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Preface

Social networks have been studied fairly extensively over two decades in
the general context of analyzing interactions between people, and determin-
ing the important structural patterns in such interactions. The trends in recent
years have focussed on online social networks, in which the social network
is enabled as an internet application. Some examples of such networks are
Facebook, LinkedIn and MySpace. Such social networks have rapidly grown
in popularity, because they are no longer constrained by the geographical lim-
itations of a conventional social network in which interactions are defined in
more conventional way such as face-to-face meetings, or personal friendships.

The infrastructure which is built around social networks can support a rich
variety of data analytic applications such as search, text analysis, image anal-
ysis, and sensor applications. Furthermore, the analysis and evolution of the
structure of the social network is also an interesting problem in of itself. While
some of these problems are also encountered in the more conventional notion
of social networks, many of the problems which relate to the data-analytic
aspects of social networks are relevant only in the context of online social
networks. Furthermore, online social networks allow for more efficient data
collection on a large scale, and therefore, the computational challenges are far
more significant.

A number of books have been written in recent years on the topic of social
networks, though most of these books focus on the non-technological aspect,
and consider social networks more generally in the context of relationships
between individuals. Therefore, these books mostly focus on the social, struc-
tural, and cognitive aspects of the social network, and do not focus on the
unique issues which arise in the context of the interplay between the structural
and data-centric aspects of the network. For example, an online social network
may contain various kinds of contents or media such as text, images, blogs
or web pages. The ability to mine these rich sources of information in the
context of a social network provides an unprecedented challenge and also an
opportunity to determine useful and actionable information in a wide variety of
fields such as marketing, social sciences, and defense. The volume of the data
available is also a challenge in many cases because of storage and efficiency
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constraints. This book provides a first comprehensive compendium on recent
research on the data-centric aspect of social networks.

Research in the field of online social networks has seen a revival in the
last ten years. The research in the field is now reaching a level of maturity
where it is useful to create an organized set of chapters which describe the
recent advancements in this field. This book contains a set of survey chapters
on the different data analytic issues in online social networks. The chapters
describe the different facets of the field in a comprehensive way. This creates
an organized description of the significant body of research in the important
and emerging field of online social networks.



Chapter 1

AN INTRODUCTION TO SOCIAL NETWORK DATA
ANALYTICS

Charu C. Aggarwal

IBM T. J. Watson Research Center
Hawthorne, NY 10532

charu@us.ibm.com

Abstract The advent of online social networks has been one of the most exciting events in
this decade. Many popular online social networks such as Twitter, LinkedIn, and
Facebook have become increasingly popular. In addition, a number of multime-
dia networks such as Flickr have also seen an increasing level of popularity in
recent years. Many such social networks are extremely rich in content, and they
typically contain a tremendous amount of content and linkage data which can be
leveraged for analysis. The linkage data is essentially the graph structure of the
social network and the communications between entities; whereas the content
data contains the text, images and other multimedia data in the network. The
richness of this network provides unprecedented opportunities for data analyt-
ics in the context of social networks. This book provides a data-centric view of
online social networks; a topic which has been missing from much of the litera-
ture. This chapter provides an overview of the key topics in this field, and their
coverage in this book.

Keywords:  Social Networks, Data Mining

1. Introduction

This chapter will provide an introduction of the topic of social networks, and
the broad organization of this book. Social networks have become very popu-
lar in recent years because of the increasing proliferation and affordability of
internet enabled devices such as personal computers, mobile devices and other
more recent hardware innovations such as internet tablets. This is evidenced
by the burgeoning popularity of many online social networks such as Twitter,

C. C. Aggarwal (ed.), Social Network Data Analytics,
DOI 10.1007/978-1-4419-8462-3 1, © Springer Science+Business Media, LLC 2011
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Facebook and LinkedIn. Such social networks have lead to a tremendous ex-
plosion of network-centric data in a wide variety of scenarios. Social networks
can be defined either in the context of systems such as Facebook which are ex-
plicitly designed for social interactions, or in terms of other sites such as Flickr
which are designed for a different service such as content sharing, but which
also allow an extensive level of social interaction.

In general, a social network is defined as a network of interactions or re-
lationships, where the nodes consist of actors, and the edges consist of the
relationships or interactions between these actors. A generalization of the idea
of social networks is that of information networks, in which the nodes could
comprise either actors or entities, and the edges denote the relationships be-
tween them. Clearly, the concept of social networks is not restricted to the
specific case of an internet-based social network such as Facebook; the prob-
lem of social networking has been studied often in the field of sociology in
terms of generic interactions between any group of actors. Such interactions
may be in any conventional or non-conventional form, whether they be face-to-
face interactions, telecommunication interactions, email interactions or postal
mail interactions.

The conventional studies on social network analysis have generally not fo-
cussed on online interactions, and have historically preceded the advent and
popularity of computers or the internet. A classic example of this is the study
of Milgram [18] in the sixties (well before the invention of the internet), who
hypothesized the likelihood that any pair of actors on the planet are separated
by at most six degrees of separation. While such hypotheses have largely re-
mained conjectures over the last few decades, the development of online social
networks has made it possible to test such hypotheses at least in an online
setting. This is also referred to as the small world phenomenon. This phe-
nomenon was tested in the context of MSN messenger data, and it was shown
in [16] that the average path length between two MSN messenger users is 6.6.
This can be considered a verification of the widely known rule of “six degrees
of separation” in (generic) social networks. Such examples are by no means
unique; a wide variety of online data is now available which has been used
to verify the truth of a host of other conjectures such! as that of shrinking
diameters[15] or preferential attachment. In general, the availability of mas-
sive amounts of data in an online setting has given a new impetus towards a
scientific and statistically robust study of the field of social networks.

I The shrinking diameter conjecture hypothesizes that the diameters of social networks shrink in spite of
the addition of new nodes, because of an increase in the density of the underlying edges. The preferential
attachment conjecture hypothesizes that new nodes and edges in the social networks are more likely to be
attached to the dense regions of the network.
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This data-centric impetus has lead to a significant amount of research, which
has been unique in its statistical and computational focus in analyzing large
amounts of online social network data. In many cases, the underlying insights
are applicable to the conventional social network setting as well. Before dis-
cussing the research topics in more detail, we will briefly enumerate the differ-
ent settings for social network analysis, and specifically distinguish between
the conventional and non-conventional scenarios. Specifically, these different
settings are as follows:

The most classical definition of a social network is one which is based
purely on human interactions. This is the classical study of social net-
works in the field of sociology. These studies have traditionally been
conducted with painstaking and laborious methods for measuring in-
teractions between entities by collecting the actual data about human
interactions manually. An example is the six-degrees-of-separation ex-
periment by Milgram [18], who used postal mail between participants in
order to test whether two arbitrary actors could be connected by a chain
of 6 edges with the use of locally chosen forwards of the mail. Such
experiments are often hard to conduct in a completely satisfactory way,
because the actors in such experiments may have response rates which
cannot be cleanly modeled in terms of social interaction behavior. An
example is the case of the Milgram experiment, in which the results have
often been questioned [14] because of the low forward rate of the letters
which never reached the target. Furthermore, such social experiments
are often biased towards high status targets in order to ensure likelihood
of logical forwards. However, these results have eventually been ac-
cepted at least from a qualitative perspective, even though the rule of
six degrees may not be precisely correct, depending upon the nature of
the network which is being studied. Nevertheless, the “small world phe-
nomenon” definitely seems to be correct, since the diameters of most
such networks are relatively small.

The social analysis of such networks has also been modeled in the field
of cognitive science, where the cognitive aspects of such interactions are
utilized for analytical purposes. Much of the research in the traditional
field of social networks has been conducted from this perspective. A
number of books [7, 24, 25] provide an understanding of this perspec-
tive. However, this work does not discuss the data-centric issues which
are common to online and internet-enabled social networks.

A number of technological enablers such as telecommunications, elec-
tronic mail, and electronic chat messengers (such as Skype, Google Talk
or MSN Messenger), can be considered an indirect form of social net-
works, because they are naturally modeled as communications between
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different actors. One advantage of such applications is that the traces
of the communication data are often available (subject to some privacy
controls). This data can be used for extensive analysis of such social
networks. Some examples are the extensive analysis on the Enron email
data set [28], or the recent verification of the six degrees of separation
conjecture in the context of the MSN messenger data in [16].

In recent years, a number of sites have arisen explicitly in order to model
the interactions between different actors. Some examples of such social
networks are Facebook, MySpace, or LinkedIn. In addition, sites which
are used for sharing online media content, such as Flickr, Youtube or
delicious, can also be considered indirect forms of social networks, be-
cause they allow an extensive level of user interaction. In these cases,
the interaction is centered around a specific service such as content-
sharing; yet many fundamental principles of social networking apply.
We note that such social networks are extremely rich, in that they con-
tain a tremendous amount of content such as text, images, audio or video.
Such content can be leveraged for a wide variety of purposes. In partic-
ular, the interaction between the links and content has provided impetus
to a wide variety of mining applications. In addition, social media out-
lets provide a number of unique ways for users to interact with one an-
other such as posting blogs, or tagging each other’s images. Which such
forms of interaction are indirect, they provide rich content-based knowl-
edge which can be exploited for mining purposes. In recent years, it has
even become possible to integrate real-time sensor-based content into
dynamic social networks. This is because of the development of sensors,
accelerometers, mobile devices and other GPS-enabled devices, which
can be used in a social setting for providing a dynamic and interactive
experience.

Finally, a number of social networks can also be constructed from spe-
cific kinds of interactions in different communities. A classical example
would be the scientific community in which bibliographic networks can
be constructed from either co-authorship or citation data. These can
be used in conjunction with the content of the publications in order to
derive interesting trends and patterns about the underlying papers. We
note that much of the analysis for the first case above applies to this as
well, though a lot of data and content is available because of the way in
which such documents networks are archived. A number of document
collections and bibliographic networks are archived explicitly, and they
can be used in conjunction with more principled data-centric techniques,
because of the content which is available along with such networks.



An Introduction to Social Network Data Analytics 5

While the results of this book may be applicable to all the different kinds of
social networks, the specific focus is on the data-centric issues which arise in
the context of online social networks. It is also important to understand that
an online social network can be defined much more generally than an online
site such as Facebook, Twitter or LinkedIn which are formally advertised as
social networking sites. In fact, any web-site or application which provides
a social experience in the form of user-interactions can be considered to be
a form of social network. For example, media-sharing sites such as Flickr,
Youtube, or delicious are formally not considered social networks; yet they
allow for social interactions in the context of information exchange about the
content being shared. Similarly, many mobile, web, and internet-driven chat
applications also have social aspects embedded in them. Furthermore, many
mobile applications such as Google Latitude allow the implicit embedding of
sensor or GPS information, and this is used in order to enable user interactions.
These are all novel forms of social networks, each of which brings with it a set
of unique challenges for the purpose of analysis. Therefore, our definition of
social networks is fairly broad, and many chapters will study aspects which are
relevant to these alternative forms of social networks.

This chapter is organized as follows. In the next section, we discuss the main
thrusts in the field of social networks. In section 3, we discuss the organization
of the book and their relationships to these different thrusts. In section 4, we
present the conclusions and related directions in the field.

2. Online Social Networks: Research Issues

The field of online social networks has seen a rapid revival in recent years.
A key aspect of many of the online social networks is that they are rich in data,
and provide unprecedented challenges and opportunities from the perspective
of knowledge discovery and data mining. There are two primary kinds of data
which are often analyzed in the context of social networks:

Linkage-based and Structural Analysis: In linkage-based and struc-
tural analysis, we construct an analysis of the linkage behavior of the
network in order to determine important nodes, communities, links, and
evolving regions of the network. Such analysis provides a good overview
of the global evolution behavior of the underlying network.

Adding Content-based Analysis: Many social networks such as Flickr,
Message Networks, and Youtube contain a tremendous amount of content
which can be leveraged in order to improve the quality of the analysis.
For example, a photograph sharing site such as Flickr contains a tremen-
dous amount of text and image information in the form of user-tags and
images. Similarly, blog networks, email networks and message boards
contain text content which are linked to one another. It has been ob-
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served that combining content-based analysis with linkage-based analy-
sis provides more effective results in a wide variety of applications. For
example, communities which are designed with text-content are much
richer in terms of carrying information about the topical expertise of the
underlying community.

The other main differences which arises in the context of social network algo-
rithms is that between dynamic analysis and static analysis. In the case of static
analysis, we assume that the social network changes slowly over time, and we
perform an analysis of the whole network in batch mode over particular snap-
shots. Such is often the case for many networks such as bibliographic networks
in which the new events in the network may happen only slowly over time.
On the other hand, in the case of many networks such as instant messaging
networks, interactions are continuously received over time at very large rate,
which may lead to network streams. The analysis of such networks is much
more challenging, and is a subject of recent research [2—5]. The temporal as-
pect of networks often arises in the context of dynamic and evolving scenarios.
Many interesting temporal characteristics of networks can be determined such
as evolving communities, interactions between entities and temporal events in
the underlying network.

Dynamic networks also arise in the context of mobile applications, in which
moving entities constantly interact with one another. Such dynamic networks
arise in the context of moving entities which interact with one another over
time. For example, many mobile phones are equipped with GPS receivers,
which are exploited by the applications on these phones. A classical example
of such an application is the Google Latitude application which is capable of
keeping track of the locations of different users, and issuing alerts when a given
user is in the vicinity. Such dynamic social networks can be modeled as dy-
namic graphs for which the edges change constantly over time. Such dynamic
graphs lead to massive challenges in processing because of the extremely large
number of connections between the entities which may need to be tracked si-
multaneously. In such cases, graph stream mining applications are required
in order to perform effective online analysis. Such applications are typically
required to be able to summarize the network structure of the data in real time
and utilize it for a variety of mining applications. Some recent advances in this
direction are discussed in [1, 3].

A number of important problems arise in the context of structural analysis
of social networks. An important line of research is to try to understand and
model the nature of very large online networks. For example, the verification
of the small world phenomenon, preferential attachment, and other general
structural dynamics has been a topic of great interest in recent years. Since
a significantly larger amount of data is available for the case of online social
networks, the verification of such structural properties is much more robust
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in terms of statistical significance. For the first time, it has actually become
possible to study these classical conjectures in the context of massive amounts
of data.

The most well known structural problem in the context of social networks is
that of community detection. The problem of community detection is closely
related to the problem of finding structurally related groups in the network.
These structurally related groups are referred to as communities. Some well
known methods for community detection are discussed in [8, 9, 11, 19]. The
problem of community detection arises both in a static setting in which the
network changes slowly over time, as well as a dynamic setting in which the
network structure evolves rapidly. While these problems have been studied
in the traditional literature in the context of the problem of graph partitioning
[11], social networks are significantly larger in size. Furthermore, a significant
amount of content may be available for improving the effectiveness of com-
munity discovery. Such challenges are unique to the online scenario, and has
lead to the development of a significant number of interesting algorithms.

Social networks can be viewed as a structure which enables the dissemina-
tion of information. This is direct corollary of its enabling of social interactions
among individuals. The analysis of the dynamics of such interaction is a chal-
lenging problem in the field of social networks. For example, important news
is propagated through the network with the use of the interactions between
the different entities. A well known model for influence propagation may be
found in [20]. The problem of influence analysis is very relevant in the context
of social networks, especially in the context of determining the most influential
members of the social network, who are most likely to propagate their influ-
ence to other entities in the social network [12]. The most influential members
in the social network may be determined using flow models as in [12], or by us-
ing page rank style methods which determine the most well connected entities
in the social network.

Finally, an important class of techniques is that of inferring links which are
not yet known in the social networks. This problem is referred to as that of
link inference [17]. The link prediction problem is useful for determining im-
portant future linkages in the underlying social network. Such future linkages
provide an idea of the future relationships or missing relationships in the social
network. Link prediction is also useful in a number ofadversarial applications
in which one does not fully know the linkages in an enemy or terrorist network,
and uses automated data mining techniques in order to estimate the underlying
links.

Many of the above mentioned applications can be greatly improved with the
use of content information. For example, content can be associated with nodes
in the community, which has been shown to greatly improve the quality of the
clusters in the underlying network [26]. This is because the content informa-
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tion in different parts of the network is often closely related to its structure; the
combination of the two can provide useful information which cannot be ob-
tained from either as a single entity. It has also been observed [10] that the use
of content information can also improve the qualitative results on problems
such as link inference. In general, the incorporation of content can improve
the end result of a wide variety of inference problems in social and informa-
tion networks. In the case of photograph and video sharing web sites such as
Flickr and YouTube, the content can be very rich and can contain data of dif-
ferent types, such as text, audio or video. Such heterogeneous data requires
the design of methods which can learn and analyze data with heterogeneous
feature spaces. In some cases, it is also useful to design methods which can
transfer knowledge from one space to another. This has lead to an increasing
interest in the field of transfer learning which uses the implicit links creates
by users (such as tags) in order to transfer knowledge [27] from one space to
another. Such methods can be particularly useful when a significant amount
of content is available for learning in some spaces, but only a scan amount
of content is available for learning in others. In the next section, we will dis-
cuss how the different chapters of this book are organized in the context of the
afore-mentioned topics.

3. Research Topics in Social Networks

This book is organized into several chapters based on the topics discussed
above. This chapter will discuss the different topics in detail and their rela-
tionship to the corresponding chapters. The discussion of these topics in this
section is organized in approximate order of the corresponding chapters. The
broad organization of the chapters is as follows:

The first set of chapters are based on structural analysis of social net-
works. These include methods for statistical analysis of networks, com-
munity detection, classification, evolution analysis, privacy-preserving
data mining, link inference and visualization.

The second set of chapter are focussed on content-based mining issues
in social networks. We have included chapters on several different kinds
of content: (a) General data mining with arbitrary kinds of data (b) Text
mining in social networks (b) Multimedia mining in social networks (d)
Sensor and stream mining in social networks.

We discuss how these different kinds of content can be leveraged in or-
der to make interesting and valuable inferences in social networks. The
richness of the underlying content results in a number of interesting in-
ferences which are not possible with the use of purely structural meth-
ods.
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Next, we will discuss the individual chapters in the book in detail, and how
they relate to the above themes:

Statistical Analysis of Social Networks: The work of Milgram [18] laid the
foundation for a more extensive analysis of the structural properties of large
scale networks. In chapter 2, we study the important statistical properties of
“typical” social networks. Some interesting questions which are examined in
the chapter are to explore how typical social networks look like, on a large
scale. The connectivity behavior of the nodes is examined to see if most nodes
have few connections, with several “hubs” or whether the degrees are more
evenly distributed. The clustering behavior of the nodes in typical social net-
works is examined. Another issue which is examined are the typical tempo-
ral characteristics of social networks. For example, it is examined how the
structure varies as the network grows. As the network evolves over time, new
entities may be added to the network, though certain graph properties may
continue to be retained in spite of this. The behavior and distribution of the
connected components of the graph is also examined.

Random Walks and their Applications in Social Networks: Ranking is one
of the most well known methods in web search. Starting with the well known
page-rank algorithm [6] for ranking web documents, the broad principle can
also be applied for searching and ranking entities and actors in social networks.
The page-rank algorithm uses random walk techniques for the ranking process.
The idea is that a random walk approach is used on the network in order to es-
timate the probability of visiting each node. This probability is estimated as
the page rank. Clearly, nodes which are structurally well connected have a
higher page-rank, and are also naturally of greater importance. Random walk
techniques can also be used in order to personalize the page-rank computation
process, by biasing the ranking towards particular kinds of nodes. In chapter
3, we present methods for leveraging random walk techniques for a variety of
ranking applications in social networks.

Community Detection in Social Networks: One of the most important prob-
lems in the context of social network analysis is that of community detection.
The community detection problem is closely related to that of clustering, and
it attempts to determine regions of the network, which are dense in terms of
the linkage behavior. The topic is related to the generic problem of graph-
partitioning [13] which partitions the network into dense regions based on the
linkage behavior. However, social networks are usually dynamic, and this leads
to some unique issues from a community detection point of view. In some
cases, it is also possible to integrate the content behavior into the community
detection process. In such cases, the content may be leveraged in order to de-
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termine groups of actors with similar interests. Chapter 4 provides an overview
of some of the important algorithms on the problem of community detection.

Node Classification in Social Networks: In many applications, some of the
nodes in the social network may be labeled, and it may be desirable to use the
attribute and structural information in the social network in order to propagate
these labels. For example, in in a marketing application, certain nodes may be
known to be interested in a particular product, and it may be desirable to use
the attribute and structural information in the network in order to learn other
nodes which may also be interested in the same product. Social networks also
contain rich information about the content and structure of the network, which
may be leveraged for this purpose. For example, when two nodes in a social
network are linked together, it is likely that the node labels are correlated as
well. Therefore, the linkage structure can be used in order to propagate the
labels among the different nodes. Content and attributes can be used in order
to further improve the quality of classification. Chapter 5 discusses a variety
of methods for link-based node classification in social networks.

Evolution in Dynamic Social Networks: Social Networks are inherently dy-
namic entities; new members join them, old members stop participating, new
links emerge as new contacts are built, and old links become obsolete as the
members stop interacting with one other. This leads to changes in the structure
of the social network as a whole and of the communities in it. Two important
questions arise in this context: (a) What are the laws which govern long term
changes in the social network over time, which are frequently observed over
large classes of social networks? (b) How does a community inside a social
platform evolve over time? What changes can occur, and how do we capture
and present them?

Chapter 6 elaborates on these questions in more detail. Advances associated
with the first set of questions are studied in Chapter 2, and to a lesser extent in
Chapter 6. Advances on the second question are studied in Chapter 6, where
the main focus is on evolution in social networks.

Social Influence Analysis: Since social networks are primarily designed on
the basis of the interactions between the different participants, it is natural that
such interactions may lead to the different actors influencing one another in
terms of their behavior. A classic example of this would be a viral marketing
application in which we utilize the messages between interconnected partici-
pants in a social network in order to propagate the information across different
parts of the network. A number of natural questions arise in this context:

(a) How do we model the nature of the influence across actors?

(b) How do we model the spread of influence?
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(c) Who are the most influential actors for influence spread?
Chapter 7 studies these issues in considerable depth and provides a deep un-
derstanding of the nature of influence analysis in social networks.

Expert Discovery in Networks: Social networks can be used as a tool in
order to identify experts for a particular task. For example, given the activ-
ities of candidates within a context (e.g., authoring a document, answering a
question), we first describe methods for evaluating the level of expertise for
each of them. Often, experts are organized in networks that correspond to so-
cial networks or organizational structures of companies. Many complex tasks
often require the collective expertise of more than one expert. In such cases,
it is more realistic to require a team of experts that can collaborate towards a
common goal. Chapter 8 discusses methods for determining teams of experts
which can perform particular tasks.

Link Prediction in Social Networks: Much of the research in mining social
networks is focussed on using the links in order to derive interesting informa-
tion about the social network such as the underlying communities, or labeling
the nodes with class labels. However, in most social networking applications,
the links are dynamic, and may change considerably over time. For example, in
a social network, friendship links are continuously created over time. There-
fore, a natural question is to determine or predict future links in the social
network. The prediction process may use either the structure of the network
or the attribute-information at the different nodes. A variety of structural and
relational models have been proposed in the literature for link prediction [17,
21-23]. Chapter 9 provides a detailed survey of such methods.

Privacy in Social Networks: Social networks contain a tremendous informa-
tion about the individual in terms of their interests, demographic information,
friendship link information, and other attributes. This can lead to disclosure
of different kinds of information in the social network, such as identity dis-
closure, attribute disclosure, and linkage information disclosure. Chapter 10
discusses a detailed survey of privacy mechanisms in social networks in con-
text of different kinds of models and different kinds of information which can
be disclosed.

Visualizing Social Networks: As social networks become larger and more
complex, reasoning about social dynamics via simple statistics is cumbersome,
and not very intuitive. Visualization provides a natural way to summarize the
information in order to make it much easier to understand. Recent years have
witnessed a convergence of social network analytics and visualization, coupled
with interaction, that is changing the way analysts understand and character-
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ize social networks. In chapter 11, the main goal of visualization is discussed
in the context of user understanding and interaction. The chapter also exam-
ines how different metaphors are aimed towards elucidating different aspects
of social networks, such as structure and semantics. A number of methods are
described, where analytics and visualization are interwoven towards providing
a better comprehension of social structure and dynamics.

Data Mining in Social Media: Social Media provides a wealth of social net-
work data, which can be mined in order to discover useful business applica-
tions. Data mining techniques provide researchers and practitioners the tools
needed to analyze large, complex, and frequently changing social media data.
An overview on the topic of data mining in social media is provided in Chapter
12. This chapter introduces the basics of data mining in the context of social
media, and discusses how to mine social media data. The chapter also high-
lights a number of illustrative examples with an emphasis on social networking
sites and blogs.

Text Mining in Social Networks: Social networks contain a lot of text in
the nodes in various forms. For example, social networks may contain links to
posts, blogs or other news articles. In some cases, users may tag one another,
which is also a form of text data on the links. The use of content can greatly
enhance the quality of the inferences which may be made in the context of
graphs and social networks. In chapter 13, we present methods for using text
mining techniques in social networks in the context of a variety of problems
such as clustering and classification.

Integrating Sensors and Social Networks: Many mobile phones provide the
ability for actors to interact with one another dynamically, and in real time
depending upon their location and status. Such applications also result in the
generation of massive streams in real time, which can be used to make infer-
ences about one another, or about the aggregate properties of the objects which
are being tracked. Since location information is private, this also naturally
leads to a number of privacy concerns from a processing perspective. Chapter
14 discusses such methods for incorporating sensor data as an integral part of
social network data analytics.

Multimedia Information Network Analysis in Social Media: Many forms
of media sharing sites such as Flickr and Youtube provide the ability to share
media. Such shared media are often used in conjunction with the interactions
of different users, such as the placing of tags or comments on the different im-
ages. Such rich context-based information networks can be mined for a wide
variety of applications by leveraging the combination of user tags and image
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data in the mining and retrieval process. Chapter 15 discusses methods for
mining multimedia information networks with social media.

Social Tagging: Much of the interaction between users and social networks
occurs in the form of tagging, in which users attach short descriptions to differ-
ent objects in the social network, such as images, text, video or other multime-
dia data. Chapter 16 provides a detailed survey of various aspects of tagging.
The chapter discusses properties of tag streams, tagging models, tag semantics,
generating recommendations using tags, visualizations of tags, applications of
tags, integration of different tagging systems and problems associated with
tagging usage. Many interesting issues are discussed, such as the reason why
people tag, what influences the choice of tags, how to model the tagging pro-
cess, kinds of tags, different power laws observed in tagging domain, how tags
are created and how to choose the right tags for recommendation.

4. Conclusions and Future Directions

This book is primarily focussed on providing readers with an introduction
to the area of social networks. The broad area is so vast, that it is probably not
possible to cover it comprehensively in a single book. The problem of social
network data analytics is still in its infancy; there is a tremendous amount of
work to be done, particularly in the area of content-based and temporal social
networks. Some key research directions for the future are as follows:

Content-based Analysis: Much of the past research in this area has
been based on structural analysis of social networks. Such analysis
primarily uses linkage structure only in order to infer interesting char-
acteristics of the underlying network. Some recent research [26] has
shown that the inclusion of content information can yield valuable in-
sights about the underlying social network. For example, the content
at a given node may provide more information about the expertise and
interests of the corresponding actor.

Temporal Analysis: Most of the research in social networks is based
on static networks. However, a number of recent studies [8, 9, 11] have
shown that the incorporation of temporal evolution into network analysis
significantly improves the quality of the results. Therefore, a significant
amount of work remains to be done on dynamic analysis of social net-
works which evolve rapidly over time.

Adversarial Networks: In adversarial networks, it is desirable to de-
termine the analytical structure of a network in which the actors in the
network are adversaries, and the relationships among the different adver-
saries may not be fully known. For example, terrorist networks would
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be a typical adversarial network to a law enforcement agency. Such net-
works are far more challenging because the links may not be known
a-priori, but may need to be inferred in many cases. Such inferred links
may need to be used for analytical purposes.

In addition, we expect that it will be increasingly important to analyze net-
works in the context of heterogeneous data, in which the links are of different
types and correspond to different kinds of relationships between the actors.
A generalization of the concept of social networks is that of information net-
works, in which the nodes could be either actors of entities, and the edges
correspond to logical relations among these entities. Such networks are also
heterogeneous, and therefore it is increasingly important to design tools and
techniques which can effectively analyze heterogeneous networks.
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Abstract In this chapter we describe patterns that occur in the structure of social networks,
represented as graphs. We describe two main classes of properties, static proper-
ties, or properties describing the structure of snapshots of graphs; and dynamic
properties, properties describing how the structure evolves over time. These
properties may be for unweighted or weighted graphs, where weights may rep-
resent multi-edges (e.g. multiple phone calls from one person to another), or
edge weights (e.g. monetary amounts between a donor and a recipient in a po-
litical donation network).
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What do social networks look like on a global scale? How do they evolve
over time? How do the different components of an entire network form? What
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happens when we take into account multiple edges and weighted edges? Can
we identify certain patterns regarding these weights?

There has been extensive work focusing on static static snapshots of graphs,
where fascinating properties have been discovered, the most striking ones be-
ing the ‘small-world’ phenomenon [38] (also known as ‘six degrees of sepa-
ration’ [24]) and the power-law degree distributions [3, 12]. Time-evolving
graphs have attracted attention only recently, where even more fascinating
properties have been discovered, like shrinking diameters, and the so-called
densification power law [18]. Moreover, we find interesting properties in terms
of multiple edges between nodes, or edge weights.

In this chapter we will describe some of the most important properties ap-
parent in social networks, with a particular emphasis on dynamic properties,
and some of the newer findings with respect to edge weights.

The questions of interest are:

What do social networks look like, on a large scale? Do most nodes have
few connections, with several “hubs” or is the distribution more stable?
What sort of clustering behavior occurs?

How do networks behave over time? Does the structure vary as the net-
work grows? In what fashion do new entities enter a network? Does the
network retain certain graph properties as it grows and evolves? Does
the graph undergo a “phase transition", in which its behavior suddenly
changes?

How do the non-giant weakly connected components behave over time?
One might argue that they grow, as new nodes are being added; and
their size would probably remain a fixed fraction of the size of the GCC.
Someone else might counter-argue that they shrink, and they eventually
get absorbed into the GCC. What is happening, in real graphs?

What distributions and patterns do weighted graphs maintain? How
does the distribution of weights change over time— do we also observe
a densification of weights as well as single-edges? How does the dis-
tribution of weights relate to the degree distribution? Is the addition of
weight bursty over time, or is it uniform?

Answering these questions is important to understand how natural graphs
evolve, and to (a) spot anomalous graphs and sub-graphs; (b) answer questions
about entities in a network and what-if scenarios; and (c) discard unrealistic
graph generators.

Let’s elaborate on each of the above applications: Spotting anomalies is vital
for determining abuse of social and computer networks, such as link-spamming
in a web graph, fraudulent reputation building in e-auction systems [29], detec-
tion of dwindling/abnormal social sub-groups in a social-networking site like
Yahoo-360 (360 . yahoo . com), Facebook (www . facebook. com) and LinkedIn
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Symbol Description

g Graph representation of datasets
1% Set of nodes for graph G

& Set of edges for graph G

N Number of nodes, or |V|

E Number of edges, or ||

€i,j Edge between node ¢ and node j
W;,j Weight on edge e; ;

wi Weight of node ¢ (sum of weights of incident edges)
A 0-1 Adjacency matrix of the unweighted graph

Ay Real-value adjacency matrix of the weighted graph
ai,j Entry in matrix A

A1 Principal eigenvalue of unweighted graph

A1,w  Principal eigenvalue of weighted graph

Table 2.1. Table of Notations.

(www.linkedin.com), and network intrusion detection [17]. Analyzing net-
work properties is also useful for identifying authorities and search algorithms
[7,9, 16], for discovering the “network value” of customers for using viral mar-
keting [30], or to improve recommendation systems [5]. What-if scenarios are
vital for extrapolation, provisioning and algorithm design: For example if we
expect that the number of links will double within the next year, we should pro-
vision for the appropriate hardware to store and process the upcoming queries.

The rest of this chapter will examine both the static and dynamic properties,
for weighted and unweighted graphs. However, before delving into these static
and dynamic properties, we will next establish some terms and definitions we
will use in the rest of the chapter.

1. Preliminaries

We will first provide some basic definitions and terms we will use, and then
present some particular data sets we will reference. A full list of symbols can
be shown in Table 2.1.

1.1 Definitions

1.1.1 Graphs. We can represent a social network as a graph. For the
rest of the chapter we will use network and graph interchangeably.

A static, unweighted graph G consists of a set of nodes V and a set of edges
E: G = (V,&). We represent the sizes of V and £ as N and E. A graph
may be directed or undirected— for instance, a phone call may be from one
party to another, and will have a directed edge, or a mutual friendship may
be represented as an undirected edge. Most properties we examine will be on
undirected graphs.



20 SOCIAL NETWORK DATA ANALYTICS

Graphs may also be weighted, where there may be multiple edges occurring
between two nodes (e.g. repeated phone calls) or specific edge weights (e.g.
monetary amounts for transactions). In a weighted graph G, let e; ; be the
edge between node ¢ and node j. We shall refer to these two nodes as the
‘neighboring nodes’ or ‘incident nodes’ of edge e; ;. Let w; ; be the weight on
edge e; ;. The total weight w; of node 7 is defined as the sum of weights of all
its incident edges, that is w; = Zi;l w; i, where d; denotes its degree. As we
show later, there is a relation between a given edge weight w; ; and the weights
of its neighboring nodes w; and w;.

Finally, graphs may be unipartite or multipartite. Most social networks one
thinks of are unipartite— people in a group, papers in a citation network, etc.
However, there may also be multipartite— that is, there are multiple classes of
nodes and edges are only drawn between nodes of different classes. Bipartite
graphs, like the movie-actor graph of IMDB, consist of disjoint sets of nodes
V1 and Vs, say, for authors and movies, with no edges among nodes of the
same type.

We can represent a graph either visually, or with an adjacency matrix A,
where nodes are in rows and columns, and numbers in the matrix indicate the
existence of edges. For unweighted graphs, all entries are 0 or 1; for weighted
graphs the adjacency matrix contains the values of the weights. Figure 2.1
shows examples of graphs and their adjacency matrices.

We next introduce other important concepts we use in analyzing these graphs.

1.1.2 Components.  Another interesting property of a graph is its com-
ponent distribution. We refer to a connected component in a graph as a set
of nodes and edges where there exists a path between any two nodes in the
set. (For directed graphs, this would be a weakly connected component, where
a strongly connected component requires a directed path between any given
two nodes in a set.) We find that in real graphs over time, a giant connected
component (GCC) forms. However, it is also of interest to study the smaller
components— when do they choose to join the GCC, and what size do they
reach before doing so?

In our observations we will focus on the size of the second- and third- largest
components. We will also look at the large scale distribution of all component
sizes, and how that distribution changes over time. Not surprisingly, compo-
nents of rank > 2 form a power law.

1.1.3 Diameter and Effective Diameter. = We may want to answer the
questions: How does the largest connected component of a real graph evolve
over time? Do we start with one large CC, that keeps on growing? We pro-
pose to use the diameter-plot of the graph, that is, its diameter, over time, to
answer these questions. For a given (static) graph, its diameter is defined as
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Figure 2.1. Illustrations of example graphs. On the left is a unipartite, directed, weighted
graph and the corresponding adjacency matrix. On the right is an undirected, bipartite graph

and the corresponding adjacency matrix.
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the maximum distance between any two nodes, where distance is the minimum
number of hops (i.e., edges that must be traversed) on the path from one node to
another, ignoring directionality. Calculating graph diameter is O(/N?). There-
fore, we choose to estimate the graph diameter by sampling nodes from the
giant component. For s = {1,2,...,.5}, we choose two nodes at random and
calculate the distance (using breadth-first search). We then choose to record the
90 percentile value of distances, so we take the .9.5 largest recorded value. The
distance operation is O(dk), where d is the graph diameter and & the maximum
degree of any node— on average this is a much smaller cost. Intuitively, the di-
ameter represents how much of a “small world” the graph is— how quickly one
can get from one “end” of the graph to another. This is described in [35].
We use sampling to estimate the diameter; alternative methods would include
ANF [28].

1.1.4 Heavy-tailed Distributions. While the Gaussian distribution
is common in nature, there are many cases where the probability of events
far to the right of the mean is significantly higher than in Gaussians. In the
Internet, for example, most routers have a very low degree (perhaps “home”
routers), while a few routers have extremely high degree (perhaps the “core”
routers of the Internet backbone) [12] Heavy-tailed distributions attempt to
model this. They are known as “heavy-tailed” because, while traditional ex-
ponential distributions have bounded variance (large deviations from the mean
become nearly impossible), p(x) decays polynomially quickly instead of ex-
ponentially as x — oo, creating a “fat tail” for extreme values on the PDF
plot.

One of the more well-known heavy-tailed distributions is the power law
distribution. Two variables x and y are related by a power law when:

y(x) = Az~ 2.1)

where A and ~ are positive constants. The constant - is often called the power
law exponent.

A random variable is distributed according to a power law when the proba-
bility density function (pdf) is given by:

p(l‘) = Axi’ya v> 1,1 > Tpin (2.2)

The extra 7 > 1 requirement ensures that p(x) can be normalized. Power laws
with v < 1 rarely occur in nature, if ever [26].

Skewed distributions, such as power laws, occur very often in real-world
graphs, as we will discuss. Figures 2.2(a) and 2.2(b) show two examples of
power laws.
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Figure 2.2.  Power laws and deviations: Plots (a) and (b) show the in-degree and out-degree
distributions on a log-log scale for the Epinions graph (an online social network of 75, 888
people and 508, 960 edges [11]). Both follow power-laws. In contrast, plot (c) shows the out-
degree distribution of a Clickstream graph (a bipartite graph of users and the websites they
surf [25]), which deviates from the power-law pattern.

While power laws appear in a large number of graphs, deviations from a
pure power law are sometimes observed. Two of the more common deviations
are exponential cutoffs and lognormals.

Sometimes, the distribution looks like a power law over the lower range of
values along the z-axis, but decays very fast for higher values. Often, this
decay is exponential, and this is usually called an exponential cutoff:

ylr = k) x e kIR (2.3)

where e #/# is the exponential cutoff term and k=7 is the power law term.

Similar distributions were studied by Bi et al. [6], who found that a discrete
truncated lognormal (called the Discrete Gaussian Exponential or “DGX” by
the authors) gives a very good fit. A lognormal is a distribution whose loga-
rithm is a Gaussian; it looks like a truncated parabola in log-log scales. The
DGX distribution has been used to fit the degree distribution of a bipartite
“clickstream” graph linking websites and users (Figure 2.2(c)), telecommuni-
cations and other data.

Methods for fitting heavy-tailed distributions are described in [26, 10].

1.1.5 Burstiness and Entropy Plots.  Human activity, including weight
additions in graphs, is often bursty. If that the traffic is self-similar, then we can
measure the burstiness, using the intrinsic, or fractal dimension of the cloud of
timestamps of edge-additions (or weight-additions). Let AW (t) be the total
weight of edges that were added during the ¢-th interval, e.g., the total network
flow on day ¢, among all the machines we are observing.

Among the many methods that measure self-similarity (Hurst exponent, etc.
[31]), we choose the entropy plot [37], which plots the entropy H (r) versus
the resolution r. The resolution is the scale, that is, at resolution 7, we di-
vide our time interval into 2" equal sub-intervals, sum the weight-additions
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AW (t) in each sub-interval k& (k = 1...2"), normalize into fractions py
(= AW (t)/Wiotar ), and compute the Shannon entropy of the sequence py:
H(r) = — >, pi logy py. If the plot H(r) is linear in some range of resolu-
tions, the corresponding time sequence is said to be fractal in that range, and
the slope of the plot is defined as the intrinsic (or fractal) dimension D of the
time sequence. Notice that a uniform weight-addition distribution yields D=1,
a lower value of D corresponds to a more bursty time sequence like a Cantor
dust [31], with a single burst having the lowest D=0: the intrinsic dimension
of a point. Also notice that a variation of the 80-20 model, the so called ‘b-
model’ [37], generates such self-similar traffic.

We studied several large real-world weighted graphs described in detail in
Table 2.2. In particular, BlogNet contains blog-to-blog links, NetworkTraffic
records IP-source/IP-destination pairs, along with the number of packets sent.
Bipartite networks Auth-Conf, Keyw-Conf, and Auth-Keyw are from DBLP,
representing submission records of authors to conferences with specified key-
words. CampaignOrg is from the US FEC, a public record of donations be-
tween political candidates and organizations.

For NetworkTraffic and CampaignOrg datasets, the weights on the edges are
actual weights representing number of packets and donation amounts. For the
remaining datasets, the edge weights are simply the number of occurences of
the edges. For instance, if author ¢ submits a paper to conference j for the first
time, the weight w; ; of edge e; ; is set to 1. If author ¢ later submits another
paper to the same conference, the edge weight becomes 2.

A complete list of the symbols used throughout text is listed in Table 2.1.

1.2 Data description

We will illustrate some properties described in this chapter on different real-
world social networks. These are described in detail in Table 2.2. This in-
cludes both bipartite and unipartite, and weighted and unweighted graphs.

Several of our graphs had no obvious weighting scheme: for example, a
single paper or patent will cite another only a single time. The graphs that did
have weights are also further divided into two schemes, multi-edges and edge-
weights. In the edge-weights scheme, there is an obvious weight on edges, such
as amounts in campaign donations, or packet-counts in network traffic. For
multi-edges, weights are added if there is more than one interaction between
two nodes. For instance, if a blog cites another blog at a given time, its weight
is 1. If it cites the blog again later, the weight becomes 2.

The datasets are gathered from publicly available data. NIPS!, Arxiv and
Patent [19] are academic paper or patent citation graphs with no weighting

lyww.cs.toronto.edu/~roweis/data.html
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Name Weights INJ,|E],time Description

PostNet Unweighted 250K, 218K, 80 d. Blog post citation network

NIPS Unweighted 2K, 3K, 13 yr. Paper citation network

Arxiv Unweighted 30K, 60K, 13 yr. Paper citation network

Patent Unweighted 4M, 8M, 17 yr. Patent citation network

IMDB Unweighted 757K, 2M, 114 yr. Bipartite actor-movie network

Netflix Unweighted 125K, 14M, 72 mo. Bipartite user-movie ratings

BlogNet Multi-edges 60K, 125K, 80 d. Social network of blogs based
on citations

Auth-Conf  Multi-edges 17K, 22K, 25 yr. Bipartite DBLP Author-to-
Conference associations

Key-Conf Multi-edges 10K, 23K, 25 yr. Bipartite DBLP Keyword-to-
Conference associations

Auth-Key Multi-edges 27K, 189K, 25 yr. Bipartite DBLP Author-to-
Keyword associations

CampOrg Edge-weights 23K, 877K, 28 yr. Bipartite U.S. electoral cam-

(Amounts) paign donations from organi-

zations to candidates (avail-
able from FEC)

CamplIndiv  Edge-weights 6M, 10M, 22 yr. Bipartite election donations

(Amounts) from individuals to organiza-

tions

Table 2.2.  The datasets referred to in this chapter.

scheme. /MDB indicates movie-actor information, where an edge occurs if
an actor participates in a movie [3]. Netflix is the dataset from the Netflix
Prize competition?, with user-movie links (we ignored the ratings); we also
noticed that it only contained users with 100 or more ratings. BlogNet and
PostNet are two representations of the same data, hyperlinks between blog
posts [21]. in PostNet nodes represent individual posts, while in BlogNet each
node represents a blog. Essentially, PostNet is a paper citation network while
BlogNet is an author citation network (which contains multi-edges).

Auth-Conf, Key-Conf, and Auth-Key are all from DBLP 3, with the obvious
meanings. CampOrg and Camplndiv are bipartite graphs from U.S. Federal
Election Commission, recording donation amounts from organizations to po-
litical candidates and individuals to organizations *.

In all the above cases, we assume that edges are never deleted, because edge
deletion never explicitly appeared in these datasets.

2www.netflixprize.com

3dblp.uni-trier.de/xml/
4www.cs.cmu. edu/~mmcgloho/fec/data/ fec data.html
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2. Static Properties

We next review static properties of social graphs. While all networks we
examine are evolving over time, there are properties that are measured at sin-
gle points in time, that is, static snapshots of the graphs. For the purposes
of organization we will further divide these properties into those applying to
unweighted graphs and to weighted graphs.

2.1 Static Unweighted Graphs

Here, we present the ‘laws’ that apply to static snapshots of real graphs
without considering the weights on the edges. Those include the patterns in
degree distributions, the number of hops pairs of nodes can reach each other,
local number of triangles, eigenvalues and communities. Next, we describe the
related patterns in more detail.

2.11 S-1: Heavy-tailed Degree Distribution. = The degree distribution
of many real graphs obey a power law of the form f(d) o d~¢, with the
exponent « > 0, and f(d) being the fraction of nodes with degree d. Such
power-law relations as well as many more have been reported in [8, 12, 15,
26]. Intuitively, power-law-like distributions for degrees state that there exist
many low degree nodes, whereas only a few high degree nodes in real graphs.

2.1.2 S-2: Small Diameter.  One of the most striking patterns that real-
world graphs have is a small diameter, which is also known as the ‘small-world
phenomenon’ or the ‘six degrees of separation’.

For a given static graph, its diameter is defined as the maximum distance
between any two nodes, where distance is the minimum number of hops (i.e.,
edges that must be traversed) on the path from one node to another, usually ig-
noring directionality. Intuitively, the diameter represents how much of a “small
world” the graph is— how quickly one can get from one “end” of the graph to
another.

Many real graphs were found to exhibit surprisingly small diameters— for
example, 19 for the Web [2], and the well-known “six-degrees of separation”
in social networks [4]. It has also been observed that the diameter spikes at the
‘gelling point’ [22].

Since the diameter is defined as the maximum-length shortest path between
all possible pairs, it can easily be highjacked by long chains. Therefore, of-
ten the effective diameter is used as a more robust metric, which is the 90-
percentile of the pairwise distances among all reachable pairs of nodes. In
other words, the effective diameter is the minimum number of hops in which
some fraction (usually 90%) of all connected node pairs can be reached [34].
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Computing all-pairs-shortest-path lengths is practically intractable for very
large graphs. The exact algorithm is prohibitively expensive (at least O(N?));
while one can use sampling to estimate it, alternative methods would include
ANF [28].

2.1.3 S-3: Triangle Power Law (TPL).  The number of triangles A and
the number of nodes that participate in A number of triangles should follow
a power-law in the form of f(A) o< A, with the exponent o < 0 [36]. The
TPL intuitively states that while many nodes have only a few triangles in their
neighborhoods, a few nodes participate in many number of triangles with their
neighbors. The local number of triangles is related to the clustering coefficient
of graphs.

2.14 S-4: Eigenvalue Power Law (EPL).  Siganos et.al. [33] exam-
ined the spectrum of the adjacency matrix of the AS Internet topology and re-
ported that the 20 or so largest eigenvalues of the Internet graph are power-law
distributed. Michail and Papadimitriou [23] later provided an explanation for
the ‘Eigenvalue Power Law’, showing that it is a consequence of the ‘Degree
Power Law’.

2.1.5 S-5: Community Structure. Real-world graphs are found to
exhibit a modular structure, with nodes forming groups, and possibly groups
within groups [13, 14, 32]. In a modular graph, the nodes form communities
where groups of nodes in the same community are tighter connected to each
other than to those nodes outside the community. In [27], Newman and Girvan
provide a quantitative measure for such a structure, called modularity.

2.2 Static Weighted Graphs

Here we try to find patterns that weighted graphs obey. In this section
we consider graphs to be directed (and impose a single direction in bipar-
tite graphs), as this will be an important consideration on the weights. The
dataset consist of quadruples: (IP-source, IP-destination, timestamp, number-
of-packets), where timestamp is in increments of, say, 30 minutes. Thus, we
have multi-edges, as well as total weight for each (source, destination) pair.
Let W () be the total weight up to time ¢ (ie., the grand total of all exchanged
packets across all pairs), F(t) the number of distinct edges up to time ¢, and
E,(t) the number of multi-edges (the d subscript stands for duplicate edges),
up to time .

We present three “laws” that our datasets seem to follow: The first is the
“weight power law” (WPL) correlating the total weight, the total number of
edges and the total number of multi-edges, over time. THe second is the “edge
weights power law”, the same law as applied to individual nodes. The third is
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the “snapshot power law” (SPL), correlating the in-degree with the in-weight,
and the out-degree with the out-weight, for all the nodes of a graph, at a given
time-stamp.

2.2.1 SW-1: Weight Power Law (WPL).  As defined above, suppose
we have E(t) total unique edges up to time ¢ (ie., count of pairs that know
each other) and W (¢) being the total count of packets up to time ¢. Is there a
relationship between W (¢) and E(t)? If every pair generated k packets, the
relationships would be linear: if the count of pairs double, the packet count
would double, too. This is reasonable, but it doesn’t happen! In reality, the
packet count over-doubles, following the “WPL” below. We shall refer to this
phenomenon as the “fortification effect”’: more edges in the graph imply super-
linearly higher total weight.

OBSERVATION 2.1 (WEIGHT POWER Law (WPL)) Let E(t), W (t) be
the number of edges and total weight of a graph, at time t. They, they follow a
power law

W(t) = E(t)"

where w is the weight exponent. Power-laws also link the number of nodes
N(t), and the number of multi-edges F4(t), to E(t), with exponents n and
dupFE, respectively.

The weight exponent w ranges from 1.01 to 1.5 for the real graphs we have
studied. The highest value corresponds to campaign donations: super-active
organizations that support many campaigns also tend to spend even more money
per campaign than the less active organizations. For bipartite graphs, we show
the nsre, ndst exponents for the source and destination nodes (which also
follow power laws: Ng,.(t) = E(t)™"¢ and similarly for Ngg (t)).

Fig. 2.5 shows all these quantities, versus F(t), for several datasets. The
plots are all in log-log scales, and straight lines fit well. We report the slopes
in Table 2.

2.2.2 SW-2: Edge Weights Power Law. We observe that the weight
of a given edge and weights of its neighboring two nodes are correlated. Our
observation is similar to Newton’s Gravitational Law stating that the gravita-
tional force between two point masses is proportional to the product of the
masses.

OBSERVATION 2.2 (EDGE WEIGHTS POWER LAW(EWPL)) Given a
real-world graph G, ‘communication’ defined as the weight of the link between
two given nodes has a power law relation with the weights of the nodes. In
particular, given an edge e; j with weight w; j and its two neighbor nodes i



Statistical Properties of Social Networks 29

10, 10
[+ 042726+ (46711 =y _| [~ 0.40019x + (1.8397) = y |
1 E}

101 . . 10 5 . 2
10 10 10 10 10 10 10 10 10 10
W Wi

(a) Committee - Candidate (b) Blog Network

Figure 2.3.  Illustration of the EWPL. Given the weight of a particular edge in the final snap-
shot of real graphs (x-axis), the multiplication of total weights(y-axis) of the edges incident
to two neighboring nodes follow a power law. A line can be fit to the median values after
logarithmic binning on the x-axis. Upper and lower bars indicate 75% and 25% of the data,
respectively.

and j with weights w; and wj, respectively,

wi,j X (\/(wz — wij) * (wj — wm’))7

We report corresponding experimental findings in Fig. 3.

2.2.3 SW-3: Snapshot Power Laws (SPL).  What about a static snap-
shot of a graph? If node ¢ has out-degree out;, what can we say about its
out-weight outw;? It turns out that there is a “fortification effect” here, too,
resulting in more power laws, both for out-degrees/out-weights as well as for
in-degrees/in-weights.

Specifically, at a given point in time, we plot the scatterplot of the in/out
weight versus the in/out degree, for all the nodes in the graph, at a given time
snapshot. An example of such a plot is in Fig. 2.4 (c) and (d). Here, every point
represents a node and the x and y coordinates are its degree and total weight,
respectively. To achieve a good fit, we bucketize the x axis with logarithmic
binning [26], and, for each bin, we compute the median .

We observed that the median values of weights versus mid-points of the
intervals follow a power law for all datasets studied. Formally, the “Snapshot
Power Law” is:

OBSERVATION 2.3 (SNAPSHOT POWER LAw (SPL)) Consider the i-th
node of a weighted graph, at time t, and let out;, outw; be its out-degree
and out-weight. Then

outw; o outd"
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Figure 2.4.  Weight properties of CampOrg donations: (a) shows all the power laws as well as
the WPL; the slope in (b) is ~ 0.86 indicating bursty weight additions over time; (c) and (d) have
slopes > 1 (“fortification effect”), that is, that the more campaigns an organization supports,
the superlinearly-more money it donates, and similarly, the more donations a candidate gets,
the more average amount-per-donation is received. Inset plots on (¢) and (d) show iw and ow
versus time. Note they are very stable over time.

where ow is the out-weight-exponent of the SPL. Similarly, for the in-degree,
with in-weight-exponent iw.

We studied the snapshot plots for several time-stamps (for brevity, we only
report the slopes for the final timestamp in Table 2 for all the datasets we
studied). We observed that SPL exponents of a graph over time remains almost
constant. In Fig. 2.4 (c) ((d)), the inset plot shows how the iw(ow) exponent
changes over time (years) for the CampOrg dataset. We notice that w and ow
take values in the range [0.9-1.2] and [0.95-1.35], respectively. That is:

OBSERVATION 2.4 (PERSISTENCE OF SNAPSHOT POWER LAW) The in-
and out-exponents tw and ow of the SPL remain about constant, over time.

Looking at Table 2, we observe that all SPL exponents are > 1, which imply
a “fortification effect” with super-linear growth.
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Figure 2.5. Properties of weighted networks. Top: weight power laws for CampIndiv(W, Eq,
N; vs E). The slopes for weight W and multi-edges E are above 1, indicating “fortification”.
Bottom: entropy plots for weight addition. Slope away from 1 indicates burstiness (eg., 0.88 for
Camplndiv) The inset plot shows the corresponding time sequence AW versus time.
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w nsrc  ndst  dupE iw ow fd
CampOrg 1.53 058 073 129 1.16 130 0.86
CampIndiv. 136 053 092 1.14 1.05 148 0.87
BlogNet 1.03 079 NA NA 1.01 1.10 0.96
Auth-Key 1.01 090 0.70 NA 1.01 1.04 095
Auth-Conf  1.08 096 048 NA 1.04 1.81 0.96
Key-Conf 122 085 054 NA 1.26 214 095

Table 2.3.  Power law exponents for all the weighted datasets we studied: The x-axis
being the number of non-duplicate edges I, w: WPL exponent, nsrc, ndst: WPL exponent
for source and destination nodes respectively (if the graph is unipartite, then nsrc is the
number of all nodes), dupE: exponent for multi-edges, iw, ow: SPL exponents for indegree
and outdegree of nodes, respectively. Exponents above 1 indicate fortification/superlinear
growth. Last column, fd: slope of the entropy plots, or information fractal dimension.
Lower fd means more burstiness.

3. Dynamic Properties

We next present several dynamic properties. These are typically studied by
looking at a series of static snapshots and seeing how measurements of these
snapshots compare. Like the static properties we presented previously, we also
divide these into properties that take into account weights and those that don’t.

3.1 Dynamic Unweighted Graphs

The patterns in dynamic time-evolving graphs that do not consider edge
weights include the shrinking diameter property, the densification law, oscillat-
ing around a constant size secondary largest connected components, the largest
eigenvalue law and the bursty and self-similar edge additions over time. We
next describe these laws in detail.

3.1.1 D-1: Shrinking Diameter. Leskovec. et al. [18] showed that
not only is the diameter of real graphs small, but it also shrinks and then sta-
bilizes over time [18]. This pattern can be attributed to the ‘gelling point” and
the ‘densification’ in real graphs both of which are described in the following
sections. Briefly, at the ‘gelling point” many small disconnected components
merge and form the largest connected component in the graph. This can be
thought as the ‘coalescence’ of the graph at which point the diameter ‘spikes’.
Afterwards, with the addition of new edges the diameter keeps shrinking until
it reaches an equilibrium.

3.1.2 D-2: Densification Power Law (DPL).  Time-evolving graphs
follow the ‘Densification Power Law’ with the equation E(t) oc N (t)?, at all
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time ticks ¢ [18], where [ is the densification exponent, and E'(t) and N (t) are
the number of edges and nodes at time ¢, respectively.

All our real graphs we studied obeyed the DPL, with exponents between
1.03 and 1.7. The power-law exponent being greater than 1 indicates a super-
linearity between the number of nodes and the number of edges in real graphs.
That is, it indicates that for example when the number of nodes V in a graph
doubles, the number of edges £/ more than doubles— hence the densification. It
also explains away the shrinking diameter phenomenon observed in real graphs
described earlier. We will attempt to reproduce this property in a generative
model later in this chapter.
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Figure 2.6. Properties of PostNet network. Notice that we experience an early gelling point at
(a) (diameter versus time), stabilization/oscillation of the NLCC sizes in (b) (size of 2nd and 3rd
CC, versus time). The vertical line marks the gelling point. Part (c) gives N (¢) vs E(¢) in log-
log scales - the good linear fit agrees with the Densification Power Law. Part (d): component
size (in log), vs time - the GCC is included, and it clearly dominates the rest, after the gelling
point.

3.1.3 D-3: Diameter-plot and Gelling point. Studying the effective
diameter of the graphs, we notice that there is often a point in time when the di-
ameter spikes. Before that point, the graph is more or less in an establishment
period, typically consisting of a collection of small, disconnected components.
This “gelling point” seems to also be the time where the GCC “takes off”.
After the gelling point, the graph obeys the expected rules, such as the den-
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sification power law; its diameter decreases or stabilizes; the giant connected
component keeps growing, absorbing the vast majority of the newcomer nodes.

OBSERVATION 2.5 (GELLING POINT) Real graphs exhibit a gelling point,
at which the diameter spikes and (several) disconnected components gel into a
giant component.

In most of these graphs, both unipartite and bipartite, there are clear gelling
points. For example, in NIPS the diameter spikes at ¢ = 8 years, which is a
reasonable time for an academic community to gel. In some networks, we only
see one side of the spike, due to massive network size (Patent).

We show full results for PostNet in Fig. 2.6, including the diameter plot
(Fig. 2.6(a)), sizes of the NLCCs (Fig. 2.6(b)), densification plot (Fig. 2.6(c)),
and the sizes of the three largest connected components in log-linear scale, to
observe how the GCC dominates the others (Fig. 2.6(d)). Results from other
networks are similar, and are shown in condensed form for space (Fig. 2.7 for
unipartite graphs, and Fig. 2.8 for bipartite graphs). The left column shows
the diameter plots, and the right column shows the NLCCs, which we describe
next.

3.14 D-4: Constant/Oscillating NLCCs.  We particularly studied the
second and the third connected component over time. We notice that, after
the gelling point, the sizes of these components oscillate over time. Further
investigation shows that the oscillation may be explained as follows: new-
comer nodes typically link to the GCC; very few of the newcomers link to the
2nd (or 3rd) CC, helping them to grow slowly; in very rare cases, a newcomer
links both to an NLCC, as well as the GCC, thus leading to the absorption of
the NLCC into the GCC. It is exactly at these times that we have a drop in the
size of the 2nd CC: Note that edges are not removed, thus, what is reported as
the size of the 2nd CC is actually the size of yesterday’s 3rd CC, causing the
apparent “oscillation”.

An unexpected (to us, at least) observation is that the largest size these com-
ponents can get seems to be a constant. This is counter-intuitive — based on
random graph theory, we would expect the size of the NLCCs to grow with in-
creasing N. Using scale-free arguments, we would expect the NLCCs to have
size that would be a (small, but constant) fraction of the size of the GCC — to
our surprise, this never happened, on any of the real graphs we tried. If some
underlying growth does exist, it was small enough to be impossible to observe
throughout the (often lengthy) time in the datasets.

The second columns of Fig. 2.7 and Fig. 2.8 show the NLCC sizes versus
time. Notice that, after the “gelling” point (marked with a vertical line), they all
oscillate about constant value (different for each network). The only extreme
cases are datasets with unusually high connectivity. For example, Netflixhas
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Figure 2.7. Properties of other unipartite networks. Diameter plot (left column), and NLCCs
over time (right); vertical line marks the gelling point. All datasets exhibit an early gelling point,

and stabilization of the NLCCs.

very small NLCCs. This may be explained by the fact the dataset is masked,
omitting users with less than a hundred ratings (possibly to further protect the
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privacy of the encrypted user-ids). Therefore, the graph has abnormally high
connectivity.

OBSERVATION 2.6 (OSCILLATING NLCCS) After the gelling point, the sec-
ondary and tertiary connected components remain of approximately constant
size, with small oscillations.

3.1.5 D-5: LPL: Principal eigenvalue over time.  Plotting the largest
(principal) eigenvalue of the 0-1 adjacency matrix A of our datasets over time,
we notice that the principal eigenvalue grows following a power law with in-
creasing number of edges. This observation is true especially after the gelling
point. The ‘gelling point’ is defined to be the point at which a giant con-
nected component (GCC) appears in real-world graphs - after this point, prop-
erties such as densification and shrinking diameter become increasingly evi-
dent. See [18] for details.

OBSERVATION 2.7 (A\; POWER Law (LPL)) In real graphs, the princi-
pal eigenvalue \i(t) and the number of edges E(t) over time follow a power
law with exponent less than 0.5, especially after the ‘gelling point’. That is,

A(t) x E(t)*, <05

We report the power law exponents in Fig. 2.9. Note that we fit the given
lines after the gelling point which is shown by a vertical line for each dataset.
Notice that the given slopes are less than 0.5, with the exception of the Cam-
paignOrg dataset, with slope ~ 0.53. This result is in agreement with graph
theory. See [1] for details.

3.2 Dynamic Weighted Graphs

3.21 DW-1: Bursty/self-similar weight additions. We tracked how
much weight a graph puts on at each time interval and looking at the entropy
plots, we observed that the weight additions over time show self-similarity.
For those weighted graphs where the edge weight is defined as the number of
reoccurrences of that edge, the slope of the entropy plot was greater than 0.95,
pointing out uniformity. On the other hand, for those graphs where weight is
not in terms of multiple edges but some other feature of the dataset such as the
amount of donations for the FEC dataset, we observed that weight additions
are more bursty, the slope being as low as 0.6 for the Network Traffic dataset.
Fig. 2.5 (b) column shows the entropy plots for the weighted datasets we stud-
ied. AW values over time are also shown in insets at the bottom right corner
of each figure.

OBSERVATION 2.8 (BURSTY/SELF-SIMILAR WEIGHT ADDITIONS) [In all
our graphs, the addition of weight (AW (t)) was self-similar, with fractal di-
mension ranging from =1 (smooth/uniform), down to 0.6 (bursty).
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Figure 2.8. Properties of bipartite networks. Diameter plot (left column), and NLCCs over
time (right), with vertical line marking the gelling point. Again, all datasets exhibit an early
gelling point, and stabilization of the NLCCs. Netffix has strange behavior because it is masked

(see text).
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3.2.2 DW-2: LWPL: Weighted principal eigenvalue over time.  Given
that unweighted (0-1) graphs follow the A\; Power Law, one may ask if there
is a corresponding law for weighted graphs. To this end, we also compute the
largest eigenvalue Ay ,, of the weighted adjacency matrix A,,. The entries w; ;
of A, now represent the actual edge weight between node ¢ and j. We notice
that A\, increases with increasing number of edges following a power law
with a higher exponent than that of its A\; Power Law. We show the experi-
mental results in Fig. 2.10.

OBSERVATION 2.9 (A;,, POWER Law (LWPL)) Weighted real graphs ex-
hibit a power law for the largest eigenvalue of the weighted adjacency matrix
M w(t) and the number of edges E(t) over time. That is,

M oaw(t) < B(t)?

In our experiments, the exponent [ ranged from 0.5 to 1.6.
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4. Conclusion

We believe that the Butterfly model and the observation of constant NLCC’s
will shed light upon other research in the area, such as a recent, counter-
intuitive discovery [20]: the GCC of several real graphs has no good cuts, so
graph partitioning and clustering algorithms cannot help identify communities
because no clear communities exist.

We have described the following static patterns:

Heavy-tailed degree distribution, with a few “hubs” and most nodes hav-
ing few neighbors.

Small diameter and community structure— nodes form clusters, and it
takes few “hops” to get between any two nodes in the network.

Several power laws: Triangle Power Law and Eigenalue Power Law for
unweighted graphs, and the Weight Power Law, Edge Weights Power
Law, and Snapshot Power Laws for weighted graphs.

We have also described the following dynamic patterns:

Shrinking diameter and densification— the “world gets smaller” as more
nodes are added— increasingly more edges are added which causes the
diameter to shrink. There is also a gelling point at which this occurs.
Constant-size smaller components The large component takes off in size,
but the others will not grow beyond a certain point before joining it.
Several other power laws: LPL, or principal eigenvalue over time (both
weighted and unweighted), and bursty weight additions.

These patterns are helpful to spot anomalous graphs and sub-graphs, and
answer questions about entities in a network and what-if scenarios. Let’s elab-
orate on each of the above applications: Spotting anomalies is vital for de-
termining abuse of social and computer networks, such as link-spamming in
a web graph, fraudulent reputation building in e-auction systems [29], detec-
tion of dwindling/abnormal social sub-groups in a social-networking site like
Yahoo-360 (360 . yahoo . com), Facebook (www . facebook. com)and LinkedIn
(www.linkedin.com), and network intrusion detection [17]. Analyzing net-
work properties is also useful for identifying authorities and search algorithms
[7,9, 16], for discovering the “network value” of customers for using viral mar-
keting [30], or to improve recommendation systems [5]. What-if scenarios are
vital for extrapolation, provisioning and algorithm design: For example if we
expect that the number of links will double within the next year, we should pro-
vision for the appropriate hardware to store and process the upcoming queries.
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Abstract

Keywords:

A wide variety of interesting real world applications, e.g. friend suggestion in
social networks, keyword search in databases, web-spam detection etc. can be
framed as ranking entities in a graph. In order to obtain ranking we need a
graph-theoretic measure of similarity. Ideally this should capture the informa-
tion hidden in the graph structure. For example, two entities are similar, if there
are lots of short paths between them. Random walks have proven to be a simple,
yet powerful mathematical tool for extracting information from the ensemble of
paths between entities in a graph. Since real world graphs are enormous and
complex, ranking using random walks is still an active area of research. The
research in this area spans from new applications to novel algorithms and math-
ematical analysis, bringing together ideas from different branches of statistics,
mathematics and computer science. In this book chapter, we describe different
random walk based proximity measures, their applications, and existing algo-
rithms for computing them.

random walks, proximity measures, hitting times, personalized pagerank, link
prediction

1. Introduction

Link prediction in social networks, personalized graph search techniques,
spam detection in the World Wide Web and collaborative filtering in recom-

C. C. Aggarwal (ed.), Social Network Data Analytics,
DOI 10.1007/978-1-4419-8462-3 3, © Springer Science+Business Media, LLC 2011
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mender networks are important practical problems that greatly rely on graph
theoretic measures of similarity. All these problems can be framed as ranking
entities in a graph.

Take for example online social networks, where an important application
is to suggest friends to a newcomer. Another example is movie and music
recommendation systems (Netflix, Last.fim), where an user is suggested new
movies and music based on his or her ratings so far. The graph in this case is
a bipartite network between users and items, and an edge can be weighted by
the rating given by the user to the item. Keyword search in large publication
databases leads to another interesting problem setting, where the database can
be seen as an entity-relation graph between papers, authors and words. The
goal is to find papers which are “contextually” similar to the query submitted
by the user.

The underlying question in all these problems is: given a node in a graph,
which other nodes are most similar to this node. Ideally we would like this
proximity measure to capture the graph structure such as having many common
neighbors or having several short paths between two nodes.

Real world graphs are huge, complex and continuously evolving over time.
Therefore it is important to find meaningful proximity measures, and design
fast space-efficient algorithms to compute them.

A widely popular approach in graph-mining and machine learning literature
is to compute proximity between nodes by using random walks on graphs: dif-
fusion of information from one node to another. This chapter will be focused
on these measures: the intuition behind their usefulness and effective algo-
rithms to compute them, and important real-world problems where they have
been applied.

Random walks provide a simple framework for unifying the information
from ensembles of paths between two nodes. The ensemble of paths between
two nodes is an essential ingredient of many popular measures such as person-
alized pagerank [37], hitting and commute times [4], Katz measure [46], har-
monic functions [84]. Personalized page-rank vectors (PPV) have been used
for keyword search in databases [9] and entity-relation graphs [18]. Hitting
and commute times have been shown to be empirically effective for query sug-
gestion [55], ranking in recommender networks [14] and image segmentation
problems [64]. In [39] the authors show how to use hitting times for design-
ing provably manipulation resistant reputation systems. Harmonic functions
have been used for automated image-segmentation and coloring [52, 33], and
document classification [84].

Naive computation of these measures usually requires O(n?) time, which
is prohibitive for real world large graphs. Fast approximation algorithms for
computing these bring together ideas from scientific computing, databases and
graph theory. These algorithms span from clever offline preprocessing [40, 28,
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74], fast online computation of sparse support of these measures [10, 70, 66]
to hybrid algorithms which use best of both worlds [18]. In section 3 we would
discuss these algorithms, study their interconnections, and see how they fit into
the big picture.

Here is the organization: we will discuss two main aspects of random walk-
based graph mining problems. First we will discuss different proximity mea-
sures arising from a random walk in section 2. Section 3 consists of some
popular algorithms for computing different proximity measures. We show real-
world applications of these measures in section 4, and conclude with experi-
mental evaluation techniques and data-sources in section 5.

2. Random Walks on Graphs: Background

In this section we introduce some basic concepts of random walks on graphs.
A graph G = (V, E) is defined as a set of vertices V and edges F. The 75"
entry of the adjacency matrix A is nonnegative and denotes the weight on edge
1,4, and is zero if the edge does not exist. In unweighted graphs the weight
of any edge is 1, whereas in a weighted graph it can be any positive number.
D is an n x n diagonal matrix, where D;; = > j A;;. We will denote D;; by
the degree d(i) of node ¢ from now on. The Laplacian L of G is defined as
D — A. This is used widely in machine learning algorithms as a regularizer (
[73, 86]). For undirected' graphs, L is positive semi-definite, since for any
vector g, " Lg equals 3, i x(9(i) — 9(4))>.

P = p;j,i,5 € V denotes the transition probability matrix, so that P;; =
A;j/Dj; if (i,j) € E and zero otherwise. A random walk on this graph is a
Markov chain ([4]) with transition probabilities specified by this matrix. For
an undirected graph, A is symmetric and L is symmetric positive semi-definite.
We will denote the set of neighbors of a node i by A/(z). For an unweighted
graph, d(i) is simply the size of this neighborhood. For a directed graph, the
set of nodes having an edge to node i is denoted by (i), and the indegree is
denoted by d~ (7). Similarly the set of out-neighbors is denoted by O(i), and
the outdegree is denoted by d* (7). Both in and outdegree are weighted for
weighted graphs.

In a random walk, if node vy is chosen from a distribution x(, then the
distributions xg, x1, .. are in general different from one another. However if
Ty = x4+1, then we say that x, is the stationary distribution for the graph.
According to the Perron-Frobenius theorem, there exists a unique stationary
distribution, if P is irreducible and aperiodic. For graphs that are undirected,
non-bipartite and connected (both irreducible and aperiodic) the stationary dis-
tribution is proportional to the degree distribution.

!'Laplacian matrices for directed graphs have been proposed in [21].
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2.1 Random Walk based Proximity Measures

Now we will briefly describe popular random walk based similarity mea-
sures, e.g. personalized pagerank, hitting and commute times, simrank, etc.
We will first discuss a few query-independent and broad topic based search al-
gorithms, more specifically pagerank, HITS and its variants including SALSA.
Note that the primary focus of this chapter is to give a comprehensive survey
of random walk based proximity measures, and hence we will not discuss fast
algorithms for computing pagerank, HITS or SALSA in section 3. We will
briefly mention some algorithms for making SALSA and HITS faster after in-
troducing them. An excellent study of pagerank can be found in [50].

Query independent search and broad topic search. Pagerank [15] is a
widely known tool for ranking web-pages. If the world-wide-web is considered
as a graph then the pagerank is defined as the distribution that satisfies the
following linear equation (3.1):

v=(1—a)PTv+ 31 3.1)

«v is the probability of restarting the random walk at a given step. Note that
the « restart factor plays a very important role. The Perron-Frobenius theorem
indicates that a stochastic matrix P has a unique principal eigenvector iff it
is irreducible and aperiodic. The random restart assures that, since under this
model 1) all nodes are reachable from all other nodes, and 2) the Markov chain
is aperiodic. Also the restart probability makes the second largest eigenvalue
to be upper bounded by « [45].

Pagerank does not provide topic-specific search results. In [47] the authors
introduced the idea of Hubs and Authorities (HITS) for distilling search results
for a broad topic. The key intuition behind the HITS algorithm is that the
useful web-pages for searching a broad topic are generally of two types: the
authorities and the hubs. The authorities are pages which are good sources of
information about a given topic, whereas a hub is one which provides pointers
to many authorities. Given a topic, first the authors find a subgraph of the web
A. This subgraph ideally should be small, should consist of pages relevant
to the given query and should contain most of the authoritative pages. The
authors obtain this subgraph by expanding a root set of nodes “along the links
that enter and leave it”. The details can be found in the paper. The root set
consists of the top & search results for the given query from a standard text-
based search engine. Given this subgraph, the idea is to assign two numbers to
anode: a hub-score and an authority score. A node is a good hub if it points to
many good authorities, whereas a node is a good authority if many good hubs
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point to it. This leads to iterating over two vectors h and a, namely:

a(i) < > h(j) (3.2)
JijE€I(7)

h(i) + > a(j) (3.3)
J:J€0(3)

Both these vectors are normalized to have unit length (the squares of the entries
sum to 1). The last two equations can also be written as follows. Let A be the
un-weighted adjacency matrix of the subgraph.

The above equation simply means that h converges to the principal eigenvec-
tor of AAT, whereas a converges to the principal eigenvector of AT A. As
mentioned in [51], the matrix AA” can be described as the bibliographic cou-
pling matrix. This is because, the {i, j}*" entry of the matrix AAT is given by
>k A2, k)A(J, k), which is simply the number of nodes both ¢ and j point to.
On the other hand, A7 A can be thought of as the co-citation matrix, i.e. the
{i, j}*" entry is given by >_, A(k,i)A(k,j), i.e. the number of nodes which
point to both ¢ and j.

There has been algorithms which use the same idea as in HITS but alter
the recurrence relation. The main idea behind these is to emphasize the higher
authority-scores more while computing the hub scores. These algorithms can
be divided in roughly two kinds: the authority threshold (AT'(k)) and the
Norm(p) families?. In [13] the authors restrict the sum in eq (3.3) to the &
largest authority scores, while keeping eq (3.2) intact. The underlying intu-
ition is that a good hub should point to at least £ good authorities. When £k is
the maximum out-degree, this algorithm is identical to HITS. The Norm/(p)
family uses a smoother way to scale the authority weights. The p-norm of the
authority weights vector is used in eq (3.3), while keeping eq 3.2 intact. A
similar approach was used in [30]. When p is 1 this is the HITS algorithm.
The MAX algorithm is a special case of the AT'(k) family (for £ = 1), and
the Norm(p) family (when p = o0). An in-depth study of this special case
(MAX) of these two families is provided in [80].

SALSA [51] combines the idea of a random surfer from pagerank with hubs
and authorities from HITS. The idea is to conceptually build an undirected
bipartite graph, with two sides containing hubs and authorities. A node i can
be both a hub (h(7)) and an authority (a(7)). A link is added between nodes

2We use the same names as mentioned in [80].



48 SOCIAL NETWORK DATA ANALYTICS

h(i) and a(y), if there is link ¢ — j in the original subgraph. The nodes and
links are constrained to a part of the web-graph relevant to the query, built in
a manner similar to HITS. Two Markov chains are considered, s.t. one step of
each consists of traversing two links in a row. This way each walk visits nodes
only on one side of the bipartite graph. The stationary distributions of these
walks are used as the hub and authority scores for the original subgraph.

It can be shown that these vectors are simply principal eigenvectors of A, A7
and AT A, (instead of the matrices AAT and AT A as in HITS). A, is the row
normalized version of A whereas A, is the column normalized version of A.
Let Dy be the diagonal matrix of out-degrees, and D_ be the diagonal in-
degree matrix. A, is simply D;lA, and A, is AD_!. Matrix A, AT is equal
to DjrlAD:lAT. Denote this as Df?-[, where® H equals AD~'AT. The
{4, j}" entry of this matrix is given by >, A(,k)A(j, k) /d~ (k). Note that
this is the number of nodes both i and j point to, as in AA”, except each
common neighbor is inversely weighted by its indegree. Here is an intuitive
reason why this kind of weighting is useful. Consider two pairs of papers in
a citation network. The first pair, ¢ and j, both point to a very highly cited
paper (high indegree), whereas the second pair, i’ and j/, both point to a rather
obscure paper (low indegree). In this case, i’ and j’ are much more likely to be
contextually similar than ¢ and j.

Also, since the 7" row of matrix H sums to d* (i), the matrix A, AT is a
stochastic matrix (each row sums to 1). As # is undirected, when it is con-
nected, the principal eigenvector of the probability transition matrix resulting
from it is proportional to the degree distribution of this modified adjacency
matrix, in this case, the out-degrees. The case of a number of connected com-
ponents is described in [51]. Similarly, it can be shown that the principal eigen-
vector of AZAT, also a stochastic matrix, is the in-degree distribution.

Thus, the construction of SALSA simply means that high indegree nodes
in the topic-specific subgraph are good authorities, whereas high out-degree
nodes in the topic-specific subgraph are good hubs. This is surprising, since
earlier it has been pointed out that ranking simply with respect to (w.r.t) in-
degrees on the entirce WWW graph is not adequate [47].In [51] the authors
point out that this conflict results from better techniques for assembling a topic-
specific WWW subgraph. These techniques augment the original subgraph-
expansion [47] with link-filtering schemes to remove noisy links, and use
simple heuristics to assign weights to links, so that weighted indegree or out-
degrees can be computed.

One problem with the HITS ranking is the sensitivity to the tightly knit
communities, coined as the TKC effect. This happens when a small tightly-

3The matrix AAT is denoted by H in [51].
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knit community of nodes rank highly, although they are not most authoritative.
Using a combinatorial construction and examples of search results from the
web graph, it has been demonstrated that SALSA is less vulnerable to the TKC
effect than HITS [51].

Note that neighborhood construction is key to both HITS, MAX and SALSA,
and is a major computational bottleneck at query time. In [58] the authors show
how to precompute score maps for web-pages in order to drastically lower
query latency. Later consistent unbiased sampling [17] and bloom filters [11]
have been used for approximating neighborhood graphs [59].

Personalized Pagerank. PageRank gives a democratic view of the re-
spective importance of the webpages. However by using a non-uniform restart
probability density we can create a personalized view of the relative impor-
tance of the nodes. The basic idea is to start a random walk from a node 7;
at any step the walk moves randomly to a neighbor of the current node with
probability 1 — «, and is reset to the start node ¢ with probability . The sta-
tionary distribution of this process is the personalized pagerank w.r.t node .
As a result, the stationary distribution is localized around the start node. This
was also called “rooted pagerank™ in [53].

If we generalize the start node ¢ to a start distribution 7, the personalization
vector will be given by:

v=(1-a)Plv+ar (3.4)

In order to obtain personalization w.r.t node ¢, the restart distribution 7 is set to
a vector where the i*" entry is set to 1, and all other entries are set to 0. PTw
is the distribution after one step of random walk from v. The above definition
implies that personalized pagerank can be computed by solving a large linear
system involving the transition matrix P.

While most algorithms use personalized pagerank as a measure of similarity
between two nodes, in [81] the authors presented a setting where the restart
distribution is learnt using quadratic programming from ordinal preferences
provided by an administrator. The authors presented a scalable optimization
problem by reducing the number of parameters by clustering the WWW graph.

Simrank. Simrank is a proximity measure defined in [41], which is based
on the intuition that two nodes are similar if they share many neighbors. The
recursive definition of simrank is given by

= 7 s(i,7 .
= e, 2, G

i€l(a),j€I1(b)
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If two random surfers start two simultaneous backward walks from nodes a
and b, then this quantity can be interpreted as the expectation of ¢, where £
equals the time when those two walks meet.

Hitting and Commute time.  The hitting time ([4]) between nodes ¢ and j
is defined as the expected number of steps in a random walk starting from node
1 before node j is visited for the first time. H is an n x n matrix. Recursively
hi; can be written as

1 TS
hz’j_{ bty 107 ] (3.6)

0 Ifi=j

The hitting time can also be interpreted as weighted path-length from node
itonode j, ie. hij = 32, 5 [path(i, j)|P(path(i, j)). Hitting times are
not symmetric even for undirected graphs. This can be seen by considering an
undirected star graph with a central node with large degree, which is connected
to many nodes with degree one. The central node has high hitting time to all
of its neighbors, since there are many different destinations of a random walk.
On the other hand, the degree-1 neighbors have a small hitting time (= 1) to
the central node. Hitting times also follow the triangle inequality ([54]).

Commute time between a pair of nodes is defined as ¢;; = h;; +h;;. We will
now show some surprising properties of commute times for undirected graphs.
For undirected graphs* there is a direct analogy of hitting and commute times
with electrical networks ([25]). Consider an undirected graph. Now think of
each edge as a resistor with conductance A;;. In this setting, the commute time
can be shown ([20]) to be equal to the effective resistance between two nodes
up to a multiplicative constant.

Let vol(G) denote the volume of the graph. This is defined as the sum
of degrees of all nodes, which also equals twice the number of edges in an
undirected graph. If d(¢) amount of current is injected at node ¢, Vi, and vol(G)
amount of current is withdrawn from node j, let the voltage at of node 7 be
(7). Now, the voltage at node ¢ w.r.t node j is denoted by (i, j). This is
essentially 1/(i) — ¢(j). Using Kirchhoff’s law we can write:

(i) = > @, 5) — ¢(k, 7))

keN (3)
Using algebraic manipulation we have:
LIG2Y) RN
o 1+ i : Ifi £ j
W(ig) = LN g (37
0 Otherwise

4A detailed discussion of hitting and commute times in directed graphs can be found in [12].
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Note that this linear system is identical to the definition of hitting time from
i to j (eq. 3.6) and hence hitting time from ¢ to j is identical to the voltage at
node 7 w.r.t j. The above can be written as a solution to the following linear
system:

Ly =y (3-8)

y is the vector of currents injected in the system, in particular, y(z) = d(z),
Va # j and for node j, y(j) = d(j) — vol(G). Note that, if 1) is a solution to
eq. 3.8 then any vector obtained by shifting each entry of it by a fixed constant
is also a solution. The intuition behind this is that, the currents in the system
only depend on the difference in the voltages between two nodes, not the re-
spective values. Hence, if all voltages are shifted by a constant, the currents
will stay the same. More concretely, this happens because L is not full rank:
one of its eigenvectors, the all ones vector, has eigenvalue zero. Hence, it is not
invertible. This is why the Moore-Penrose pseudo-inverse, denoted by LT, is
used ([29]). This matrix, i.e. L™, can also be written as (L — ibllT)_1 + 71111T
([29, 88]).
Hence from eq. 3.8, we have:
T
P—1 ln‘p =Lty (3.9)

The second term on the L.H.S is simply the constant vector, where each entry
T

equals , 1.e. the mean of 7. Since the hitting time measures the voltage
n

difference, this mean shifting does not matter, i.e. H(i,j) = ¥ (i,7) = (i) —
¥(j) = (es —e;) Lty.

Now consider the system where vol(G) current is withdrawn from ¢ and
d(x) amount is injected at all nodes x. Now the voltage drop at j w.r.t 7 will
be hj; = (ej — e;)T LTy, where y’ is the new current vector with y(z) =
d(x),VYz # i and for node i, y(i) = d(i) — vol(G). Note that y — y’ =
vol(G)(e; — ej). Hence, ¢;; = hi; + hj; is given by,

cij = vol(G)(e; — ;)" LT (e; — €j) (3.10)

This also gives us some intuition about the effectiveness of commute time
as a proximity measure. First, if the effective resistance between two nodes is
small, then it is easier for information to diffuse from one node to the other.
Second, since electrical properties of networks do not change much by adding
or removing a few edges, hitting and commute times should be robust to small
perturbation in datasets ([25]).

From eq. (3.10) we see that L™ maps each vertex of a graph to a Euclidian
space i — x;, where x; = (L+)5ei. This is how in undirected graphs pair-
wise commute time can be expressed as the squared Euclidian distance in the
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transformed space (eq. 3.11).
cij = vol (G)(I; + lf - Qﬁ)
= vol(G)(e; — ej)T LT (e; — e;) (3.11)

Let us now look at the entries of L™ in terms of these position vectors. The
i7" entry l;; = wiTa;j, denotes the dot-product between the position vectors

of vertex ¢ and j. The diagonal element lji denotes the squared length of the
position vector of 7. The cosine similarity ([14]) between two nodes is defined

/ \/ l:; lj] We discuss different ways of computing the above quantities in

sectlon

More random-walk based proximity measures. A discounted version
of escape probability from node i to node j (probability to hit node j before
coming back to node ¢ in a random walk started from node ¢) has been used
for computing connection subgraphs in [26]. A connection subgraph is a small
subgraph of the original network which best captures the relationship between
two query nodes. Escape probabilities have also been used to compute di-
rection aware proximity in graphs [78]. Koren et al. use cycle-free escape
probability from ¢ to j (probability that a random walk started at ¢ will reach
j without visiting any node more than once) for computing connection sub-
graphs for a group of nodes in [48].

2.2 Other Graph-based Proximity Measures

In their detailed empirical study of different graph-based proximity mea-
sures for link-prediction tasks [53] have used the Katz score, number of com-
mon neighbors and Jaccard score. The authors also presented higher-level meta
approaches for link prediction which use the above measures as a basic com-
ponent. These approaches included low rank approximations of the adjacency
matrix, unseen bigrams from language modeling, and clustering.

Katz Score. [46] had designed a similarity measure based on ensemble of
paths between two nodes.

Katz(i,j) = Zﬂ€A€ZJ

Note that A’(4, 7) is simply the number of paths of length ¢ from i to j. Hence
the matrix of scores can be written as (I — 3A4)~! — I. In order to compute the
Katz score from a given query node, one needs to solve a linear system over the
adjacency matrix. For very small 3 the Katz score mostly returns nodes with
many common neighbors with the query node, whereas larger values of beta
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allows one to examine longer paths. Also, the weighted version (which takes
into account weights of edges in the graph) of the Katz score was introduced
in [53].

Common Neighbors, Adamic/Adar and Jaccard Coefficient.  Recall that
in an undirected graph, we define the set of neighbors of node i by NV(i). Then
the number of common neighbors of nodes 7 and j is given by [N (7) NN (7).
If two nodes have a large number of common neighbors they are more likely to
share a link in the future. This leads to the use of number of common neighbors
as a pairwise proximity measure.

The Adamic/Adar score [1] is similar to this, except the high degree com-
mon neighbors are weighed less. The Adamic/Adar score is defined as:

1
Adamic/Adar(i,j) =  » (3.12)
NN () 108 V(&)

The intuition behind this score is that, a popular common interest, gives less
evidence of a strong tie between two people. For example, many people sub-
scribe to the New York Times. But a few subscribe to the Journal of Neuro-
surgery. Hence, it is much more likely that two people share similar interests
if they both subscribe to the second journal in place of the first.

The Jaccard coefficient computes the probability that two nodes ¢ and j will
have a common neighbor k, given k is a neighbor of either ¢ or j.

V() NNG)
NG UNG))

The matrix of Jaccard coefficients can be shown to be positive definite [32].

Often the Jaccard coefficient is used to compute document similarity in in-
formation retrieval [65]. Note that for the bag of words model, computing
this score between two documents can be expensive. An efficient randomized
algorithm (shingles) for computing this was introduced by [16]. The idea is
to represent a document by a set of subsequences of words using a moving
window of length /. Now these sequences are hashed to integers, and then
the smallest % of these are used to form a sketch of each document. Now the
Jaccard score is computed based on this new sketch of a document. The au-
thors show that an unbiased estimate of the Jaccard score can be computed by
comparing these sketches.

J(i,7) (3.13)

23 Graph-theoretic Measures for Semi-supervised
Learning

While random-walks have been used to compute proximity measures be-
tween two nodes in a graph or global or topic-specific importance of nodes,
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they also provide a natural framework to include negative information. The
question we ask for obtaining nearest neighbors is: which nodes are close
or relevant to this query node? In semi-supervised learning we ask, given a
graph where a few nodes are labeled relevant (positive) and irrelevant (nega-
tive) which nodes are more similar to the relevant ones than the irrelevant ones.
We will now formalize this idea.

Consider a partially labeled dataset with [ labeled data-points denoted by
{(x1,91),- -, (®L, y1), X151, ..., @,}. The goal is to classify the unlabeled
points, from the labeled examples. Often labels are available for a small frac-
tion of dataset, since labeling might require human intervention. Szummer
et al. [76] represent a data-point using random walks on the graph built from
this dataset. For node %k the authors compute the probability that a random
walk started at node 7, conditioned on the fact that it ended at k after ¢ steps
(Poj¢(i]k)). This distribution in terms of the start distribution over all nodes is
the new representation of node k. This probability can be computed from the
standard ¢-step probability of reaching k from ¢ using Bayes rule. The intuition
is that two datapoints are similar under this notion if they have similar start dis-
tributions. Now the classification rule is to assign to an unlabeled node k the
class ¢, which maximizes ) _; Py.(i|k)P(y = c|i). The parameters P(y|i) are
the hidden class distribution over the nodes, and are estimated by maximizing
likelihood via Expectation Maximization, or maximizing margin of classifica-
tion. The parameter ¢ is crucial for this algorithm and is chosen so that the
average margin per class is maximized. The authors also propose heuristics
for estimating adaptive time scales for different nodes.

Zhu et al. [84] use another graph theoretic approach for semi-supervised
learning. Given labeled and unlabeled data-points as nodes in a graph, the main
goal is to exploit the graph structure to label the unlabeled examples using the
few labeled ones. The authors introduce the harmonic function, which is based
on the intuition that nodes close in the graph have similar labels. A harmonic
function is defined as f : V' — R which has fixed values at the given labeled
points and is smooth over the graph topology. More specifically the harmonic
property means that the function value at an unlabeled node is the average of
function values at the neighbors. Let U denote the set of unlabeled nodes in
the graph. Now the harmonic property can be mathematically expressed as
follows:

_ Zj Az]f(]) .

f(9) (i) ,ielU

Let’s assume that for the labeled nodes we assign f(i) = 1, if i has label 1, and
0 otherwise. This can also be expressed as f = P f. We now divide P into four
blocks by grouping the labeled and unlabeled points together. f is grouped into
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fu (unlabeled) and f; (labeled nodes with fixed values). This gives:
fu: (I_Puu)_lpulfl (314)

The above function represents the probability of hitting a label ‘1° before a la-
bel ‘0°. This can be easily generalized to multi-class classification setting, us-
ing a one vs. all encoding of labels. Harmonic functions can also be thought of
as the voltage at all nodes in a electrical network, where the positive nodes are
connected to a unit voltage external source and the negative nodes are grounded
(zero voltage).

Relationship between harmonic functions, escape probabilities and com-
mute times. We have shown that commute times, escape probabilities
and harmonic functions are widely used for proximity computation and semi-
supervised learning. The harmonic function f with boundary conditions f(s) =
1 and f(t) = 0 at node i, computes the probability that a random walk from
node 4 will hit s before ¢. The escape probability from s to ¢ [25] (Pesc(s, 1))
is defined as the probability of reaching ¢ before returning to s in a random
walk stated at s. Hence P.s.(s,t) = 1 — ) . P(s,4)f(i). This can be seen
as the escape probability equals the probability of visiting a neighbor ¢, and
from there reaching ¢ before returning to s. However the latter has probability
1 — f(7), by definition of harmonic functions.

As mentioned earlier, harmonic functions can also be thought of as the volt-
age at node ¢ resulting from connecting node s to a unit voltage source, and
node ¢ to a zero voltage source. Now we will see the relationship of escape
probabilities and harmonic functions with commute time. Let the total cur-
rent drawn by node s from the outside source be I;. Using Kirchhoff’s law
this quantity is >, A, ;(1 — f(i)), where Cs; is the conductance or weight
of the edge {s, i}, since f(s) = 1. This is simply d(s) >, P(s,%)(1 — f(4)),
which is simply the degree of node s times the escape probability from s to ¢.
Hence the effective conductance between nodes s and ¢ for a unit voltage drop
is d(s)Pesc(s,t). Recall that the effective conductance between nodes s and
t is the reciprocal of the effective resistance between nodes s and ¢, which is
proportional to the commute time between nodes s and ¢.

Using the Laplacian for Graph Regularization. Most semi-supervised
algorithms are variations of learning a function over a graph. The goal is to
optimize the function over the labeled nodes, and enforce smoothness over
the graph topology via regularization. Zhu et al. [86] provide an excellent
survey which unifies different semi-supervised learning algorithms under this
framework. The authors discuss a number of algorithms and show the different
choice of the loss function and the regularizer. A number of these algorithms
use the graph Laplacian L, or the normalized graph Laplacian D—'/2LD~1/2
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for regularizing the function. This, (e.g. in [84]) sometimes leads to a function
closely related to a random walk on the underlying graph. Agarwal et al. [2]
connect the Laplacian regularization framework with random walk based mea-
sures (e.g. personalized pagerank) and provide generalization guarantees for
the latter in directed graphs.

24 Clustering with random walk based measures

Random walks provide a natural way of examining the graph structure. It
is popular for clustering applications as well. Spectral clustering [60] is a
body of algorithms that clusters datapoints x; using eigenvectors of a matrix
derived from the affinity matrix A constructed from the data. Each datapoint
is associated to a node in a graph. The weight on a link between two nodes
i and j, i.e. A;j, is obtained from a measure of similarity between the two
datapoints. One widely used edge weighting scheme transforms the Euclidian
distance between the datapoints, i.e. 4;; = exp(||z; — x;|?/0?), where o is a
free parameter.

Meila et al. [56] provide a random-walk based probabilistic interpretation
of spectral clustering algorithms including Normalized Cut [72]. Building the
affinity matrix poses an important algorithmic question, which has not yet been
studied extensively. The choice of ¢ is crucial. Zhu et al. [86] describe different
techniques for building graphs and estimating o.

Global graph clustering using random walks.  Saerens et al. [64] exploit
equation (3.11) to embed a graph and provide distances between any pair of
nodes. In [83] the authors replace traditional shortest-path distances between
nodes in a graph by hitting and commute times and show that standard clus-
tering algorithms (e.g. K-means) produce much better results when applied
to these re-weighted graphs. These techniques exploit the fact that commute
times are robust to noise and provide a finer measure of cluster cohesion than
simple use of edge weight. Harel et al. [36] present a general framework for
using random walk based measures as separating operators which can be re-
peatedly applied to reveal cluster structure at different scales of granularity.
The authors propose using ¢ step probabilities, escape probabilities and other
variants to obtain edge separation. The authors show how to use these oper-
ators as a primitive for other high leve