considered preferred sources of popular topics. Finally, the results
are compared to other data sets in order to determine validity. Although
additional work needs to be done in this area, leveraging text processing
algorithms and techniques such as Latent Dirichlet Allocation [11] will
likely yield new and exciting capabilities for researchers and practition-
ers.
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LDA is also used in the foundation of an approach to identify “opinion
leaders” [1]. An opinion leader is a blogger that publishes new ideas.
Although opinion leaders are in uential, not all in uential bloggers are
opinion leaders. The key differences is that the opinion leader introduces
new topics. A cosine similarity measure is used to differentiate how
similar a blog post is to other blog posts. Thus, detecting when a new
topic is introduced when the difference in the measures is signi cant.

Sentiment analysis - How people feel about a topic (e.g., their senti-
ment) can be just as important as identifying the topic itself. Blogs can
be classi ed into categories, in uential blogs can be highlighted, and
new topics can be detected. It is also possible to ascertain opinions, or
sentiment, from the blogosphere using data mining techniques. This is
not an easy task as language is lled with ambiguities and there are many
different opinions. However, some interesting work has been done and
progress is being made in this area.

Researchers at the University of Maryland have developed an applica-
tion called BlogVox, to retrieve opinions from the blogosphere about a
given topic [30]. After pre-processing to remove spam and super uous
information, BlogVox uses a SVM to determine whether or not a blog
post expresses an opinion. This differs from topic detection in that the
data miner is interested in how people feel about a particular topic versus
the topic itself.

Interesting data mining work to ascertain public sentiment has also been
done with data from a microblog. Researchers in the United Kingdom
used Twitter23 data to inform prediction model markets [52]. Their ap-
proach also implements a SVM-based algorithm used to analyze mi-
croblog messages about a particular topic in order to forecast public
sentiment. In particular, the method was applied to microblog messages
about an in uenza pandemic and the results were compared with predic-
tion market data from an independent source. Their work suggests that
social media data can be used as a “proxy” for pubic opinion.

Data mining in the blogosphere is an interesting area replete with new chal-
lenges. Without data mining technologies, these challenges could hardly be
accomplished because of the overwhelming size of the blogosphere. This area
is likely to see more and more attention as blog usage increases quickly around
the world.

23http://twitter.com/
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6. Related Efforts
There are two multi-disciplinary research areas very closely related to data

mining in social media: digital ethnography and netnography. Additionally,
an emerging social media application area, event maps, has a variety of uses
and can bene t from data mining, as cell phone usage increases globally and
portable computing and communication devices become more and more ad-
vanced and accessible [22].

6.1 Ethnography and Netnography
Princeton’s wordnet24 de nes ethnography as “anthropology that provides

scienti c description of individual human societies.” Kozinets [37] coined the
word “netnography” to describe conducting online market research based on
ethnography.

Kansas State University offers a graduate level Digital Ethnography class
based on the work of Professor Michael Wesch. Dr. Wesch and his students
are studying how digital culture is evolving on YouTube. Speci cally, digital
ethnography can provide a better understanding of the context of social media
data and the implications for present and future data mining applications. For
example, in 2008, the group at Kansas State University reported that over 50%
of YouTube users are between 18-24 [68]. This type of information can further
inform data mining results of detecting a new community, topic detection on
via a speci c social medium or even a better understanding of what data might
be available from a particular social media site in the future as culture, use, and
demographics change over time. Ethnography can also help inform thinking
about important data mining issues such as authenticity. Whether or not users
are honest with what they include or contribute to online social media is an
issue that data miners should consider when analyzing large data sets derived
from online social media sources.

The netnography methodology is applied to study cultures and communi-
ties based on computer-mediated communications [10]. Researchers have ap-
plied netnography to study several areas including cosmetic surgery and coffee
consumers [10, 38]. The approach to netnography is founded in direct obser-
vations but it is conceivable that data mining techniques could be applied to
netnography studies.

Both digital Ethnography and Netnography can help provide useful insights
to data miners exploring social media. Ultimately applying data mining to
social media is about understanding data about people online which is at the
heart of digital ethnogoraphy and netnography research.

24http://wordnetweb.princeton.edu/perl/webwn?s=ethnography
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6.2 Event Maps
An event map is a social media application which could be viewed as an

extension to a wiki combined with a blog. Event maps take advantage of what
has become known as crowd sourcing. In order to collect information about
an event or a set of related events, individuals in the crowd associated with the
event update a maps with information reports relevant to the affair. Reports can
be generated and disseminated directly to a web-based application, through
e-mail, text messaging, and even via social media sites such as micro-blog
subscriptions. Geographically correlated markers identify the location of an
information report related to the event on a map. Event maps can also be
used to help disseminate information during a crisis and are sometimes referred
to as crisis maps. Individual needs such as water, food, and blankets can be
aggregated and tracked over time.

A crisis map framework developed by the Ushahidi25 organization has been
applied to a variety of situations including: wildlife tracking, crime in Atlanta
(Georgia, USA), elections in India, H1N1 u, medical supplies in Kenya, ac-
tivities in Afghanistan, and the 2010 earthquake in Haiti. After the devastating
earthquake that occurred on January 12, 2010, a variety of sources submitted
incident reports to the Haiti crisis map implemented by the Ushahidi volunteer
group 26.

Event maps can also combine information form other social and traditional
media sources. Applications leveraging crowd source information are likely to
continue to rise in popularity. Data mining social media data generated from
event maps will allow researchers to better understand human behavior but
more importantly it will enable people to make better decisions relative to an
event and help leaders to respond to human needs in a crisis.

7. Conclusions
There exist ample opportunities for collaboration between computer sci-

entists, social scientists, and other interested disciplines to use data mining
technologies and techniques to reveal patterns in online social media data that
would not otherwise be visible. However, there are some challenges that need
to be addressed. As scientists seek to conduct new research to advance data
mining in social media, open sources of social media data for researchers
would enable researchers to validate published work. Tools and and policies
need to be developed to ensure privacy integrity will be maintained regardless
of how the data is aggregated and analyzed [45]. Protecting privacy is likely to
remain a challenge for data mining in social media [45]. Although some work

25http://www.ushahidi.com
26http://haiti.ushahidi.com
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has been done to develop technologies that help protect privacy yet still permit
the application in data mining [66] and researchers are investing both privacy
and security issues surrounding social media [12], more work needs to be done
to ensure privacy and security can be maintained in the long term.

Perhaps the most important areas that need to be addressed is longitudi-
nal studies that can be used to inform and validate not only new data mining
technologies, methodologies, and applications but also can help enlighten our
understanding of social media itself from a broader perspective. Understand
the limits of data mining is important to anyone applying data mining to social
media. For example, what are the limits of in uence propagation? How is
in uence de ned and how can these ndings be validated? Access to datasets
that can be used by more than one research team would help with validation
and also help move technology forward [45].

Researchers are also working to address the challenges associated with large
social media data [58], changing network structure [46], etc. Despite these
challenges, the power of online social media evidenced by its impact on na-
tional elections, business and marketing, and society itself will continue to be
signi cant motivating factor for mining online social media data as valuable
information source for gaining a deeper understanding about people.

In 1994 Doug Schuler stated [53]:
“The social nature of software is inescapable.”

Never has the social nature of software been more evident than today with
the world-wide ubiquitous use of social media. Data mining social media can
reveal insights into the social nature of human beings and is poised to help us
change the way we see society as a whole and as individuals.

Harvesting information from the data rich environment of online social me-
dia in all of its forms is a topic studied by many groups. Market researchers,
psychologists, sociologist, ethnographers, businesses, and politicians all can
gain useful insights into human behavior via a variety of social networks by
applying data mining techniques to online social media. Data mining offers a
variety of approaches that can be applied to social media. The perspective data
mining brings can yield information from online social networks that may not
be obvious or attainable otherwise. It is important to understand as much as
possible about the data set in order to select the right data mining approach.

Politics, technology, business, and other social areas are likely to be im-
pacted by blogging for the foreseeable future [29]. Data mining technolo-
gies will help quantify and provide meaningful insights. As the number of
social media users continues to grow, we will likely continue to see signi cant
changes in the way we communicate and share information and we will con-
tinue to look to data mining to provide us with the empowering ability to look
deeper into these large data sets in a more meaningful way. Social network-
ing sites, blogs, and other online social media services provide a digital record
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of social behavior from a variety of perspectives providing the ultimate data
source for social network analytics and related applications.
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1. Introduction
Social networks are typically rich in text, because of a wide variety of meth-

ods by which users can contribute text content to the network. For example,
typical social networks such as Facebook allow the creation of various text con-
tent such as wall posts, comments, and links to blog and web pages. Emails
between different users can also be expressed as social networks, which can
be mined for a variety of applications. For example, the well known Enron
email database is often used in order to mine interesting connections between
the different characters in the underlying database. Using interesting linkages
within email and newsgroup databases in addition to the content [5, 8] often
leads to qualitatively more effective results.

Social networks are rich in text, and therefore it is useful to design text
mining tools for a wide variety of applications. While a variety of search and
mining algorithms have been developed in the literature for text applications,
social networks provide a special challenge, because the linkage structure pro-
vides guidance for mining in a variety of applications. Some examples of
applications in which such guidance is available are as follows:

Keyword Search: In the problem of keyword search, we specify a set
of keywords, which are used to determine social network nodes which
are relevant to a given query. In the problem of keyword search, we use
both the content and the linkage behavior in order to perform the search.
The broad idea is that text documents containing similar keywords are
often linked together. Therefore, it is often useful to determine closely
connected clusters of nodes in the social network which contain spe-
ci c keywords. This problem is also related to the problem of expertise
search [34] in social networks, in which we wish to determine the in-
dividuals in the social network with a particular kind of expertise. The
problem is expertise search is discussed in detail in Chapter 8 of the
book.

Classi cation: In the problem of classi cation, the nodes in the social
network are associated with labels. These labeled nodes are then used
for classi cation purposes. A variety of algorithms are available for clas-
si cation of text from content only. However, the presence of links often
provides useful hints for the purpose of classi cation. For example, label
propagation techniques can be combined with content-based classi ca-
tion in order to provide more effective results. This chapter discusses a
number of such algorithms.

Clustering: In the problem of clustering, we would like to determine
sets of nodes which have similar content for the purposes of cluster-
ing. The linkage structure can also play a very useful role during such
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a clustering process. In many applications, linkage and content [53] can
be combined together for the purposes of classi cation. This results in
clustering which is of much better quality.

Linkage-based Cross Domain Learning: Social networks contain a
large amount of linked information between different kinds of objects
such as text articles, tags, posts, images, and videos. This linkage infor-
mation can be used in order to transfer knowledge across different kinds
of links. We refer to this class of methods as transfer learning.

A common characteristic of the above problems is that they are de ned in
the content space, and are extensively studied by the text mining community.
However, social networks can be considered linked networks, and therefore
links can be used to enhance each of the above problems. It is important to
note that these problems are not just de ned in the context of social networks,
but have also been studied more generally in the context of any linked network
such as the World Wide Web. In fact, most of the earlier research on these
problems has been performed more generally in the context of the web, which
is also an example of a content-based linked network. Thus, this chapter deals
more generally with the problem of combining text content analysis with link
analysis; it applies more generally to a variety of web domains including so-
cial networks. Some of these problems also arise in the context of the XML
domain, which can also be considered a content-based linked graph. For exam-
ple, the problem of keyword search has been studied extensively in the context
of the XML domain; however the techniques are quite useful for content and
link-based keyword search even in the social network domain. Many of the
techniques which are designed in these different domains are applicable to one
another. We have included the study of this class of methods in this book be-
cause of its signi cant importance to the problem of social network analysis.

The linkage information in social networks also provides interesting hints,
which can be adapted for problems such as transfer learning. In transfer learn-
ing, we attempt to use the knowledge which is learned in one domain to an-
other domain with the use of bridges (or mappings) between different do-
mains. These bridges may be in the form of similar class structure across the
domains, dictionaries which de ne mappings between attributes (as in cross-
lingual learning), or links in network based repositories. The links in a so-
cial network provide good bridging information which can be leveraged for
the learning process [40]. In this chapter, we will provide a key overview of
some of the techniques which are often utilized for linkage-based cross-domain
learning.

The chapter is organized as follows. The next section will discuss algo-
rithms for keyword search. In section 3, we will discuss algorithms for classi-

cation. Section 4 will discuss algorithms for clustering. Section 5 will study
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the problem of transfer-learning, as it relates to the social network domain.
Section 6 contains the conclusions and summary.

2. Keyword Search
Keyword search provides a simple but user-friendly interface for informa-

tion retrieval on the Web. It also proves to be an effective method for accessing
structured data. Since many real life data sets are structured as tables, trees
and graphs, keyword search over such data has become increasingly impor-
tant and has attracted much research interest in both the database and the IR
communities.

A social network may be considered as a massive graph, in which each node
may contain a large amount of text data. We note that many informal forms
of social networks such as blogs or paper-citation graphs also contain a large
amount of text graph. Many of these graphs do not have any privacy restrictions
in order to implement an effective search process. We would like to determine
small groups of link-connected nodes which are related to a particular set of
keywords. Even though keyword search is de ned with respect to the text
inside the nodes, we note that the linkage structure also plays an important role
in determining the appropriate set of nodes. It is well known the text in linked
entities such as the web are related, when the corresponding objects are linked.
Thus, by nding groups of closely connected nodes which share keywords, it is
generally possible to determine the qualitatively effective nodes. The problem
is also related to that of expertise location [34] in social networks, in which
we would like to determine groups of closely connected individuals with a
particular kind of expertise. The problem of expertise search is discussed in
detail in Chapter 8 of this book.

Because the underlying data assumes a graph structure, keyword search be-
comes much more complex than traditional keyword search over documents.
The challenges lie in three aspects:

Query semantics: Keyword search over a set of text documents has
very clear semantics: A document satis es a keyword query if it con-
tains every keyword in the query. In our case, the entire dataset is often
considered as a single graph, so the algorithms must work on a ner
granularity and return subgraphs as answers. We must decide what sub-
graphs are quali ed as answers. The quali cation of a subgraph as a
valid answer depends both upon the content in the document and the
underlying linkage structure.

Ranking strategy: For a given keyword query, it is likely that many
subgraphs will satisfy the query, based on the query semantics in use.
However, each subgraph has its own underlying graph structure, with
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subtle semantics that makes it different from other subgraphs that sat-
isfy the query. Thus, we must take the graph structure into consideration
and design ranking strategies that nd most meaningful and relevant an-
swers. This is not the case for content-based keyword search in which
content-based objective functions can be de ned in order to quantify the
objective function.

Query ef ciency: Many real life graphs are extremely large. A major
challenge for keyword search over graph data is query ef ciency, which,
to a large extent, hinges on the semantics of the query and the ranking
strategy. Clearly, the ability to perform ef cient search depends upon our
ability to perform an effective traversal of the underlying graph structure.

2.1 Query Semantics and Answer Ranking
A query consists of a set of keywords Q = {k1, k2, · · · , kn}. We must rst

de ne what is a quali ed answer to Q, and the goodness (the score) of the
answer.

For tree structures such as XML, under the most common semantics, the
goal is to nd the smallest subtrees that contain the keywords. There are dif-
ferent ways to interpret the notion of smallest. Several algorithms [51, 27, 50]
are based on the SLCA (smallest lowest common ancestor) semantics, which
requires that an answer (a least common ancestor of nodes that contain all the
keywords) does not have any descendent that is also an answer. XRank [21]
adopts a different query semantics for keyword search. In XRank, answers
consist of substrees that contain at least one occurrence of all of the query
keywords, after excluding the sub-nodes that already contain all of the query
keywords. Thus, the set of answers based on the SLCA semantics is a subset
of answers quali ed for XRank.

We can use similar semantics for keyword search over graphs. For this pur-
pose, the answer must rst form trees (embedded in the graph). In many graph
search algorithms, including BANKS [7], the bidirectional algorithm [29], and
BLINKS [23], a response or an answer to a keyword query is a minimal rooted
tree T embedded in the graph that contains at least one node from each Si,
where Si is the set of nodes that match the keyword ki.

Next, we must de ne a measure for the “goodness” of each answer. An
answer tree T is good if it is meaningful to the query, and the meaning of
T lies in the tree structure, or more speci cally, how the keyword nodes are
connected through paths in T . The goodness measure adopted by BANKS and
the bidirectional algorithm is as follows. An answer tree T is decomposed
into edges and nodes, and score of T is the combined score of the edges and
nodes of T . Speci cally, each edge has a pre-de ned weight, and default to 1.
Given an answer tree T , for each keyword ki, we use s(T, ki) to represent the
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sum of the edge weights on the path from the root of T to the leaf containing
keyword ki. Thus, the aggregated edge score is E =

∑n
i s(T, ki). The nodes,

on the other hand, are scored by their global importance or prestige, which is
usually based on PageRank [10] random walk. Let N denote the aggregated
score of nodes that contain keywords. The combined score of an answer tree is
given by s(T ) = ENλ where λ helps adjust the importance of edge and node
scores [7, 29].

Query semantics and ranking strategies used in BLINKS [23] are similar to
those of BANKS [7] and the bidirectional search [29]. But instead of using a
measure such as S(T ) = ENλ to nd top-K answers, BLINKS requires that
each of the top-K answer has a different root node, or in other words, for all
answer trees rooted at the same node, only the one with the highest score is
considered for top-K. This semantics guards against the case where a “hub”
pointing to many nodes containing query keywords becomes the root for a
huge number of answers. These answers overlap and each carries very little
additional information from the rest. Given an answer (which is the best, or
one of the best, at its root), users can always choose to further examine other
answers with this root [23].

Unlike most keyword search on graph data approaches [7, 29, 23], Objec-
tRank [6] does not return answer trees or subgraphs containing keywords in
the query, instead, for ObjectRank, an answer is simply a node that has high
authority on the keywords in the query. Hence, a node that does not even con-
tain a particular keyword in the query may still qualify as an answer as long
as enough authority on that keyword has own into that node (Imagine a node
that represents a paper which does not contain keyword OLAP, but many im-
portant papers that contain keyword OLAP reference that paper, which makes
it an authority on the topic of OLAP). To control the ow of authority in the
graph, ObjectRank models labeled graphs: Each node u has a label λ(u) and
contains a set of keywords, and each edge e from u to v has a label λ(e) that
represents a relationship between u and v. For example, a node may be labeled
as a paper, or a movie, and it contains keywords that describe the paper or the
movie; a directed edge from a paper node to another paper node may have a
label cites, etc. A keyword that a node contains directly gives the node cer-
tain authority on that keyword, and the authority ows to other nodes through
edges connecting them. The amount or the rate of the out ow of authority from
keyword nodes to other nodes is determined by the types of the edges which
represent different semantic connections.

2.2 Keyword search over XML and relational data
Keyword search on XML data [19, 15, 21, 31] is a simpler problem than

on schema-free graphs. In some cases, documents in social networks are ex-
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pressed as XML documents as well. Therefore, it is interesting to explore this
particular case.

XML data is mostly tree structured, where each node only has a single in-
coming path. This property has signi cant impact on query semantics and
answer ranking, and it also provides great optimization opportunities in algo-
rithm design [51].

It is straightforward to nd subtrees that contain all the keywords. Let Li be
the set of nodes in the XML document that contain keyword ki. If we pick one
node ni from each Li, and form a subtree from these nodes, then the subtree
will contain all the keywords. Thus, an answer to the query can be represented
by lca(n1, · · · , nn), the lowest common ancestor of nodes n1, · · · , nn in the
tree, where ni ∈ Li.

A keyword query may nd a large number of answers, but they are not
all equal due to the differences in the way they are embedded in the nested
XML structure. Many approaches for keyword search on XML data, including
XRank [21] and XSEarch [15], present a ranking method. A ranking mech-
anism takes into consideration several factors. For instance, more speci c
answers should be ranked higher than less speci c answers. Both SLCA and
the semantics adopted by XRank signify this consideration. Furthermore, key-
words in an answer should appear close to each other, and closeness is inter-
preted as the the semantic distance de ned over the XML embedded structure.

For relational data, SQL is the de-facto query language for accessing rela-
tional data. However, to use SQL, one must have knowledge about the schema
of the relational data. This has become a hindrance for potential users to access
tremendous amount of relational data.

Keyword search is a good alternative due to its ease of use. The challenges
of applying keyword search on relational data come from the fact that in a
relational database, information about a single entity is usually divided among
several tables. This is resulted from the normalization principle, which is the
design methodology of relational database schema.

Thus, to nd entities that are relevant to a keyword query, the search al-
gorithm has to join data from multiple tables. If we represent each table as a
node, and each foreign key relationship as an edge between two nodes, then we
obtain a graph, which allows us to convert the current problem to the problem
of keyword search over graphs. However, there is the possibility of self-joins:
that is, a table may contain a foreign key that references itself. More generally,
there might be cycles in the graph, which means the size of the join is only
limited by the size of the data. To avoid this problem, the search algorithm
may adopt an upper bound to restrict the number of joins [28].

Two most well-known keyword search algorithm for relational data are DBX-
plorer [4] and DISCOVER [28]. They adopted new physical database design
(including sophisticated indexing methods) to speed up keyword search over
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relational databases. Qin et al [41], instead, introduced a method that takes full
advantage of the power of RDBMS and uses SQL to perform keyword search
on relational data.

2.3 Keyword search over graph data
Keyword search over large, schema-free graphs faces the challenge of how

to ef ciently explore the graph structure and nd subgraphs that contain all
the keywords in the query. To measure the “goodness” of an answer, most
approaches score each edge and node, and then aggregate the scores over the
subgraph as a goodness measure [7, 29, 23]. Usually, an edge is scored by the
strength of the connection, and a node is scored by its importance based on a
PageRank like mechanism.

Graph keyword search algorithms can be classi ed into two categories. Al-
gorithms in the rst category nds matching subgraphs by exploring the graph
link by link, without using any index of the graph. Representative algorithms in
this category include BANKS [7] and the bidirectional search algorithm [29].
One drawback of these approaches is that they explore the graph blindly as
they do not have a global picture of the graph structure, nor do they know the
keyword distribution in the graph. Algorithms in the other category are index-
based [23], and the index is used to guide the graph exploration, and support
“forward-jumps” in the search.

2.3.1 Graph Exploration by Backward Search. Many keyword
search algorithms try to nd trees embedded in the graph so that similar query
semantics for keyword search over XML data can be used. Thus, the problem
is how to construct an embedded tree from keyword nodes in the graph. In the
absence of any index that can provide graph connectivity information beyond a
single hop, BANKS [7] answers a keyword query by exploring the graph start-
ing from the nodes containing at least one query keyword – such nodes can be
identi ed easily through an inverted-list index. This approach naturally leads
to a backward search algorithm, which works as follows.

1 At any point during the backward search, let Ei denote the set of nodes
that we know can reach query keyword ki; we call Ei the cluster for ki.

2 Initially, Ei starts out as the set of nodes Oi that directly contain ki;
we call this initial set the cluster origin and its member nodes keyword
nodes.

3 In each search step, we choose an incoming edge to one of previously
visited nodes (say v), and then follow that edge backward to visit its
source node (say u); any Ei containing v now expands to include u as
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well. Once a node is visited, all its incoming edges become known to
the search and available for choice by a future step.

4 We have discovered an answer root x if, for each cluster Ei, either x ∈
Ei or x has an edge to some node in Ei.

BANKS uses the following two strategies for choosing what nodes to visit
next. For convenience, we de ne the distance from a node n to a set of nodes
N to be the shortest distance from n to any node in N .

1 Equi-distance expansion in each cluster: This strategy decides which
node to visit for expanding a keyword. Intuitively, the algorithm expands
a cluster by visiting nodes in order of increasing distance from the cluster
origin. Formally, the node u to visit next for cluster Ei (by following
edge u → v backward, for some v ∈ Ei) is the node with the shortest
distance (among all nodes not in Ei) to Oi.

2 Distance-balanced expansion across clusters: This strategy decides the
frontier of which keyword will be expanded. Intuitively, the algorithm
attempts to balance the distance between each cluster’s origin to its fron-
tier across all clusters. Speci cally, let (u,Ei) be the node-cluster pair
such that u 	∈ Ei and the distance from u to Oi is the shortest possible.
The cluster to expand next is Ei.

He et al. [23] investigated the optimality of the above two strategies introduced
by BANKS [7]. They proved the following result with regard to the rst strat-
egy, equi-distance expansion of each cluster (the complete proof can be found
in [24]):

Theorem 13.1 An optimal backward search algorithm must follow the strat-
egy of equi-distance expansion in each cluster.

However, the investigation [23] showed that the second strategy, distance-
balanced expansion across clusters, is not optimal and may lead to poor per-
formance on certain graphs. Figure 13.1 shows one such example. Suppose
that {k1} and {k2} are the two cluster origins. There are many nodes that can
reach k1 through edges with a small weight (1), but only one edge into k2 with
a large weight (100). With distance-balanced expansion across clusters, we
would not expand the k2 cluster along this edge until we have visited all nodes
within distance 100 to k1. It would have been unnecessary to visit many of
these nodes had the algorithm chosen to expand the k2 cluster earlier.

2.3.2 Graph Exploration by Bidirectional Search. To address the
problem shown in Figure 13.1, Kacholia et al. [29] proposed a bidirectional
search algorithm, which has the option of exploring the graph by following
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Figure 13.1. Distance-balanced expansion across clusters may perform poorly.

forward edges as well. The rationale is that, for example, in Figure 13.1, if
the algorithm is allowed to explore forward from node u towards k2, we can
identify u as an answer root much faster.

To control the order of expansion, the bidirectional search algorithm prior-
itizes nodes by heuristic activation factors (roughly speaking, PageRank with
decay), which intuitively estimate how likely nodes can be roots of answer
trees. In the bidirectional search algorithm, nodes matching keywords are
added to the iterator with an initial activation factor computed as:

au,i =
nodePrestige(u)

|Si| ,∀u ∈ Si (13.1)

where Si is the set of nodes that match keyword i. Thus, nodes of high prestige
will have a higher priority for expansion. But if a keyword matches a large
number of nodes, the nodes will have a lower priority. The activation factor
is spread from keyword nodes to other nodes. Each node v spreads a fraction
μ of the received activation to its neighbors, and retains the remaining 1 − μ
fraction.

As a result, keyword search in Figure 13.1 can be performed more ef -
ciently. The bidirectional search will start from the keyword nodes (dark solid
nodes). Since keyword node k1 has a large fanout, all the nodes pointing to
k1 (including node u) will receive a small amount of activation. On the other
hand, the node pointing to k2 will receive most of the activation of k2, which
then spreads to node u. Thus, node u becomes the most activated node, which
happens to be the root of the answer tree.

While this strategy is shown to perform well in multiple scenarios, it is dif-
cult to provide any worst-case performance guarantee. The reason is that

activation factors are heuristic measures derived from general graph topology
and parts of the graph already visited. They do not accurately re ect the like-
lihood of reaching keyword nodes through an unexplored region of the graph
within a reasonable distance. In other words, without additional connectivity
information, forward expansion may be just as aimless as backward expan-
sion [23].

2.3.3 Index-based Graph Exploration. The effectiveness of forward
and backward expansions hinges on the structure of the graph and the distri-
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bution of keywords in the graph. However, both forward and backward ex-
pansions explore the graph link by link, which means the search algorithms do
not have knowledge of either the structure of the graph nor the distribution of
keywords in the graph. If we create an index structure to store the keyword
reachability information in advance, we can avoid aimless exploration on the
graph and improve the performance of keyword search. BLINKS [23] is de-
signed based on this intuition.

BLINKS makes two contributions: First, it proposes a new, cost-balanced
strategy for controlling expansion across clusters, with a provable bound on its
worst-case performance. Second, it uses indexing to support forward jumps
in search. Indexing enables it to determine whether a node can reach a key-
word and what the shortest distance is, thereby eliminating the uncertainty and
inef ciency of step-by-step forward expansion.

Cost-balanced expansion across clusters. Intuitively, BLINKS attempts to
balance the number of accessed nodes (i.e., the search cost) for expanding each
cluster. Formally, the cluster Ei to expand next is the cluster with the smallest
cardinality.

This strategy is intended to be combined with the equi-distance strategy
for expansion within clusters: First, BLINKS chooses the smallest cluster to
expand, then it chooses the node with the shortest distance to this cluster’s
origin to expand.

To establish the optimality of an algorithm A employing these two expan-
sion strategies, let us consider an optimal “oracle” backward search algorithm
P . As shown in Theorem 13.1, P must also do equi-distance expansion within
each cluster. The additional assumption here is that P “magically” knows
the right amount of expansion for each cluster such that the total number of
nodes visited by P is minimized. Obviously, P is better than the best practical
backward search algorithm we can hope for. Although A does not have the
advantage of the oracle algorithm, BLINKS gives the following theorem (the
complete proof can be found in [24]) which shows that A is m-optimal, where
m is the number of query keywords. Since most queries in practice contain
very few keywords, the cost of A is usually within a constant factor of the
optimal algorithm.

Theorem 13.2 The number of nodes accessed byA is no more thanm times
the number of nodes accessed by P , wherem is the number of query keywords.

Index-based Forward Jump. The BLINKS algorithm [23] leverages the
new search strategy (equi-distance plus cost-balanced expansions) as well as
indexing to achieve good query performance. The index structure consists of
two parts.
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Keyword-node lists LKN . BLINKS pre-computes, for each keyword,
the shortest distances from every node to the keyword (or, more pre-
cisely, to any node containing this keyword) in the data graph. For a
keyword w, LKN (w) denotes the list of nodes that can reach keyword
w, and these nodes are ordered by their distances to w. In addition to
other information used for reconstructing the answer, each entry in the
list has two elds (dist, node), where dist is the shortest distance be-
tween node and a node containing w.

Node-keywordmap MNK . BLINKS pre-computes, for each node u,
the shortest graph distance from u to every keyword, and organize this
information in a hash table. Given a node u and a keyword w, MNK(u,w)
returns the shortest distance from u to w, or ∞ if u cannot reach any
node that contains w. In fact, the information in MNK can be derived
from LKN . The purpose of introducing MNK is to reduce the linear time
search over LKN for the shortest distance between u and w to O(1) time
search over MNK .

The search algorithm can be regarded as index-assisted backward and for-
ward expansion. Given a keyword query Q = {k1, · · · , kn}, for backward ex-
pansion, BLINKS uses a cursor to traverse each keyword-node list LKN(ki).
By construction, the list gives the equi-distance expansion order in each cluster.
Across clusters, BLINKS picks a cursor to expand next in a round-robin man-
ner, which implements cost-balanced expansion among clusters. These two
together ensure optimal backward search. For forward expansion, BLINKS
uses the node-keyword map MNK in a direct fashion. Whenever BLINKS vis-
its a node, it looks up its distance to other keywords. Using this information, it
can immediately determine if the root of an answer is found.

The index LKN and MNK are de ned over the entire graph. Each of them
contains as many as N ×K entries, where N is the number of nodes, and K
is the number of distinct keywords in the graph. In many applications, K is on
the same scale as the number of nodes, so the space complexity of the index
comes to O(N2), which is clearly infeasible for large graphs. To solve this
problem, BLINKS partitions the graph into multiple blocks, and the LKN and
MNK index for each block, as well as an additional index structure to assist
graph exploration across blocks.

2.3.4 The ObjectRank Algorithm. Instead of returning sub-graphs
that contain all the keywords, ObjectRank [6] applies authority-based ranking
to keyword search on labeled graphs, and returns nodes having high author-
ity with respect to all keywords. To certain extent, ObjectRank is similar to
BLINKS [23], whose query semantics prescribes that all top-K answer trees
have different root nodes. Still, BLINKS returns sub-graphs as answers.
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Recall that the bidirectional search algorithm [29] assigns activation factors
to nodes in the graph to guide keyword search. Activation factors originate
at nodes containing the keywords and propagate to other nodes. For each key-
word node u, its activation factor is weighted by nodePrestige(u) (Eq. 13.1),
which re ects the importance or authority of node u. Kacholia et al. [29] did
not elaborate on how to derive nodePrestige(u). Furthermore, since graph
edges in [29] are all the same, to spread the activation factor from a node u, it
simply divides u’s activation factor by u’s fanout.

Similar to the activation factor, in ObjectRank [6], authority originates at
nodes containing the keywords and ows to other nodes. Furthermore, nodes
and edges in the graphs are labeled, giving graph connections semantics that
controls the amount or the rate of the authority ow between two nodes.

Speci cally, ObjectRank assumes a labeled graph G is associated with some
predetermined schema information. The schema information decides the rate
of authority transfer from a node labeled uG, through an edge labeled eG, and
to a node labeled vG. For example, authority transfers at a xed rate from
a person to a paper through an edge labeled authoring, and at another xed
rate from a paper to a person through an edge labeled authoring. The two
rates are potentially different, indicating that authority may ow at a different
rate backward and forward. The schema information, or the rate of authority
transfer, is determined by domain experts, or by a trial and error process.

To compute node authority with regard to every keyword, ObjectRank com-
putes the following:

Rates of authority transfer through graph edges. For every edge
e = (u → v), ObjectRank creates a forward authority transfer edge
ef = (u → v) and a backward authority transfer edge eb = (v → u).
Speci cally, the authority transfer edges ef and eb are annotated with
rates α(ef ) and α(eb):

α(ef ) =
{ α(efG)

OutDeg(u,efG)
if OutDeg(u, efG) > 0

0 if OutDeg(u, efG) = 0
(13.2)

where α(efG) denotes the xed authority transfer rate given by the schema,
and OutDeg(u, efG) denotes the number of outgoing nodes from u, of
type efG. The authority transfer rate α(eb) is de ned similarly.

Node authorities. ObjectRank can be regarded as an extension to PageR-
ank [10]. For each node v, ObjectRank assigns a global authority de-
noted by ObjectRankG(v) that is independent of the keyword query.
The global ObjectRankG is calculated using the random surfer model,
which is similar to PageRank. In addition, for each keyword w and each
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node v, ObjectRank integrates authority transfer rates in Eq 13.2 with
PageRank to calculate a keyword-speci c ranking ObjectRankw(v):

ObjectRankw(v) = d×
∑

e=(u→v)or(v→u)

α(e)×ObjectRankw(u) +
1− d

|S(w)|
(13.3)

where S(w) is s the set of nodes that contain the keyword w, and d is the
damping factor that determines the portion of ObjectRank that a node
transfers to its neighbours as opposed to keeping to itself [10]. The nal
ranking of a node v is the combination combination of ObjectRankG(v)
and ObjectRankw(v).

3. Classi cation Algorithms
The problem of classi cation has been widely studied in the text mining

literature. Some common algorithms which are often used for content-based
text classi cation are the Naive Bayes classi er [36], TFIDF classi er [30] and
Probabilistic Indexing classi er [20] respectively. A common tool kit used for
classi cation is Rainbow [37], which contains a variety of different classi ers.
Most of the classi cation algorithms directly use the text content in order to
relate the content in the document to the class label.

In the context of social networks, we assume that the nodes in the social net-
work are associated with labels, and each node may contain a certain amount of
text content. In the case of social networks, a number of additional challenges
arise in the context of text classi cation. These challenges are as follows:

Social networks contain a much larger and non-standard vocabulary, as
compared to more standard collections such as news collections. This is
because of the greater diversity in authorship both in terms of the number
and style of different authors.

The labels in social networks may often be quite sparse. In many cases,
some of the label values may be unknown. Thus, social network data is
often much more noisy than other standard text collections.

A particularly useful property of social networks is that they may contain
links which can be used in order to guide the classi cation process. Such
links can be very helpful in determining how the labels may be propa-
gated between the different nodes. While pure link-based classi cation
[44, 46, 48] is a well known technique which works effectively in a vari-
ety of scenarios, the use of content can greatly improve the effectiveness
of the classi cation process.

The earliest work on combining linkage and content information for clas-
si cation was discussed in [13]. This technique was designed in the context
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of the web, though the general idea can be easily extended to the case of so-
cial networks. In this paper, a hypertext categorization method was proposed,
which uses the content and labels of neighboring web pages for the classi ca-
tion process. When the labels of all the nearest neighbors are available, then
a Bayesian method can be adapted easily for classi cation purposes. Just as
the presence of a word in a document can be considered a Bayesian feature
for a text classi er, the presence of a link between the target page, and a page
(for which the label is known) can be considered a feature for the classi er.
The real challenge arises when the labels of all the nearest neighbors are not
available. In such cases, a relaxation labeling method is proposed in order to
perform the classi cation. Two methods have been proposed in this work:

Completely Supervised Case of Radius one Enhanced Linkage Anal-
ysis: In this case, it is assumed that all the neighboring class labels are
known. In such a case, a Bayesian approach is utilized in order to treat
the labels on the nearest neighbors as features for classi cation purposes.
In this case, the linkage information is the sole information which is used
for classi cation purposes.

When the class labels of the nearest neighbors are not known: In
this case, an iterative approach is used for combining text and linkage
based classi cation. Rather than using the pre-de ned labels (which are
not available), we perform a rst labeling of the neighboring documents
with the use of document content. These labels are then used to classify
the label of the target document, with the use of both the local text and
the class labels of the neighbors. This approach is used iteratively for
re-de ning the labels of both the target document and its neighbors until
convergence is achieved.

The conclusion from the work in [13] is that a combination of text and linkage
based classi cation always improves the accuracy of a text classi er. Even
when none of the neighbors of the document have known classes, it seemed
to be always bene cial to add link information to the classi cation process.
When the class labels of all the neighbors are known, then the advantages of
using the scheme seem to be quite signi cant.

An additional idea in the paper is that of the use of bridges in order to further
improve the classi cation accuracy. The core idea in the use of a bridge is
the use of 2-hop propagation for link-based classi cation. The results with
the use of such an approach are somewhat mixed, as the accuracy seems to
reduce with an increasing number of hops. The work in [13] shows results
on a number of different kinds of data sets such as the Reuters database, US
patent database, and Yahoo!. We note that the Reuters database contains the
least amount of noise, and pure text classi ers can do a good job. On the other
hand, the US patent database and the Yahoo! database contain an increasing
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amount of noise which reduces the accuracy of text classi ers. An interesting
observation in [13] was that a scheme which simply absorbed the neighbor text
into the current document performed signi cantly worse than a scheme which
was based on pure text-based classi cation. This is because there are often
signi cant cross-boundary linkages between topics, and such linkages are able
to confuse the classi er.

A second method which has been used for text and link based classi ca-
tion is the utilization of the graph regularization approach for text and link
based classi cation [46]. The work presents a risk minimization formulation
for learning from both text and graph structures. This is motivated by the
problem of collective inference for hypertext document categorization. More
details on the approach may be found in [46]. While much of the work in this
paper as well as the earlier work in [13] is de ned in the context of web data,
this is also naturally applicable to the case of social networks which can be
considered an interlinked set of nodes containing text content.

There is also some work which deals explicitly with social-network like text
interactions. A classic example of this is a set of emails which are exchange be-
tween one or more different users. Typically, the emails in a particular “thread”
may be considered to be linked based on the structure of the thread. Alterna-
tively, the exchanges in the email between the different users correspond to
the links between the different emails. An important problem which arises in
the context of email classi cation is that of the classi cation of speech acts in
email. Some examples of speech acts in email could be request, deliver, com-
mit, and propose. One method for performing the classi cation is to use purely
the content of the email for classi cation purposes [16]. An important obser-
vation in later work is that successive email exchanges between different users
can be considered links, which can be utilized for more effective classi cation.
This is because the speech acts in different emails may not be independent of
one another, but may signi cantly in uence each other. For example, an email
asking for a “request” for a meeting may be followed by one which “commits”
to a meeting.

The work in [11] proposes a method for collective classi cation, which tries
to model the relationships between different kinds of acts in the form of a
graphical stricture. The links in this graphical structure are leveraged in order
to improve the effectiveness of the classi cation process. The work in [11] pro-
poses an iterative collective classi cation algorithm. This algorithm us closely
related to the implementation of a Dependency Network [25]. Dependency
networks are probabilistic graphical models in which the full joint distribution
of the network is approximated with a set of conditional distributions that can
be learned independently. These probability distributions are calculated for
each node given its parent nodes. In the context of an email network, the email
messages are the nodes, and the dependencies are the threads which relate the
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different nodes. The work in [11] shows that the use of linkage analysis pro-
vides a much more effective classi cation analysis, because the class labels
between the different nodes are naturally connected by their corresponding
linkages.

4. Clustering Algorithms
The problem of clustering arises quite often in the context of node cluster-

ing of social networks. The problem of network clustering is closely related
to the traditional problem of graph partitioning [32], which tries to isolated
groups of nodes which are closely connected to one another. The problem of
graph partitioning is NP-hard and often does not scale very well to large net-
works. The Kerninghan-Lin algorithm [32] uses an iterative approach in which
we start off with a feasible partitioning and repeatedly interchange the nodes
between the partitions in order to improve the quality of the clustering. We
note that that this approach requires random access to the nodes and edges in
the underlying graph. This can be a considerable challenge for large-scale so-
cial networks which are stored on disk. When the social-network is stored on
disk, the random access to the disk makes the underlying algorithms quite in-
ef cient. Some recent work has designed methods for link-based clustering in
massive networks [9, 12, 14, 33], though these methods are not speci cally de-
signed for the case of disk-resident data. Such methods are typically designed
for problems such as community detection [39, 38] and information network
clustering [9, 33]. These methods are often more sensitive to the evolution of
the underlying network, which is quite common in social networks because
of the constant addition and deletion of users from the network. Some recent
work [2] has also been proposed for clustering graph streams, which are com-
mon representations of different kinds of edge-based activity in social network
analysis.

The work discussed above uses only the structure of the network for the
clustering process. A natural question arises, as to whether one can improve
the quality of clustering by using the text content in the nodes of the social
network. The problem of clustering has been widely studied by the text mining
community. A variety of text clustering algorithms have been proposed by the
data mining and text mining community [3, 18, 42], which use a number of
variants of traditional clustering algorithms for multi-dimensional data. Most
of these methods are variants of the k-means method in which we start off
with a set of k seeds and build the clusters iteratively around these seeds. The
seeds and cluster membership are iteratively de ned with respect to each other,
until we converge to an effective solution. Some of these methods are also
applicable to the case of dynamic text data, as is the case with social networks.
In particular, the methods in [3, 47] can be used in order to cluster text data
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streams. These methods are designed on the basis of k-means methods which
can use non-iterative variants of the k-means methods for clustering streams.
Such techniques can be useful for the dynamic scenarios which can arise in the
context of social networks. However, these algorithms tend to be at the other
end of the spectrum in terms of preserving only content information and no
linkage information. Ideally, we would like to use clustering algorithms which
preserve both content and linkage information.

The work in [53] proposes a method which can perform the clustering with
the use of both content and structure information. Speci cally the method
constructs a new graph which takes into account both the structure and at-
tribute information. Such a graph has two kinds of edges: structure edges
from the original graph, and attribute edges, which are based on the nature
of the attributes in the different nodes. A random walk approach is used over
this graph in order to de ne the underlying clusters. Each edge is associated
with a weight, which is used in order to control the probability of the random
walk across the different nodes. These weights are updated during an itera-
tive process, and the clusters and the weights are successively used in order
to re ne each other. It has been shown in [53] that the weights and the clus-
ters will naturally converge, as the clustering process progresses. While the
technique is applied to multi-relational attributes, it can also used in a limited
way for text attributes, especially when a limited subset of keywords is used.
It has been shown in [53] how the method can be used in the context of blog
and bibliographic networks, when a number of relational and keyword-based
attributes are also utilized for the clustering process. It has been shown in [53]
that the combination of structural and attribute information can be used for a
more effective clustering process.

A method for leveraging both content and linkage information in the clus-
tering process has been proposed in [43]. While the work in [43] addresses the
problem of topic modeling rather than clustering, this process also provides a
generative model, which can be used for the purpose of a soft clustering of the
documents. A graphical model was proposed to describe a multi-layered gen-
erative model. At the top layer of this model, a multivariate Markov Random
Field for topic distribution random variables for each document is de ned. This
is useful for modeling the dependency relationships among documents over the
network structure. At the bottom layer, the traditional topic model is used in or-
der to model the generation of text for each document. Thus, the combination
of the two layers provides a way to model the relationships of the text and the
structure with one another. Methods are proposed to decide the topic structure,
as well as the number of topics. The method essentially uses an LDA model in
order to construct a topic space, in which the clustering can be performed. This
model uses both structure and content information for the modeling process. It
has been shown in [43] that this integrated approach is much more useful than
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an approach which relies purely on the content of underlying documents. In
general, model-based clustering methods are very effective, because of being
able to model different kinds of data by introducing different model parame-
ters. Another model-based method which has speci cally been proposed in the
context of social networks is discussed in [22]. The main idea in this method
is the use of a latent position cluster model, in which the probability of a tie
between two nodes depends on the distance between them in an implicit Eu-
clidean social space, and the location of these nodes in the latent social space
which is de ned with the use of a mixture of cluster-based distributions. The
method in [22] is general enough to incorporate different kinds of attributes in
the clustering process. For example, one can associated linkage-behavior and
keyword-behavior with different kinds of attributes and apply this approach in
order to design an effective clustering. While the work in [22] has speci cally
not been used with the use of text-based content, the techniques proposed are
quite applicable to this scenario, because of the approach used in the paper,
which can embed arbitrary data in arbitrary Euclidean social spaces. We note
that such latent-space approaches are useful not just for the problem of clus-
tering, but as a tool which can be used for representation of the network in an
Euclidean space, which is more amenable to data mining problems. A more
general piece of work on the latent-space approach may be found in [26].

A major challenge which arises in the context of social networks is that
many such networks are heterogeneous, and this makes it dif cult to design
algorithms which can determine the distances between the nodes in a more
robust way. For example, bibliographic networks are classic examples of het-
erogeneous networks. Such networks contain different kinds of nodes corre-
sponding to authors, keywords, conferences or papers. In general, information
networks are a more generalized notion of social networks, which may contain
nodes which correspond not just to actors, but also to other kinds of entities
which are related to actors. Such networks are far more challenging to cluster
as compared to the vanilla social network scenario, because the different kinds
of entities may contain different objects such as text, images, and links. A
major challenge in the eld is to design uni ed clustering methods which can
integrate different kinds of content in the clustering process.

5. Transfer Learning in Heterogeneous Networks
A closely related problem in this domain is that of transfer learning. Our

discussion in this chapter has so far focussed on how content can be used in
order to enhance the effectiveness of typical problems such as clustering or
classi cation in the context of social networks. In this section, we will study
how the link in an information network can be used in order to perform cross-
domain learning in traditional data mining problems such as clustering and
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classi cation. The primary idea in transfer learning is that data mining prob-
lems have varying levels of dif culty in different domains either because of
lack of data availability or representational issues, and it is often useful to
transfer the knowledge from one domain to another with the use of mappings.
The links in social networks can be used in order to de ne such mappings. A
general survey of transfer-learning methods may be found in [40].

Many social networks contain heterogeneous content, such as text, media
and images. In particular, text is a common content in such networks. For
example, many social media such as Flickr contain images which are annotated
with keywords. The problem of transfer learning is motivated by the fact that
different kinds of content may be more or less challenging for the learning
process. This is because different amounts of training data may be available to
a user in different domains. For example, it is relatively easy to obtain training
data for text content, as well as mapping the features to different classes. This
may however not be quite as true in the case of the image domain in which
there may be fewer standardized collections. Therefore, a natural approach is
to use either the links in the social network between text and images or the
implicit links in terms of annotations as a mapping for the transfer learning
process. Such links can be used as a bridge to learn the underlying mapping,
and use it for the problem of classi cation.

A similar observation applies to the case of cross-lingual classi cation prob-
lems. This is because different amounts of training data is available for the
documents in different languages. A lot of labeled text content may be avail-
able for content in the english language. On the other hand, this may not be the
case for other languages such as chinese web pages. However, there may often
be a number of links between the documents in the different languages. Such
links can be used in order to learn the mappings and use it for the classi cation
process.

A tremendous amount of text-to-image mapping information exists in the
form of tag information in social media sites such as Flickr. It has been shown
in [17], that such information can be effectively leveraged for transfer-learning.
The key idea is to construct a mapping between the text and the images with
the use of the tags, and then use PLSA in order to construct a latent space
which can be used for the transfer process. It has been shown in [17] that such
an approach can be used very effectively for transfer learning. A related work
[54] discusses how to create connections between images and text with the use
of tag data. It shows how such links can be used more effectively for the clas-
si cation process. These techniques have also been exploited for the problem
of image clustering [52]. The work in [52] collects annotated image data from
the social web, and uses it in order to construct a text to image mapping. The
algorithm is referred to as aPLSA (Annotated Probabilistic Latent Semantic
Analysis). The key idea is to unify two different kinds of latent semantic anal-
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ysis in order to create a bridge between the text and images. The rst kind of
technique performs PLSA analysis on the target images, which are converted to
an image instance-to-feature co-occurrence matrix. The second kind of PLSA
is applied to the annotated image data from social Web, which is converted
into a text-to-image feature co-occurrence matrix. In order to unify those two
separate PLSA models, these two steps are done simultaneously with common
latent variables used as a bridge linking them. It has been shown in [52] that
such a bridging approach leads to much better clustering results. Clustering is
a useful tool for web-based or social-network based image search. Such search
results are often hindered by polysemy in textual collections, in which the same
work may mean multiple things. For example, the word “jaguar” could either
refer to an animal or a car. In such cases, the results of the query are ambigu-
ous as well. A major motivation for clustering is that such ambiguities can be
more effectively resolved. In particular when textual features are associated
with images, and these are used simultaneously [35] for the clustering process,
the overall result is much more effective. Some of the available techniques in
the literature use spectral clustering on the distance matrix built from a multi-
modal feature set (containing both text and image information) in order to get a
better feature representation. The improved quality of the representation leads
to much better clustering results. Furthermore, when the number of images is
very small, traditional clustering algorithms do not work very well either. This
approach does not work too well, when only a small amount of data is available
on the association between image and text. A different work in [52] treats this
as a heterogeneous transfer learning problem by leveraging social annotation
information from sites such as Flickr. Such sites contain a lot of information in
the form of feedback from different users. The auxiliary data is used in order to
improve the quality of the underlying latent representation and the correspond-
ing clustering process in work discussed in [52]. In general, social networks
provide tremendous information about the data of different types, which can be
leveraged in order to enable an effective learning process across the different
domains. This area is still in its infancy, and it is expected that future research
will lead to further advances in such linkage-based techniques.

6. Conclusions and Summary
In this chapter, we presented a variety of content-based mining algorithms,

which combine text and links in order to design more effective methods for
a wide variety of problems such as search, clustering, and classi cation. In
many data domains, links encode a tremendous amount of semantic informa-
tion which can be leveraged in order to improve the effectiveness of a variety of
different algorithms. A number of challenges remain for this particular prob-
lem domain. These challenges are as follows:
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Many of the techniques are not designed to be scalable for massive data
sets. This may be a challenge, because many network data sets are in-
herently massive in nature.

The techniques need to be designed for dynamic data sets. This is es-
pecially important because the content and links in a social network are
highly dynamic. Therefore, it is important to be able to quickly re-adjust
the models in order to take into account the changing characteristics of
the underlying data.

Many of the techniques are designed for homogeneous networks in which
the nodes are of a single type. Many of the networks are inherently het-
erogeneous, in which the nodes may be of different types. For example,
social networks contain nodes corresponding to individuals, their posts,
their blogs, and the use of such other content. The ability to use such
information in the knowledge discovery process can be an advantage in
many scenarios.

A considerable research opportunity also exists in the area of transfer learning.
Transfer learning methods are dependent upon the ability to de ne bridges or
mappings between different domains for the learning process. The links in a
social network can be leveraged in order to de ne such bridges. There has
been some recent work in leveraging the text annotations in social media for
the problem of transfer learning of images. Research in this area is still in its
infancy, and considerable scope exists to improve both the effectiveness and
the ef ciency of the underlying algorithms.
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Abstract A number of sensor applications in recent years collect data which can be di-
rectly associated with human interactions. Some examples of such applications
include GPS applications on mobile devices, accelerometers, or location sensors
designed to track human and vehicular traf c. Such data lends itself to a vari-
ety of rich applications in which one can use the sensor data in order to model
the underlying relationships and interactions. It also leads to a number of chal-
lenges, since such data may often be private, and it is important to be able to
perform the mining process without violating the privacy of the users. In this
chapter, we provide a broad survey of the work in this important and rapidly
emerging eld. We also discuss the key problems which arise in the context of
this important eld and the corresponding solutions.

Keywords: Sensor Networks, Social Sensors

1. Introduction
Social networks have become extremely popular in recent years, because of

numerous online social networks such as Facebook, LinkedIn and MySpace.
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In addition, many chat applications can also be modeled as social networks.
Social networks provide a rich and exible platform for performing the mining
process with different kinds of data such as text, images, audio and video.
Therefore, a tremendous amount of research has been performed in recent
years on mining such data in the context of social networks [25, 40, 43, 56]. In
particular, it has been observed that the use of a combination of linkage struc-
ture and different kinds of data can be a very powerful tool for mining purposes
[65, 68]. The work in [65, 68] discusses how one can combine the text in social
networks with the linkage structure in order to implement more effective clas-
si cation models. Other recent work [38] uses the linkage structure in image
data in order to perform more effective mining and search in information net-
works. Therefore, it is natural to explore whether sensor data processing can
be tightly integrated with social network construction and analysis. Most of the
afore-mentioned data types on a social network are static and change slowly
over time. On the other hand, sensors collect vast amounts of data which need
to be stored and processed in real time. There are a couple of important drivers
for integrating sensor and social networks:

One driver for integrating sensors and social networks is to allow the ac-
tors in the social network to both publish their data and subscribe to each
other’s data either directly, or indirectly after discovery of useful infor-
mation from such data. The idea is that such collaborative sharing on a
social network can increase real-time awareness of different users about
each other, and provide unprecedented information and understanding
about global behavior of different actors in the social network. The vi-
sion of integrating sensor processing with the real world was rst pro-
posed in [67].

A second driver for integrating sensors and social networks is to better
understand or measure the aggregate behavior of self-selected commu-
nities or the external environment in which these communities function.
Examples may include understanding traf c conditions in a city, under-
standing environmental pollution levels, or measuring obesity trends.
Sensors in the possession of large numbers of individuals enable ex-
ploiting the crowd for massively distributed data collection and pro-
cessing. Recent literature reports on several efforts that exploit indi-
viduals for data collection and processing purposes such as collection
of vehicular GPS trajectories as a way for developing street maps [34],
collectively locating items of interest using cell-phone reports, such as
mapping speed traps using the Trapster application [76], use of massive
human input to translate documents [55], and the development of pro-
tein folding games that use competition among players to implement the
equivalent of global optimization algorithms [14].
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The above trends are enabled by the emergence of large-scale data col-
lection opportunities, brought about by the proliferation of sensing devices
of every-day use such as cell-phones, piedometers, smart energy meters, fuel
consumption sensors (standardized in modern vehicles), and GPS navigators.
The proliferation of many sensors in the possession of the common individual
creates an unprecedented potential for building services that leverage massive
amounts data collected from willing participants, or involving such partici-
pants as elements of distributed computing applications. Social networks, in a
sensor-rich world, have become inherently multi-modal data sources, because
of the richness of the data collection process in the context of the network struc-
ture. In recent years, sensor data collection techniques and services have been
integrated into many kinds of social networks. These services have caused
a computational paradigm shift, known as crowd-sourcing [15], referring to
the involvement of the general population in data collection and processing.
Crowd-sourcing, arguably pioneered by programs such as SETI, has become
remarkably successful recently due to increased networking, mobile connec-
tivity and geo-tagging [1]. Some examples of integration of social and sensor
networks are as follows:

The Google Latitude application [69] collects mobile position data of
uses, and shares this data among different users. The sharing of such
data among users can lead to signi cant events of interest. For example,
proximity alerts may be triggered when two linked users are within ge-
ographical proximity of one another. This may itself trigger changes in
the user-behavior patterns, and therefore the underlying sensor values.
This is generally true of many applications, the data on one sensor can
in uence data in the other sensors.

The City Sense application [70] collects sensor data extracted from xed
sensors, GPS-enabled cell phones and cabs in order to determine where
the people are, and then carries this information to clients who subscribe
to this information. The information can also be delivered to clients with
mobile devices. This kind of social networking application provides a
“sense” as to where the people in the city are, and can be used in order
to effectively plan activities. A similar project, referred to as WikiCity,
[13] developed at MIT, uses the mobile data collected from cell phones
in order to determine the spatial trends in a city, and which the social
streets might be.

This general approach of collecting individual location data from mo-
bile phones can also be used in order to generate interesting business
decisions. For example, the project MacroSense [73] analyzes customer
location behaviors, in order to determine individuals which behave in a
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similar way to a given target. The application is able to perform real time
recommendations, personalization and discovery from real time location
data.

Automotive Tracking Application: A number of real-time automotive
tracking applications determine the important points of congestion in
the city by pooling GPS data from the vehicles in the city. This can be
used by other drivers in order to avoid points of congestion in the city.
In many applications, such objects may have implicit links among them.
For example, in a military application, the different vehicles may have
links depending upon their unit membership or other related data.
Another related application is that of sharing of bike track paths by dif-
ferent users [53]. The problem of nding bike routes is naturally a trial-
and-error process in terms of nding paths which are safe and enjoyable.
The work in [53] designs Biketastic, which uses GPS-based sensing on
a mobile phone application in order to create a platform which enables
rich sharing of biker experiences with one another. The microphone and
the accelerometer embedded on the phone are sampled to infer route
noise level and roughness. The speed can also be inferred directly from
the GPS sensing abilities of the mobile phone. The platform combines
this rich sensor data with mapping and visualization in order to provide
an intuitive and visual interface for sharing information about the bike
routes.

Animal Tracking: In its most general interpretation, an actor in a social
network need not necessary be a person, but can be any living entity such
as an animal. Recently, animal tracking data is collected with the use of
radio-frequency identi ers. A number of social links may exist between
the different animals such as group membership, or family membership.
It is extremely useful to utilize the sensor information in order to predict
linkage information and vice-versa. A recent project called MoveBank
[71] has made tremendous advances in collecting such data sets. We note
that a similar approach may be used for commercial product-tracking ap-
plications, though social networking applications are generally relevant
to living entities, which are most typically people.

Social sensors provide numerous research challenges from the perspective of
analysis.

Since the collected data typically contains sensitive personal data (eg.
location data), it is extremely important to use privacy-sensitive tech-
niques [28, 52] in order to perform the analysis. A recent technique
called PoolView [28] designs privacy-sensitive techniques for collecting
and using mobile sensor data.
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The volume of data collected can be very large. For example, in a mo-
bile application, one may track the location information of millions of
users simultaneously. Therefore, it is useful to be able to design tech-
niques which can compress and ef ciently process the large amounts of
collected data.

Many of the applications require dynamic and real time responses. For
example, applications which trigger alerts are typically time-sensitive
and the responses may be real-time. The real-time challenges of such
applications are quite challenging, considering the large number of sen-
sors which are tracked at a given time.

This chapter is organized as follows. Section 2 brie y discusses some key
technological advances which have occurred in recent years, which have en-
abled the design of such dynamic and embedded applications. Section 3 in-
troduces techniques for social network modeling from dynamic links which
are naturally created by the sensor-based scenario. Section 4 discusses a broad
overview of the key system design questions which arise in these different con-
texts. One of the important issues discussed in this section is privacy, which
is discussed in even greater detail in a later section. Section 5 discusses the
database design issues which are essential for scalability. Section 6 discusses
some important privacy issues which arise in the context of social networks
with embedded sensors. Section 7 introduces some of the key applications as-
sociated with integrated social and sensor networks. Section 8 discusses the
conclusions and research directions.

2. Sensors and Social Networks: Technological Enablers
A number of recent technological advances in hardware and software have

enabled the integration of sensors and social networks. One such key techno-
logical advance is the development is small mobile sensors which can collect
a variety of user-speci c information such as audio or video. Many of the ap-
plications discussed are based on user-location. Such location can easily be
computed with the use of mobile GPS-enabled devices. For example, most of
the recent smart-phones typically have such GPS technology embedded inside
them. Some examples of such mobile sensor devices may be found in [45, 42].

Sensors typically collect large amounts of data, which must be continuously
stored and processed. Furthermore, since the number of users in a social net-
work can be very large, this leads to natural scalability challenges for the stor-
age and processing of the underlying streams. For example, many naive solu-
tions such as the centralized storage and processing of the raw streams are not
very practical, because of the large number of streams which are continuously
received. In order to deal with this issue, a number of recent hardware and
software advances have turned out to be very useful.
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Development of Fast Stream Processing Platforms: A number of fast
stream processing platforms, such as the IBM System S platform [72]
have been developed in recent years, which are capable of storing and
processing large volumes of streams in real time. This is a very use-
ful capability from the perspective of typical cyber-physical applications
which need a high level of scalability for real-time processing.

Development of Stream Synopsis Algorithms and Software: Since the
volume of the data collected is very large, it often cannot be collected
explicitly. This leads to the need for designing algorithms and methods
for stream synopsis construction [2]. A detailed discussion of a variety
of methods (such as sketches, wavelets and histograms) which are used
for stream synopsis construction and analysis is provided in [2].

Increased Bandwidth: Since sensor transmission often requires large
wireless bandwidth, especially when the data is in the form of audio
or video streams, it is critical to be able to transmit large amounts of
data in real time. The increases in available bandwidth in recent years,
have made such real time applications a reality.

Increased Storage: In spite of the recently designed techniques for com-
pressing the data, the storage challenges for stream processing continue
to be a challenge. Recent years have seen tremendous advances in hard-
ware, which allow much greater storage, than was previously possible.

In addition, the development of miniaturized sensors and batteries have al-
lowed their use and deployment in a number of different social settings. For
example, the development of miniaturized sensors, which can be embedded
within individual attire can be helpful in a wide variety of scenarios [42, 31,
18, 19]. For example, the spec mote is an extremely small sensor device, which
can be embedded in the clothing of a user, while remaining quite unobtrusive.

In addition, the sensing abilities of such devices have also increased consid-
erably in recent years. For example, the sociometer [18, 19] is a small wearable
device, which can measure the following kinds of interactions:

Detection of people nearby

Motion information and accelerometers

Microphone for speech information

In addition, the device has the exibility to allow for the addition of other
kinds of sensors such as GPS sensors and light sensors. The ability to pack
larger and larger amounts of functionality into small and unobtrusive devices
has been a recent innovation, which has encouraged the development of an
ever-increasing number of social-centered applications. The aim of collecting
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a large number of such interactive behaviors is to be able to effectively model
interactions, between different users, and then model the dynamics of the in-
teraction with the use of the collected information.

3. Dynamic Modeling of Social Networks
In the case of an explicitly linked social network, the relationships between

different entities are quite clear, and therefore the dynamics of the interaction
can be modeled relatively easily. However, in the case of a sensor network,
the links between different entities may or may not be available depending
upon the application. For example, the Google Latitude application allows for
explicit links between different agents. On the other hand, in many social ap-
plications [19], the links and communities between different agents may need
to be derived based on their location and behavior. In such cases, the struc-
ture of the social network itself and the underlying communities [20, 21] can
be derived directly from the details of the underlying interaction. This is a
challenging problem, especially when the number of agents are large, and the
number of interactions between them is even larger and dynamically evolving.

Many sensing platforms such as those discussed in [18], yield sensor data
which is varied, and is of a multi-modal nature. For example, the data could
contain information about interactions, speech or location. It is useful to be
able analyze such data in order to summarize the interactions and make infer-
ences about the underlying interactions. Such multi-modal data can also be
leveraged in order to make predictions about the nature of the underlying ac-
tivities and the corresponding social interactions. This also provides a virtual
technique to perform link inferences in the underlying network.

For example, the collection of activity sensing data is not very useful, un-
less it can be leveraged to summarize the nature of the activities among the
different participants. For example,in the case of the techniques discussed in
[19], the IR transceiver is used to determine which people are in proximity of
one another. However, this cannot necessarily be used in order to determine
whether the corresponding people are interacting with another. A knowledge
of such interactions can be determined with the use of speech segmentation
techniques in which it is determined which participants are interacting with
one another. The speech portions are segmented out of the ambient noise, and
then segmented into conversations. The knowledge of such face-to-face in-
teractions can be used to build dynamic and virtual links among the different
participants.

We note that a dynamically linked social network can be modeled in two
different ways:

The network can be modeled as a group of dynamic interacting agents.
The stochastic properties of these agents can be captured with the use of



386 SOCIAL NETWORK DATA ANALYTICS

hidden markov models in order to characterize various kinds of behav-
iors. This is the approach used for community modeling as discussed in
[12, 21].

The interactions of the participants can be modeled as links which are
continuously created or destroyed depending upon the nature of the un-
derlying interactions. as a graph stream, in which the nodes represent
the participants, and the edges represent the interactions among these
different participants. Recently, a number of analytical techniques have
been designed in order to determine useful knowledge-based patterns in
graph streams [4]. These include methods for dynamically determining
shortest-paths, connectivity, communities or other topological character-
istics of the underlying network.

The inherently dynamic nature of such interactions in an evolving and dynamic
social network leads to a number of interesting challenges from the perspective
of social network analysis. Some examples of such challenges are discussed
below.
(1) Determination of dynamic communities in graph streams: Communi-
ties are de ned as dense regions of the social network in which the participants
frequently interact with one another over time. Such communities in a dy-
namically evolving social network can be determined by using agent-based
stochastic analysis or link-based graph stream analysis. Methods for modeling
such a social network as a group of dynamically evolving agents are discussed
in [12, 21]. In these techniques, a hidden markov model is used in conjunction
with an in uence matrix in order to model the evolving social network.

A second approach is to model the underlying face-to-face interactions as
dynamic links. This creates an inherently dynamic network scenario in which
the structure of the communities may continuously evolve over time. There-
fore, a key challenge is to determine such communities in dynamic networks,
when the clustering patterns may change signi cantly over time. Methods
for determining evolving clusters and communities in networks have been dis-
cussed in [6, 7, 17, 57]. Graph streams pose a special challenge because of the
rapid nature of the incoming edges, and their use for determination of evolving
communities.
(2) Mining Structural Patterns in Time-Evolving Social Networks: Aside
from the common problem of community detection, another interesting prob-
lem is that of mining structural patterns of different kinds in time evolving
graphs. Some common methods for nding such patterns typically use ma-
trix and tensor-based tools, which are comprehensively described in a tutorial
in [27]. Common problems in time-evolving graphs include those of frequent
pattern determination, outlier detection, proximity tracking [58], and subgraph
change detection [46].
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(3) Modeling spatio-temporal dynamics: Many of the approaches discussed
above model the dynamics of the interactions as dynamic links. While this
provides greater generality, it does not capture the spatio-temporal nature of
the underlying agents. For example, the data received in a GPS application
often contains spatio-temporal information such as the positions of different
agents, and their underlying interactions. Therefore, an interesting and impor-
tant challenge is to model the aggregate spatio-temporal dynamics in order to
determine the underlying patterns and clusters. Such spatio-temporal dynam-
ics can be used in order to make interesting spatial predictions such as future
regions of activity or congestions. For example, methods for determining clus-
ters and communities from such mobile applications have been discussed in
[44].

Ad discussed earlier, the determination of dynamic interactions requires the
real-time modeling of face-to-face interactions, which can sometimes be sen-
sitive information. This also leads to numerous privacy challenges, especially
since the interactions between the participants may be considered personal in-
formation. A number of privacy-sensitive approaches for face-to-face activity
modeling and conversation segmentation have been discussed in [61–64]. We
will discuss more details on privacy-issues in a later section of this chapter.

4. System Design and Architectural Challenges
The aforementioned monitoring and social computing opportunities present

a need for a new architecture that encourages data sharing and ef ciently uti-
lizes data contributed by users. The architecture should allow individuals, or-
ganizations, research institutions, and policy makers to deploy applications that
monitor, investigate, or clarify aspects of socio-physical phenomena; processes
that interact with the physical world, whose state depends on the behavior of
humans in the loop.

An architecture for social data collection should facilitate distillation of con-
cise actionable information from signi cant amounts of raw data contributed
by a variety of sources, to inform high-level user decisions. Such an architec-
ture would typically consist of components that support (i) privacy-preserving
sensor data collection, (ii) data model construction, and (iii) real-time decision
services. For example, in an application that helps drivers improve their vehic-
ular fuel-ef ciency, data collection might involve upload of fuel consumption
data and context from the vehicle’s on-board diagnostics (OBD-II) interface
and related sensors; a model might relate the total fuel consumption for a ve-
hicle on a road segment as a function of readily available parameters (such
as average road speed, degree of congestion, incline, and vehicle weight); the
decision support service might provide navigation assistance to nd the most
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fuel-ef cient route to a given destination (as opposed to a fastest or shortest
route). Below, we elaborate on the above functions.

4.1 Privacy-preserving data collection
In a grassroots application that is not managed by a globally trusted au-

thority, an interesting challenge becomes ensuring the privacy of data shared.
Anonymity is not a suf cient solution because the data themselves (such as
GPS traces) may reveal the identity of the owner even if shared anonymously.
One interesting direction is to allow individuals to “lie" about their data in
a way that protects their privacy, but without degrading application quality.
For example, in a traf c speed monitoring application reconstruction of com-
munity statistics of interest (such as average traf c speed on different streets)
should remain accurate, despite use of perturbed data (“lies" about actual speed
of individual vehicles) as input to the reconstruction process. This is possi-
ble thanks to deconvolution techniques that recover the statistical distribution
of the original signals, given the statistical distribution of perturbed data and
the statistical distribution of noise. Solutions to this and related problems can
be found in literature on privacy-preserving statistics [5]. Recently, special
emphasis was given to perturbing time-series data [28], since sensor data typi-
cally comprise a correlated series of samples of some continuous phenomenon.
Perturbing time-series data is challenging because correlations among nearby
samples can be exploited to breach privacy. Recent results demonstrate that
the frequency spectrum of the perturbation signal must substantially overlap
with the frequency spectrum of the original data time-series for the latter to
be effectively concealed [28]. Generalizations to perturbation of correlated
multi-dimensional time-series data were proposed in [52]. The main challenge
addressed in this work was to account for the fact that data shared by different
sensors are usually not independent. For example, temperature and location
data can be correlated, allowing an attacker to make inferences that breach
privacy by exploiting cross-sensor correlations.

A related interesting problem is that of perturbation (i.e., noise) energy al-
location. Given a perturbation signal of a particular energy budget (dictated
perhaps by reconstruction accuracy requirements), how to allocate this energy
budget across the frequency spectrum to optimally conceal an original data sig-
nal? A recent technique de nes privacy as the amount of mutual information
between the original and perturbed signals. Optimality is de ned as perturba-
tion that minimizes the upper bound on such (leaked) mutual information. The
technique describes how optimal perturbation is computed, and demonstrates
the fundamental trade-off between the bound on information leak (privacy) and
the bound on reconstruction accuracy [51].
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4.2 Generalized Model Construction
Many initial participatory sensing applications, such as those giving rise to

the above privacy concerns, were concerned with computing community statis-
tics out of individual private measurements. The approach inherently assumes
richly-sampled, low-dimensional data, where many low-dimensional measure-
ments (e.g., measurements of velocity) are redundantly obtained by individuals
measuring the same variable (e.g., speed of traf c on the same street). Only
then can good statistics be computed. Many systems, however, do not adhere to
the above model. Instead, data are often high-dimensional, and hence sampling
of the high-dimensional space is often sparse. The more interesting question
becomes how to generalize from high-dimensional, sparsely-sampled data to
cover the entire input data space? For instance, consider a fuel-ef cient nav-
igation example, where it is desired to compute the most fuel-ef cient route
between arbitrary source and destination points, for an arbitrary vehicle and
driver. What are the most important generalizable predictors of fuel ef ciency
of current car models driven on modern streets? A large number of predictors
may exist that pertain to parameters of the cars, the streets and the drivers.
These inputs may be static (e.g., car weight and frontal area) or dynamic (e.g.,
traveled road speed and degree of congestion). In many cases, the space is only
sparsely sampled, especially in conditions of sparse deployment of the partici-
patory sensing service. It is very dif cult to predict a priori which parameters
will be more telling. More importantly, the key predictors might differ depend-
ing on other parameters. For example, it could be that the key predictors of fuel
ef ciency for hybrid cars and gas-fueled cars are different. It is the responsi-
bility of the model construction services to offer not only a general mechanism
for applications to build good models quickly from the data collected, but also
a mechanism for identifying the scope within which different predictors are
dominant. A single “one-side- ts-all" prediction model, computed from all
available data, is not going to be accurate. Similarly computing a model for
each special case (e.g., a model for each type of car) is not going to be useful
because, as stated above, the sampling is sparse. Hence, it is key to be able
to generalize from experiences of some types of vehicles to predictions of oth-
ers. Recent work combined data mining techniques based on regression cubes
and sampling cubes to address the model generalization problem for sparse,
high-dimensional data [32].

4.3 Real-time Decision Services
Ultimately, a generalized model, such as that described above, may be used

as an input to an application-speci c optimization algorithm that outputs some
decisions for users in response to user queries. For example, estimates of fuel
consumption on different roads on a map can be input to Dijkstra’s algorithm
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to nd the minimum fuel route between points speci ed by the user. This route
constitutes a decision output. Hence, support for real-time stream processing
and decision updates must be provided as part of the social sensing architec-
ture.

A key property of real-time decision services is the involvement of humans
in the loop. A signi cant challenge is therefore to design appropriate user in-
terfaces. End-user devices will act as data custodians who collect, store, and
share user data. The level at which these custodians interact with the user,
as well as the nature of interactions, pose signi cant research problems with
respect to minimizing inconvenience to the user while engaging the user appro-
priately. Context sensing, collaborative learning, persuasion, and modeling of
socio-sensing systems (with humans in the loop) become important problems.
Participation incentives, role assignment, and engagement of users in modeling
and network learning become important application design criteria that moti-
vate fundamental research on game theoretic, statistical, machine learning, and
economic paradigms for application design.

4.4 Recruitment Issues
The quality of the social experience gained from a sensor-based framework

is dependent on the ability to recruit high quality participants for sensor col-
lection and sharing. The work in [54] observes that the process of recruiting
volunteers for participatory sensing campaigns is analogous to recruiting vol-
unteers or employees in non-virtual environments. This similarity is used in
order to create a 3-stage process for recruitment:

Quali er: This refers to the fact that the participants must meet mini-
mum requirements such as availability and reputation.

Assessment: Once participants that meet minimum requirements are
found, the recruitment system then determines which candidates are
most appropriate based on both diversity and coverage.

Progress Review: Once the sensing process starts, the recruitment sys-
tem must check participants’ coverage and data collection reputation to
determine if they are consistent with their base pro le. This check can
occur periodically, and if the similarity of pro les is below a threshold,
this is used as a feedback to an additional recruitment process.

4.5 Other Architectural Challenges
Proper design of the above system components gives rise to other important

challenges that must be solved in order to enable development and deployment
of successful mobile sensing applications that adequately meet user needs. The
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following relates challenges described in a recent NSF-sponsored report on
social sensing [77].

From the application perspective, mobile sensing applications depend sig-
ni cantly on social factors (user adoption, peer pressure, social norms, social
networks, etc) as well as the nature of physical phenomena being monitored
or controlled. Exciting interdisciplinary research challenges exist in describ-
ing the properties of distributed socio-physical applications. For example,
what are the dynamics of information propagation in such systems? What
are closed-loop properties of interaction involving social and physical phe-
nomena? What are some fundamental bounds on capacity, delivery speed, and
evolution of socio-sensing systems? Answering such questions is fundamental
to informed design and performance analysis of sensing applications involving
crowd-sourcing.

From the underlying physical network perspective, mobile sensing applica-
tions herald an era where many network clients are embedded devices. This
motivates the investigation of a network architecture, where the main goal from
networking shifts from offering a mere communication medium to offering in-
formation distillation services. These services bridge the gap between myr-
iads of heterogeneous data feeds and the high-level human decision needs.
In a network posed as an information service (as opposed to a communi-
cation medium), challenges include division of responsibilities between the
end-device (e.g., phone) and network; paradigms for data collection on mo-
bile devices, architectural support for data management, search, and mining;
scalability to large-scale real-time information input and retrieval; improved
context-awareness; support for predictability; and investigation of network and
end-system support for reduction of cognitive overload of the information con-
sumer. Other challenges in the design of network protocols for mobile sens-
ing include energy management, integration of network storage, personalized
search and retrieval, support for collaborative sensing, and exploitation of a
rich realm of options in information transfer modalities and timing, including
deferred information sharing and delay-tolerant communication.

While several social sensing applications are already deployed, exciting re-
search opportunities remain in order to help understand their emergent behav-
ior, optimize their performance, redesign the networks on which they run, and
provide guarantees to the user, such as those on bounding unwanted informa-
tion leakage.

5. Database Representation: Issues and Challenges
A number of database challenges naturally arise in such massive real time

applications. For example, it is often the case that millions of streams may
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be collected simultaneously. It is useful to compress, process and store these
streams in real-time. Furthermore,

such compression techniques need to be real-time in order to enable effec-
tive processing. In this section, we brie y review some stream compression
and processing techniques which may be useful for such applications. In re-
cent years a number of synopsis structures have been developed, which can
be used in conjunction with a variety of mining and query processing tech-
niques [30]. Some key synopsis methods include those of sampling, wavelets,
sketches and histograms. The key challenges which arise in the context of syn-
opsis construction of data streams are as follows:
Broad Applicability: The synopsis structure is typically used as an intermedi-
ate representation, which should be usable for a variety of analytical scenarios
in the context of social networking applications.
One-pass constraint: The one-pass constraint is critical to synopsis construc-
tion algorithms, especially when the volume of the incoming data is large. This
is especially true for a social networking application in which millions of sen-
sors are simultaneously transmitting data.
Time and Space Ef ciency: Since data streams have a very large volume, it
is essential to create the synopsis in a time- and space-ef cient way. In this
sense, some of the probabilistic techniques such as sketches are extremely ef-
fective for counting-based applications, since they require constant-space for
provable probabilistic accuracy. In other words, the time- and space-ef ciency
depends only upon the accuracy of the approach rather than the length of the
data stream.
Data Stream Evolution: Since the incoming stream patterns may evolve over
time, a synopsis structure which is constructed from the overall behavior of
the data stream is not quite as effective as one which uses recent history. Con-
sequently, it is often more effective to create synopsis structures which either
work with sliding windows, or use some decay-based approach in order to
weight the data stream points.

One key characteristic of many of the above methods is that while they
work effectively in the 1-dimensional case, they often lose their effectiveness
in the multi-dimensional case either because of data sparsity or because of
inter-attribute correlations. The multi-dimensional case is especially for the
social networking scenario, because millions of streams may be collected and
processed at a given time. Next, we will discuss the broad classes of techniques
which are used for synopsis construction in data streams. Each of these tech-
niques have their own advantages in different scenarios, and we will take care
to provide an overview of the different array of methods which are used for
synopsis construction in data streams. The broad techniques which are used
for synopsis construction in data streams are as follows:
Reservoir Sampling: Sampling methods are widely used for traditional database
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applications, and are extremely popular because of their broad applicability
across a wide array of tasks in data streams. A further advantage of sampling
methods is that unlike many other synopsis construction methods, they main-
tain their inter-attribute correlations across samples of the data. It is also often
possible to use probabilistic inequalities in order to bound the effectiveness of
a variety of applications with sampling methods.

However, a key problem in extending sampling methods to the data stream
scenario, is that one does not know the total number of data points to be sam-
pled in advance. Rather, one must maintain the sample in a dynamic way over
the entire course of the computation. A method called reservoir sampling was

rst proposed in [59], which maintains such a sample dynamically. This tech-
nique was originally proposed in the context of one-pass access of data from
magnetic-storage devices. However, the techniques also naturally extend to the
data stream scenario.

Let us consider the case, where we wish to obtain an unbiased sample of
size n from the data stream. In order to initialize the approach, we simply
add the rst n points from the stream to the reservoir. Subsequently, when the
(t+ 1)th point is received, it is added to the reservoir with probability n/(t+
1). When the data point is added to the reservoir, it replaces a random point
from the reservoir. It can be shown that this simple approach maintains the
uniform sampling distribution from the data stream. We note that the uniform
sampling approach may not be very effective in cases where the data stream
evolves signi cantly. In such cases, one may either choose to generate the
stream sample over a sliding window, or use a decay-based approach in order
to bias the sample. An approach for sliding window computation over data
streams is discussed in [48].

A second approach [3] uses biased decay functions in order to construct
synopsis from data streams. It has been shown in [3] that the problem is ex-
tremely dif cult for arbitrary decay functions. In such cases, there is no known
solution to the problem. However, it is possible to design very simple algo-
rithms for some important classes of decay functions. One of these classes
of decay functions is the exponential decay function. The exponential decay
function is extremely important because of its memory less property, which
guarantees that the future treatment of a data point is independent of the past
data points which have arrived. An interesting result is that by making simple
implementation modi cations to the algorithm of [59] in terms of modifying
the probabilities of insertion and deletion, it is possible to construct a robust
algorithm for this problem. It has been shown in [3] that the approach is quite
effective in practice, especially when there is signi cant evolution of the un-
derlying data stream.

While sampling has several advantages in terms of simplicity and preserva-
tion of multi-dimensional correlations, it loses its effectiveness in the presence
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of data sparsity. For example, a query which contains very few data points is
unlikely to be accurate with the use of a sampling approach. However, this is a
general problem with most techniques which are effective at counting frequent
elements, but are not quite as effective at counting rare or distinct elements in
the data stream.
Sketches: Sketches use some properties of random sampling in order to per-
form counting tasks in data streams. Sketches are most useful when the domain
size of a data stream is very large. In such cases, the number of possible dis-
tinct elements become very large, and it is no longer possible to track them in
space-constrained scenarios. There are two broad classes of sketches: projec-
tion based and hash based. We will discuss each of them in turn.

Projection based sketches are constructed on the broad idea of random pro-
jection [39]. The most well known projection-based sketch is the AMS sketch
[10, 11], which we will discuss below. It has been shown in [39], that by by
randomly sampling subspaces from multi-dimensional data, it is possible to
compute ε-accurate projections of the data with high probability. This broad
idea can easily be extended to the massive domain case, by viewing each dis-
tinct item as a dimension, and the counts on these items as the corresponding
values. The main problem is that the vector for performing the projection can-
not be maintained explicitly since the length of such a vector would be of the
same size as the number of distinct elements. In fact, since the sketch-based
method is most relevant in the distinct element scenario, such an approach de-
feats the purpose of keeping a synopsis structure in the rst place.

Let us assume that the random projection is performed using k sketch vec-
tors, and rji represents the jth vector for the ith item in the domain being
tracked. In order to achieve the goal of ef cient synopsis construction, we
store the random vectors implicitly in the form of a seed, and this can be used
to dynamically generate the vector. The main idea discussed in [35] is that it is
possible to generate random vectors with a seed of size O(log(N)), provided
that one is willing to work with the restriction that rji ∈ {−1,+1} should be
4-wise independent. The sketch is computed by adding rji to the jth compo-
nent of the sketch for the ith item. In the event that the incoming item has
frequency f , we add the value f · rji . Let us assume that there are a total of k
sketch components which are denoted by (s1 . . . sk). Some key properties of
the pseudo-random number generator approach and the sketch representation
are as follows:

A given component rji can be generated in poly-logarithmic time from
the seed. The time for generating the seed is poly-logarithmic in the
domain size of the underlying data.

A variety of approximate aggregate functions on the original data can be
computed using the sketches.
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Some example of functions which can be computed from the sketch compo-
nents are as follows:

Dot Product of two streams: If (s1 . . . sk) be the sketches from one
stream, and (t1 . . . tk) be the sketches from the other stream, then sj · tj
is a random variable whose expected value of the dot product.

Second Moment: If (s1 . . . sk) be the sketch components for a data
stream, it can be shown that the expected value of s2j is the second mo-
ment. Furthermore, by using Chernoff bounds, it can be shown that
by selecting the median of O(log(1/δ)) averages of O(1/ε2) copies of
sj · tj , it is possible to guarantee the accuracy of the approximation to
within 1+ε with probability at least 1− δ.

Frequent Items: The frequency of the ith item in the data stream is
computed by by multiplying the sketch component sj by rji . However,
this estimation is accurate only for the case of frequent items, since the
error is estimation is proportional to the overall frequency of the items
in the data stream.

More details of computations which one can perform with the AMS sketch are
discussed in [10, 11].

The second kind of sketch which is used for counting is the count-min sketch
[26]. The count-min sketch is based upon the concept of hashing, and uses
k = ln(1/δ) pairwise-independent hash functions, which hash onto integers in
the range (0 . . . e/ε). For each incoming item, the k hash functions are applied
and the frequency count is incremented by 1. In the event that the incoming
item has frequency f , then the corresponding frequency count is incremented
by f . Note that by hashing an item into the k cells, we are ensuring that we
maintain an overestimate on the corresponding frequency. It can be shown that
the minimum of these cells provides the ε-accurate estimate to the frequency
with probability at least 1 − δ. It has been shown in [26] that the method can
also be naturally extended to other problems such as nding the dot product
or the second-order moments. The count-min sketch is typically more effec-
tive for problems such as frequency-estimation of individual items than the
projection-based AMS sketch. However, the AMS sketch is more effective for
problems such as second-moment estimation.
Wavelet Decomposition: Another widely known synopsis representation in
data stream computation is that of the wavelet representation. One of the most
widely used representations is the Haar Wavelet. We will discuss this tech-
nique in detail in this section. This technique is particularly simple to imple-
ment, and is widely used in the literature for hierarchical decomposition and
summarization. The basic idea in the wavelet technique is to create a decom-
position of the data characteristics into a set of wavelet functions and basis
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Granularity (Order k) Averages DWT Coef cients
Φ values ψ values

k = 4 (8, 6, 2, 3, 4, 6, 6, 5) -
k = 3 (7, 2.5, 5, 5.5) (1, -0.5,-1, 0.5)
k = 2 (4.75, 5.25) (2.25, -0.25)
k = 1 (5) (-0.25)

Table 14.1. An Example of Wavelet Coef cient Computation

(5)

(8, 6, 2,  3, 4, 6, 6, 5) 1

-0.5

-1

0.5

(7, 2.5, 5, 5.5) 2.25

-0.25

-0.25(4.75, 5.25)

5

Figure 14.1. Illustration of the Wavelet Decomposition
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functions. The property of the wavelet method is that the higher order coef -
cients of the decomposition illustrate the broad trends in the data, whereas the
more localized trends are captured by the lower order coef cients.

We assume for ease in description that the length q of the series is a power of
2. This is without loss of generality, because it is always possible to decompose
a series into segments, each of which has a length that is a power of two. The
Haar Wavelet decomposition de nes 2k−1 coef cients of order k. Each of
these 2k−1 coef cients corresponds to a contiguous portion of the time series
of length q/2k−1. The ith of these 2k−1 coef cients corresponds to the segment
in the series starting from position (i− 1) · q/2k−1 + 1 to position i ∗ q/2k−1.
Let us denote this coef cient by ψi

k and the corresponding time series segment
by Si

k. At the same time, let us de ne the average value of the rst half of
the Si

k by aik and the second half by bik. Then, the value of ψi
k is given by

(aik − bik)/2. More formally, if Φi
k denote the average value of the Si

k, then the
value of ψi

k can be de ned recursively as follows:

ψi
k = (Φ2·i−1

k+1 − Φ2·i
k+1)/2 (14.1)

The set of Haar coef cients is de ned by the Ψi
k coef cients of order 1 to

log2(q). In addition, the global average Φ1
1 is required for the purpose of per-

fect reconstruction. We note that the coef cients of different order provide an
understanding of the major trends in the data at a particular level of granular-
ity. For example, the coef cient ψi

k is half the quantity by which the rst half
of the segment Si

k is larger than the second half of the same segment. Since
larger values of k correspond to geometrically reducing segment sizes, one can
obtain an understanding of the basic trends at different levels of granularity.
We note that this de nition of the Haar wavelet makes it very easy to com-
pute by a sequence of averaging and differencing operations. In Table 14.1,
we have illustrated how the wavelet coef cients are computed for the case of
the sequence (8, 6, 2, 3, 4, 6, 6, 5). This decomposition is illustrated in graphi-
cal form in Figure 14.1. We also note that each value can be represented as a
sum of log2(8) = 3 linear decomposition components. In general, the entire
decomposition may be represented as a tree of depth 3, which represents the
hierarchical decomposition of the entire series. This is also referred to as the
error tree. In Figure 14.2, we have illustrated the error tree for the wavelet de-
composition illustrated in Table 14.1. The nodes in the tree contain the values
of the wavelet coef cients, except for a special super-root node which contains
the series average. This super-root node is not necessary if we are only consid-
ering the relative values in the series, or the series values have been normalized
so that the average is already zero. We further note that the number of wavelet
coef cients in this series is 8, which is also the length of the original series.
The original series has been replicated just below the error-tree in Figure 14.2,
and it can be reconstructed by adding or subtracting the values in the nodes
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Figure 14.2. The Error Tree from the Wavelet Decomposition

along the path leading to that value. We note that each coef cient in a node
should be added, if we use the left branch below it to reach to the series values.
Otherwise, it should be subtracted. This natural decomposition means that an
entire contiguous range along the series can be reconstructed by using only the
portion of the error-tree which is relevant to it. Furthermore, we only need
to retain those coef cients whose values are signi cantly large, and therefore
affect the values of the underlying series. In general, we would like to mini-
mize the reconstruction error by retaining only a xed number of coef cients,
as de ned by the space constraints.

While wavelet decomposition is easy to perform for multi-dimensional data
sets, it is much more challenging for the case of data streams. This is because
data streams impose a one-pass constraint on the wavelet construction process.
A variety of one-pass algorithms for wavelet construction are discussed in [30].
Histograms: The technique of histogram construction is closely related to that
of wavelets. In histograms the data is binned into a number of intervals along
an attribute. For any given query, the counts from the bins can be utilized
for query resolution. A simple representation of the histogram method would
simply partition the data into equi-depth or equi-width intervals. The main
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inaccuracy with the use of histograms is that the distribution of data points
within a bucket is not retained, and is therefore assumed to be uniform. This
causes inaccuracy because of extrapolation at the query boundaries. A natural
choice is to use an equal number of counts in each bucket. This minimizes the
error variation across different buckets. However, in the case of data streams,
the boundaries to be used for equi-depth histogram construction are not known
a-priori. We further note that the design of equi-depth buckets is exactly the
problem of quantile estimation, since the equi-depth partitions de ne the quan-
tiles in the data. Another choice of histogram construction is that of minimiz-
ing the variance of frequency variances of different values in the bucket. This
ensures that the uniform distribution assumption is approximately held, when
extrapolating the frequencies of the buckets at the two ends of a query. Such
histograms are referred to as V-optimal histograms. Algorithms for V-optimal
histogram construction are proposed in [36, 37]. A more detailed discussion
of several algorithms for histogram construction may be found in [2].

6. Privacy Issues
Social sensing offers interesting new challenges pertaining to privacy as-

surances on data. General research on privacy typically focuses on electronic
communication as opposed to rami cations of increasing sensory instrumen-
tation in a socio-physical world. In contrast, traditional embedded systems
research typically considers computing systems that interact with physical and
engineering artifacts and belong to the same trust domain. A need arises
to bridge the gap in privacy research by formulating and solving privacy-
motivated research challenges in the emerging social sensing systems, where
users interact in the context of social networks with embedded sensing devices
in the physical world.

Sharing sensor data creates new opportunities for loss of privacy (and new
privacy attacks) that exploit physical-side channels or a priori known infor-
mation about the physical environment. Research is needed on both privacy
speci cation and enforcement to put such speci cation and enforcement on
solid analytic foundations, much like speci cation and enforcement of safety
requirements of high-con dence software.
Speci cation calls for new physical privacy speci cation interfaces that are

easy to understand and use for the non-expert. Enforcement calls for two com-
plementary types of privacy mechanisms; (i) protection mechanisms from in-
voluntary physical exposure, and (ii) control of voluntary information shar-
ing. The former enforce physical privacy. They are needed to prevent “side-
channel" attacks that exploit physical and spatio-temporal properties, charac-
teristic of embedded sensing systems, to make inferences regarding private
information. Control of voluntary information sharing must facilitate privacy-
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preserving exchange of time-series data. A predominant use of data in social
sensing applications is for aggregation purposes such as computing statistical
information from many sources. Mathematically-based data perturbation and
anonymization schemes are needed to hide user data but allow fusion opera-
tions on perturbed or partial data to return correct results to a high degree of
approximation.

While privacy-preserving statistics and privacy-preserving data mining are
mature elds with a signi cant amount of prior research, sharing of sensor data
offers the additional challenge of dealing with correlated multi-dimensional
time-series data represented by sensory data streams. Correlations within and
across sensor data streams and the spatio-temporal context of data offer new
opportunities for privacy attacks. The challenge is to perturb a user’s sequence
of data values such that (i) the individual data items and their trend (i.e., their
changes with time) cannot be estimated without large error, whereas (ii) the
distribution of the data aggregation results at any point in time is estimated with
high accuracy. For instance, in a health-and- tness social sensing application,
it may be desired to nd the average weight loss trend of those on a particular
diet or exercise routine as well as the distribution of weight loss as a function of
time on the diet. This is to be accomplished without being able to reconstruct
any individual’s weight and weight trend without signi cant error.

Examples of data perturbation techniques can be found in [9, 8, 16]. The
general idea is to add random noise with a known distribution to the user’s
data, after which a reconstruction algorithm is used to estimate the distribution
of the original data. Early approaches relied on adding independent random
noise. These approaches were shown to be inadequate. For example, a special
technique based on random matrix theory has been proposed in [24] to recover
the user data with high accuracy. Later approaches considered hiding individ-
ual data values collected from different private parties, taking into account that
data from different individuals may be correlated [23]. However, they do not
make assumptions on the model describing the evolution of data values from a
given party over time, which can be used to jeopardize privacy of data streams.
Perturbation techniques must speci cally consider the data evolution model
to prevent attacks that extract regularities in correlated data such as spectral

ltering [24] and Principal Component Analysis (PCA) [23].
In work discussed earlier in this chapter [28], it was shown that privacy

of time-series data can be preserved if the noise used to perturb the data is
itself generated from a process that approximately models the measured phe-
nomenon. For instance, in the weight watchers example, we may have an
intuitive feel for the time scales and ranges of weight evolution when humans
gain or lose weight. Hence, a noise model can be constructed that exports
realistic-looking parameters for both the direction and time-constant of weight
changes. The resulting perturbed stream can be aggregated with that of others
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in the community. Since the distributions of noise model parameters are sta-
tistically known, it is possible to estimate the sum, average and distribution of
added noise (of the entire community) as a function of time. Subtracting that
known average noise time series from the sum of perturbed community curves
will thus yield the true community trend. The distribution of community data
at a given time can similarly be estimated (using deconvolution methods) since
the distribution of noise (i.e., data from virtual users) is known. The estimate
improves with community size.

The approach preserves individual user privacy while allowing accurate re-
construction of community statistics. Several research questions arise that re-
quire additional work. For example, what is a good upper bound on the recon-
struction error of the data aggregation result as a function of the noise statistics
introduced to perturb the individual inputs? What are noise generation tech-
niques that minimize the former error (to achieve accurate aggregation results)
while maximizing the noise (for privacy)? How to ensure that data of indi-
vidual data streams cannot be inferred from the perturbed signal? What are
some bounds on minimum error in reconstruction of individual data streams?
What noise generation techniques maximize such error for privacy? Privacy
challenges further include the investigation of attack models involving corrupt
noise models (e.g., ones that attempt to deceive non-expert users into using
perturbation techniques that do not achieve adequate privacy protection), ma-
licious clients (e.g., ones that do not follow the correct perturbation schemes
or send bogus data), and repeated server queries (e.g., to infer additional infor-
mation about evolution of client data from incremental differences in query re-
sponses). For example, given that it is fundamentally impossible to tell if a user
is sharing a properly perturbed version of their real weight or just some random
value, what fractions of malicious users can be accommodated without signi -
cantly affecting reconstruction accuracy of community statistics? Can damage
imposed by a single user be bounded using outlier detection techniques that
exclude obviously malicious users? How does the accuracy of outlier detec-
tion depend on the scale of allowable perturbation? In general, how to quantify
the tradeoff between privacy and robustness to malicious user data? How tol-
erant is the perturbation scheme to collusion among users that aims to bias
community statistics? Importantly, how does the time-series nature of data af-
fect answers to the above questions compared to previous solutions to similar
problems in other contexts (e.g., in relational databases)?

Furthermore, how can the above perturbation techniques, defense solutions,
and bounds be extended to the sharing of multiple correlated data streams,
or data streams with related context? For example, consider a social sens-
ing application where users share vehicular GPS data to compute traf c speed
statistics in a city. In this case, in order to compute the statistics correctly as
a function of time and location, each vehicle’s speed must be shared together
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with its current GPS location and time of day. Perturbing the speed alone does
not help privacy if the correct location of the user must be revealed at all times.
What is needed is a perturbation and reconstruction technique that allows a user
to “lie" about their speed, location, and time of day, altogether, in a manner that
makes it impossible to reconstruct their true values, yet allow an aggregation
service to average out the added multi-dimensional noise and accurately map
the true aggregate traf c speed as a function of actual time and space. This
problem is related to the more general concern of privacy-preserving classi-

cation [60, 66], except that it is applied to the challenging case of aggre-
gates of time-series data. Preliminary work shows that the problem is solvable.
Understanding the relation between multi-dimensional error bounds on recon-
struction accuracy and bounds on privacy, together with optimal perturbation
algorithms in the sense of minimizing the former while maximizing the latter,
remains an open research problem.

7. Sensors and Social Networks: Applications
In this section, we will discuss a number of recent applications which have

been designed in the context of sensors and social networks. Many of these
applications are related to storage and processing of mobile data which is con-
tinuously collected over time. Such mobile data can be used in order to provide
real time knowledge of the different users to one another, trigger alerts, provide
an understanding of social trends, and enable a variety of other applications.
In this section, we will discuss a number of social-centric applications, which
have been developed in recent years. These include speci c systems which
have been designed by companies such as Google, Microsoft, and SenseNet-
works, as well as a number of generic applications, which have not yet been
fully commercialized.

7.1 The Google Latitude Application
The Google Latitude Application uses GPS data which is collected from

Google map users on mobile cell phones. It is also possible to collect more
approximate data with the use of cell phone tower location data (in case the
mobile phones are not GPS enabled), or with the use of IP addresses of a com-
puter which is logged into the personalized google page called iGoogle. The
Latitude application enables the creation of virtual friends, who are essentially
other users that carry the same location-enabled device, or use other devices
such as personal computers which can transmit approximate location data such
as IP-addresses. A number of other applications which enabled by the Google
Latitude master application are as follows:

Location Alerts: The application allows the triggering of alerts when
someone is near their latitude friends. The alerts are triggered only when
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something interesting is being done. This is done on the basis of both
time and location. For example, an alert could be triggered when two
friends are at a routine place, but an unusual time. Alternatively, it could
be triggered when two friends are at a routine time but unusual place.

Public Location Badge: It is possible to post one’s location directly
on blog or social network. This in turn increases the visibility of one’s
information to other users of the site.

Use with Chat Applications: The mobile location can also be used in
conjunction with the Google Talk application which allows users to chat
with one another. Users who are chatting with one another can see each
other’s location with the use the embedded latitude functionality.

It is clear that all of the above techniques change the nature and dynamics of
social interactions between users. For example, the triggering of alerts can
itself lead to a changed pattern of interaction among the different users. The
ability to mine the dynamics of such interactions is a useful and challenging
task for a variety of applications.

While Google Latitude is perhaps the most well known application, it is by
no means the only one. A number of recent applications have been designed
which can track mobile devices on the internet through GPS tracking. Some
of these applications have been designed purely for the purpose of tracking
a device which might be lost, whereas others involve more complex social
interactions. Any software and hardware combination which enables this has
the potential to be used for social sensing applications. Some examples of such
applications are as follows:

Navizon Application: This application [74] uses GPS in order to al-
low social interactions between people with mobile phones. It allows
the tracking of mobile friends, coverage of particular areas, and trails
followed by a particular user.

iLocalis Application: This application [75] is currently designed only
for particular mobile platforms such as the iPhone, and it allows the
tracking of family and friends. In addition, it is also designed for corpo-
rate applications in which a group of mobile employees may be tracked
using the web. Once friendship links have been set up, the application
is capable of sending a message to the friends of a particular user, when
they are nearby.

7.2 The Citysense and Macrosense Applications
The Citysense and Macrosense applications both collect real-time data from

a variety of GPS-enabled cell phones, cell phone tower triangulation, and GPS-
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enabled cabs. The two applications share a number of similarities in terms of
the underlying methodology, but they have different features which are targeted
towards different kinds of audiences. We describe them below:

7.2.1 CitySense Application. The citysense application is designed
for the broad consumer base which carries mobile cell phones. The Citysense
application is designed to track important trends in the behavior of people in
the city. For example, the application has been deployed in San Francisco, and
it can show the busiest spots in the city on a mobile map.

The CitySense application also has a social networking version of a col-
laborative ltering application. The application stores the personal history of
each user, and it can use this personal history in order to determine where other
similar users might be. Thus, this can provide recommendations to users about
possible places to visit based on their past interests.

A very similar application is the WikiCity project [13] which collects real
time information with the use of GPS and mobile devices. These are then used
to collect the location patterns of users, and their use in a variety of neighbor-
hoods.

7.2.2 MacroSense Application. The MacroSense application is sim-
ilar in terms of the data it collects and kind of functionality it provides; how-
ever it is focussed towards the commercial segment in predicting consumer
behavior. The application can predict the behavior of customers based on their
location pro le and behavior. The application can predict what a particular
customer may like next. The broad idea is to segment and cluster customers
into marketing groups based on their behavior, and use this information in or-
der to make predictions. For example, the popularity of a product with users
who are most like the target can be used for predictive purposes. Thus, this ap-
proach is somewhat like collaborative ltering, except that it uses the behavior
of customers rather than their feedback. The effectiveness of particular behav-
iors which predict the interests are also used. This analysis can be performed
in real time, which provides great value in terms of predictive interactions. The
analytics can also be used in order to predict group in uences for the behaviors
of the underlying subjects.

7.3 Green GPS
Green GPS [32] is a participatory sensing navigation service that allows

drivers to nd the most fuel-ef cient routes for their vehicles between arbi-
trary end-points. Green GPS relies on data collected by individuals from their
vehicles as well as on mathematical models to compute fuel ef cient routes.

The most fuel ef cient route may depend on the vehicle and may be different
from the shortest or fastest route. For example, a fast route that uses a freeway
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may consume more fuel because fuel consumption increases non-linearly with
speed. Similarly, the shortest route that traverses busy city streets may be
suboptimal because of downtown traf c.

The service exploits measurements of standard vehicular sensor interfaces
that give access to most gauges and engine instrumentation. Vehicles that have
been sold in the United States after 1996 are mandatorily equipped with a sens-
ing subsystem called the On-Board Diagnostic (OBD-II) system. The OBD-II
is a diagnostic system that monitors the health of the automobile using sen-
sors that measure approximately 100 different engine parameters. Examples
of monitored measurements include fuel consumption, engine RPM, coolant
temperature and vehicle speed.

To build its fuel ef ciency models, Green GPS utilizes a vehicle’s OBD-II
system and a typical scanner tool in conjunction with a participatory sens-
ing framework. The team is collecting data from vehicles driven by research
participants to determine what factors in uence fuel consumption. The data
collected by the participants is driving the creation of a mathematical model
that enable computing fuel consumption of different cars on different road
segments. Early studies have shown that a 13% reduction in consumer gas
consumption is possible over the shortest path and 6% over the fastest path.

7.4 Microsoft SensorMap
Most of the applications discussed above are based on location data, which

is automatically collected based on user behavior. The SensorMap project [49]
at Microsoft allows for a more general framework in which users can choose
to publish any kind of sensor data, with the understanding that such shared
knowledge can lead to interesting inferences from the data sets. For example,
the sensor data published by a user could be their location information, audio
or video feeds, or text which is typed on a keyboard. The goal of the Sen-
sorMap project is to store and index the data in a way such that it is ef ciently
searchable. The application also allows users to index and cache data, so that
users can issue spatio-temporal queries on the shared data.

The SensorMap project is part of the SenseWeb project, which allows shar-
ing and exploring of sensor streams over geo-centric interfaces. A number of
key design challenges for managing such sensor streams have been discussed
in [47]. Other key challenges, which are associated with issues such as the pri-
vacy issues involved with continuously collecting and using the sensors which
are only intermittently available is discussed in [41].

7.5 Animal and Object Tracking Applications
While social networks are generally de ned for the case of people, a similar

analysis can be applied to the case of online tracking of animals. For example,
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animals which are drawn from the same community or family may be con-
sidered to have implicit links among them. Such links can be utilized for the
perspective of detailed understanding of how community and family member-
ship affects geographical patterns. Such information can be very useful for
a variety of applications, such as building disease propagation models among
animals. This general idea can also be extended to applications which are out-
side the domain of social networks. For example, commercial products can be
tracked with the use of RFID tags. The products may have implicit links among
them which correspond to shared batches or processes during the production
and transportation process. Such tracking data can be used in conjunction with
linkage analysis in order to determine the causality and origin of tainted prod-
ucts. It can also be used to track the current location of other products which
may be tainted.

7.6 Participatory Sensing for Real-Time Services
A variety of participatory sensing techniques can be used for enabling real-

time services. In participatory sensing, users agree to allow data about them
to be transmitted in order to enable a variety of services which are enabled in
real time. We note that the main challenges to participatory sensing include
the privacy-issues associated with such sensing techniques. Therefore partici-
patory sensing is usually utilized only for applications which are real-time and
time-critical; in many cases such services may involve emergencies or health-
care applications. Some examples are as follows:

Vehicular Participatory Sensing: In vehicular participatory sensing, a
variety of sensor data from vehicles such as mobile location, or other
vehicular performance parameters may be continuously transmitted to
users over time. Such data may be shared with other users in the aggre-
gate in order to preserve privacy. This is the social aspect of such ap-
plications, since they enable useful individual decisions based on global
patterns of behavior. In addition, vehicular participatory sensing may be
used in order to enable quick responses in case of emergencies involving
the vehicle operation.

Elderly Healthcare: The ability to carry such devices allows its use for
a variety of healthcare applications involving the elderly. For example,
elderly patients can use this in order to call for care when necessary.
Similarly, such sensing devices can be utilized for a variety of safety and
health-care related applications.
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8. Future Challenges and Research Directions
In this chapter, we examined the emerging area of integrating sensors and

social networks. Such applications have become more commonplace in recent
years because of new technologies which allow the embedding of small and
unobtrusive sensors in clothing. The main challenges of using such technolo-
gies are as follows:

Such applications are often implemented on a very large scale. In such
cases, the database scalability issues continue to be a challenge. While
new advances in stream processing have encouraged the development of
effective techniques for data compression and mining, mobile applica-
tions continue to be a challenge because of the fact that both the number
of streams and rate of data collection may be extremely large.

A major challenge in sensor-based social networking are the privacy is-
sues inherent in the underlying applications. For example, individuals
may not be willing to disclose their locations [33] in order to enable ap-
plications such as proximity alerts. In many cases, such constraints can
greatly reduce the functionality of such applications. A major challenge
in such applications is to provide individual hard guarantees on their
privacy level, so that they become more willing to share their real time
information.

The architectural challenges for such systems continue to be quite exten-
sive. For example, the use of centralized processing methods for such
large systems does not scale well. Therefore, new methods [47, 49] have
moved away from the centralized architecture for stream collection and
processing.

The future challenges of such research include the development of new algo-
rithms for large scale data collection, processing and storage. Some advance-
ments [2, 47, 49] have already been made in this direction.
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1. Introduction
A multimedia information network is a structured multimedia collection,

where multimedia documents, such as images and videos are conceptually
represented by nodes, that are connected by links. These links correspond
to either actual hyperlinks in social and web networks, or logical relationships
between the nodes which are implicitly de ned by different kinds of relation-
ships, meta-information such as user identi ers, location information or tags.
The recent popularity of research in this area is due to the rapid increase in on-
line web content such as web images and the popularity of online communities.
For example, Flickr and Facebook host billions of images, which are linked to
each other by virtue of actual hyperlinks or their relationships to users, groups,
and tags. The resulting network structure contains rich semantic information,
such as semantic ontologies, social relationships, and meta-information. It has
become an interesting challenge to explore the interplay between the network
structure and the rich content information in multimedia information networks.
Such network structure and semantic knowledge can be used to convert the
content into useful knowledge for a variety of tasks. Thus, the network struc-
ture plays a critical role in the conversion process, which is so essential to
leveraging the knowledge inherent in the information network. An appropriate
recent quote by John Munsell is as follows:
“If the content is king, then the conversion is queen"

Multimedia information networks can be viewed as a marriage of multime-
dia content and social networks. However, it conveys much richer information
than either of the two could express as a stand-alone entity, because of the hid-
den information which is stored in the interplay between the two entities. In
order to understand multimedia information networks, we must consider not
only the visual features for each node, but also explore the network structure
associated with them. In recent years, there has been a lot of work in this area,
and this has begun to create a critical mass of new research in this area.

Although it has become a popular research topic in recent years, the subject
of multimedia information networks is still in its infancy. This chapter provides
an overview of recent developments in the eld of multimedia information
networks. Our aim is to provide an understanding and motivation of the key
problems and techniques in this eld, though it is hard to be exhaustive, given
the extraordinarily wide coverage of this area. The chapter also provides the
citations to the key literature in the eld, for a reader that is interested in a
detailed understanding.

It is important to note that the link structures of multimedia information
networks are primarily logical, and are created by logical commonality in fea-
tures, and relationships between different entities in the network. This chapter
will describe the different kinds of logical link structures which can be created
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in an information network, in addition to the natural hyperlinks which are often
present in a social network and web environment. We also study the method-
ological techniques for exploiting the interplay between content and network
structure. The chapter is correspondingly divided into two parts:

In the rst part, we summarize four categories of popular (logical) link
structures in Multimedia Information Networks: semantic ontologies,
community media, personal photograph albums, and geographical loca-
tions. For each link type, we review some typical methods together with
their applications.

In the second part of the chapter, we discuss some speci c problems
and techniques in this eld: data sets and industrial systems, inference
methods, and future directions.

At a more detailed level, the chapter is organized as follows. In section 2,
we discuss the derivation of links from semantics. In section 3, we discuss
the derivation of links from community media. In section 4, we discuss the
networks which are created by the linkage of personal photograph albums.
In section 5, we discuss the networks created by the linkage of geographical
information. In section 6, we discuss the common inference methods which are
used for mining such networks. In section 7, we discuss data sets and industrial
systems. Section 8 contains the conclusions, summary and future directions.

2. Links from Semantics: Ontology-based Learning
Ontology plays a pivotal role for representing concepts that we are con-

cerned with and their relations. Ontology would contain whatever human
knowledge pertaining to the domain of interests that could help better process
and analysis of visual data and textual cues.

In [18], an ontology was constructed by hand to facilitate personal photo
album management. In [106], the authors worked on image retrieval for an-
imal domain. They extracted scienti c lassi cation information available in
Wikipedia pages as their animal domain ontology. Next, in order to build tex-
tual ontology, they parsed relevant Wikipedia sections and found important
keywords including concepts and relations. Finally, the relations in the ontol-
ogy are further cross-veri ed via “is-a" relations in animal ontology.

In the case of ontology for more general subjects, Wikipedia and WordNet
are two important knowledge bases. Wikipedia stores knowledge of generic
terms and name entities in its countless articles. This results in dif culty in
automatic and systematic knowledge extraction, while WordNet provides a lot
of relational information between generic terms. The YAGO system developed
in [101] bridges these two and provides a comprehensive ontology covering
many generic subjects in daily life.
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There have been some works focusing on hierarchical classi cation and re-
trieval. In [64], the ontology is more general as it exploits “is-a" and “part-of"
relations and is in general a graph. In the resulting graph, each edge e is asso-
ciated with a binary classi er which computes conditional likelihood given the
previous concept. Because the graph may not be a tree, there may be multiple
paths from the root concept to any target concept. Each path p is pessimisti-
cally associated with the minimum of the conditional likelihoods associated
with all edges on the path. The marginal likelihood of any target concept is
then optimistically set as the maximum of all path likelihoods from root to
the target concept. Similarly for ImageNet constructed in [25], the “tree-max
classi er" that propagates maximum of all descendant concept likelihoods one
level up was proposed to estimate individual concept likelihood in the tree-
structured ontology. In [126], the authors investigated the effects of combining
label estimates of classi ers trained at various levels, as well as possibilities of
transferring concept models to neighboring concepts like sibling concepts to
address small sample problem. A more sophisticated hierarchical classi cation
proposed in [11] is to encode the path from root concept to target concept by a

x-length binary vector and then treat it as a multilabel classi cation problem.
Effectively modeling structured concepts has become a critical ingredient

for retrieving and searching multimedia data on the Web. Many sophisticated
models have been proposed to recognize a wide range of multimedia concepts
from our everyday lives to many speci c domains, which lead to a collection
of multimedia model warehouses such as Large-Scale Concept for Multimedia
(LSCOM) [76] and 101 semantic concepts in multimedia [99]. To model the
ontology, some researchers employ a at correlative concept structure [81][77],
while others try to build hierarchical structures based on semantic correlations
[114] [27] [64].

3. Links from Community Media
The primary concept governing community media is that users play the cen-

tral role in retrieving, indexing and mining media content. The basic idea is
quite different from a traditional content-centric multimedia system. The web
sites providing community media are not solely operated by the the owners but
by millions of amateur users who provide, share, edit and index these media
content. In this section, we will review recent research advancements in com-
munity media systems from two aspects: (1) retrieval and indexing system for
community media based on user-contributed tags, and (2) community media
recommendations by mining user ratings on media content.



Multimedia Information Networks in Social Media 417

 

Figure 15.1. The distance metric is mined from the visual content of images together with the
tags annotated by the grassroots users. The learned distance metric then is applied to retrieve
images on the Internet by ranking their relevances to the query.

3.1 Retrieval Systems for Community Media
Recent advances in internet speed and easy-to-use user interfaces provided

by some web companies, such as Flickr, Corbis and Facebook, have signi -
cantly promoted image sharing, exchange and propagation among user. Mean-
while, the infrastructures of image-sharing social networks make it an easy
task for users to attach tags to images. These huge amount of user tags enable
the ne understanding of the associated images and provide many research
opportunities to boost image search and retrieval performance. On the other
hand, the user tags somehow re ect the users’ intentions and subjectivities and
therefore can be leveraged to build a user-driven image search system.

To develop a reliable retrieval system for community media based on these
user contributed tags, two basic problems must be resolved. First of all, the
user tags are often quite noisy or even semantically meaningless [21]. More
speci cally, the user tags are known to be ambiguous, limited in terms of com-
pleteness, and overly personalized [32] [65]. This is not surprising because
of the uncontrolled nature of social tagging and the diversity of knowledge
and cultural background of the users [55]. To guarantee a satisfactory retrieval
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performance, tag denoising methods are required to re ne these tags before
they can be used for retrieval and indexing. Some examples of tag denoising
methods are described below.

The work in [103] proposes to construct an intermediate concept space from
user tags which can be used as a medium to infer and detect more generic
concepts of interest in the future. The work in [112] proposes a probabilistic
framework to resolve ambiguous tags which are likely to occur but appear in
different contexts with the help of human effort. There also exist many tag
suggestion methods [4] [69] [98] [115] which help users annotate community
media with most informative tags, and avoid meaningless or low-quality tags.
For all these methods, tag suggestion systems are involved to actively guide
users to provide high-quality tags based on tags co-occurrence relations.

Secondly, the tags associated with an image are generally in a random order
without any importance or relevance information, which limits the effective-
ness of these tags in search and other applications. To overcome this problem,
[59] proposes a tag ranking scheme that aims to automatically rank the tags
associated with a given image according to their relevance to the image con-
tent. This tag ranking system estimates the initial relevance scores for the tags
based on probability density estimations, and followed by a random walk over
a tag similarity graph in order to re ne the relevance scores. Another method
was proposed in [55] that learns tag relevance by accumulating votes from vi-
sually similar neighbors. Treated as tag frequency, this learned tag relevance
is seamlessly embedded into tag-based social image retrieval paradigms.

Many efforts have been made on developing the multimedia retrieval sys-
tems by mining the user tags. As a typical social image retrieval system illus-
trated in Figure 15.1, a distance metric is mined from these web images and
their associated user tags, which can be directly applied to retrieve web images
in a content-based image retrieval paradigm [83]. In [109], Wang et al. pro-
pose a novel attempt at model-free image annotation, which is a data-driven
approach that annotates images by mining their search results based on user
tags and surrounding text. Since no training data set is required, their approach
enables annotating with unlimited vocabulary and is highly scalable and robust
to outliers.

3.2 Recommendation Systems for Community Media
The problem of developing recommendation systems for community media

has attracted considerable attention. This is because of the popularity of Web
2.0 applications, such as Flickr, Youtube and Facebook. Users give their own
comments and ratings on multimedia items, such as images, amateur videos
and movies. However, only a small portion of the multimedia items have been
rated and thus the available user ratings are quite sparse. Therefore, an auto-
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matic recommendation system is desired to be able to predict users’ ratings on
multimedia items, so that they can easily nd the interesting images, videos
and movies from shared multimedia contents.

Recommendation systems measure the user interest in given items or prod-
ucts to provide personalized recommendations based on user taste [39] [6]. It
becomes more and more important to enhance user experience and loyalty by
providing them with the most appropriate products in e-commerce web sites
(such as Amazon, eBay , Net ix, TiVo and Yahoo). Thus, there are many
advantages in designing a user-satis ed recommendation system.

Currently, existing recommendation systems can be categorized into two
different types. The content-based approach [1] creates a pro le for each user
or product which depicts its nature. User pro les can be described by their
historical rating records on movies, personal information (such as their age,
gender, or occupation) and their movie types of interest. Meanwhile, movie
pro les can be represented by other features, such as their titles, release date,
and movie genres (e.g., action, adventure, animation, comedy). The obtained
pro les allow programs to quantify the associations between users and prod-
ucts.

The other popular recommendation systems rely only on the past user rat-
ings on products with no need to create explicit pro les. This method is known
as collaborative ltering (CF) [31], and it analyzes relationships between users
and interdependencies among products. In other words, it aims at predicting
a user rating based on user ratings on the same set of multimedia items. The
only information used in CF is the historical behavior of users, such as their
previous transactions or the way they rate products. The CF method can also
be cast as two primary approaches - the neighborhood approach and latent fac-
tor models. Neighborhood methods compute the relationships between users
[38] [9] [85] or items [26] [56] [93] or combination thereof [108] to predict
the preference of a user to a product. On the other hand, latent factor models
transform both users and items into the same latent factor space and measure
their interactions in this space directly. The most representative methods of la-
tent factor models are singular value decomposition (SVD) [80]. Evaluations
on recommendation systems suggest that SVD methods have gained state-of-
the-art performance among many other methods [80].

Some public data sets are available for comparison purpose among different
recommendation systems. Among them, the most exciting and popular one is
the Net ix data set for movie recommendation1. The Net ix data set contains
more than 100 million ratings on nearly 18 thousand movie titles from over
480,000 randomly-sampled customers. These user ratings were collected be-

1http://www.net ixprize.com
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tween October 1998 and December 2005, and they are able to represent the
user trend and preference during this period. The ratings are given on a scale
from 1 to 5 stars. The date of each rating as well as the title and year of re-
lease for each movie are provided. No other data, such as customer or movie
information, were employed to compute Cinematch’s accuracy values used in
this contest. In addition to the training data set, a qualifying test set is provided
with over 2.8 million customer-movie pairs and the rating dates. These pairs
were selected from the most recent ratings from a subset of the same customers
in the training data set, over a subset of the same movies.2

4. Network of Personal Photo Albums
The proliferation of high quality and modestly priced digital cameras has re-

sulted in an explosion of personal digital photo collections in the past ten years.
It is not uncommon for a home user to take thousands of digital photos each
year. These images are largely unlabeled, and often have minimal organization
done by the user. Managing, accessing, and making use of this collection has
become a challenging task.

The majority of current work on image annotation and organization makes
use of photo collections available on the web, such as those from Flickr, Face-
book, or Wiki pages. This provide many insights that are also applicable to
personal collections. However, personal collections also have some distinctive
properties, that are very different from professional or web collections. We will
discuss research works that address the issues related to each of these unique
aspects of personal photo collections.

4.1 Actor-Centric Nature of Personal Collections
Both identity of people and number of people in photos are important cues to

users in how they remember, describe, and search personal photos [72]. There
is a large body of research on face recognition. The accuracy of state-of-the-art
face recognition algorithms under controlled-capture situation are reasonably
high[68], although accuracy can vary signi cantly for different persons and
data-sets. While accuracy under uncontrolled capture may not be suf cient
for fully-automatic annotation, it can be a baseline for very ef cient semi-
automatic annotation. Personal collections are usually dominated by a small
number of subjects. Therefore, with an intelligent user interfaces, it is possible

2Net ix offered a Grand Prize with $1, 000, 000 and Progress Prizes with $50, 000. On September 2009,
Net ix announced the latest Grand Prize winner as team BellKor’s Pragmatic Chaos [52]. This result
achieves a root mean squared error (RMSE) of 0.8567 on the test subset - a 10.06% improvement over
the Cinematch’s score on the test subset. The latter uses straightforward statistical linear models with data
conditioning. The next Grand Prize winner will have to improve RMSE by at least 10% compared to
BellKor’s Pragmatic Chaos algorithm.
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to achieve 80% recall rate and near 100% precision with minimal amount of
user input, such as a few seconds of simple drag-and-drop merging of similar
clusters [122].

Subjects in personal photos within a collection are usually related by fam-
ily ties or friendships. Discovering and understanding the relationship among
identi ed people in personal collections has signi cant application impact.
Sharing of personal photos on social networking sites such as Facebook makes
it possible to discover relations beyond an individual’s collection. Recent work
by Wu et al [113] took advantage of face clustering technology in order to
discover social relationships of subjects in personal photo collections. Co-
occurrence of identi ed faces as well as inter-face distances (inferred from in-
image distance and typical human face size) are used to calculate link strength
between any two identi ed persons. In such cases, social clusters as well as
social importance of individuals can be calculated.

Relationship analysis of subjects in personal photos can be used to improve
facial annotation. Gallagher et al [29] exploits pairwise connections between
frequent faces in personal photo collections in order to build up prior probabil-
ities of groups of faces appearing in a single image. This information is used
to identify individuals from ambiguously-labeled group shots. While the em-
phasis of this chapter is not on relationship analysis, it shows one of the many
potential values in modeling relationships between people in personal photo
collections.

4.2 Quality Issues in Personal Collections
The transition to digital photography encouraged much more trial-and-error

in consumer photo capture. People often take a number of photos of the same
subjects in sequence in the hope of picking out an ideal one later. This habit
contributed to the increasing collection size of personal photos. Effective near-
duplicate detection is highly useful both in browsing and in creation of photo-
based products such as photo-books.

Near-duplicate detection can be done with a variety of approaches, each
with different trade-offs in accuracy and ef ciency. Detection methods based
on global features such as color histograms are fast but are likely to introduce
false-positives when two photos with very different contents have similar col-
ors, so they are often used in combination with other methods, or as a pre- lter
step [43]. Detection based on structural features are less prone to confusion,
at a much higher computational cost [20, 121]. A hybrid approach [102] com-
bines time, color, and local structural information in a cascade framework so
that more “expensive” calculations are only done when necessary.

After duplicate clusters are identi ed, selection, ranking, or mashing of the
duplicate photos are usually called for in consumer applications. Selection in
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a duplicate set can be done by image quality or image appeal [94], or by how
well an image represents the cluster [20]. Since duplicates in a personal col-
lection are usually taken with the same camera at the same scene from slightly
different viewpoints, it is also possible to combine the images in the duplicate
set to form a new composite image that is a “bigger and better" representation
of the scene [97].

4.3 Time and Location Themes in Personal Collections
Personal collections are generally captured using a small number of cameras

with time stamp (and sometimes GPS information). Typically, users store these
photos in folders labeled with time and event information [49]. Event and
location information are also among the top cues people remember and use
when searching for photos [72]. Due to the availability and importance of time
and location information for personal collections, both cues are used in photo
clustering and annotation work for personal photos.

Time clustering is one of the fastest and most effective method in organizing
personal photos into meaningful groups. It can be done with a simple K-means
clustering algorithm [62] or with more sophisticated multi-scale approach [22],
or by identifying “bursts” of photo taken with roughly the same rate [33]. Time
clustering is often used in combination with image content similarity. In addi-
tion to being an informative cue of event grouping, time cues can also be used
to limit image similarity calculations to images within a certain time interval,
therefore reducing the computation load for content-based clustering [102].

Location information is another key element in event clustering of personal
photos. Naaman et al. [74] used both time and location information to create a
photo organization system. A location clustering and naming algorithm is used
to assign location tags to each photo using GPS information extracted from
photo EXIF headers. Cao et al [17] showed that even without GPS tags in EXIF
headers, it is possible to generate location tags with usable accuracy when
combining image features with existing textual tags. These results indicate
the feasibility and usefulness of location identi cation in personal collection
analysis.

4.4 Content Overlap in Personal Collections
For personal photos, users often know more about the content than what can

be inferred from a single image, such as who took the picture, who was stand-
ing nearby, what happened before/after that moment, and what other objects
go together with the objects visible in the image. Looking beyond a single
photo can often make a big difference in the annotation accuracy of personal
collections.
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Annotation of a collection instead of individual photos is one way to take
advantage of the photo-to-photo correlation in personal collections. Cao et al
[14] used conditional random elds to model correlations of different photos
in a sub-collection to annotate photos by scene type and also annotate sub-
collections by event type. This work made good use of the inherent event-
based organization and strong inter-photo correlations that are characteristic of
personal collections to improve image collection annotation.

In the work by Gallagher et al [29], face appearance and co-appearance fre-
quencies within personal collections are used to build up prior probabilities of
groups of faces appearing in a single image, and this in turn is used to disam-
biguate personal labels for individual photos. This is an example of using the
correlation of photos within a collection to improve individual photo annota-
tion.

One can also go beyond the personal collection itself, and use photos in web
collections and their associated labels to improve personal photo annotation.
Liu et al. [61] learns images corresponding to concepts from enormous images
and their surrounding text on the web. The links between concepts and visual
features are transferred from the Internet to personal photo collections together
with concepts hierarchies provided by WordNet(http://wordnet.princeton.edu/),
the latter giving “subclass-of” relation between concept in order to decide the
negative training images for a certain concept – if concept “pool” has descen-
dants(subclasses) “natatorium”, “cistern”, “lido”, and “sink”, then images ir-
relevant to “pool” will be those surrounded by text that do not contain any of
these subclasses. In a word, both concept-to-image link and subclass-of link
between concepts are collected and utilized to train the image retrieval system.

Correlations among keywords, visually similar images, and closely time-
stamped images usually provide much implicit human knowledge for anno-
tation. Roughly speaking, visually similar photos are supposed to have corre-
lated annotations, and semantically close keywords are usually used to describe
largely overlapping sets of images. Motivated by these ideas, Jia et al. [42] pro-
posed to propagate correlations of these three domains around to improve the

nal annotation, where initial keyword correlation is obtained from Google in
a statistical way. After steady-state keyword and visual correlation graphs are
obtained based on their initial values and annotation of the images, they are
used together with the temporal correlation graph to get the nal annotation.

5. Network of Geographical Information
Geographical information is often represented in the form of a longitude-

latitude pair in order to represent the locations where the images are taken. In
recent years, the use of geographical information has become more and more
popular. With advances in low-cost GPS chips, cell phones and cameras have
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become equipped with GPS receivers, and thus are able to record the locations
while taking pictures. Many online communities, such as Flickr and Google
Earth, allow users to specify the location of their shared images either manually
through placement on a map or automatically using image meta-data embedded
in the image les. At the end of 2009, there have been approximately 100
million geo-tagged images in Flickr, and millions of new images continue to
be added each month.

Figure 15.2. GPS Network

Given the geographical information associated with images, we can easily
construct a network by grouping images taken from neighboring regions. Fig-
ure 15.2 illustrates such a network. The network shows that the visual informa-
tion may be correlated with GPS positions. This makes it possible to infer the
image semantics with geographical information, or to estimate the geographi-
cal information from visual content. By exploring the rich media such as user
tags, satellite images and wikipedia knowledge, we can leverage the visual and
geographical information for many novel applications.

Geographical annotation provides a rich source of information which can
link millions of images based on the similarity from geographical measures.
There has been a growing body of work in visual research community inves-
tigating geographical information for image understanding [73] [2] [16] [118]
[45] [119] [47] [71] [84] [63] [95] [12]. One line of research utilizes geograph-
ical information for better understanding of the image semantics. Another line
of research is devoted to estimating the geographical information from general
images.
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5.1 Semantic Annotation
Naaman et al. [73] proposed a system to suggest candidate identity labels

based on the meta-data of a photo including its time stamp and location. The
system explores the information of events and locations, and the co-occurrence
statistics of people. However, image analysis techniques are not used in the
system.

After Naaman’s work, more recent lines of research aim to understand se-
mantics from both visual information and geographical collections. Joshi and
Luo [45] propose to explore Geographical Information Systems (GIS) databases
using a given geographical location. They use descriptions of small local
neighborhoods to form bags of geo-tags as their representation. The associ-
ations of Geo-tags and visual features are learned to infer the event/activity
labels such as “beach" or “wedding". The authors demonstrate that the con-
text of geographical location is a strong cue for visual event/activity recogni-
tion. Yu and Luo [118] propose another way to leverage nonvisual contexts
such as location and time stamps. Their approach learns from rough loca-
tion (e.g., states in the US) and time (e.g., seasons) information, which can be
obtained through picture metadata automatically. Both visual and nonvisual
context information are fused using a probabilistic graphical model to improve
the accuracy of object region recognition. In [63], the authors explore satellite
images corresponding to picture location data and investigate their novel uses
to recognize the picture-taking environment. The satellite image functions as
a third eye above the object. This satellite information is combined with clas-
sical vision-based event detection methods. Luo et al. [63] employed both
color- and structure-based visual vocabularies for characterizing ground and
satellite images, respectively. The fusion of the complementary views (photo
and satellite) achieves signi cant performance improvement over the ground
view baseline.

5.2 Geographical Estimation
The previous section discusses research relevant to understanding the se-

mantics better using geographical information. An interesting question of a
different nature is whether we can use the visual information to estimate the
geographical locations even when they are not provided. As evidenced by the
success of Google Earth, there is great need for such geographic information
from users. Many web users have high interests in not only the places they live
but also other interesting places around the world. Geographic annotation is
also desirable when reviewing travel and vacation images. For example, when
a user becomes interested in a nice photo, he or she may want to know where
exactly it is. Moreover, if a user plans to visit a place, he or she may want
to nd out the points of interest nearby. Recent studies suggest that geo-tags
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expand the context that can be employed for image content analysis by adding
extra information about the subject or environment of the image.

Hays and Efros [37] were among the rst to consider the problem of estimat-
ing the location of a single image using only its visual content. They collected
millions of geo-tagged Flickr images. By using a comprehensive set of visual
features, they employed nearest neighbor search in the reference set in order
to locate the image. Results show that the approach is able to locate about a
quarter of the images (from a test data set) to within approximately 750 km of
their true location.

Motivated by [37], Gallagher et al. [30] incorporate textual tags to esti-
mate the geographical locations of images. Their results show that textual
tags perform better than visual content but they perform better in combination
than either alone. Cao et al. [16] also recognizes the effectiveness of tags in
estimating the geolocations. Similar to [30], they combine tags with visual in-
formation for annotation, however, they propose a novel model named logistic
canonical correlation regression which explores the canonical correlations be-
tween geographical locations, visual content and community tags. Unlike [37],
they argue that it is dif cult to estimate the exact location at which a photo was
taken and propose to estimate only the coarse location. A mean-shift based
approach is employed to spatially cluster all the images into several hundreds
of regions, and then estimate the most likely region for each image. The ex-
perimental results show that inference of the coarse location will lead to both
meaningful and accurate annotations.

Similar to Cao et al. [16], Crandall et al. [23] only estimate the approxi-
mate location of a novel photo. Using SVM classi ers, a novel image is again
geo-located by assigning it to the best cluster based on its visual content and
annotations. At the landmark scale, both the text annotations and visual con-
tent perform better than chance while at the metropolitan scale, only the text
annotations perform better than chance. Since landmarks are the most interest-
ing locations, such geo-tagged images have potential to produce tourist maps
using geographical annotation techniques [19]. In a recent research work [123]
supported by Google, Zhen et al. focused on the landmark recognition. They
build a web-scale landmark recognition engine named “Tour the world" using
20 million GPS-tagged photos of landmarks together with online tour guide
web pages. The experiments demonstrate that the engine can deliver satisfac-
tory recognition performance with high ef ciency. However, it is still an open
question whether it is possible to recognize non-landmark locations reliably.

5.3 Other Applications
In addition to the research works discussed above, there are other interest-

ing directions. Agarwal et al. [3] develop an exciting system with a 500 core
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cluster which matches and reconstructs three dimensional scenes from an ex-
tremely large number of photographs collected from Flickr. The results show
that three dimensional reconstruction algorithms can scale with the size of the
problem and the amount of available computation. Ji et al. [41] and Wang et
al. [110] consider the problem of mining geographical information from web
blogs and forums together with images. Quack et al. [84] develop a system for
linking images from community photo collections to relevant Wikipedia arti-
cles. Cao et al. [12] propose to build a tourism recommendation system using
web photos with GPS information.

6. Inference Methods
Inference is a central problem in Multimedia information networks. Since

it is impossible to overview all the inferences algorithms, next we will discuss
some issues which we believe are important with general interests.

6.1 Discriminative vs. Generative Models
Discriminative and generative models are two groups of machine learn-

ing algorithms with different ways of learning models from data. Given in-
put x and their label y, generative models aim to learn the joint distribution
P (x, y) = P (x|y)P (y). In contrast, discriminative classi ers model the poste-
rior P (y|x) directly, or learn a direct map from inputs x to class labels. Exam-
ples of generative models are naive Bayes, Bayesian Network, GMM, HMM,
and many graphical models. Discriminative models include logistic regression,
SVM, Boosting, and Conditional Random Fields. Generally speaking, when
there are enough training samples, discriminative models lead to more accurate
classi cation results than generative models [78]. This is veri ed by the domi-
nating success of discriminative models in web image retrieval and annotation
systems [75] [81]. However, in recent years, there has been a renaissance of
generative models for a wide range of multimedia information network appli-
cations. Based on our understanding, generative models share the following
advantages which make them attractive in many application domains

Generative models can generate more intuitive interpretation of data
samples. Generative models provide an estimation of density functions,
from which we can easily determine the marginal distribution in differ-
ent scenarios. Starting from the P (x, y), we can obtain the conditional
distribution P (x|y) and thus obtain the representative samples for each
class. Moreover, we can employ the latent topic models [8] [40] to ex-
plore the multinomial distributions of coherent factors.

Generative models can easily handle the missing value problem. In a
multimedia information network, it is common that some attributes of
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a data sample are missing. Generative model can handle such samples
easily by using Expectation-Maximization (EM) algorithms to estimate
missing values. In contrast, discriminative models usually have to ne-
glect such samples.

With generative models, it is possible to incorporate network structure
with the model. For example, [13] proposes to model the photo cor-
relations using both visual similarity and the temporal coherence, and
construct a network for label propagation. Another example lies in net-
work regularized topic model [67], which combines the topic model with
a harmonic regularizer based on social network structure. It has been
shown that generative models are exible, and can handle multi-modal
information embedded in the information network, which is preferable
in many situations.

6.2 Graph-based Inference: Ranking, Clustering and
Semi-supervised Learning

An information network can also be represented as a graph, in which nodes
are connected by social network or other links. One of the most famous graph-
based learning algorithm is PageRank [79], which has led to a revolution in
web searching engines since 1998. The main idea of PageRank is to view a
link from one page to another as an endorsement of the landing page. The
more links point to a page, the more likely it is relevant. In theory, PageRank
is closely related the power method

bt+1 =
Abt

||Abt|| ,

where b will converge to the eigenvector of matrix A. Power method is one
of the most ef cient ways of nding the dominant eigenvector. In recently
years, there has been much effort in speeding up the computation of PageRank
[46, 35, 66] and robustness to web spam [7][34]. Bharat and Mihaila proposed
the Hilltop algorithm [7], which selects webpages as “good expert" for cer-
tain queries, and generates query-dependent authority scores. With a similar
motivation, Haveliwala presented Topic-Sensitive Page Rank (TSPR), which
computes a set of topic-sensitive PageRank scores for pages using the topics
of query keywords [36]. At the query time, TSPR uses linear combination of
these scores to generate context-speci c importance scores for pages [36].

Like other algorithms such as HITS [51] and SALSA [54], classic PageRank
builds the adjacency matrix based on the hyperlinks between web documents.
Hyperlinks on the web can be easily added or deleted by web content creators
and the PageRank result can be affected by web spammers who purposely cre-
ate a large number of hyperlinks such as link farms and exchanges. Some
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researchers proposed to build the adjacent matrix from other types of informa-
tion, including language models [53], page structural information [10], user
browsing history [60], and image local patches [44].

Another popular iterative algorithm is also related to the power method. In
[124], Zhou et al. proposes to combine partial labels y to estimate the score π
of each document:

πt+1 = αAπt + (1− α)y (15.1)

A similar idea is also developed by Zhu et al.[125], where the value of π on
labeled samples are xed as y and the resulted method corresponds to the
harmonic solution of the un-normalized Laplacian computation on the graph.

The idea of [124] [125] is especially useful for the image tagging problem.
When the user-provided tags are noisy and not complete, equation (15.1) can
be used to re ne the tag and propagate the existing labels to the unlabeled
images. Rui et al. generalized label propagation methods to a bipartite graph
reinforcement model [88]. Liu et al. proposed a similar approach that aims
to automatically rank the tags associated with a given image according to their
relevance to the image content [58]. In [120], Zha et al. considered the problem
of suggesting queries for joint text and image search.

The graph-based ranking approaches also motivate the research of summa-
rizing photo collections, which often contain too many photos for the users
to view in a short time. An intuitive solution is to cluster the entire collec-
tion before ranking. This can speed up the ranking algorithms and alleviate the
computational burden. In [48], the authors cluster the images before ranking in
order to obtain representative images or landmarks from Flickr photos. How-
ever, a statistical clustering algorithm often fails to distinguish different seman-
tic groups and does not always improve the retrieval results [105]. In [15], Cao
et al. proposes to consider ranking and clustering tasks simultaneously. By
ranking the images in a structural fashion, [15] designed the RankCompete al-
gorithm, which discovers the diverse structure embedded in photo collections,
and ranks the images according to their similarity among local neighborhoods
instead of across the entire photo collection.

Graph-related representations are also widely used in many manifold learn-
ing algorithms [87] [116]. These algorithms rst construct the graph based on
neighborhood similarity, and then project the high dimensional feature vectors
into another space which keeps the graph structure.

6.3 Online Learning
Online learning is a classical area of research which can be traced back to

Rosenblatt’s work on the perceptron algorithm for linear discriminant func-
tions [86]. Since then, many excellent online learners have been proposed.
Some examples include the Winnow family of algorithms [57] and the mile-



430 SOCIAL NETWORK DATA ANALYTICS

stone backpropagation (BP) [90] learning method on Arti cial Neural Net-
works.

In this section, we brie y review some existing online learning algorithms
that have been widely used to tackle large scale problems, with an emphasis
on multimedia analysis in practice. Our discussion in this section includes
a general online learning framework and the corresponding theoretical anal-
ysis of the worst case bound on total loss between the online algorithm and
their of ine counterparts. In the context of the general online learning frame-
work, we will instantiate it with some concrete examples of online learners,
including binary classi ers, multi-label classi ers, conditional random elds
[92], metric learning and PCA (principal component analysis). These online
algorithms have been applied to practical large scale multimedia analysis and
related elds and have achieved promising success both in terms of ef ciency
and effectiveness.

6.3.1 A General Framework for Online Learning. Given a sequence
of trials S = {(xi, yi)|i = 1, · · · , �}}, online learning algorithms dynamically
maintain a sequence of parameters {θt} over a hypothesis space H for t =
1, · · · , �. Before trial t, the model with parameter θt is learned from the data
in the past trials {(xi, yi)|i = 1, · · · , t − 1}. After the tth trial (xt, yt), the
parameter θt is updated according to rules that gives a new model in H. In
general, the model observes a new instance xt and makes a prediction ŷ(xt, θt)
on it. Then the new parameter θt+1 is obtained, depending on the true outcome
yt, the prediction ŷ(xt, θt) and the learning rate η.

To design a proper updating rule, two criteria should be obeyed [50][82].

Conservativeness. It ought to preserve the old knowledge that has al-
ready existed in the current model, because this knowledge has the rich
historical information about previous trials;

Correctiveness. The performance of the model should be improved on
the new trial(s).

Following this idea, the new model parameter θt+1 is updated by minimizing
an objective function

F (θt+1) = d(θt+1, θt) + ηtL(yt, ŷt(xt, θt+1)) (15.2)

where d is a distance measure between two parameterized models with θt+1

and θt. L is a loss function between the true outcome yt and the prediction ŷt,
and ηt is the learning rate.

There are many options for the distance measure d. For example, when H
is a hypothesis space consisting of linear predictors, θt is a weighting vector.
Then d can be a squared Euclidean distance or the relative entropy if θt is a
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probability vector (i.e., each entry of θt is nonnegative and the sum of all en-
tries is equal to 1). Notice that the latter choice of the relative entropy indicates
that the distance measure d needs not to satisfy the triangle inequality. On the
other hand, the loss function L also has many variant forms, depending on the
speci c problems of interests. Take the example of the aforementioned linear
predictors, L can be the squared loss between yt and ŷt for regression prob-
lems, or the 0/1 loss for the classi cation problems. By choosing different d
and L, different online learners can be de ned. In the next section, we intro-
duce some online learners that have already been proposed in the literature.

6.3.2 Some Examples of Online Learners. We illustrate some ex-
amples of recently developed online learners to help illustrate the principles
discussed above in a more concrete way.

Multi-Label Classi er: The multi-label classi er was proposed in [82].
In this work, the Kullback-Leibler divergence was used as d in (15.2), and a
submanifold H satisfying multi-label constraints set by the current trial t is
formed which acts as the loss function in (15.2). Mathematically, the new
model is solved by minimizing

DKL(p
t+1(y|xt)||pt(y|xt)) +∞(pt+1 ∈ H) (15.3)

where∞(pt+1 /∈ H) is∞ if pt+1 /∈ H, otherwise it is 0. DKL is the kullback-
leibler divergence.

Adaptive Support Vector Machine Another example of an online learner
for binary classi cation problem is given in [117]. In this work, the squared
Euclidean distance between the parameters of two successive linear models
wt+1 and wt was used as d and the hinge loss on the new trial (xt, yt) served
as L in (15.2). Hence, the new parameter wt+1 was solved by minimizing the
following

||wt+1 − wt||22 + ηt(1− ytwt+1 · xt)+ (15.4)
where (a)+ = max(0, a) and || · ||2 is the l2 norm for a vector.

Metric Learning Besides the online learners that involve a sequence of
single training examples represented by (xt, yt), the work in [24] proposed
another form of online learner which updates a metric model with a pair of
examples (x

(1)
t , x

(2)
t , dt), where dt is the target distance metric for learning

at trial t. In their method, the Bregman-divergence over the positive de nite
convex cone is used to measure the progress between two successive metric
models parameterized by Mahalonobis matrix Mt+1 and Mt. Meanwhile, the
squared loss between the prediction d̂t = (x

(1)
t −x

(2)
t )TMt+1(x

(1)
t −x

(2)
t ) and

the target dt was used to measure the correctiveness of new model on trial t.
Formally, Mt+1 was computed by minimizing

Dld(Mt+1,Mt) + ηt(d̂t − dt)
2 (15.5)
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where Dld is the Bregman distance between two positive de nite matrices.
Besides the above concrete examples, many other online learners have been

proposed recently. Some examples are the online PCA algorithm in [111], a
new stochastic gradient method for SVM [96] and CRF (conditional random

elds) [92]. These online learners follow the main idea in (15.2) but may use
some approximations to update the model instead of exactly minimizing it.

7. Discussion of Data Sets and Industrial Systems
Multimedia search has been a popular research topic for more than a decade

now. However, for a long time most of the systems were constructed under the
assumption of modest amounts of data [89], [107]. In recent years, the popu-
larity of online photo sharing communities, web based infrastructures for such
photo-centric social network development and the concurrent development of
image search engines has enabled the collection of data sets of an extraordi-
nary scale. For example, Flickr hosted more than 4 billion photographs at the
end of 2009, while Facebook hosted more than 15 billion photographs. The
easy availability of such data sets on the web has also made it much easier to
crawl, store and search such data collections. For example, researchers have
been able to create data sets with several million images with the use of very
straightforward crawlers. For example, Torralba et al. [104] have collected 80
Million tiny images in 2008. The easy availability of such massive data sets
has changed perspectives both from a research and industrial point of view.

On the other hand, it is laborious to annotate such large data sets. Thus, in
scenarios where some level of annotation is required, the research continues to
be limited to data sets of relatively small size. For example, the Corel image
dataset includes only 68K images, while the recently popular Caltech 101[28]
dataset owns less than 60 images for most concepts. To overcome this dif -
culty, two effective approaches are employed to obtain rich annotations. The

rst approach is to develop an open annotation tool so that the researchers in
the eld can contribute the labels. Russell et al. in MIT have built such an open
annotation interface named “LabelMe" [91], which has earned 111,000 object-
level annotations on 30,000 images. The second approach is to employ the
Amazon Mechanical Turk as the platform for annotation, where internet users
contribute labels based on the instructions. Since many internet users treat the
labeling process as an enjoyable task, it is possible to achieve this goal at low
cost. Sorokin and Forsyth are the rst to employ the Amazon Mechanical Turk
for image annotation [100]. More recently, with the aid of the Amazon Me-
chanical Turk, Deng et al. [25] are able to build a much larger dataset named
ImageNet with about 10 million images and 15,000 synsets.

Despite the increasing research interests on social networks, there is no pub-
lic image data set that contains both image and network structure. However,
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we can crawl network information from Flickr, Youtube, Facebook, or even
Wikipedia. Mislove et al. have built such a network database [70] with no im-
age involved. It will be interesting to enrich such network data sets with visual
information.

Motivated in part by the success in academia, more and more industrial sys-
tems have begun to take multimedia information into account when develop-
ing search engines. Although none of the major search engines (e.g., Google,
Microsoft Bing Search) utilized visual feature before 2008, nowadays there
have been quite a few attempts to develop large scale visual search systems.
TwitPic was launched to allow users to post pictures to follow Twitter posts.
Tiltomo was developed to search the Flickr dataset based on tags and simi-
lar themes. Tineye and GazoPa allow users to provide their own pictures and

nd similar peers in the internet. Such similar image searching functions have
also been supported by Google Image and Bing Image. Moreover, Google has
built a beta version of “Swirl" search, which organizes the image search results
into groups by hierarchically clustering the visual features. In addition, more
and more companies have targeted the searching problem on the mobile plat-
form, and quite a few systems have been developed including Google Goggles,
kooaba, snaptell, etc. Another group of companies focus on vertical visual
search, which considers a speci c segment of visual search, for example, Pa-
perboy considers on searching news articles or books, while Plink focuses on
art works search. Table 15.1 summarizes these industrial systems. Although
these industrial engines are not mature enough and only index a small por-
tion of the photos all over the internet, the quality of search has continued to
improve over time. It also provides an excellent testbed for evaluating new
techniques in multimedia applications.

Table 15.1. Summary of industrial systems on multimedia search systems.
Name Website

Google Image http://images.google.com/
Bing Image http://www.bing.com/images/

TwitPic http://twitpic.com/
Tiltomo http://www.tiltomo.com/
Tineye https://www.tineye.com/
GazoPa http://www.gazopa.com/

Google Swirl http://image-swirl.googlelabs.com/
Google Goggles http://www.google.com/mobile/goggles/�landmark

kooaba http://www.kooaba.com/
snaptell http://www.snaptell.com/

Paperboy http://www.paperboytool.com/
Plink http://www.plinkart.com/

In summary, we are witnessing a new age when large scale data sets re-
place the small ones, and when multimedia search engines begin to take shape.
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We can expect that the research on multimedia systems will obtain signi cant
advances in the next decade.

8. Discussion of Future Directions
It is usually dif cult to judge which research direction is most important

or will become more popular, especially in an area as fast evolving as mul-
timedia information networks. However, in this paper we still make a few
audacious estimations, with the hope of not being 100% correct, but re ecting
some thoughts we wish to be useful for the audience.

8.1 Content-based Recommendation and Advertisements
A key factor in the fast development of social network and multimedia re-

trieval lies in the success of web companies such as Flickr, Facebook, Google,
etc. For these companies, the most important source of their revenue lies in
online advertisements. We can expect that new advertisement techniques will
earn wide market recognition and will receive considerable research attention.

Content based recognition and recommendation systems have the potential
of locating users’ interests, and connecting advertisement providers with their
potential customers. This task is challenging because we need to take into
account not only the semantics of web multimedia, but also user information
such as friends, groups, and viewing history.

The obstruction of content-based research is also closely related to its ad-
vantages: since this task is strongly motivated by business pro ts, the success
of recommendation and advertisement system is highly affected by the evolved
business model. It is possible that an elegant research algorithm might not be
as successful in the eld of business.

8.2 Multimedia Information Networks via Cloud
Computing

The explosion of multimedia data has made it impossible for single PCs or
small computer clusters to store, index, or understand real multimedia informa-
tion networks. In the United Kingdom, there are about 4.2 million surveillance
cameras. This means that there is one surveillance camera for every 14 resi-
dents. On the other hand, both videos and photos have become prevalent on
popular websites such as Youtube and Facebook. Facebook has collected the
largest photo bank in history. Speci cally, as of the end of 2009, it has 15 bil-
lion photographs, and is increasing at the rate of 220 million new photographs
per week. It has become a serious challenge to manage or process such an over-
whelming number of multimedia les. Fortunately, we are entering the era of
"cloud computing", which provides the potential of processing huge multime-
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dia data and building large-scale intelligent interface to help us understand and
manage the media content.

Cloud computing describes the new computing interface whereby details are
abstracted from the users who no longer have need of, expertise in, or control
over the technology infrastructure “in the cloud" that supports them. Cloud
computing system includes a huge data storage center and compute cycles
nearby. It constitutes a front ends for users to submit their jobs using a service-
based approach, which is naturally abstracted into a logical framework for
computation. It incorporates multiple geographically distributed sites where
the sites might be constructed with different structure and services. From a
developer’s viewpoint, cloud computing also reduces development efforts. For
example, the MapReduce programming paradigm in cloud computing provides
a uni ed and intuitive framework for job parallelization (using Map and Re-
duce paradigms), and is much easier to use than the classical parallel message
passing interface (MPI), which would be required to achieve equivalent re-
sults. In the past few years, many successful cloud computing systems have
been constructed, such Amazon EC2, Google App, IBM SmarterPlanet, and
Microsoft Windows Azure.

Despite the fast development of cloud computing systems, most of the cur-
rent research efforts are spent on designing high performance distributed com-
puting systems and infrastructures for distributed databases. While some work
has recently been performed on using cloud computing for pattern recognition
and machine learning, these methods are not well suited for multimedia data
analysis. This is because multimedia data analysis techniques have a number
of natural challenges which are not addressed by the current work. Speci cally,
the challenges are as follows:

Fast indexing techniques: Unlike text features which can be effectively
retrieved using inverted index, multimedia data usually involves high di-
mensional features. How to design a fast indexing scheme is crucial
for large scale applications. Many researchers have worked on locality
sensitive hashing (LSH) [5]. However, LSH is not ef cient enough for
extremely high dimensional features. Moreover, LSH for optimal per-
formance costs much more space than classical index structures such as
the KD-tree. Another possible approach is to create a large dictionary
for visual features, for which the inverted index can be applied as well
as text words. The limitation of such approaches is that a lot of informa-
tion is lost during the quantization step. Many questions in the indexing
domain remain open in terms of both effectivness and ef ciency.

Effective metric learning and feature selection: The dif culty of mul-
timedia search lies in the gap between low level feature and high level
semantics. How to learn the effective feature for different tasks is among
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the most important problems in the eld of multimedia. The problem of
learning distance metrics for low level features is also a crucial problem.
In the new era of massive online multimedia data, cloud computing is
expected to do a better job by exploring large datasets and associated
rich network structure.
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Abstract Social tagging on online portals has become a trend now. It has emerged as one
of the best ways of associating metadata with web objects. With the increase in
the kinds of web objects becoming available, collaborative tagging of such ob-
jects is also developing along new dimensions. This popularity has led to a vast
literature on social tagging. In this survey paper, we would like to summarize
different techniques employed to study various aspects of tagging. Broadly, we
would discuss about properties of tag streams, tagging models, tag semantics,
generating recommendations using tags, visualizations of tags, applications of
tags, integration of different tagging systems and problems associated with tag-
ging usage. We would discuss topics like why people tag, what in uences the
choice of tags, how to model the tagging process, kinds of tags, different power
laws observed in tagging domain, how tags are created and how to choose the
right tags for recommendation. Metadata generated in the form of tags can be
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ef ciently used to improve web search, for web object classi cation, for generat-
ing ontologies, for enhanced browsing etc. We would discuss these applications
and conclude with thoughts on future work in the area.

Keywords: Social tagging, bookmarking, tagging, social indexing, social classi cation, col-
laborative tagging, folksonomy, folk classi cation, ethnoclassi cation, distributed
classi cation, folk taxonomy

1. Introduction
Social tagging became popular with the launch of a variety of media-based

social networking sites like Delicious and Flickr. This is because such sites
support both social interaction, and the presence of rich media objects which
can be tagged during such interactions. Since then, different social systems
have been built that support tagging of a variety of resources. Given a particular
web object or resource, tagging is a process where a user assigns a tag to an ob-
ject. On Delicious, a user can assign tags to a particular bookmarked URL. On
Flickr, users can tag photos uploaded by them or by others. Whereas Delicious
allows each user to have her personal set of tags per URL, Flickr has a single
set of tags for any photo. On blogging sites like Blogger, Wordpress, Live-
journal, blog authors can add tags to their posts. On micro-blogging sites like
Twitter, hash tags are used within the tweet text itself. On social networking
sites like Facebook, Orkut, etc., users often annotate parts of the photos. Users
can also provide tagging information in other forms like marking something
as “Like" on Facebook. Upcoming event sites can allow users to comment on
and tag events. Recently, tripletags (tags of the format namespace:key=value
(e.g., geo:lat=53.1234) are becoming popular. Such a syntax can improve the
usability of tags to a large extent. Using rel-tags1, a page can indicate that the
destination of that hyperlink is an author-designated tag for the current page.
Rel-tags have been used by various implementation sites to tag blogs, music,
links, news articles, events, listings, etc. Citation websites have tags attached
to publication entries. Cataloging sites like LibraryThing and Shelfari allow
users to tag books. Social news sites like Digg, SlashDot allow users to attach
tags to news stories. Yelp, CitySearch and other such business/product reviews
sites allow users to attach their reviews and other users to select tags to rate re-
views too. Multimedia objects like podcasts, live casts, videos and music can
also be tagged on sites like Youtube, imeem, Metacafe, etc. On Yahoo! An-
swers, you can tag an answer as positive or negative depending on how helpful
it was. Tags are often used to collect such binary or multi-valued ratings or

1http://microformats.org/wiki/rel-tag
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categorical decisions from users. Tags are omni-present on the web. But what
led to the emergence of tagging based systems? As we shall see in this section,
tags are a better way of generating metadata and prevent problems associated
with xed taxonomies in social systems.

1.1 Problems with Metadata Generation and Fixed
Taxonomies

Different web portals focus on sharing of different types of objects like im-
ages, news articles, bookmarks, etc. Often to enrich the context related to these
objects and thereby support more applications like search, metadata needs to
be associated with these objects. However, manual metadata creation is costly
in terms of time and effort [35]. Also, vocabulary of this metadata may be com-
pletely different from that of system designer or content producers or taxonomy
creators or eventual users. Besides associating metadata to the objects, build-
ing a taxonomy for these social sharing systems may be useful in classifying
and organizing the objects. But xed static taxonomies are rigid, conservative,
and centralized [41]. Items do not always t exactly inside one and only one
category. Hierarchical classi cations are in uenced by the cataloguer’s view
of the world and, as a consequence, are affected by subjectivity and cultural
bias. Rigid hierarchical classi cation schemes cannot easily keep up with an
increasing and evolving corpus of items. Social systems need to hire expert
cataloguers who can use same thinking and vocabulory as users and can build
taxonomies which can be stable over time. Once such a hierarchy is created,
the object creators can be asked to assign a xed category to the object, in the
hierarchy. This can induce “post activation analysis paralysis" [21] into the
user. By their very nature, hierarchies tend to establish only one consistent
authoritative structured vision. This implies a loss of precision, erases differ-
ence of expression, and does not take into account the variety of user needs
and views.

1.2 Folksonomies as a Solution
Folksonomies and social tagging help in preventing these problems and

hence provide a simpler, cheaper and a more natural way of organizing web
objects. A folksonomy (folk (people) + taxis (classi cation) + nomos (manage-
ment)) is a user-generated classi cation, emerging through bottom-up consen-
sus. The term was coined by Thomas Vander Wal in the AIfIA mailing list to
mean the wide-spreading practice of collaborative categorization using freely
chosen keywords by a group of people cooperating spontaneously. A folkson-
omy can be de ned as a collection of a set of users, set of tags, set of resources
or objects, and a ternary relation between users, tags and resources with a time
dimension [12]. Unlike formal taxonomies, folksonomies have no explicitly
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de ned relationship between terms. All terms belong to a at namespace, i.e.,
there is no hierarchy. Since users themselves tag the objects, folksonomies di-
rectly re ect the vocabulary of users [41]. Hence, a folksonomy is a simple,
emergent and iterative system. It helps create the most popular way of orga-
nizing objects referred to as desire lines2. Apart from this, tagging provides
no barriers to entry or cooperation and hence involves low cognitive cost. Tag-
ging helps users get immediate feedback. This feedback loop leads to a form
of asymmetric communication between users through metadata. The users of
a system negotiate the meaning of the terms in the folksonomy, whether pur-
posefully or not, through their individual choices of tags to describe objects
for themselves. Further, folksonomies are inclusive, i.e., they include terms
related to popular topics and also terms related to long tail topics. With appro-
priate browsing support, interlinking related tag sets is wonderful for nding
things unexpectedly in a general area.

In summary, folksonomies are a trade-off between traditional structured
centralized classi cation and no classi cation or metadata at all. Their advan-
tage over traditional top-down classi cation is their capability of matching user
needs and language, not their precision. Building, maintaining, and enforcing
a sound controlled vocabulary is often too expensive in terms of development
time and presents a steep learning curve to the user to learn the classi cation
scheme. In other words, folksonomies are better than nothing, when traditional
classi cation is not viable.

1.3 Outline
In this survey paper, we present a systematic detailed study of tagging lit-

erature. We rst list different user motivations and different ways of tagging
web objects in Section 2. There have been a lot of generative models proposed
to understand the process of tagging. We present a summary of such models in
Section 3. Section 4 describes various parameters for tagging system design.
In Section 5, we present a summarization of work done on analysis of tagging
distributions, identi cation of tag semantics, expressive power of tags versus
keywords. Appropriate rendering of tags can provide useful information to
users. Different visualization schemes like tag clouds have been explored to
support browsing on web portals. We present some works related to such visu-
alization studies in Section 6. When a user wishes to attach tags to an object,
the system can recommend some tags to the user. A user can select one of
those tags or come up with a new one. In Section 7, we discuss different ways
of generating tag recommendations. In Section 8, we describe different appli-
cations for which tags can be used. An integration of such folksonomies can

2http://www.adaptivepath.com/blog/2009/10/27/desire-lines-the-metaphor-that-keeps-on-giving/
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help in solving the problem of sparsity of tags associated with Web objects.
We describe some works about integration of different folksonomies in Sec-
tion 9. Usage of tags involves a lot of problems like sparsity, ambiguities and
canonicalization. We list these problems in Section 10. Finally, we conclude
with thoughts on future work in Section 11.

2. Tags: Why and What?
Since 2005, there have been works describing why people tag and what the

tags mean. We brie y summarize such works [1, 34, 16, 61, 7, 21, 48, 35, 27,
17] below. We provide a detailed classi cation of user tagging motivations and
also list different kinds of tags in this section.

2.1 Different User Tagging Motivations
Future Retrieval: Users can tag objects aiming at ease of future re-
trieval of the objects by themselves or by others. Tags may also be used
to incite an activity or act as reminders to oneself or others (e.g., the “to
read" tag). These descriptive tags are exceptionally helpful in providing
metadata about objects that have no other tags associated.

Contribution and Sharing: Tags can be used to describe the resource
and also to add the resource to conceptual clusters or re ned categories
for the value of either known or unknown audience.

Attract Attention: Popular tags can be exploited to get people to look
at one’s own resources.

Play and Competition: Tags can be based on an internal or external set
of rules. In some cases, the system devises the rules such as the ESP
Game’s incentive to tag what others might also tag. In others, groups
develop their own rules to engage in the system such as when groups
seek out all items with a particular feature and tag their existence.

Self Presentation (Self Referential Tags): Tags can be used to write
a user’s own identity into the system as a way of leaving their mark
on a particular resource. E.g., the “seen live" tag in Last.FM marks
an individual’s identity or personal relation to the resource. Another
example are tags beginning with “my" like “mystuff".

Opinion Expression: Tags can convey value judgments that users wish
to share with others (e.g., the “elitist" tag in Yahoo!’s Podcast system
is utilized by some users to convey an opinion). Sometimes people tag
simply to gain reputation in the community.
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Task Organization: Tags can also be used for task organization e.g.,
“toread", “jobsearch", “gtd" (got to do), “todo".

Social Signalling: Tags can be used to communicate contextual infor-
mation about the object to others.

Money: Some sites like Squidoo and Amazon Mechanical Turk pay
users for creating tags.

Technological Ease: Some people tag because the current technology
makes it easy to upload resources with tags to the web. E.g. drag-and-
drop approach for attaching labels to identify people in photos. The lat-
est photo browser commercial packages, such as Adobe Photoshop Al-
bum, adopted similar methods to support easy labeling of photos. With
‘Phonetags’3, a listener hears a song on the radio, uses her cell phone to
text back to a website with tags and star ratings. Later, returning to the
website, the user can type in her phone number and see the songs she
had bookmarked.

2.2 Kinds of Tags
Content-Based Tags: They can be used to identify the actual content of
the resource. E.g., Autos, Honda Odyssey, batman, open source, Lucene.

Context-Based Tags: Context-based tags provide the context of an ob-
ject in which the object was created or saved, e.g., tags describing loca-
tions and time such as San Francisco, Golden Gate Bridge, and 2005-
10-19.

Attribute Tags: Tags that are inherent attributes of an object but may
not be able to be derived from the content directly, e.g., author of a piece
of content such as Jeremy’s Blog and Clay Shirky. Such tags can be used
to identify what or who the resource is about. Tags can also be used to
identify qualities or characteristics of the resource (e.g., scary, funny,
stupid, inspirational).

Ownership Tags: Such tags identify who owns the resource.

Subjective Tags: Tags that express user’s opinion and emotion, e.g.,
funny or cool. They can be used to help evaluate an object recommen-
dation (item qualities). They are basically put with a motivation of self-
expression.

3http://www.spencerkiser.com/geoPhoneTag/
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Organizational Tags: Tags that identify personal stuff, e.g., mypaper
or mywork, and tags that serve as a reminder of certain tasks such as
to-read or to-review. This type of tags is usually not useful for global
tag aggregation with other users’ tags. These tags are intrinsically time-
sensitive. They suggest an active engagement with the text, in which
the user is linking the perceived subject matter with a speci c task or a
speci c set of interests.

Purpose Tags: These tags denote non-content speci c functions that
relate to an information seeking task of users (e.g., learn about LaTeX,
get recommendations for music, translate text).

Factual Tags: They identify facts about an object such as people, places,
or concepts. These are the tags that most people would agree to apply to
a given object. Factual tags help to describe objects and also help to nd
related objects. Content-based, context-based and objective, attribute
tags can be considered as factual tags. Factual tags are generally useful
for learning and nding tasks.

Personal Tags: Such tags have an intended audience of the tag applier
themselves. They are most often used to organize a user’s objects (item
ownership, self-reference, task organization).

Self-referential tags: They are tags to resources that refer to themselves.
e.g., Flickr’s “sometaithurts"4 - for “so meta it hurts" is a collection of
images regarding Flickr, and people using Flickr. The earliest image is
of someone discussing social software, and then subsequent users have
posted screenshots of that picture within Flickr, and other similarly self-
referential images.

Tag Bundles: This is the tagging of tags that results in the creation of
hierarchical folksonomies. Many taggers on Delicious have chosen to
tag URLs with other URLs, such as the base web address for the server.
For example, a C# programming tutorial might be tagged with the URL
http://www.microsoft.com.

2.3 Categorizers Versus Describers
Taggers can be divided into two main types [29]: categorizers and de-

scribers. Categorizer users are the ones who apply tags such that the objects
are easier to nd later for personal use. They have their own vocabulary. Sets
in Delicious is a perfect example of metadata by categorizers. On the other

4http://www. ickr.com/photos/tags/sometaithurts/
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hand, describer users tag objects such that they are easier to be searched by
others. Often tags to a single object would contain many synonyms. Vocabu-
lary of a describer is much larger compared to an average categorizer. But a
categorizer has her own limited personal vocabulary and subjective tags. ESP
game is a perfect example of metadata creation by describers. Categorizers
and describers can be identi ed using these intuitions:

The more the number of tags that were only used once by a user, the
higher the probability that the user is a describer.

The faster the tagging vocabulary increases, the more likely it is that the
person is a describer.

A categorizer tends to achieve tag entropy that is as low as possible be-
cause he tries to “encode" her resources in a good and balanced way.

These intuitions can be formalized as metrics like tag ratio (ratio between tags
and resources), orphaned tags (proportion of tags which annotate only a small
amount of resources) and tag entropy (re ects the effectiveness of the encoding
process of tagging).

2.4 Linguistic Classi cation of Tags
Based on linguistics, tags can be classi ed as follows [56].

Functional: Tags that describe the function of an object. (e.g., weapon)

Functional collocation: These are de ned by function but in addition,
they have to be collected in a place (and/or time). (e.g., furniture, table-
ware)

Origin collocation: Tags that describe why things are together? (e.g.,
garbage, contents, dishes (as in “dirty dishes" after a meal)).

Function and origin: Tags that describe why an object is present, what
is the purpose, or where did it come from. (e.g., “Michelangelo" and
“medieval" on an image of a painting by Michelangelo)

Taxonomic: They are words that can help in classifying the object into
an appropriate category. (e.g., “Animalia" or “Chordata" tag to an image
of a heron)

Adjective: They describe the object that denotes the resource. (e.g.,
“red", “great", “beautiful", “funny")

Verb: These are action words. (e.g., “explore", “todo", “jumping")

Proper name: Most of the tags are of this category. (e.g., “New Zealand",
“Manhattan bridge")
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2.5 Game-based Tagging
In the ESP game, the players cannot see each other’s guesses. The aim is to

enter the same word as your partner in the shortest possible time. Peekaboom
takes the ESP Game to the next level. Unlike the ESP Game, it is asymmet-
rical. To start, one user is shown an image and the other sees an empty blank
space. The rst user is given a word related to the image, and the aim is to com-
municate that word to the other player by revealing portions of the image. So
if the word is “eye" and the image is a face, you reveal the eye to your partner.
But the real aim here is to build a better image search engine: one that could
identify individual items within an image. PhotoPlay[13] is a computer game
designed to be played by three to four players around a horizontal display. The
goal for each player is to build words related to any of the four photos on the
display by selecting from a 7x7 grid of letter tiles. All these games, help in
tagging the resources.

Problems with Game-Based Tagging
Game-based tagging mechanisms may not provide high quality tags [30].

Maximizing your scores in the game means sacri cing a lot of valuable se-
mantics. People tend to write very general properties of an image rather than
telling about the speci cs or details of the image. E.g., colors are great for
matching, but often are not the most critical or valuable aspects of the image.
The labels chosen by people trying to maximize their matches with an anony-
mous partner are not necessarily the most “robust and descriptive" labels. They
are the easiest labels, the most super cial labels, the labels that maximize the
speed of a match rather than the quality of the descriptor. In addition, they
are words that are devoid of context or depth of knowledge. Tagging for your
own retrieval is different than tagging for retrieval by people you know and
even more different than tagging for retrieval in a completely uncontextualized
environment.

3. Tag Generation Models
In order to describe, understand and analyze tags and tagging systems, var-

ious tag generation models have been proposed. These models study various
factors that in uence the generation of a tag, such as the previous tags sug-
gested by others, users’ background knowledge, content of the resources and
the community in uences. In this section, we present different models which
have been proposed in the literature, and discuss advantages and disadvantages
of these models.
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3.1 Polya Urn Generation Model
Intuitively, the rst factor that in uences the choice of tags is the previous

tag assignments. The amount of effort required to tag items may affect an in-
dividual’s decision to use tags. Using suggested tags rather than one’s own
requires less effort. Pirolli and Card’s theory of information foraging [40] sug-
gests greater adoption of suggested tags because people adapt their behavior to
optimize the information/effort ratio. Users cost-tune their archives by spend-
ing the least amount of effort needed to build up enough structure to support
fast retrieval of their most useful resources. Based on this intuition, various
models based on the stochastic Polya urn process have been proposed.

3.1.1 Basic Polya Urn Model. Golder and Huberman [16] propose a
model based on a variation of the stochastic Polya urn model where the urn ini-
tially contains two balls, one red and one black. In each step of the simulation,
a ball is selected from the urn and then it is put back together with a second
ball of the same color. After a large number of draws the fraction of the balls
with the same color stabilizes but the fractions converge to random limits in
each run of the simulation.

This model successfully captures that previously assigned tags are more
likely to be selected again. However, this basic model fails to capture that new
tags will also be added into the system. So several extensions of this model
have been proposed later.

3.1.2 Yule-Simon Model. Yule-Simon model [50] assumes that at
each simulation step a new tag is invented and added to the tag stream with
a low probability of p. This leads to a linear growth of the distinct tags with
respect to time and not to the typical continuous, but declining growth. Yule-
Simon model can be described as follows. At each discrete time step one
appends a word to the text: with probability p the appended word is a new
word, that has never occurred before, while with probability 1− p the word is
copied from the existing text, choosing it with a probability proportional to its
current frequency of occurrence. This simple process produces frequency-rank
distributions with a power law tail whose exponent is given by a = 1− p.

Cattuto et al. [10] study the temporal evolution of the global vocabulary size,
i.e., the number of distinct tags in the entire system, as well as the evolution
of local vocabularies, that is, the growth of the number of distinct tags used in
the context of a given resource or user. They nd that the number N of distinct
tags present in the system is N(T ) ∝ T γ , with γ < 1. The rate at which
new tags appear at time T scales as T γ−1, i.e., new tags appear less and less
frequently, with the invention rate of new tags monotonically decreasing very
slowly towards zero. This sub-linear growth is generally referred to as Heaps’
law.
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3.1.3 Yule-Simon Model with Long Term Memory. Cattuto et al. [11]
propose a further variation of the Simon model. It takes the order of the tags in
the stream into account. Like the previous models, it simulates the imitation of
previous tag assignments but instead of imitating all previous tag assignments
with the same probability it introduces a kind of long-term memory. Their
model can be stated as follows: the process by which users of a collaborative
tagging system associate tags to resources can be regarded as the construction
of a “text", built one step at a time by adding “words" (i.e., tags) to a text ini-
tially comprised of n0 words. This process is meant to model the behavior
of an effective average user in the context identi ed by a speci c tag. At a
time step t, a new word may be invented with probability p and appended to
the text, while with probability 1 − p one word is copied from the existing
text, going back in time by x steps with a probability that decays as a power
law, Qt(x) = a(t)/(x + τ). a(t) is a normalization factor and τ is the char-
acteristic time-scale over which the recently added words have comparable
probabilities. Note that Qt(x) returns a power law distribution of the probabil-
ities. This Yule-Simon model with long term memory successfully reproduces
the characteristic slope of the frequency-rank distribution of co-occurrence tag
streams but it fails to explain the distribution in resource tag streams as well
as the decaying growth of the set of distinct tags because it leads to a linear
growth.

3.1.4 Information Value Based Model. Halpin et al. [18] present a
model which does not only simulate the imitation of previous tag assignments
but it also selects tags based on their information value. The information value
of a tag is 1 if it can be used for only selecting appropriate resources. A tag has
an information value of 0 if it either leads to the selection of no or all resources
in a tagging system. They empirically estimate the information value of a tag
by retrieving the number of webpages that are returned by a search in Delicious
with the tag. Besides of the selection based on the information value, the model
also simulates the imitation of previous tag assignments using the Polya urn
model. They model tag selection as a linear combination of information value
and preferential attachment models. Probability of a tag x being reinforced
or added can be expressed as P (x) = λ × P (I(x)) + (1 − λ) × P (a) ×
P (o)×P ( R(x)∑

R(x) ) where λ is used to weigh the factors. P (a) is the probability
of a user committing a tagging action at any time t. P (n) determines the
number n of tags a user is likely to add at once based on the distribution of
the number of tags a given user employs in a single tagging action. An old
tag is reinforced with constant probability P (o). If the old tag is added, it
is added with a probability R(x)∑

R(i) where R(x) is the number of times that
particular previous tag x has been chosen in the past and

∑
R(i) is the sum
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of all previous tags. Overall, the proposed model leads to a plain power law
distribution of the tag frequencies and to a linear growth of the set of distinct
tags. It thus only partially reproduces the frequency-rank distributions in co-
occurrence and resource tag streams and it is not successful in reproducing the
decaying tag growth.

3.1.5 Fine-tuning by Adding More Parameters. Klaas et al. [12]
present the following model: The simulation of a tag stream always starts with
an empty stream. Then, in each step of the simulation, with probability I (0.6-
0.9) one of the previous tag assignments is imitated. With probability BK, the
user selects an appropriate tag from her background knowledge about the re-
source. It corresponds to selecting an appropriate natural language word from
the active vocabulary of the user. Each word t has been assigned a certain prob-
ability with which it gets selected, which corresponds to the probability with
which t occurs in the Web corpus. The parameter n represents the number of
popular tags a user has access to. In case of simulating resource streams, n will
correspond to the number of popular tags shown. (e.g., n = 7 for Delicious).
In case of co-occurrence streams n will be larger because the union of the pop-
ular tags of all resources that are aggregated in the co-occurrence stream will
be depicted over time. Furthermore, the parameter h can be used for restrict-
ing the number of previous tag assignments which are used for determining
the n most popular tags. The probability of selecting the concrete tag t from
the n tags is then proportional to how often t was used during the last h tag
assignments. Using these parameters, the authors describe a model that repro-
duces frequency rank for both tag co-occurrence and resource streams and also
simulates the tag vocabulary growth well.

3.2 Language Model
The content of resource would affect generation of tags. Hence, tagging

process can also be simulated using a language model like the latent Dirichlet
allocation model [6]. Tagging is a real-world experiment in the evolution of a
simple language [7]. Zhou et al. [63] propose a probabilistic generative model
for generation of document content as well as associated tags. This helps in si-
multaneous topical analysis of terms, documents and users. Their user content
annotation model can be explained as follows. For document content, each
observed term ω in document d is generated from the source x (each docu-
ment d maps one-to-one to a source x). Then from the conditional probability
distribution on x, a topic z is drawn. Given the topic z, ω is nally gener-
ated from the conditional probability distribution on the topic z. For document
tags, similarly, each observed tag word ω for document d is generated by user
x. Speci c to this user, there is a conditional probability distribution of topics,
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from which a topic z is then chosen. This hidden variable of topic again nally
generates ω in the tag.

Figure 16.1 shows the user content annotation model using the plate nota-
tion.
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Figure 16.1. User content annotation model

Unknown distributions θ and φ can be learnt using EM. But EM can lead to
local maxima or may be expensive. Hence, they use Gibbs sampling. Rather
than the parameters, the posteriors are evaluated. Posteriors include: P (d, z |
w) and P (x, z | w) alongwith P (d | z), P (x | z), P (z | w). Number of topics
are determined using the perplexity measure.

3.3 Other In uence Factors
Besides above models, researchers [48, 34] have also observed that there are

other factors which are likely to in uence how people apply the tags.
Sen et al. [48] mention three factors that in uence people’s personal ten-

dency (their preferences and beliefs) to apply tags: (1) their past tagging be-
haviors, (2) community in uence of the tagging behavior of other members,
and (3) tag selection algorithm that chooses which tags to display. New users
have an initial personal tendency based on their experiences with other tagging
systems, their comfort with technology, their interests and knowledge. Per-
sonal tendency evolves as people interact with the tagging system. Figure 16.2
shows how these factors affect the tagging behaviour.

Experiments with Movielens dataset reveal the following. Once a user has
applied three or more tags, the average cosine similarity for the nth tag appli-
cation is more than 0.83. Moreover, similarity of a tag application to the user’s
past tags continues to rise as users add more tags. Besides reusing tag classes,
users also reuse individual tags from their vocabulary. Community in uence
on a user’s rst tag is stronger for users who have seen more tags. The tag se-
lection algorithm in uences the distribution of tag classes (subjective, factual,
and personal).
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Figure 16.2. Factors affecting tagging behavior

The community in uence on tag selection in Flickr has been studied by Mar-
low et al. [34]. One feature of the contact network is a user’s ability to easily
follow the photos being uploaded by their friends. This provides a continuous
awareness of the photographic activity of their Flickr contacts, and by transi-
tivity, a constant exposure to tagging practices. Do these relationships affect
the formation of tag vocabularies, or are individuals guided by other stimuli?
They nd that the random users are much more likely to have a smaller overlap
in common tags, while contacts are more distributed, and have a higher overall
mean. This result shows a relationship between social af liation and tag vo-
cabulary formation and use even though the photos may be of completely dif-
ferent subject matter. This commonality could arise from similar descriptive
tags (e.g., bright, contrast, black and white, or other photo features), similar
content (photos taken on the same vacation), or similar subjects (co-occurring
friends and family), each suggesting different modes of diffusion.

Apart from the different aspects mentioned above, user tagging behaviors
can be largely dictated by the forms of contribution allowed and the personal
and social motivations for adding input to the system [34].

4. Tagging System Design
What are the different parameters that should be considered when designing

a social tagging system? In this section, we present the some design parame-
ters [48, 34].

Tag Sharing: What are the different privacy levels supported by the
system for sharing? (public, private, groups).
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Tag Selection/Tagging Support: This includes tag recommendation al-
gorithm used, number of recommendations shown, meta information
shown. Different categories are a. blind tagging, where a tagging user
cannot view tags assigned to the same resource by other users while
tagging (e.g., Delicious) b. viewable tagging, where the user can see
the tags already associated with a resource (e.g., Yahoo! Podcasts) c.
suggestive tagging, where the system suggests possible tags to the user
(e.g., Yahoo! MyWeb2.0). The implication of suggested tagging may
be a quicker convergence to a folksonomy. In other words, a sugges-
tive system may help consolidate the tag usage for a resource, or in the
system, much faster than a blind tagging system would. As for view-
able tagging, implications may be overweighting certain tags that were
associated with the resource rst, even if they would not have arisen
otherwise.

Item Ownership/Tagging Rights: Tagging system could allow only
owner to tag (Technorati) or anyone (Amazon) or may support different
levels of permissions for people to tag (Flickr). Figure 16.3 from [19]
shows some examples. The system can specify who may remove a tag,
whether no one (e.g., Yahoo! Podcasts), anyone (e.g., Odeo), the tag
creator (e.g., Last.fm) or the resource owner (e.g., Flickr). Tags that are
assigned to a photo may be radically divergent depending on whether
the tagging is performed by the photographers, their friends, or strangers
looking at their photos.
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Figure 16.3. Tagging Rights

Tag Scope/Tag Aggregation: Tag scope could be broad or narrow. Sys-
tem with broad tag scope follows a bag model and may allow for a mul-
tiplicity of tags for the same resource (<user, item, tag> maintained e.g
Delicious). System with narrow tag scope follows a set model approach
and asks all users to collectively tag an individual resource, thus denying
any repetition (<item, tag> maintained e.g., Technorati, Flickr). In the
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case that a bag model is being used, the system has the ability to use ag-
gregate statistics for a given resource to present users with the collective
opinions of the taggers; thus accurately nding relationships between
users, tags, and resources.

Tag Format: Some tagging systems may support multi-word tags, tag
normalization and other metadata like notes in Delicious.

Type of Object: An object to be tagged can be web page, bibliographic
material, video, image, user etc. Tags given to textual resources may dif-
fer from tags for resources/objects with no such textual representation,
like images or audio.

Source of Material: Resources to be tagged can be supplied by the par-
ticipants (e.g., YouTube, Flickr, Technorati, Upcoming), by the system
(e.g., ESP game, Last.fm, Yahoo! Podcasts), or, alternatively, a system
can be open for tagging of any web resource (e.g., Delicious, Yahoo!
MyWeb2.0).

Resource Connectivity: Resources in the system can be linked to each
other independent of the user tags. Connectivity can be roughly cate-
gorized as linked, grouped or none. E.g., web pages are connected by
directed links; Flickr photos can be assigned to groups; and events in
Upcoming have connections based on the time, city and venue associ-
ated with the event. Implications for resultant tags and usefulness may
include convergence on similar tags for connected resources.

Social Connectivity: Some systems allow users within the system to
be linked together. Like resource connectivity, social connectivity can
also be de ned as linked, grouped, or none. Many other dimensions are
present in social networks, e.g., whether links are typed (like in Flickr’s
contacts/friends model) and whether links are directed, where a connec-
tion between users is not necessarily symmetric (in Flickr, for example,
none of the link types is symmetric). Implications of social connectivity
include the adoption of localized folksonomies based on social structure
in the system.

User Incentives: Users may tag just for socialization, money, for fun
while playing etc. as mentioned in section 2.

5. Tag analysis
To better understand social tagging data, a lot of research has been done in

analyzing a variety of properties of social tagging data, such as how tags are
distributed and their hidden semantics. In the following subsections we present
some major analysis and results.
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5.1 Tagging Distributions
Researchers began their study with analyzing tags distribution in tagging

systems. They found that most of them are power law distributions, which is
one of prominent features of a social tagging system.

5.1.1 Tagging System Vocabulary. As has been noted by different
studies on a variety of datasets, total number of distinct tags in the system with
respect to time follows a power law. However, recent studies have shown that
this vocabulary growth is somewhat sublinear.

5.1.2 Resource’s Tag Growth. For a single resource over time, vocab-
ulary growth for tags also follows power law with exponent 2/3 [10]. Frequency-
rank distribution of tag streams also follows a power law [12]. For some web-
pages tagged on Delicious, tag frequency (sorted) versus tag rank for a web
page is a decreasing graph with a sudden drop between rank 7 and 10 [12]. This
may be due to an artifact of the user interface of Delicious. The graph of prob-
ability distribution of number of tags contained in a posting versus the number
of tags displays an initial exponential decay with typical number of tags as 3-4
and then becomes a power law tail with exponent as high as -3.5 [10].

Researchers have also observed convergence of the tag distributions. In [18],
Halpin et al. observe that majority of sites reach their peak popularity, the high-
est frequency of tagging in a given time period, within 10 days of being saved
on Delicious (67% in the data set of Golder and Huberman [16]) though some
sites are rediscovered by users (about 17% in their data set), suggesting stabil-
ity in most sites but some degree of burstiness in the dynamics that could lead
to a cyclical relationship to stability characteristic of chaotic systems. They
also plot KL divergence between the tag frequency distributions for a resource
versus the time. The curve drops very steeply. For almost all resources the
curve reaches zero at about the same time. In the beginning few weeks, curve
is quite steep and slowly becomes gentle as time progresses. Golder and Hu-
berman also nd that the proportion of frequencies of tags within a given site
stabilizes over time.

Cattuto et al. [10] have shown the variation of the probability distribution
of the vocabulary growth exponent γ for resources, as a function of their rank.
The curve for the 1000 top-ranked (most bookmarked) resources closely ts a
Gaussian curve at γ ≈ 0.71. This indicates that highly bookmarked resources
share a characteristic law of growth. On computing the distribution P(γ) for
less and less popular resources, the peak shifts towards higher values of γ and
the growth behavior becomes more and more linear.

Wetzker et al. [57] also show that most popular URLs disappear after peak-
ing. They also point out that some of the tags can peak periodically, e.g.,
Christmas.



464 SOCIAL NETWORK DATA ANALYTICS

5.1.3 User Tag Vocabulary Growth. There are also studies that focus
on tags applied by a speci c user. Golder and Huberman [16] show that certain
users’ sets of distinct tags grow linearly as new resources are added. But Mar-
low et al. [34] nd that for many users, such as those with few distinct tags in
the graph, distinct tag growth declines over time, indicating either agreement
on the tag vocabulary, or diminishing returns on their usage. In some cases,
new tags are added consistently as photos are uploaded, suggesting a supply of
fresh vocabulary and constant incentive for using tags. Sometimes only a few
tags are used initially with a sudden growth spurt later on, suggesting that the
user either discovered tags or found new incentives for using them.

5.2 Identifying Tag Semantics
Intuitively, tags as user generated classi cation labels are semantically mean-

ingful. So, research has been done for exploring the semantics of tags. These
research works include three aspects: (1) Identifying similar tags, (2) mapping
tags to taxonomies, and (3) extracting certain types of tags.

5.2.1 Analysis of Pairwise Relationships between Tags. In order to
measure similarity of tags beyond words, researchers proposed various models
to explore tags’ similarity. Most of them are based on a simple assumption that
tags that are similar may be used to tag the same resources, and similar resource
would be tagged by similar tags. Therefore, inter tag correlation graph (tag
as nodes, edges between two tags if they co-occur, weight on edge = cosine
distance measure using number of times a tag was used) can be built for a
tagging system. An analysis of the structural properties of such tag graphs may
provide important insights into how people tag and how semantic structures
emerge in distributed folksonomies. A simple approach would be measuring
tags similarity based on the number of common web pages tagged by them.
In section 7, we show how analysis of co-occurrence of tags can be used to
generate tag recommendations.

5.2.2 Extracting Ontology from Tags. Another line of research for
identifying semantics of tags is mapping tags to an existing ontology. Being
able to automatically classify tags into semantic categories allows us to un-
derstand better the way users annotate media objects and to build tools for
viewing and browsing the media objects. The simplest approach is based on
string matching. Sigurbjörnsson et al. [49] map Flickr tags onto WordNet se-
mantic categories using straight forward string matching between Flickr tags
and WordNet lemmas. They found that 51.8% of the tags in Flickr can be as-
signed a semantic category using this mapping. To better assign tags to a cat-
egory, content of resources associated with a given tag could be used. Overell
et al. [38] designed a system to auto-classify tags using Wikipedia and Open
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Directory. They used structural patterns like categories and templates that can
be extracted from resource metadata to classify Flickr tags. They built a classi-

er to classify Wikipedia articles into eleven semantic categories (act, animal,
artifact, food, group, location, object, person, plant, substance and time). They
map Flickr tags to Wikipedia articles using anchor texts in Wikipedia. Since
they have classi ed Wikipedia articles, Flickr tags can be categorized using
the same classi cation. They classify things as what, where and when. They
show that by deploying ClassTag they can improve the classi ed portion of the
Flickr vocabulary by 115%. Considering the full volume of Flickr tags, i.e.,
taking tag frequency into account, they show that with ClassTag nearly 70% of
Flickr tags can be classi ed. Figure 16.4 shows an overview of their system.
Figure 16.5 shows the classi cation of Flickr tags.

W ikipedia
patterns
structural

W ordNet
lemma

W ordNet
category

Flickr
tag

W ikipedia
article(s)

W ikipedia
article
classifier

text
anchor W ordNet

category

~?

article

Figure 16.4. Overview of the ClassTag system

5.2.3 Extracting Place and Event Semantics. Tags also contain spe-
ci c information, such as locations or events. Rattenbury et al. [43] study the
problem of extracting place and event semantics for Flickr tags. They analyze
two methods inspired by burst-analysis techniques (popular in signal process-
ing) and one novel method: Scale-structure Identi cation. The location, lp,
(consisting of latitude-longitude coordinates) associated with photo p gener-
ally marks where the photo was taken; but sometimes marks the location of the
photographed object. The time, tp, associated with photo p generally marks
the photo capture time; but occasionally refers to the time the photo was up-
loaded to Flickr. They aim to determine, for each tag in the dataset, whether
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Unclassified (30.8%)

Location (19.3%)Artifact/object (15.1%)

Person/group (15.9%)

Action/event (4.1%)
Time (7.0%)

Other (7.8%)

Figure 16.5. Classi cation of Flickr tags using ClassTag system

the tag represents an event (or place). The intuition behind the various methods
they present is that an event (or place) refers to a speci c segment of time (or
region in space). The number of usage occurrences for an event tag should be
much higher in a small segment of time than the number of usage occurrences
of that tag outside the segment. The scale of the segment is one factor that
these methods must address; the other factor is calculating whether the num-
ber of usage occurrences within the segment is signi cantly different from the
number outside the segment. The Scale-structure Identi cation method per-
forms a signi cance test that depends on multiple scales simultaneously and
does not rely on apriori de ned time segments. The key intuition is: if tag x
is an event then the points in Tx, the time usage distribution, should appear
as a single cluster at many scales. Interesting clusters are the ones with low
entropy. For place identi cation, Lx is used rather than Tx. Periodic events
have strong clusters, at multiple scales, that are evenly spaced apart in time.
Practically, because tags occur in bursts, a periodic tag should exhibit at least
three strong clusters (to rule out tags that just happened to occur in two strong
temporal clusters but are not truly periodic). Overall, their approach has a high
precision however a large proportion of tags remain unclassi ed.

5.3 Tags Versus Keywords
To identify the potential of tags in being helpful for search, there have been

works that compare tags with keywords. As shown in Figure 16.6, given a web
document, the “most important" words (both wrt tf as well as tf × idf ) of the
document are generally covered by the vocabulary of user-generated tags [32].
This means that the set of user-generated tags has the comparable expression
capability as the plain English words for web documents. Li et al. [32] found
that most of the missed keywords are misspelled words or words invented by
users, and usually cannot be found in dictionary.
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Further, they de ne tag match ratio e(T,U) for tag set T associated with a
URL U as ratio of weights of the tags of a particular URL that can be matched
by the document. e(T,U) =

∑
k|tk∈U w(tk)
∑

i w(ti)
. Here, w(t) is the weight of tag t,

i.e., the frequency of tag t in the data set. The tag match ratio represents the
ratio of important tags of a URL matched by the document. Figure 16.7 shows
the distribution of tag match ratio for URLs in their Delicious dataset.
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Besides this, tags often have much more expressive power. For example,
consider the Google home page. It does not mention the phrase “search engine"
anywhere. But “searchengine" can be found as a tag against the bookmarked
URL http://www.google.com/ig on Delicious.

6. Visualization of Tags
Social tagging is one of the most important forms of user generated content.

Appropriate rendering of tags can provide useful information to users. Tag
clouds have been explored to support browsing on web portals, and various tag
selection methods for tag clouds have been developed. Much work has been
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done to identify hierarchy of tags in the tag cloud construction. Visualization
schemes stress on display formats and evolutionary aspect of tag clouds, etc.
We review these in this section.

6.1 Tag Clouds for Browsing/Search
Tag cloud, a visual depiction of user-generated tags, is used to facilitate

browsing and search process of the tags. Sinclair and Cardew-Hall [51] dis-
cuss situations when using tag clouds is better than doing search. They con-
ducted an experiment, giving participants the option of using a tag cloud or a
traditional search interface to answer various questions. They found that par-
ticipants preferred the search interface if the information need is speci c while
they preferred the tag cloud if the information-seeking task was more general.
It is partly because tags are good at broad categorization, as opposed to speci c
characterization of content. In total, the number of questions answered using
the tag cloud was greater than those answered using the search box. The tag
cloud provides a visual summary of the contents of the database. A number of
participants commented that tag clouds gave them an idea of where to begin
their information seeking. The tag cloud helps the information seeker to get
familiar with the domain and allows more focused queries based on the infor-
mation gained from browsing. It appears that scanning the tag cloud requires
less cognitive load than formulating speci c query terms.

Tag clouds have their disadvantages too. First, tag clouds obscure useful
information by being skewed towards what is popular. Second, answering a
question using the tag cloud required more queries per question than the search
box. Third, many of the participants commented that the tag cloud did not al-
low them to narrow their search enough to answer the given questions. On aver-
age, roughly half of the articles in the dataset remain inaccessible from the tag
cloud. Most tagging systems mitigate this by including tag links when viewing
individual articles, thus exposing some of the less popular tags. However, this
is not necessarily useful when someone is seeking speci c information.

Millen et al. [36] did experiments on Dogear system where clicking a tag
leads to a view of bookmarks that are associated with that tag. They found that
the most frequent way to browse bookmarks is by clicking on another person’s
name, followed by browsing bookmarks by selecting a speci c tag from the
system-wide tag cloud. It is considerably less common for a user to select a
tag from another user’s tag cloud and very less chances of using more advanced
browsing of tag intersections.

6.2 Tag Selection for Tag Clouds
Since there is only limited display space for tags in tag clouds, how to se-

lect the appropriate tags is a challenging task. Hassan-Montero and Herrero-
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Solana [20] describe a system for bi-dimensional visualization of tag clouds.
Tag selection is based on usefulness as determined by: (1) its capacity to rep-
resent each resource as compared to other tags assigned to the same resource,
(2) the volume of covered resources as compared to other tags, (3) its capac-
ity to cover these resources less covered by other tags. Semantic relationships
among tags are de ned in terms of their similarity, quanti ed by means of
the Jaccard coef cient. K-means clustering is then applied on tag similarity
matrix, with an apriori chosen number of clusters and a xed number of se-
lected relevant tags. They apply Multidimensional Scaling, using Pearson’s
correlation as the similarity function, on a tag-to-tag correlation matrix. MDS
creates a bi-dimensional space, which is then visualized through a sh-eye
system. Alphabetical-based schemes are useful for know-item searching, i.e.,
when user knows previously what tag she is looking for, such as when user
browses her personal tag cloud. They propose a tag cloud layout based on the
assumption that clustering techniques can improve tag clouds’ browsing expe-
rience. The display method is similar to traditional tag cloud layout, with the
difference that tags are grouped with semantically similar tags, and likewise
clusters of tags are displayed near semantically similar clusters. Similar tags
are horizontally neighbors, whereas similar clusters are vertically neighbors.
Clustering offers more coherent visual distribution of tags than traditional al-
phabetical arrangements, allowing to differentiate among main topics in tag
cloud, as well as to infer semantic knowledge from the neighbors’ relation-
ships.

Begelman et al. [4] propose a clustering algorithm to nd strongly related
tags. The algorithm is based on counting the number of co-occurrences of any
pair of tags and a cut-off point is determined when the co-occurrence count
is signi cant enough to be used. To determine this cutoff point, they start
from the tail on the right end and seek the point where the rst derivative of
the count has its rst high peak (that is when the second derivative goes from
positive to negative) and check if the peak was high enough. This results in
a sparse matrix that represents tags, so that the value of each element is the
similarity of the two tags. Using this de nition of similarity, they design an
inter-tag correlation network graph. They then cluster this graph using spectral
bisection and modularity function.

6.3 Tag Hierarchy Generation
Beyond the at structure of tags, hierarchical structure also exists in the

tagging space. Caro et al. [9] present the tagFlake system, which supports se-
mantically informed navigation within a tag cloud. The system organizes tags
extracted from textual content in hierarchical organizations, suitable for nav-
igation, visualization, classi cation and tracking. It extracts the most signi -
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cant tag/terms from text documents and maps them onto a hierarchy in such a
way that descendant terms are contextually dependent on their ancestors within
the given corpus of documents. This provides tagFlake with a mechanism for
enabling navigation within the tag space and for classi cation of the text doc-
uments based on the contextual structure captured by the generated hierarchy.

Li et al. [31] present Effective Large Scale Annotation Browser (ELSABer),
to browse large-scale social annotation data. ELSABer helps the users browse
a huge number of annotations in a semantic, hierarchical and ef cient way.
ELSABer has the following features: (1) the semantic relations between an-
notations are explored for browsing of similar resources; (2) the hierarchical
relations between annotations are constructed for browsing in a top-down fash-
ion; (3) the distribution of social annotations is studied for ef cient browsing.
The hierarchy structure is determined by a decision tree with the features in-
cluding tag coverage, URL intersection rate, inverse-coverage rate, etc.

6.4 Tag Clouds Display Format
Tags clouds can be displayed in different formats. Bielenberg and Zacher [5]

have proposed circular clouds, as opposed to the typical rectangular layout,
where the most heavily weighted tags appear closer to the center. Font size and
distance to the center represent the importance of a tag, but distance between
tags does not represent their similarity.

Owen and Lemire [26] present models and algorithms to improve the dis-
play of tag clouds that consist of in-line HTML, as well as algorithms that
use nested tables to achieve a more general two-dimensional layout in which
tag relationships are considered. Since the font size of a displayed tag is usu-
ally used to show the relative importance or frequency of the tag, a typical tag
cloud contains large and small text interspersed. A consequence is wasteful
white space. To handle the space waste problem, the authors propose the clas-
sic electronic design automation (EDA) algorithm, min-cut placement, for area
minimization and clustering in tag clouds. For the large clumps of white space,
the solution is a hybrid of the classic Knuth-Plass algorithm for text justi ca-
tion, and a book-placement exercise considered by Skiena. The resulting tag
clouds are visually improved and tighter.

6.5 Tag Evolution Visualization
Other than the text information, tags usually have the time dimension. To

visualize the tag evolution process is an interesting topic. Dubinko et al. [15]
consider the problem of visualizing the evolution of tags within Flickr. An
animation provided via Flash in a web browser allows the user to observe and
interact with the interesting tags as they evolve over time. The visualization
is made up of two interchangeable metaphors - the ‘river’ and the ‘waterfall’.
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The visualization provides a view of temporal evolution, with a large amount
of surface data easily visible at each timestep. It allows the user to interact
with the presentation in order to drill down into any particular result. It re-
mains “situated" in the sense that the user is always aware of the current point
of time being presented, and it provides random access into the time stream so
that the user can reposition the current time as necessary. There are two novel
contributions in their algorithm. The rst is a solution to an interval covering
problem that allows any timescale to be expressed ef ciently as a combina-
tion of a small number of pre-de ned timescales that have been pre-computed
and saved in the “index" structure. The second contribution is an extension
of work on score aggregation allowing data from the small number of pre-
computed timescales to be ef ciently merged to produce the optimal solution
without needing to consume all the available data. The resulting visualization
is available at Taglines5. In some cases, the user may seek data points that
are particularly anomalous, while in other cases it may be data points that are
highly persistent or that manifest a particular pattern. The authors focus on
one particular notion of “interesting" data: the tags during a particular period
of time that are most representative for that time period. That is, the tags that
show a signi cantly increased likelihood of occurring inside the time period,
compared to outside.

Russel [44] has proposed Cloudalicious6 , a tool to study the evolution of
the tag cloud over time. Cloudalicious takes a request for a URL, downloads
the tagging data from Delicious, and then graphs the collective users tagging
activity over time. The y-axis shows the relative weights of the most popular
tags for that URL. As the lines on the graph move from left to right, they show
signs of stabilization. This pattern can be interpreted as the collective opinion
of the users. Diagonal lines are the most interesting elements of these graphs
as they suggest that the users doing the tagging have changed the words used
to describe the site.

6.6 Popular Tag Cloud Demos
Some demos for visualizing tags are also available on the Web. Grafoli-

cious7 produces graphs illustrating when and how many times a URL has been
bookmarked in Delicious. HubLog8 gives a graph of related tags connected
with the given tags. Although these demos gave a vivid picture of social an-
notations in different aspects, their goals are not to help users to browse an-

5http://research.yahoo.com/taglines
6http://cloudalicio.us/tagcloud.php
7http://www.neuroticWeb.com/recursos/del.icio.us-graphs/
8http://hublog.hubmed.org/tags/visualisation
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notations effectively. PhaseTwo9 aims at creating visually pleasant tag clouds,
by presenting tags in the form of seemingly random collections of circles with
varying sizes: the size of the circle denotes its frequency. Delicious also pro-
vides its own tag cloud view10. Tag.alicio.us11 operates as a tag lter, retrieving
links from Delicious according to tag and time constraints (e.g., tags from this
hour, today, or this week). Extisp.icio.us12 displays a random scattering of
a given user’s tags, sized according to the number of times that the user has
reused each tag, and Facetious13 was a reworking of the Delicious database,
which made use of faceted classi cation, grouping tags under headings such as
“by place" (Iraq, USA, Australia), “by technology" (blog, wiki, website) and
“by attribute" (red, cool, retro). Tag clouds have also been integrated inside
maps for displaying tags having geographical information, such as pictures
taken at a given location.

7. Tag Recommendations
The tagging system can recommend some tags to a user, and the user can

select one of those tags or come up with a new one. Tag recommendation
is not only useful to improve user experience, but also makes rich annotation
available. There have been many studies on tag recommendation. Tags can be
recommended based on their quality, co-occurrence, mutual information and
object features.

7.1 Using Tag Quality
Tag quality can guide the tag recommendation process. The tag quality can

be evaluated by facet coverage and popularity, and those tags of high quality
are used for recommendation. Xu et al. [61] propose a set of criteria for tag
quality and then propose a collaborative tag suggestion algorithm using these
criteria to discover the high-quality tags. A good tag combination should in-
clude multiple facets of the tagged objects. The number of tags for identifying
an object should be minimized, and the number of objects identi ed by the tag
combination should be small. Note that personally used organizational tags are
less likely to be shared by different users. Thus, they should be excluded from
tag recommendations. The proposed algorithm employs a goodness measure
for tags derived from collective user authorities to combat spam. The goodness
measure is iteratively adjusted by a reward-penalty algorithm, which also in-

9http://phasetwo.org/post/a-better-tag-cloud.html
10http://del.icio.us/tag/
11http://planetozh.com/blog/2004/10/tagalicious-a-way-to-integrate-delicious/
12http://kevan.org/extispicious
13http://www.siderean.com/delicious/facetious.jsp
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corporates other sources of tags, e.g., content-based auto-generated tags. The
algorithm favors tags that are used by a large number of people, and minimizes
the overlap of concepts among the suggested tags to allow for high coverage
of multiple facets and honors the high correlation among tags.

7.2 Using Tag Co-occurrences
One important criterion used for tag recommendation is tag co-occurrence.

Those tags co-occurring with the existing tags of the object are used for rec-
ommendation. Sigurbjörnsson and Zwol [49] present four strategies to recom-
mend tags. These include two co-ocurrence based strategies: Jaccard similarity
and an asymmetric measure P (tj | ti) = |ti

⋂
tj |

|ti| . Tag Aggregation and promo-
tion strategies are based on voting or weighted voting based on co-occurrence
count. Given a set of user-de ned tags U on an object O, they want to rank can-
didate tags C that can be recommended for object O based on co-occurrence
counts of u and c such that u ∈ U and c ∈ C . From the tag frequency dis-
tribution, they learned that both the head and the tail of the power law would
probably not contain good tags for recommendation. Considered that user-
de ned tags with very low collection frequency are less reliable than tags with
higher collection frequency, those tags for which the statistics are more stable
were promoted. They compute promotion score for a (u, c) pair by using sta-
bility of tag u, descriptiveness of tag c and rank of tag c wrt tag u. These are
in turn de ned using system parameters ks, kd and kr .

stability(u) = ks
ks+abs(ks−log(|u|)) where |u| is the collection frequency of

user de ned tag u.
Tags with very high frequency are likely to be too general for individual

photos.
descriptive(c) = kd

kd+abs(kd−log(|c|))
The rank rank(u, c) of a candidate tag c for tag u is kr

kr+r−1 where r is
position of tag c for a tag u. The promotion score can be de ned as follows:

promotion(u, c) = rank(u, c)× stability(u)× descriptive(c)

Tag score is nally computed as follows:

score(c) =
∑
u∈U

vote(u, c) × promotion(u, c)

Here vote(u,c) is 1 if tags u and c co-occur, else 0. Tag frequency distribution
follows a perfect power law, and the mid section of this power law contained
the most interesting candidates for tag recommendation. They found that loca-
tions, artifacts and objects have a relatively high acceptance ratio (user accep-
tance of the recommended tag). However, people, groups and unclassi ed tags
(tags that do not appear in WordNet) have relatively low acceptance ratio.
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7.3 Using Mutual Information between Words,
Documents and Tags

Mutual information is another criterion for tag recommendation. Song et
al. [52] treat the tagged training documents as triplets of (words, documents,
tags), and represent them as two bipartite graphs, which are partitioned into
clusters by Spectral Recursive Embedding (SRE) and using Lanczos algorithm
for symmetric low rank approximation for the weighted adjacency matrix for
the bipartite graphs. Tags in each topical cluster are ranked by a novel ranking
algorithm. A two-way Poisson Mixture Model (PMM) is proposed to model
the document distribution into mixture components within each cluster and
aggregate words into word clusters simultaneously. During the online recom-
mendation stage, given a document vector, its posterior probabilities of classes
are rst calculated. Then based on the joint probabilities of the tags and the
document, tags are recommended for this document based on their within-
cluster ranking. The ef ciency of the Poisson mixture model helps to make
recommendations in linear-time in practice. Within a cluster, node ranking is
de ned by Ranki = exp(− 1

r(i)2
) for r(i) 	= 0 where r(i) = npi × log(nri).

N-Precision (npi) of a node i is the weighted sum of its edges that connect to
the nodes within the same cluster, divided by the total sum of edge weights
in that cluster. N-recall (Nri)=edges associated with node i/edges associated
with node i within the same cluster.

7.4 Using Object Features
Tag recommendation can also be performed using object features. E.g., the

extracted content features from the images can be helpful in tag recommenda-
tion. In [33], Liu et al. propose a tag ranking scheme to automatically rank
the tags associated with a given image according to their relevance to the im-
age content. To estimate the tag relevance to the images, the authors rst get
the initial tag relevance scores based on probability density estimation, and
then apply a random walk on a tag similarity graph to re ne the scores. Since
all the tags have been ranked according to their relevance to the image, for
each uploaded image, they nd the K nearest neighbors based on low-level
visual features, and then the top ranked tags of the K neighboring images are
collected and recommended to the user. In [58], Wu et al. model the tag rec-
ommendation as a learning task that considers multi-modality including tag
co-occurrence and visual correlation. The visual correlation scores are derived
from Visual language model (VLM), which is adopted to model the content of
the tags in visual domain. The optimal combination of these ranking features
is learned by the Rankboost algorithm.



Social Tagging and Applications 475

8. Applications of Tags
In this section, we would describe different applications for which tags have

been used. Social tagging can be useful in the areas including indexing, search,
taxonomy generation, clustering, classi cation, social interest discovery, etc.

8.1 Indexing
Tags can be useful for indexing sites faster. Users bookmark sites launched

by their friends or colleagues before a search engine bot can nd them. Tags
are also useful in deeper indexing. Many pages bookmarked are deep into sites
and sometimes not easily linked to by others, found via bad or nonexistent site
navigation or linked to from external pages. Carmel et al. [8] claim that by
appropriately weighting the tags according to their estimated quality, search
effectiveness can be signi cantly improved. They propose a novel framework
for bookmark (a triple of document d, user u, tag t) weighting that estimates
the effectiveness of bookmarks for IR tasks as fundamental entities in social
bookmarking systems.

8.2 Search
Tags have been found useful for web search, personalized search and en-

terprise search. Tags offer multiple descriptions of a given resource, which
potentially increases the likelihood that searcher and tagger nd a common
language and thus using tags, retrieval effectiveness may be enhanced. Social
bookmarking can provide search data not currently provided by other sources.

Heymann et al. [23] analyze posts to Delicious: how many bookmarks ex-
ist (about 115M), how fast is it growing, and how active are the URLs being
posted (quite active). They observe the following. (1) Pages posted to Deli-
cious are often recently modi ed. (2) Approximately 12.5% of URLs posted
by users are new, unindexed pages. (3) Roughly 9% of results for search
queries are URLs present in Delicious. (4) While some users are more proli c
than others, the top 10% of users only account for 56% of posts. (5) 30-40% of
URLs and approximately one in eight domains posted were not previously in
Delicious. (6) Popular query terms and tags overlap signi cantly (though tags
and query terms are not correlated). (7) Most tags were deemed relevant and
objective by users. (8) Approximately 120000 URLs are posted to Delicious
each day. (9) There are roughly 115M public posts, coinciding with about 30-
50M unique URLs. (10) Tags are present in the pagetext of 50% of the pages
they annotate and in the titles of 16% of the pages they annotate. (11) Domains
are often highly correlated with particular tags and vice versa.

Similarly, Heckner et al. [21] found out using a survey that Flickr and
Youtube users perceive tags as helpful for IR, and show a certain tendency
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Figure 16.8. Social network model

towards searching other collections rather than their own collections. Users
reveal that Flickr search often leads to better precision and recall for pictures
compared to Google search. They also point out that Flickr search is quite
speci c whereas with Google search you get more wild cards you don’t expect
based on the information on a page rather than just the tags on a photo.

8.2.1 Semantic Query Expansion. Schenkel et al. [45] develop an in-
cremental top-k algorithm for answering queries of the form Q(u, q1, q2, ..., qn)
where u is the user and q1, q2, ..., qn are the query keywords. The algorithm
performs two-dimensional expansions: social expansion considers the strength
of relations among users, and semantic expansion considers the relatedness
of different tags. It is based on principles of threshold algorithms, and folds
friends and related tags into the search space in an incremental on-demand
manner.

Figure 16.8 shows their social network model that incorporates both social
and semantic relationships. In contrast with standard IR model, the content-
based score of a document is additionally user-speci c, i.e., it depends on the
social context of the query initiator.

They present an algorithm, ContextMerge, to ef ciently evaluate the top-k
matches for a query, using the social context score.
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ContextMerge makes use of information that is available in social tagging
systems, namely lists of documents tagged by a user and number of documents
tagged with tags. It incrementally builds social frequencies by considering
users that are related to the querying user in descending order of friendship
similarity, computes upper and lower bounds for the social score from these
frequencies, and stops the execution as soon as it can be guaranteed that the
best k documents have been identi ed.

8.2.2 Enhanced Similarity Measure. Estimating similarity between
a query and a web page is important to the web search problem. Tags provided
by web users provide different perspectives and so are usually good summaries
of the corresponding web pages and provide a new metadata for the similarity
calculation between a query and a web page. Furthermore, similar tags are used
to tag similar web pages. Semantics of tags can be measured and enhanced
similarity measure between queries and tags can be formulated.

Wu et al. [59] show how emergent semantics can be statistically derived
from the social annotations. They propose to use a probabilistic generative
model to model the user’s annotation behavior and to automatically derive the
emergent semantics of the tags. Synonymous tags are grouped together and
highly ambiguous tags are identi ed and separated. The three entities (user, re-
source, tag) are represented in the same multi-dimensional vector space called
the conceptual space. They extend the bigram separable mixture model to a
tripartite probabilistic model to obtain the emergent semantics contained in the
social annotations data. Furthermore, they apply the derived emergent seman-
tics to discover and search shared web bookmarks. They provide a basic search
model that deals with queries that are a single tag and rank semantic related re-
sources without considering personalized information of the user. They also
extend this basic model for personalized search and to support complicated
queries (where a complicated query is a boolean combination of tags and other
words appearing in the resources.

Bao et al. [2] also observe that the social annotations can bene t web search
in this aspect. They proposed SocialSimRank (SSR) which calculates the sim-
ilarity between social annotations and web queries. Preliminary experimental
results show that SSR can nd the latent semantic association between queries
and annotations.

8.2.3 Enhanced Static Ranking. Estimating the quality of a web
page is also important to the web search problem. The amount of annotations
assigned to a page indicates its popularity and indicates its quality in some
sense. In order to explore social tags for measuring the quality of web pages,
researchers have exploited the tagging graph.
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Hotho et al. [24] present a formal model and a new search algorithm for
folksonomies, called FolkRank, that exploits the structure of the folksonomy.
The FolkRank ranking scheme is then used to generate personalized rankings
of the items in a folksonomy, and to recommend users, tags and resources.
The social network graph is de ned as a tripartite graph of resources, users and
tags as nodes where the edges are the relationships between resources and tags,
tags and users, and users and resources. Adapted PageRank is then de ned as
�w = α�w+βA�w+γ�p where α+β+γ = 1. The FolkRank algorithm computes
a topic-speci c ranking in a folksonomy as follows:

The preference vector �p is used to determine the topic. It may have any
distribution of weights, as long as ‖�w‖1 = ‖�p‖1 holds. Typically a single
entry or a small set of entries is set to a high value, and the remaining
weight is equally distributed over the other entries. Since the structure
of the folksonomies is symmetric, we can de ne a topic by assigning a
high value to either one or more tags and/or one or more users and/or
one or more resources.

Let �w0 be the xed point with β = 1

Let �w1 be the xed point with β < 1

�w = �w1 − �w0 is the nal weight vector.

Thus, they compute the winners and losers of the mutual reinforcement of re-
sources when a user preference is given, compared to the baseline without a
preference vector. The resulting weight w[x] of an element x of the folkson-
omy is called the FolkRank of x. They observed that Adapted PageRank rank-
ing contains many globally frequent tags, while the FolkRank ranking provides
more personal tags.

Bao et al. [2] also propose a novel algorithm, SocialPageRank (SPR) to
measure the popularity of web pages using social annotations. The algorithm
also utilize the social tagging graph. The intuition behind the algorithm is the
mutual enhancement relation among popular web pages, up-to-date web users
and hot social annotations. SocialPageRank (SPR) captures the popularity of
web pages and successfully measures the quality (popularity) of a web page
from the web users’ perspective.

8.2.4 Personalized Search. Furthermore, personal tags are naturally
good resources for describing a person’s interests. So personal search could
be enhanced via exploring personal tags. Xu et al. [60] present a framework in
which the rank of a web page is decided not only by the term matching between
the query and the web page’s content but also by the topic matching between
the user’s interests and the web page’s topics.
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The personalized search is conducted by ranking the web pages using two
guidelines, term matching and topic matching. When a user u issues a query
q, a web page p is ranked not only by the term similarity between q and p but
also by the topic similarity between u and p. Three properties of folksonomy
are studied for the topic space estimation:

(1) The categorization property. Many of the social annotations are subject
descriptor keywords at various levels of speci city. The selection of proper
annotations for a web page is somewhat a classi cation of the web page to the
categories represented by the annotations.

(2) The keyword property. Annotations can be seen as good keywords for
describing the respective web pages from various aspects.

(3) The structure property. In folksonomy systems, users’ bookmarking
actions form a cross link structure between the users and the web pages. They
model the structure using a user-web page bipartite graph.

When a user u issues a query q, two search processes begin, a term matching
process and a topic matching process. The term matching process calculates
the similarity between q and each web page to generate a user unrelated ranked
document list. The topic matching process calculates the topic similarity be-
tween u and each web page to generate a user related ranked document list.
Then a merge operation is conducted to generate a nal ranked document list
based on the two sub ranked document lists. They adopt ranking aggrega-
tion to implement the merge operation by r(u, q, p) = γ.rterm(q, p) + (1 −
γ).rtopic(u, p)

Topic space selection is done using (1) social annotations as topics (2) ODP
categories as topics (3) interest and topic adjusting via bipartite collaborative
link structure.

8.2.5 Intranet (Enterprise) Search. Dmitriev et al. [14] show how
user annotations can be used to improve the quality of intranet (enterprise)
search. They propose two ways to obtain user annotations, using explicit and
implicit feedback, and show how they can be integrated into a search engine.

One way to obtain annotations is to let users explicitly enter annotations
for the pages they browse. The implicit method of obtaining annotations is to
use the queries users submit to the search engine as annotations for pages users
click on. They propose several strategies to determine which pages are relevant
to the query, i.e., which pages to attach an annotation to, based on clickthrough
data associated with the query. There are different ways of getting feedback
using this method. For every click record, the rst strategy produces a (URL,
Annotation) pair, where Annotation is the QueryString. This strategy is simple
to implement, and gives a large number of annotations. A second strategy only
produces a (URL, Annotation) pair for a click record which is the last record in
a session. Annotation is still the QueryString. A query chain is a time-ordered



480 SOCIAL NETWORK DATA ANALYTICS

sequence of queries, executed over a short period of time. The assumption
behind using query chains is that all subsequent queries in the chain are ac-
tually re nements of the original query. The third strategy, similar to the rst
one, produces a (URL, Annotation) pair for every click record, but Annotation
now is the concatenation of all QueryStrings from the corresponding query
chain. Finally, the fourth strategy produces a (URL, Annotation) pair for a
click record which is the last record in the last session in a query chain, and
Annotation is, again, the concatenation of QueryStrings from the correspond-
ing query chain.

Compared to the baseline system (search engine without annotations), they
obtained around 14% improvement in accuracy when using explicit annota-
tions and around 9.3% performance improvement when using implicit annota-
tions.

8.3 Taxonomy Generation
Tags can be organized in hierarchical taxonomy structure based on their

semantic meanings. In this part, we introduce two methods to generate the
taxonomy structure.

8.3.1 Using Centrality in Tag Similarity Graph. Heymann and
Garcia-Molina [22] provide an algorithm to convert a large corpus of tags into
a navigable hierarchical taxonomy. Their greedy algorithm extracts a hierar-
chical taxonomy using graph centrality in a tag similarity graph. It starts with a
single node tree and then it adds each tag to the tree in the decreasing order of
tag centrality in the similarity graph. It decides the location of each candidate
tag by its similarity to every node currently present in the tree. The candidate
tag is then either added as a child of the most similar node if its similarity
to that node is greater than some threshold, or it is added to the root node if
there does not currently exist a good parent for that node. Furthermore, they
describe some features that can help to establish hierarchical relationships: (1)
density (#annotated objects/#objects) (2) overlap (#shared annotated objects/
#annotated objects) (3) distribution of speci city in the graph that describes
the detail level of tags in the system (4) agreement between users on which
tags are appropriate for a given subject.

8.3.2 Using Association Rule Mining. Schmitz et al. [46] discuss
how association rule mining can be adopted to analyze and structure folk-
sonomies, and how the results can be used for ontology learning and supporting
emergent semantics. Since folksonomies provide a three-dimensional dataset
(users, tags, and resources) instead of a usual two-dimensional one (items and
transactions), they present rst a systematic overview of projecting a folkson-
omy onto a two-dimensional structure. They determine the set of objects, i.e.,
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the set on which the support will be counted by a permutation P on the set
1, 2, 3. To induce an ontology from Flickr tags, Schmitz et al. [47] follow
this approach. Term x potentially subsumes term y if: P (x | y >= t) and
P (y | x < t),Dx >= Dmin,Dy >= Dmin, Ux >= Umin, Uy >= Umin

where: t is the co-occurrence threshold, Dx is the # of documents in which
term x occurs, and must be greater than a minimum value Dmin, and Ux is the
# of users that use x in at least one image annotation, and must be greater than
a minimum value Umin.

Once the co-occurrence statistics are calculated, candidate term pairs are
selected using the speci ed constraints. A graph of possible parent-child re-
lationships is then built, and the co-occurrence of nodes with ascendants that
are logically above their parent is ltered out. For a given term x and two po-
tential parent terms pxi and pxj , if pxi is also a potential parent term of pxj

then pxi is removed from the list of potential parent terms for term x. At the
same time, the co-occurrence of terms x, pxi and pxj in the given relation-
ships indicates both that the x ⇒ pxj relationship is more likely than simple
co-occurrence might indicate, and similarly that the pxi ⇒ pxj relationship
should be reinforced. Weights of each of these relationships are incremented
accordingly. Finally, they consider each leaf in the tree and choose the best
path up to a root, given the (reinforced) co-occurrence weights for potential
parents of each node, and coalesce the paths into trees. They use this induced
taxonomy to improve search by inferring parent terms for images with child
terms.

8.4 Public Library Cataloging
Folksonomies have the potential to help public library catalogues by en-

abling clients to store, maintain and organize items of interest in the cata-
logue [54]. Spiteri et al. [54] acquired tags over a thirty-day period from the
daily tag logs of three folksonomy sites: Delicious, Furl and Technorati. The
tags were evaluated against Section 614 (choice and form of terms) of the Na-
tional Information Standards Organization (NISO) guidelines for the construc-
tion of controlled vocabularies. This evaluation revealed that the folksonomy
tags correspond closely to the NISO guidelines that pertain to the types of
concepts expressed by the tags, the predominance of single tags, the predom-
inance of nouns and the use of recognized spelling. Potential problem areas
in the structure of the tags pertain to the inconsistent use of the singular and
plural form of count nouns, and the incidence of ambiguous tags in the form
of homographs and unquali ed abbreviations or acronyms. If library cata-
logues decide to incorporate folksonomies, they could provide clear guidelines

14http://www.niso.org/publications/tr/tr02.pdf



482 SOCIAL NETWORK DATA ANALYTICS

to address these noted weaknesses, as well as links to external dictionaries and
references sources such as Wikipedia to help clients disambiguate homographs
and to determine if the full or abbreviated forms of tags would be preferable.

8.5 Clustering and Classi cation
Tags can be used as the additional features for both clustering and classi -

cation.

8.5.1 K-means Clustering in an Extended Vector Space Model. Ra-
mage et al. [42] explore the use of tags in K-means clustering in an extended
vector space model that includes tags as well as page text. They also provide a
novel generative clustering algorithm based on latent Dirichlet allocation that
jointly models text and tags. They examine ve ways to model a document
with a bag of words Bw and a bag of tags Bt as a vector V : Words Only,
Tags Only, Words + Tags, Tags as Words Times n (vector V is represented as
Bw ∪ (Bt ∗n) and vocabulary is W ∪T ), Tags as New Words (word#computer
is different from tag#computer). They evaluate the models by comparing their
output to an established web directory. They nd that the naive inclusion of
tagging data improves cluster quality versus page text alone, but a more prin-
cipled inclusion can substantially improve the quality of all models with a sta-
tistically signi cant absolute F-score increase of 4%. The generative model
outperforms K-means with another 8% F-score increase.

8.5.2 Classi cation of Blog Entries. Brooks and Montanez [7] ana-
lyze the effectiveness of tags for classifying blog entries by gathering the top
350 tags from Technorati and measuring the similarity of all articles that share
a tag. They nd that tags are useful for grouping articles into broad categories,
but less effective in indicating the particular content of an article. They show
that automatically extracting highly relevant words can produce a more fo-
cused categorization of articles. They also show that clustering algorithms can
be used to reconstruct a topical hierarchy among tags. They conclude that tag-
ging does manage to group articles into categories, but that there is room for
improvement.

8.5.3 Web Object Classi cation. Yin et al. [62] cast the web object
classi cation problem as an optimization problem on a graph of objects and
tags. They then propose an ef cient algorithm which not only utilizes social
tags as enriched semantic features for the objects, but also infers the categories
of unlabeled objects from both homogeneous and heterogeneous labeled ob-
jects, through the implicit connection of social tags.

Let C be a category set, c1, c2, ..., ck . Every object u and every tag v is a
vertex in the graph G(u, v ∈ V ). If an object u is associated with a tag v, there
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will be an edge between u and v, denoted as (u, v) ∈ E. V consists of four
types of vertices: VS is a set of objects of type S. V l

T is a set of labeled objects
of type T . V u

T is a set of unlabeled objects of type T . Vtag is a set of tags.
The problem of web object classi cation can then be de ned as the problem of
assigning category weights to each vertex in the graph.

They propose that: (1) Category assignment of a vertex in VS should not
deviate much from its original label. (2) Category assignment of the vertex in
V l
T should remain the same with its original label if it is fully trustable. Even

if it is not, it should not deviate too much. (3) Category of the vertex in V u
T

should take the prior knowledge into consideration if there is any. (4) Cate-
gory assignment of any vertex in graph G should be as consistent as possible
to the categories of its neighbors. Using these properties, they write an objec-
tive function. By minimizing the above objective function, the optimal class
distribution can be found.

8.6 Social Interesting Discovery
Tags represent common wisdom, so it can be useful for social interest dis-

covery. Li et al. [32] propose that human users tend to use descriptive tags
to annotate the contents that they are interested in. User-generated tags are
consistent with the web content they are attached to, while more concise and
closer to the understanding and judgements of human users about the content.

They have developed an Internet Social Interest Discovery system, ISID, to
discover the common user interests and cluster users and their saved URLs by
different interest topics.

The aggregated user tags of a URL embrace different human judgments on
the same subjects of the URL. This property is not possessed by the keywords
of their referring web pages. Tags carrying the variation of human judgments
re ects the different aspects of the same subjects. More importantly, it helps
to identify the social interests in more ner granularity.

Their evaluation results show that: (1) the URLs’ contents within a ISID
cluster have noticeably higher similarity than that of the contents of URLs
across different clusters, and (2) nearly 90% of all users have their social inter-
ests discovered by the ISID system.

ISID architecture provides the following functions. (1) Find topics of inter-
ests: For a given set of bookmark posts, nd all topics of interests. Each topic
of interests is a set of tags with the number of their co-occurrences exceeding a
given threshold. ISID uses association rules algorithms to identify the frequent
tag patterns for the posts. (2) Clustering: For each topic of interests, nd all
the URLs and the users such that those users have labeled each of the URLs
with all the tags in the topic. For each topic, a user cluster and a URL cluster
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are generated. (3) Indexing: Import the topics of interests and their user and
URL clusters into an indexing system for application queries.

They nd that the tag-based cosine similarity is quite close to keyword based
cosine similarity, indicating that tags really capture the main concepts of doc-
uments. Also their results are signi cantly different from those of [3]. With
the tags of blog data, Bateman et al. [3], found that the average pairwise cosine
similarity of the articles in tag-based clusters is only a little higher than that
of randomly clustered articles, while much lower than that of articles clustered
with high tf × idf key words. However, evaluation by Li et al. [32] shows that
tag-based clustering is highly accurate. The reason of this difference is that the
clustering of articles in [3] is based on single tags, while topic clustering in
[32] is based on multiple co-occurring tags.

8.7 Enhanced Browsing
Social tagging results into a list of weighted tags associated with every re-

source. Zubiaga et al. [64] suggest alternative navigation ways using social
tags: pivot browsing (moving through an information space by choosing a
reference point to browse, e.g., pivoting on a tag allows to look for related
tags; pivoting on a particular user), popularity driven navigation (sometimes
a user would like to get documents that are popular for a known tag, e.g.,
retrieving only the documents where a tag has been top weighted), and lter-
ing (social tagging allows to separate the stuff you do not want from the stuff
you do want, e.g., gathering documents containing a tag but excluding another
one). Currently, Wikipedia supports these navigation methods: search engine,
category-driven navigation, link-driven navigation.

The tag cloud (or tag index) supports easy social navigation in that each of
the tags is clickable; clicking a tag leads to a view of bookmarks that are asso-
ciated with that tag. Tag clouds are either system-wide, or speci c to one user,
depending on the current view. Millen and Feinberg [36] study tag browsing
on Dogear system. They point out that there is considerable browsing of the
bookmark space by other people, other tags (everyone) and other people’s tags.
These results suggest widespread curiosity about what others are bookmark-
ing. The most frequent way to browse bookmarks is by clicking on another
person’s name, followed by browsing bookmarks by selecting a speci c tag
from the system-wide tag cloud. During the trial period, 89% of individuals
(2291 of 2579) clicked on URLs that had been bookmarked by another person.
74% of the total pages visited (32596 of 44144) were bookmarked by someone
else. This provides considerable evidence that the Dogear service is supporting
a high degree of social navigation.



Social Tagging and Applications 485

9. Integration
There exist a large number of folksonomies dealing with similar type of

objects. As a result, different folksonomies have different tags for the same
object. An integration of such folksonomies can help in solving the problem
of sparsity of tags associated with Web objects. Integration of folksonomies
can help in creating richer user pro les. Some work has been done to integrate
these taxonomies by tag co-occurrence analysis and clustering. We discuss
such efforts in this section.

9.1 Integration using Tag Co-occurrence Analysis and
Clustering

Specia and Motta [53] tackle the problem of integrating folksonomies. They
present an approach to minimize the problems of ambiguity, lack of synonymy
and discrepancies in granularity by making explicit the semantics behind the
tag space in social annotation systems. Using data collected from Delicious
and Flickr, they use co-occurrence analysis and clustering techniques to con-
struct meaningful groups of tags that correspond to concepts in an ontology.
By exploiting external resources, such as Wikipedia, WordNet, and semantic
web ontologies, meaningful relationships can be established between such tag
groups.

Figure 16.9 shows the system pipeline.
To establish relationships between tags within each cluster and to re ne

clusters, they use the following procedure.
(1) Post each possible pair of tags within the cluster to the semantic web

search engine in order to retrieve ontologies that contain both tags. All combi-
nations of pairs are tried, since it is not possible to know within which pairs a
relation holds (look for matches with labels and identi ers).

(2) If any of the tags is not found by the search engine, consider that they
can be acronyms, misspellings or variations of known terms, and look for them
in additional resources like wikipedia or Google spell correction.

(3) If the two tags (or the corresponding terms selected from Wikipedia or
Google) are not found together by the semantic web search engine, consider
them not to be related and eliminate the pair from that cluster if they are not
(possibly) related to any other tags, that is, all the combinations of pairs of tags
must be searched.

(4) Conversely, if ontologies are found containing the two tags: (a) Check
whether the tags were correctly mapped into elements of the ontologies. Tags
can refer to the following elements: concepts, instances, or properties. (b)
Retrieve information about the tags in each of the ontologies: the type of tag
(concept, instance, property), its parents (up to three levels) if it is a concept or
an instance, and its domain and range or value if it is a property.
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Figure 16.9. Integration system architecture

(5) For each pair of tags for which the semantic web search engine retrieved
information, investigate possible relationships between them: (a) A tag is an
ancestor of the other. (b) A tag is the range or the value of one of the properties
of the other tag. (c) Both tags have the same direct parent. (d) Both tags have
the same ancestors, at the same level. (e) Both tags have the same ancestors, at
different levels.

9.2 TAGMAS: Federated Tagging System
Iturrioz et al. [25] propose the TAGMAS (TAG Management System) archi-

tecture: a federation system that supplies a uniform view of tagged resources
distributed across a range of Web2.0 platforms. The TAGMAS system ad-
dresses the problem that users do not have consistent view of their resources or
a single query end-point with which to search them. The TAGMAS architec-
ture is based on a tagging ontology that provides a homogeneous representation
of tags and tagging events. By aggregating user tagging events that span mul-
tiple sites, such as Flickr and Delicious, it is possible to query TAGMAS using
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SPARQL15, enabling users to nd resources distributed across many sites by
their tags, the date when tagged, which site they were tagged in. This declara-
tive query is gradually transformed into a set of distinct invocations where the
speci cities of each folkserver (data model, location or envelop protocol) is
considered. The results are then transported back where details about the en-
velop protocol or location are gradually removed till raw resources matching
the query are rendered to the user which ignore where the resource is located.
This heterogeneity stems from four main sources, mainly, the data model, the
API model, the enveloped model (REST, XML-RPC or SOAP) and the site
place.

Applications of their system include automatic tag creation (which permit
to create desktop-speci c tags), folksonomy loading (which permit to import
a folksonomy from a folkserver), resource annotation (where a resource can
be annotated along loaded folksonomies) and resource searching (where tag-
based ltering is used to locate resources regardless of where the resource is
held). This facility is parameterized for the folkservers whose folksonomy has
been downloaded into the desktop.

9.3 Correlating User Pro les from Different
Folksonomies

Szomszor et al. [55] compare user tag-clouds from multiple folksonomies
to: (1) show how they tend to overlap, regardless of the focus of the folk-
sonomy (2) demonstrate how this comparison helps nding and aligning the
user’s separate identities, and (3) show that cross-linking distributed user tag-
clouds enriches users pro les. During this process, they nd that signi cant
user interests are often re ected in multiple Web2.0 pro les, even though they
may operate over different domains. However, due to the free-form nature of
tagging, some correlations are lost, a problem they address through the imple-
mentation and evaluation of a user tag ltering architecture.

Out of the 84851 distinct Delicious tags, and 149529 distinct Flickr tags,
28550 are used in both systems. To measure the alignment between two user
tag clouds, they measure the frequency of tags common to Delicious and Flickr.
As users tag more resources in Flickr and Delicious, their intersection fre-
quency will increase. Therefore, this increases the con dence that two corre-
lated pro les in Delicious and Flickr refer to the same individual as their total
intersection frequency increases.

15http://www.w3.org/TR/rdf-sparql-query/
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10. Tagging problems
Though tags are useful, exploiting them for different applications is not easy.

Tags suffer from problems like spamming, canonicalization and ambiguity is-
sues. Other problems such as sparsity, no consensus, etc. are also critical. In
this section, we discuss these problems and suggest solutions described in the
literature.

10.1 Spamming
Spammers can mis-tag resources to promote their own interests. Wetzker

et al. [57] have observed such phenomena where a single user labeled a large
number of bookmarks with the same tags all referring to the same blog site.
They have also observed a phenomenon where users upload thousands of book-
marks within minutes and rarely actively contribute again. They characterize
the spammers as possessing these properties: very high activity, tagging ob-
jects belonging to a few domains, high tagging rate per resource, and bulk
posts. To detect such spamming, they propose a new concept called diffusion
of attention which helps to reduce the in uence of spam on the distribution
of tags without the actual need of ltering. They de ne the attention a tag
achieves in a certain period of time as the number of users using the tag in
this period. The diffusion for a tag is then given as the number of users that
assign this tag for the rst time. This measures the importance of an item by
its capability to attract new users while putting all users on an equal footage.
Every user’s in uence is therefore limited and a trend can only be created by
user groups.

Koutrika et al. [28] study the problem of spamming extensively. How many
malicious users can a tagging system tolerate before results signi cantly de-
grade? What types of tagging systems are more vulnerable to malicious at-
tacks? What would be the effort and the impact of employing a trusted mod-
erator to nd bad postings? Can a system automatically protect itself from
spam, for instance, by exploiting user tag patterns? In a quest for answers
to these questions, they introduce a framework for modeling tagging systems
and user tagging behavior. The framework combines legitimate and malicious
tags. This model can study a range of user tagging behaviors, including the
level of moderation and the extent of spam tags, and compare different query
answering and spam protection schemes. They describe a variety of query
schemes and moderator strategies to counter tag spam. Particularly, they in-
troduce a social relevance ranking method for tag search results that takes into
account how often a user’s postings coincide with others’ postings in order to
determine their “reliability". They de ne a metric for quantifying the “spam
impact" on results. They compare the various schemes under different models
for malicious user behavior. They try to understand the weaknesses of existing
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systems and the magnitude of the tag spam problem. They also make predic-
tions about which schemes will be more useful and which malicious behaviors
will be more disruptive in practice.

10.2 Canonicalization and Ambiguities
Ambiguity arises in folksonomies because different users apply terms to

documents in different ways. Acronyms can also lead to ambiguities. Users of-
ten combine multiple words as a single tag, without spaces, e.g., ‘vertigovideos-
tillsbbc’ on Flickr. Currently, tags are generally de ned as single words or
compound words, which means that information can be lost during the tag-
ging process. Single-word tags lose the information that would generally be
encoded in the word order of a phrase. There is no synonym or homonym con-
trol in folksonomies. Different word forms, plural and singular, are also often
both present. Folksonomies provide no formal guidelines for the choice and
form of tags, such as the use of compound headings, punctuation, word order.
In addition, the different expertise and purposes of tagging participants may
result in tags that use various levels of abstraction to describe a resource.

Guy and Tonkin [17] point out the existence of useless tags due to mis-
spellings, bad encoding like an unlikely compound word grouping (e.g., Tim-
BernersLee); tags that do not follow convention in issues such as case and
number; personal tags that are without meaning to the wider community (e.g.,
mydog); single use tags that appear only once in the database (e.g., billybobs-
dog), symbols used in tags. Conventions have become popular, such as dates
represented according to the ISO standard (e.g., 20051201 for “1st December,
2005") and the use of the year as a tag. One wildly popular convention is geo-
tagging, a simple method of encoding latitude and longitude within a single
tag; this represented over 2% of the total tags sampled on Flickr. A common
source of “misspelt" tags was in the transcoding of other alphabets or charac-
ters.

Zubiaga [64] suggests a solution to the canonicalization problem. To merge
all forms of the same tag, the system can rely on a method like that by Li-
brarything. This site allows users to de ne relations between tags, indicating
that some of them have the same meaning. In his blog entry, Lars Pind [39]
has suggested various ways to solve canonicalization problem, including the
following: (1) suggest tags for user, (2) nd synonyms automatically, (3) help
user use the same tags that others use, (4) infer hierarchy from the tags, and
(5) make it easy to adjust tags on old content. Quintarelli [41] mentions that
the system can have a correlation feature that, given a tag, shows related tags,
i.e., tags that people have used in conjunction with the given tag to describe
the same item. Guy and Tonkin [17] suggest educating the users, simple er-
rorchecking in systems when tags are entered by users, making tag suggestions
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(synonyms, expansion of acronyms etc.) when users submit resources (e.g., us-
ing Scrumptious, a recent Firefox extension, offers popular tags from Delicious
for every URL). They also suggest creation of discussion tools through which
users can share reasons for tagging things in a certain way. More understand-
ing of who is submitting certain tags could possibly alter personal rating of
posts by other users.

10.3 Other Problems
There are many other problems related to social tagging, including sparsity,

no consensus and search inef ciency. Sparsity is related to the annotation cov-
erage of the data set. Bao et al. [2] point out that certain pages may not be
tagged at all. Users do not generally associate tags to newly emerging web
pages or web pages that can be accessed easily from hub pages, or uninterest-
ing web pages. Noll et al. [37] observe that the amount of new information
provided by metadata (tags, anchor text, search keywords) is comparatively
low. All three types of data stay below 6% novelty for about 90% of docu-
ments. Search keywords dominate tags which in turn dominate anchor text
words. Tags are generally more diverse than anchor texts. On one hand, this
result suggests that tags are noisier than anchor texts and therefore potentially
less useful. On the other hand, the diversity of tags could be an advantage since
it might capture information and meanings that anchor texts miss.

Halpin et al. [18] point that users may not reach a consensus over the appro-
priate set of tags for a resource leading to an unstable system. As Golder and
Huberman [16] suggest, changes in the stability of such patterns might indicate
that groups of users are migrating away from a particular consensus on how to
characterize a site and its content or negotiating the changing meaning of that
site. Quintarelli [41] points out that tags have no hierarchy. Folksonomies are
a at space of keywords. Folksonomies have a very low ndability quotient.
They are great for serendipity and browsing but not aimed at a targeted ap-
proach or search. Tags do not scale well if you are looking for speci c targeted
items.

11. Conclusion and Future Directions
In this work, we surveyed social tagging with respect to different aspects.

We discussed different user motivations and different ways of tagging web
objects. We presented a summary of the various tag generation models. We
analyzed different tagging system parameters and tagging distributions. We
then summarized ways of identifying tag semantics, ways of visualizing tags
using tag clouds and ways of recommending tags to users. We presented a
variety of applications for which tags have been used. Further, we discussed
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ways of integrating different folksonomies and problems related to the usage
of tags.

Tags are taking on a new meaning as other forms of media like microblogs
are gaining popularity. Below we mention a few aspects which can be a part of
future research.

11.1 Analysis
Most current research on tagging analysis focus on one single tag stream

itself. However, as the type of user generated content evolves, tags may be dif-
ferent and related to different kinds of user generated data, such as microblogs
and query logs. For example, How does tag growth differ in microblogs versus
that for bookmarks and images. Tagging models for microblogs can be quite
different from other tagging models. E.g., certain tags reach a peak on twit-
ter quite unexpectedly. These tags don’t relate to any speci c events. Such
varying degree of social in uence when a pseudo event happens hasn’t been
captured by any of the tagging models, yet.

11.2 Improving System Design
Current tagging systems only support a type of tags and researchers have

developed mechanisms to extract hierarchical structures (ontology) from this
at tagging space. Systems can provide more functionality like hierarchical

tags, say (programming/java), multi-word tags. A tagging system can also
support a tag discussion forum where users can debate about the appropriate-
ness of a tag for a resource. Structured tags can also be supported, i.e., allow
people to tag different portions of a web page with different tags and assign
key=value pairs rather than just “values". E.g., person=“Mahatma Gandhi", lo-
cation=“Porbandar", year=“1869", event=“birth". By adding more such func-
tionality into the system, we can expect that a more meaningful semantic struc-
ture could be extracted.

11.3 Personalized Tag Recommendations
Is the user a describer or organizer? What is the context? Is she tagging

on sets in Flickr or just photos in the photostream (i.e. context within the
tagging site itself)? Based on her history, what is the probability that she would
choose a new tag? What are the words used in her previous tags, words used
in her social friends’ tags? Given some tags tied to a resource, we can identify
whether users prefer to repeat tags for this resource or do they like to put on
new tags. Using this we can vary the tag history window size shown with the
resource. Apart from tag recommendation, a recommendation system can also
recommend related resources once a user selects a particular tag.
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11.4 More Applications
There are also interesting applications which are worth exploring. E.g.,

(1) Tagging support for desktop systems using online tags. (2) Geographi-
cal/demographical analysis of users’ sentiments based on the tags they apply
to products launched at a particular location. (3) Mashups by integrating re-
sources with same/similar tags. (4) Establishing website trustworthiness based
on what percent of the keywords mentioned in the <meta> tag are actual tags
for web page bookmarks. (5) Summary generation using tags with NLP. (6)
Intent detection and behavioral targeting based on user history of tags.

11.5 Dealing With Problems
Sparsity, canonicalization, ambiguities in tags still remain as open problems.

More work needs to be done to come up with solutions to effectively deal with
them. Also, certain tags get outdated. E.g., a camera model may be marked
as ‘best camera’. But after two years, it no longer remains the ‘best camera’.
How can we clean up such kind of tag rot? Similarly, tags that haven’t been
repeated by another user within a time window, can be considered as personal
tags and can be removed from public view.
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