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Abstract

We study the dynamic assignment of flexible servers to stations in the presence of setup

costs that are incurred when servers move between stations. We focus on tandem lines

with two stations and two servers with the goal of maximizing the long-run average profit.

We investigate how the optimal server assignment policy for such systems depends on the

magnitude of the setup costs, as well as on the homogeneity of servers and tasks. More

specifically, for systems with either homogeneous servers or homogeneous tasks, small buffer

sizes, and constant setup cost, we prove the optimality of “multiple threshold” policies (where

servers’ movement between stations depends on both the number of jobs in the system

and the locations of the servers) and determine the values of the thresholds. For systems

with heterogeneous servers and tasks, small buffers, and constant setup cost, we provide

results that partially characterize the optimal server assignment policy. Finally, for systems

with larger buffer sizes and different service rate and setup cost configurations, we present

structural results for the optimal policy and provide numerical results that strongly support

the optimality of multiple threshold policies.

Keywords: Flexible servers, finite buffers, Markov decision processes, setup costs, tandem

production systems, threshold policies.

2000 Mathematics Subject Classification: Primary: 90B22; Secondary 90C40, 60J28.

1



1 Introduction

Consider a queueing network with N ≥ 2 stations in tandem and M ≥ 1 servers. We assume

that there is an infinite supply of jobs in front of station 1 and infinite room for completed

jobs after station N . We further assume that the buffers between the successive stations are

all finite and that the network operates under the manufacturing blocking mechanism. We let

Bj < ∞ denote the size of the buffer between stations j − 1 and j for j ∈ {2, . . . , N}. At

any given time, there can be at most one job at each station and each server can work on at

most one job. Furthermore, the service requirements of each job at each station j ∈ {1, . . . , N}

are independent and exponentially distributed with a mean m(j). We assume, without loss of

generality, that m(j) = 1 for all j ∈ {1, . . . , N}.

Each server i ∈ {1, . . . ,M} works at rate 0 ≤ µij < ∞ at station j ∈ {1, . . . , N} (and

hence server i is cross-trained to work at all stations j satisfying µij > 0). We assume that∑N
j=1 µij > 0 for i ∈ {1, . . . ,M} and

∑M
i=1 µij > 0 for j ∈ {1, . . . , N} (because otherwise we have

a system with a smaller number of servers or all policies have zero throughput). We also allow

several servers to work together on a single job, in which case their service rates are additive.

Moreover, we assume that servers can only move between stations when a service completion

occurs somewhere in the network, and that the travel times required for servers to go from one

station to another station (including any setup times) are negligible, but that there is a cost

associated with such server movements. For all i ∈ {1, . . . ,M} and j, k ∈ {1, . . . , N}, let ci(j, k)

be the setup cost incurred when server i moves from station j to station k. We assume that

ci(j, j) = 0 and 0 ≤ ci(j, k) < ∞ for j 6= k. We further assume that ci(j, k) ≤ ci(j, l) + ci(l, k)

for all i ∈ {1, . . . ,M} and j, k, l ∈ {1, . . . , N}, so that the least costly way of moving from one

station to another does not include any intermediate stations. Every time there is a service

completion at station N , a revenue of v is obtained. Without loss of generality, we assume that

v = 1.

Our goal is to find the dynamic server assignment policy that maximizes the long-run average

profit in the system described above. Most of our results concentrate on systems with two

stations and two flexible servers because of the complexity associated with analyzing larger

finite-buffered systems. Nevertheless, we provide the problem formulation and some basic results

for larger systems as well.

Flexible workforce has been the subject of a significant amount of research in recent years.

Here, we provide a review of existing results about the dynamic server assignment problem with

setups. We refer the interested reader to Hopp and Van Oyen [12] for a more extensive review of

flexible workforce research, and to Andradóttir, Ayhan, and Down [1] or Kırkızlar, Andradóttir,
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and Ayhan [15] for more concentrated reviews of research on the dynamic server assignment

problem.

Most existing works about systems with setups are on polling systems, where there is only

one server in the system, and the customers leave after being served at one station. Related

work on polling systems includes Duenyas and Van Oyen [9], Gupta and Srinivasan [10], Hofri

and Ross [11], Reiman and Wein [20], and references therein.

We are only aware of a small number of papers that study systems with setups apart from

polling systems. Andradóttir, Ayhan, and Down [2] consider a general queueing network with

outside arrivals, infinite buffers, and random switchover times for the servers. They show that

setups do not reduce the capacity in this setting, and construct policies whose performance is

arbitrarily close to the maximal system capacity. Andradóttir, Ayhan, and Down [3] study a

similar problem in the presence of server failures. Duenyas, Gupta, and Olsen [8] consider a

tandem line with a single flexible server, infinite buffers, and positive setup times when the

server switches between the stations. They partially characterize the policy that minimizes

the total holding cost and develop effective heuristic assignment policies. Iravani, Posner, and

Buzacott [13] study a two-stage tandem queue with a flexible server and infinite buffer between

the stations, and identify the policy that minimizes the total holding and setup costs. Sennott,

Van Oyen, and Iravani [21] consider a tandem line with a dedicated server at each station,

one moving server, and infinite buffers between the stations. They allow positive setup costs,

holding costs, and setup times, and provide recommendations on how to use the moving server

more effectively when the objective is to minimize the total cost. In a more recent paper,

Mayorga, Taaffe, and Arumugam [18] study the revenue maximization problem in a two server,

two station system with infinite buffers in the presence of switching and holding costs. They

provide results about the complexity of the optimal server assignment policy and propose three

heuristic policies.

All the papers described in the previous paragraph assume that the storage spaces in the

system have infinite capacity. To the best of our knowledge, our work is the first to incorporate

setups for a tandem system with finite buffers. This is an important extension of prior work

because real systems do not have infinite buffers due to physical constraints (and the buffers

can be limited further as a way of controlling the work-in-process). Furthermore, incorporating

positive switching costs is also a more realistic representation of actual systems, because server

movements often cause some efficiency loss in real life. However, the analysis of a finite-buffered

system is difficult because several existing analysis tools (e.g., fluid and diffusion limits) only

can be used when analyzing systems with infinite buffers, and most of the time Markov decision

problems (MDPs) are analytically intractable even for simple finite-buffered systems. Moreover,
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the inclusion of setup costs also complicates the analysis due to the necessity of keeping track

of all server locations in the state space. Hence, our state space is multi-dimensional, and the

Markov chain under consideration does not have a birth-and-death process structure. Conse-

quently, it is a challenging task to calculate performance measures like gain and bias in MDP

solutions, even for systems with small buffers.

In this paper, we also consider more general service rate structures compared to most of the

previous work studying setups. In particular, Sennott, Van Oyen, and Iravani [21] and Mayorga,

Taaffe, and Arumugam [18] study systems with homogeneous tasks (i.e., the service rate only

depends on the server). Iravani, Posner, and Buzacott [13] and Duenyas, Gupta, and Olsen [8]

only study systems with one server (i.e., the service rate only depends on the task). In addition

to studying both of these special service rate structures, in this work we also study systems

with servers whose rates can depend on both the server and the task. Andradóttir, Ayhan,

and Down [2, 3] also study systems with general service rate structures, but they only consider

systems with infinite buffers, and hence are able to employ fluid limits in their solutions. Given

the additional complexity resulting from the finite buffers in our systems, the difficulty level of

our problem is very high.

The remainder of this paper is organized as follows. In Section 2 we formulate the problem.

In Section 3 we provide preliminary results about tandem lines with two stations and setups.

In Section 4 we consider systems with two stations, two homogeneous servers (who are equally

skilled at all tasks), and constant setup cost. In Section 5, we study systems with two homoge-

neous stations, two servers, and constant setup cost. In both Sections 4 and 5, we identify the

optimal server assignment policies for small buffer sizes and provide our observations about the

optimal policy for larger buffer sizes based on numerical and theoretical results. In Section 6 we

consider systems with heterogeneous servers and tasks and present structural results about the

optimal server assignment policy for constant setup costs, and also perform numerical experi-

ments for systems with arbitrary setup costs. Finally, in Section 7 we make some concluding

remarks.

2 Problem Formulation

In this section, we formulate the dynamic server assignment problem in the presence of setups,

translate it into a discrete-time Markov decision problem, and finally illustrate our model for

systems with two stations and two flexible servers operating under the policy known to be

throughput optimal without setup costs.

For all server assignment policies π and all t ≥ 0, let Yπ,j(t) ∈ {0, 1, . . . , Bj+1 + 2} denote
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the number of jobs that have been served at station j and are either waiting for service or in

service at station j + 1 at time t under the policy π for j ∈ {1, . . . , N − 1}. Similarly, for all

server assignment policies π, t ≥ 0, and i ∈ {1, . . . ,M}, let Zπ,i(t) denote the station that server

i was assigned to under the policy π at the time of the most recent service completion prior to

time t in the queueing network (letting Zπ,i(t) be the previous location of server i, rather than

the current location of the server, will facilitate the translation of the optimization problem of

interest into a Markov decision problem). We will use the stochastic process {Xπ(t)}, where

Xπ(t) = (Yπ(t), Zπ(t)), Yπ(t) = (Yπ,1(t), . . . , Yπ,N−1(t)), and Zπ(t) = (Zπ,1(t), . . . , Zπ,M (t)) for

all t ≥ 0, to model the state of the system under the policy π as a function of time.

We assume that the class Π of server assignment policies under consideration consists of

all Markovian stationary deterministic policies corresponding to the state space S ⊂ IRN+M−1

of the stochastic processes {Xπ(t)}. In other words, the policies in Π specify whether each

server is idle or not, and the station that each non-idle server is assigned to, as a function

of the current state x ∈ S of the stochastic process {Xπ(t)}. Hence the server assignments

may depend both on the status of the stations and buffers and also on the previous location

of the servers. Note that service may be preemptive when M ≥ 2 (i.e., there is more than one

server) because a service completion at one station may trigger the movement of servers that are

currently working at other stations. Without loss of generality, we do not consider actions that

assign a server to another station and then keep the server idle. The reason is that by simply

idling a server without any switchover, we obtain the same departure stream from the system

and postpone or avoid the setup costs that could result from idling the server after a switchover

(since 0 ≤ ci(j, k) ≤ ci(j, l) + ci(l, k) for all i ∈ {1, . . . ,M} and j, k, l ∈ {1, . . . , N}).

For all x ∈ S, let Ax denote the set of allowable actions at state x. We use the notation

aσ1σ2...σM to represent the actions, where σi is the station to which server i ∈ {1, . . . ,M} is

assigned under this action. We use the convention that σi = 0 when server i is voluntarily idled

at its current station, and this is treated differently from the case where server i is assigned

to a station but is involuntarily idle since that station is not operating. Then, we have Ax =

A =
⋃
σ∈{0,...,N}M {aσ} for all x ∈ S. However, without loss of generality, we consider a smaller

action set later in this paper because some of the actions are known to be suboptimal in each

state. We choose the decision rule d such that d(x) ∈ Ax for all x ∈ S, and hence the policy

π ∈ Π corresponding to the decision rule d can be represented as π = (d)∞. Furthermore, we

use the notation di(x) to denote the assignment of server i ∈ {1, . . . ,M} in state x ∈ S under

decision rule d. More specifically, di(x) = σi for i ∈ {1, . . . ,M} when d(x) = aσ1σ2...σM . Finally,

we use the vector δd(x) = (d1(x), . . . , dM (x)) to keep track of the assignments of all servers in

state x ∈ S under decision rule d.
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For all π ∈ Π and t ≥ 0, let Dπ(t) be the number of departures from the network under the

server assignment policy π by time t and Cπ(t) be the (cumulative) setup cost incurred under

the server assignment policy π in the period [0, t]. Define

Pπ = lim
t→∞

IE
{
Dπ(t)
t
− Cπ(t)

t

}
, (1)

the long-run average profit under policy π ∈ Π. Note that existence of the limit in equation (1)

follows because the state space of our Markov chain {Xπ(t)}, as well as the immediate rewards,

are finite.

We are interested in solving the optimization problem:

max
π∈Π

Pπ. (2)

We now translate the original optimization problem (2) into an equivalent (discrete-time) MDP.

Note that although we derive the alternative formulation for a system of finite queues in tandem,

our arguments apply to systems with general configurations.

Let SY ⊂ IRN−1 and SZ = {1, . . . , N}M denote the state spaces of the stochastic processes

{Yπ(t)} and {Zπ(t)}, respectively, where π ∈ Π. For the remainder of this paper, we use the

decomposition x = (y, z) and x′ = (y′, z′), where x, x′ ∈ S, y, y′ ∈ SY , and z, z′ ∈ SZ . For all

a ∈ A, let πa = (da)∞ ∈ Π be the server assignment policy with da(x) = a for all x ∈ S. Then it

is clear that under our assumptions, the stochastic process {Yπa(t)} is a continuous-time Markov

chain with state space SY for all a ∈ A. For all y, y′ ∈ SY and all a ∈ A, let Qa(y, y′) be the

rate at which the continuous-time Markov chain {Yπa(t)} goes from state y to state y′ (under

the server assignment policy πa). Then, it is not difficult to see that for all π = (d)∞ ∈ Π,

the stochastic process {Xπ(t)} is a continuous-time Markov chain with state space S and with

transition rates

qd(x, x′) =

 Qd(x)(y, y′) if z′ = δd(x) + Iz ,

0 otherwise,

where Iz is an M -dimensional vector whose ith element is equal to 1(di(x)=0)zi and 1 is the

identity function. Hence, even if the decision rule voluntarily idles a server, we still keep track

of this server’s location in the state space.

It is also clear that for all π = (d)∞ ∈ Π, there exists a scalar qπ ≤
∑M

i=1 max1≤j≤N µij <∞

such that the transition rates {qd(x, x′)} of the continuous-time Markov chain {Xπ(t)} satisfy∑
x′∈S,x′ 6=x qd(x, x

′) ≤ qπ for all x ∈ S. This shows that {Xπ(t)} is uniformizable for all π ∈

Π. We let {X ′π(k)} be the corresponding discrete-time Markov chain, so that {X ′π(k)} has

state space S and transition probabilities pd(x, x′) = qd(x, x′)/qπ if x′ 6= x and pd(x, x) =

1 −
∑

x′∈S,x′ 6=x qd(x, x
′)/qπ for all x ∈ S. We will use the fact that {Xπ(t)} is uniformizable
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to translate the original optimization problem (2) into an equivalent (discrete-time) Markov

decision problem (using uniformization to do this type of translation was proposed originally

by Lippman [17]). In particular, it is well known that one can generate sample paths of the

continuous-time Markov chain {Xπ(t)}, where π ∈ Π, by generating a Poisson process {Kπ(t)}

with rate qπ and at the times of the events of {Kπ(t)}, the next state of the continuous-time

Markov chain {Xπ(t)} is generated using the transition probabilities of the discrete-time Markov

chain {X ′π(k)}.

For all x, x′ ∈ S, define

Rd(x, x′) =

 1−
∑M

i=1 ci(zi, z
′
i) if y ∈ D and y′ ∈ Dy,

−
∑M

i=1 ci(zi, z
′
i) otherwise,

where D = {y ∈ SY : yN−1 > 0}, and Dy = {(y1, . . . , yN−2, yN−1−1)} for all y ∈ D, and Dy = ∅

for all y 6∈ D. Note that incurring the setup cost one transition after the setup occurs does not

change the long-run average profit. Hence, it is easy to see that for all π = (d)∞ ∈ Π,

Pπ = lim
t→∞

IE

Kπ(t)
t
× 1
Kπ(t)

Kπ(t)∑
k=1

Rd(X ′π(k − 1), X ′π(k))

 . (3)

By the elementary renewal theorem, it is clear that Kπ(t)/t→ qπ almost surely (a.s.) as t→∞

for all π ∈ Π. Moreover, it is clear from the strong law of large numbers for Markov chains (see for

example Wolff [22], page 164) that for all π ∈ Π, the limit limK→∞
∑K

k=1Rd(X
′
π(k−1), X ′π(k))/K

exists almost surely, although the limit may depend on the initial state of the Markov chain

{X ′π(k)} and it may be random (see also Section 3.8 of Kulkarni [16]). Since

∣∣∣ 1
K

K∑
k=1

Rd(X ′π(k − 1), X ′π(k))
∣∣∣ ≤ 1 +

M∑
i=1

max
1≤j,k≤N

ci(j, k) <∞

for all K ≥ 1 and supt≥0 IE{[Kπ(t)/t]2} <∞ (because Kπ(t) is a Poisson random variable with

mean qπt), uniform integrability shows that for all π ∈ Π, we have

Pπ = qπIE

{
lim
K→∞

1
K

K∑
k=1

Rd(X ′π(k − 1), X ′π(k))

}

= qπ lim
K→∞

IE

{
1
K

K∑
k=1

Rd(X ′π(k − 1), X ′π(k))

}

(see for example the corollary to Theorem 25.12 in Billingsley [7]). This shows that the opti-

mization problem (2) has the same solution as the optimization problem

max
π∈Π

qπ lim
K→∞

IE

{
1
K

K∑
k=1

Rd(X ′π(k − 1), X ′π(k))

}
.
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We define ci(j, 0) = 0 for all i ∈ {1, . . . ,M} and j ∈ {1, . . . , N}. Then, the strong law of

large numbers for Markov chains also gives that for all π ∈ Π such that π = (d)∞,

lim
K→∞

1
K

K∑
k=1

Rd(X ′π(k − 1), X ′π(k)) = lim
K→∞

1
K

K∑
k=1

R′d(X
′
π(k − 1)) a.s.,

where

R′d(x) =
∑
x′∈S

pd(x, x′)Rd(x, x′)

=
∑

y′∈SY \{y}

pd(x, (y′, δd(x) + Iz))Rd(x, (y′, δd(x) + Iz))

=
∑
y′∈Dy

pd(x, (y′, δd(x) + Iz))−
∑

y′∈SY \{y}

pd(x, (y′, δd(x) + Iz))
M∑
i=1

ci(zi, di(x))

=
∑
y′∈Dy

Qd(x)(y, y′)
qπ

−

 ∑
y′∈SY \{y}

Qd(x)(y, y′)
qπ

×( M∑
i=1

ci(zi, di(x))

)

for all x ∈ S (note that both limits may be random and may depend on the initial state of the

Markov chain {X ′π(k)}). Uniform integrability now gives that

lim
K→∞

IE

{
1
K

K∑
k=1

Rd(X ′π(k − 1), X ′π(k))

}
= lim

K→∞
IE

{
1
K

K∑
k=1

R′d(X
′
π(k − 1))

}
.

This shows that the optimization problem (2) has the same solution as the optimization problem

max
π∈Π

qπ lim
K→∞

IE

{
1
K

K∑
k=1

R′d(X
′
π(k − 1))

}
.

Therefore, if one selects qπ = q for all π ∈ Π (which is always possible in our setting), then the

optimization problem (2) has the same set of optimal policies as the optimization problem

max
π∈Π

lim
K→∞

IE

{
1
K

K∑
k=1

R′d(X
′
π(k − 1))

}
.

Finally, it is clear from the above that if

R′′d(x) =
∑
y′∈Dy

Qd(x)(y, y
′)−

 ∑
y′∈SY \{y}

Qd(x)(y, y
′)

×( M∑
i=1

ci(zi, di(x))

)

for all x ∈ S and π = (d)∞ ∈ Π, then the optimization problem (2) has the same solution as the

Markov decision problem

max
π∈Π

lim
K→∞

IE

{
1
K

K∑
k=1

R′′d(X ′π(k − 1))

}
. (4)

In the remainder of this paper, we analyze the alternative formulation (4) of the original opti-

mization problem (2).
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In order to demonstrate the problem formulation more clearly, we provide an example that

employs the server assignment policy that maximizes the throughput of the system with M =

N = 2 and no setup costs when the servers are ordered such that µ11µ22 ≥ µ12µ21 (as shown

by Andradóttir, Ayhan, and Down [1]). The description of the policy was modified in order to

adapt it to our state space.

Example 2.1 Suppose that M = N = 2 and B2 = B <∞. Then

S = {(0, 1, 1), (1, 1, 1), . . . , (B + 2, 1, 1), (0, 1, 2), (1, 1, 2), . . . , (B + 2, 1, 2),

(0, 2, 1), (1, 2, 1), . . . , (B + 2, 2, 1), (0, 2, 2), (1, 2, 2), . . . , (B + 2, 2, 2)}, (5)

where in state (l, k1, k2) ∈ S, l refers to the number of jobs that have been processed at station

1 and are either in service or waiting for service at station 2, and km refers to the station that

server m was previously assigned to (prior to the most recent service completion in the network)

for m = 1, 2. Assume that for i = 1, 2, we have ci(1, 2) = c↑i ≥ 0 and ci(2, 1) = c↓i ≥ 0.

Consider the policy π0 = (d0)∞ ∈ Π, where

d0(x) =


a11 if x ∈ {(0, 1, 1), (0, 1, 2), (0, 2, 1), (0, 2, 2)},

a22 if x ∈ {(B + 2, 1, 1), (B + 2, 1, 2), (B + 2, 2, 1), (B + 2, 2, 2)},

a12 otherwise.

(6)

Let q = qπ0 = µ11 + µ12 + µ21 + µ22. Then

pd0(x, x′) =



µ12+µ22

q if y = 0, y′ = 0, and z′ = (1, 1),
µ11+µ21

q if y = 0, y′ = 1, and z′ = (1, 1),
µ22

q if y = l, y′ = l − 1, and z′ = (1, 2), ∀ 0 < l < B + 2,
µ12+µ21

q if y = l, y′ = l, and z′ = (1, 2), ∀ 0 < l < B + 2,
µ11

q if y = l, y′ = l + 1, and z′ = (1, 2), ∀ 0 < l < B + 2,
µ12+µ22

q if y = B + 2, y′ = B + 1, and z′ = (2, 2),
µ11+µ21

q if y = B + 2, y′ = B + 2, and z′ = (2, 2),

0 otherwise,
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and

R′′d0(x) =



0 if x = (0, 1, 1),

−(µ11 + µ21)c↓2 if x = (0, 1, 2),

−(µ11 + µ21)c↓1 if x = (0, 2, 1),

−(µ11 + µ21)(c↓1 + c↓2) if x = (0, 2, 2),

µ22 − (µ11 + µ22)c↑2 if x = (l, 1, 1), ∀ 0 < l < B + 2,

µ22 if x = (l, 1, 2), ∀ 0 < l < B + 2,

µ22 − (µ11 + µ22)(c↓1 + c↑2) if x = (l, 2, 1), ∀ 0 < l < B + 2,

µ22 − (µ11 + µ22)c↓1 if x = (l, 2, 2), ∀ 0 < l < B + 2,

(µ12 + µ22)(1− c↑1 − c
↑
2) if x = (B + 2, 1, 1),

(µ12 + µ22)(1− c↑1) if x = (B + 2, 1, 2),

(µ12 + µ22)(1− c↑2) if x = (B + 2, 2, 1),

µ12 + µ22 if x = (B + 2, 2, 2).

Note that when the policy π0 is used and B > 0, then there are only B + 5 positive recurrent

states in S in the continuous-time stochastic process {Xπ0(t)}, namely (1, 1, 1), (B+1, 2, 2), and

(l, 1, 2), where 0 ≤ l ≤ B + 2. Similarly, when this policy π0 is used and B = 0, then there are

only B + 4 positive recurrent states, namely (0, 1, 2), (1, 1, 1), (1, 2, 2), and (2, 1, 2).

3 Preliminary Results

In this section, we provide some preliminary results about tandem lines with two stations and

setup costs. We first present a result about the form of the optimal server assignment policy.

Lemma 3.1 For a tandem line with N = 2, M ≥ 2, and nonnegative setup costs, there exists

an optimal policy that does not idle any server voluntarily when the first station is blocked or

when the second station is starved.

Proof: When the first station is blocked, the system is in a state s = (B+ 2, z1, . . . , zM ), where

(z1, . . . , zM ) ∈ SZ . Now compare two policies π1 = (d1)∞ and π2 = (d2)∞ that agree with each

other apart from state s. Assume that d1
i (s) = zi and d2

i (s) = 0 for some i ∈ {1, . . . ,M}, and

d1
j (s) = d2

j (s) for j ∈ {1, . . . ,M} \ {i}. If zi = 1, then the performance of π1 and π2 will be

identical (since keeping a server at station 1 is equivalent to idling that server in terms of cost).

If zi = 2, then the next service completion under policy π1 will never be later than the one under

policy π2, the system state will be the same after the next service completion, and no extra cost

will have been incurred by keeping server i at the second station. Hence, Dπ1(t) ≥ Dπ2(t) for

all t ≥ 0.
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Note that it is possible to have Cπ1(t) ≥ Cπ2(t) because of the faster transitions under π1.

We now restrict ourselves to policies with nonzero departures from the system without loss of

generality (this is possible because the optimal policy must have positive number of departures

under our assumptions on the service rates). Define the setup cost per item produced up to

time t under policy π ∈ Π as uπ(t) = Cπ(t)/Dπ(t). Under both policies (π1 and π2), the system

goes through the same sequence of states, and at the time of each departure the total setup cost

incurred under policy π1 is equal to the total setup cost incurred under policy π2. Hence, we

can conclude that uπ1(t) = uπ2(t) for all t ≥ 0. For all π ∈ Π, we have

Pπ = lim
t→∞

IE
{
Dπ(t)
t

(
1− Cπ(t)

Dπ(t)

)}
= lim

t→∞
IE
{
Dπ(t)
t

(1− uπ(t))
}
.

Consequently, Pπ1 ≥ Pπ2 . Hence, there exists an optimal policy that never idles the servers

when the first station is blocked. A similar logic follows when the second station is starved. 2

For a system with two stations, consider the reversed line where station 1 is followed by

station 2, and keep the labeling of the stations as in the original line (i.e., station 2 is the

upstream station and station 1 is the downstream station in the reversed line). Let B denote the

buffer size between the stations. Assume that the forward line operates under a policy π = (d)∞

and that the reversed line operates under a policy πR = (dR)∞, where dR(l, z) = d(B + 2− l, z)

for 0 ≤ l ≤ B + 2 and z ∈ SZ (in both the forward and reversed lines, zi = j if the previous

location of server i is station j). The following reversibility result will be used to simplify our

results and proofs.

Lemma 3.2 When N = 2, the policy π is optimal for the forward line if and only if the policy

πR is optimal for the reversed line.

Proof: Let κπ,1(x) and κπ,2(x) denote the sets of servers assigned to stations 1 and 2, respec-

tively, under policy π when the original line is in state x ∈ S. Then we see that for {Xπ(t)},

the transition rate from state x = (l, z) to (l + 1, z′) is
∑

i∈κπ,1(x) µi1 for l ∈ {0, . . . , B + 1}

and the transition rate from state x to (l − 1, z′) is
∑

i∈κπ,2(x) µi2 for l ∈ {1, . . . , B + 2} and

z, z′ ∈ SZ (where z′ is determined by κπ,1(x) and κπ,2(x)). Now, let {(YπR(t), ZπR(t))} be the

Markov chain corresponding to the reversed line. It is easy to see that the stochastic process

{(B+2−YπR(t), ZπR(t))} has the same transition rates as the stochastic process {(Yπ(t), Zπ(t))}.

Hence these two processes are stochastically equivalent. Consequently, the long-run average

profit of the forward line under policy π is equal to the long-run average profit of the reversed

line under policy πR (because the departures from one system correspond to departures from

the first station of the other system, and the buffer size between the stations is finite), and the

result follows. 2
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4 Systems with Homogeneous Servers

In this section, we consider a tandem line with two stations and two homogeneous servers that

have the same service rate at each task. Hence, the service rates depend only on the station,

so that µij = γj > 0 for i, j ∈ {1, 2}. We focus on the case where γ1 ≥ γ2, so that the task

at station 1 takes on average less time than the task at station 2. The results for γ1 < γ2 are

similar, and can be deduced from the results for γ1 ≥ γ2 using the reversibility of two-station

tandem lines, as shown in Lemma 3.2. They are provided in Appendix A. Furthermore, we

assume that ci(1, 2) = ci(2, 1) = c ≥ 0 for i ∈ {1, 2}. This is a reasonable assumption if the

setup costs are due to the movement of the servers or if every machine requires similar setup

procedures. Our state space S is given in (5). More specifically, we will consider systems with

B = 0, B = 1, and B > 1 in Sections 4.1, 4.2, and 4.3, respectively.

4.1 Systems with Homogeneous Servers and No Buffer

In this section we provide the optimal server assignment policy for a system that has a buffer

of size zero between the stations. We will need the decision rule

d1(x) =


a12 if x = (0, z1, z2) for all (z1, z2) ∈ SZ or

x = (1, z1, z2) for all (z1, z2) ∈ SZ \ {(2, 2)},

a22 if x = (2, z1, z2) for all (z1, z2) ∈ SZ or x = (1, 2, 2).

(7)

The proof of the following theorem is provided in Appendix B. The case when γ1 < γ2 is covered

by Corollary A.1, provided in Appendix A.

Theorem 4.1 For a Markovian tandem line with two stations, two flexible servers, and buffer

of size zero between the stations, if µij = γj for i, j ∈ {1, 2} and γ1 ≥ γ2, then the optimal server

assignment policy π∗ = (d∗)∞ is as follows:

(i) If 0 ≤ c ≤ γ2
2γ1+4γ2

, then d∗(x) = d0(x) for all x ∈ S (see equation (6)) and the recurrent

states are (0, 1, 2), (1, 1, 1), (1, 2, 2), and (2, 1, 2).

(ii) If γ2
2γ1+4γ2

< c ≤ γ2
1

2γ2
1+2γ1γ2+2γ2

2
, then d∗(x) = d1(x) for all x ∈ S (see equation (7)) and the

recurrent states are (0, 1, 2), (0, 2, 2), (1, 1, 2), (1, 2, 2), and (2, 1, 2).

(iii) If c > γ2
1

2γ2
1+2γ1γ2+2γ2

2
, then d∗(x) = a12 for all x ∈ S and the recurrent states are (0, 1, 2), (1, 1, 2),

and (2, 1, 2).

Note that since we have identical servers, the policies described in Theorem 4.1 are not

unique. For every specified policy, there is an alternative optimal policy where the roles of
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the servers are reversed. Moreover, the interval for c in part (ii) of Theorem 4.1 is non-empty

because γ1 ≥ γ2. Finally, the intervals considered in the theorem span all values of c ≥ 0.

Theorem 4.1 and Corollary A.1 show that when the servers are homogeneous, the optimal

policy is of one of the following three types:

• Neither server switches (Type 0);

• Only one server switches (Type 1);

• Both servers switch (Type 2).

The recurrent states, together with the actions in these states under the optimal policies of

Theorem 4.1 are depicted in Figures 1(a), 1(b), and 1(c).

(a) Both Servers Switch (Type 2) (b) Only Server 1 Switches (Type 1)

(c) Only Server 2 Switches (Type 1)

Figure 1: Recurrent States and Optimal Actions in Theorem 4.1

In the case without setups and with arbitrary service rates, both servers have a primary

assignment at a station (i.e., each server works at their assigned station as long as it is neither

blocked nor starved) and the servers do not idle. However, in the presence of positive setup costs,

Theorem 4.1 shows that servers may have a preferred or dedicated assignment at a station, but

not a primary assignment, because they may idle at their dedicated station or work at a less

preferred station even when their preferred station is operating, to avoid multiple switchovers.

More specifically, for small values of c, part (i) of Theorem 4.1 shows that both servers have

primary assignments and the optimal policy is of Type 2 (see Figure 1(a)). Note that this policy

is the same as the optimal policy for systems with c = 0, as shown by Andradóttir, Ayhan,

and Down [1]. For intermediate values of c, we observe that only one server switches between

stations (i.e., the optimal policy is of Type 1). In particular, part (ii) of Theorem 4.1 shows
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that server 1 has a preferred assignment at station 1 and server 2 has a dedicated assignment

at station 2 (see Figure 1(b)). Finally, for large values of c, both servers are dedicated (i.e., the

optimal policy is of Type 0), as shown in part (iii) of Theorem 4.1 (see Figure 1(c)). Note that

idling occurs under both Type 1 and Type 0 policies. An examination of the bounds on c in

Theorem 4.1 shows that the optimal policy is not of Type 2 for any value of c > 1
6 , and the

optimal policy is of Type 0 for all values of c > 1
2 .

Theorem 4.1 also introduces the notion of “multiple threshold” policies. In other words,

servers move between stations when the number of jobs that are in service or waiting for service

at station 2 reaches a threshold. Furthermore, the value of this threshold may depend on the

location of the switching server. We use the notation ti(z) to denote the threshold where server

i ∈ {1, . . . ,M} switches from station zi to the other station 3−zi when the previous locations of

the servers are represented in the vector z ∈ SZ . We use the convention that server i is assigned

to station 3− zi when the system is in state (ti(z), z). In Figure 1(a), server 1 switches between

stations based on the thresholds t1(1, 2) = 2, t1(2, 2) = 1, and server 2 switches between stations

based on t2(1, 1) = 1, and t2(1, 2) = 0. In Figure 1(b), server 1 switches based on t1(1, 2) = 2

and t1(2, 2) = 0, but server 2 is dedicated. Finally, in Figure 1(c), both servers are dedicated.

For a given setup cost, the efficiency loss resulting from using a policy that is optimal for

another setup cost can be very high. For example, one can show that the long-run average profits

associated with the Type 0 and Type 2 policies of Theorem 4.1 are γ1γ2(γ1+γ2)
γ2
1+γ1γ2+γ2

2
and 2γ1γ2(1−2c)

γ1+γ2
.

Hence, when c is large (e.g., greater than 0.5), the efficiency loss associated with using the wrong

policy is at least 100%.

4.2 Systems with Homogeneous Servers and Buffer of Size One

In this section, we provide the optimal server assignment policy for a system with a buffer of

size one between the stations. We will need the decision rules

d2(x) =


a12 if x = (y, z1, z2) for all y ∈ {0, 1} and (z1, z2) ∈ SZ or

x = (2, z1, z2) for all (z1, z2) ∈ SZ \ {(2, 2)},

a22 if x = (3, z1, z2) for all (z1, z2) ∈ SZ or x = (2, 2, 2),

(8)

and

d3(x) =



a12 if x = (0, z1, z2) for all (z1, z2) ∈ SZ or

x = (y, z1, z2) for all y ∈ {1, 2} and (z1, z2) ∈ SZ \ {(2, 2)},

a22 if x = (y, 2, 2) for all y ∈ {1, 2} or

x = (3, z1, z2) for all (z1, z2) ∈ SZ .

(9)

The proof of the following theorem is similar to that of Theorem 4.1. It is omitted here due to

space restrictions, however it is provided in Kırkızlar [14]. The case when γ1 < γ2 is covered by
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Corollary A.2, provided in Appendix A.

Theorem 4.2 For a Markovian tandem line with two stations, two flexible servers, and buffer

of size one between the stations, if µij = γj for i, j ∈ {1, 2} and γ1 ≥ γ2, then the optimal server

assignment policy π∗ = (d∗)∞ is as follows:

(i) If 0 ≤ c ≤ γ2
2γ1+2γ2

, then

d∗(x) =



a11 if x = (0, z1, z2) for all (z1, z2) ∈ SZ or x = (1, 1, 1),

a12 if x = (1, z1, z2) for all (z1, z2) ∈ SZ \ {(1, 1, 1)} or

x = (2, z2, z2) for all (z1, z2) ∈ SZ \ {(2, 2, 2)},

a22 if x = (3, z1, z2) for all (z1, z2) ∈ SZ or x = (2, 2, 2),

and the recurrent states are (0, 1, 2), (1, 1, 1), (1, 1, 2), (1, 2, 2), (2, 1, 1), (2, 1, 2), (2, 2, 2),

and (3, 1, 2).

(ii) If γ2
2γ1+2γ2

< c ≤ min{ γ2
1

2γ2
1+2γ2

2
,

2γ1γ2+γ2
2

2γ2
1+4γ1γ2

}, then d∗(x) = d2(x) for all x ∈ S (see equation

(8)) and the recurrent states are (0, 1, 2), (1, 1, 2), (1, 2, 2), (2, 1, 2), (2, 2, 2), and (3, 1, 2).

(iii) If γ2
1 > γ1γ2 + γ2

2 and 2γ1γ2+γ2
2

2γ2
1+4γ1γ2

< c ≤ 3γ3
1+γ2

1γ2−γ1γ2
2

4γ3
1+4γ2

1γ2+4γ1γ2
2+4γ3

2
, then d∗(x) = d3(x) for all

x ∈ S (see equation (9)) and the recurrent states are (0, 1, 2), (0, 2, 2), (1, 1, 2), (1, 2, 2),

(2, 1, 2), (2, 2, 2), and (3, 1, 2).

(iv) If γ2
1 > γ1γ2 + γ2

2 and c >
3γ3

1+γ2
1γ2−γ1γ2

2

4γ3
1+4γ2

1γ2+4γ1γ2
2+4γ3

2
, then d∗(x) = a12 for all x ∈ S and the

recurrent states are (0, 1, 2), (1, 1, 2), (2, 1, 2), and (3, 1, 2).

(v) If γ2
1 ≤ γ1γ2 + γ2

2 and c >
γ2
1

2γ2
1+2γ2

2
, then d∗(x) = a12 for all x ∈ S and the recurrent states

are (0, 1, 2), (1, 1, 2), (2, 1, 2), and (3, 1, 2).

Note that the policies in Theorem 4.2 are not unique (we can relabel the servers and obtain

alternative optimal policies where the roles of the servers are switched). Moreover, the interval

for c in part (ii) of Theorem 4.2 is non-empty because γ1 ≥ γ2, and the interval in part (iii) of

Theorem 4.2 is non-empty when γ1 ≥ γ2 and γ2
1 > γ1γ2 + γ2

2 . Finally, the intervals considered

in the theorem span all values of c ≥ 0.

We now depict the recurrent states and the optimal actions in Theorem 4.2. More specifically,

Figure 2(a) shows the optimal policy of Type 2 corresponding to part (i) of Theorem 4.2. Figures

2(b) and 2(c) show the optimal policies of Type 1 (with different thresholds) corresponding to

parts (ii) and (iii) of Theorem 4.2, respectively. Finally, Figure 2(d) shows the optimal policy

of Type 0, corresponding to parts (iv) and (v) of Theorem 4.2.
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(a) Both Servers Switch (Type 2) (b) Only Server 1 Switches, t1(2, 2) = 1 (Type 1)

(c) Only Server 1 Switches, t1(2, 2) = 0 (Type 1) (d) Neither Server Switches (Type 0)

Figure 2: Recurrent States and Optimal Actions in Theorem 4.2

As for B = 0, we see that server 1 has a preferred assignment at station 1 and server 2 has

a preferred assignment at station 2 for all values of c. However, for B = 0 all the systems go

through the same set of optimal policies as c increases (although the cutoffs on the value of c

depend on the service rates). This is no longer correct when B = 1. More specifically, when

B = 1 and the service rates satisfy γ2
1 ≤ γ1γ2 + γ2

2 , then we observe three different optimal

policies for different values of the setup cost. On the other hand, if the service rates satisfy

γ2
1 > γ1γ2 + γ2

2 , then we observe four different optimal policies, depending on the value of

the setup cost (in particular, as the setup cost increases, the first server completes more jobs

at station 2 before switching back to station 1). Note that γ2
1 > γ1γ2 + γ2

2 implies that the

difference between the magnitudes of γ1 and γ2 is guaranteed to be significant, and hence server

1 can spend more time at station 2 before switching back to station 1.

Also note that the transition from one optimal policy to another follows a similar pattern

when B = 0 and B = 1. In both cases, for small values of c both servers switch and the optimal

policy is of Type 2. Moreover, this policy is also optimal for systems with c = 0 even though

it differs from π0. This is not surprising because any non-idling policy is known to be optimal

for systems with c = 0 and homogeneous servers, see Andradóttir, Ayhan, and Down [1]. For

intermediate values of c, only one server switches (server 1 is the switching server when γ1 ≥ γ2

and server 2 is the switching server when γ1 < γ2) and the optimal policy is of Type 1, and for

large values of c neither server switches and the optimal policy is of Type 0. Moreover, when the
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optimal policy is of Type 1, we observe that the switching server is the one that has a preferred

assignment at the faster station. Finally, we see that the optimal policy is not of Type 2 when

c > 1
4 and is of Type 0 when c > 3

4 .

4.3 Systems with Homogeneous Servers and Multiple Buffer Spaces

Theorems 4.1 and 4.2 provide the optimal server assignment policy for systems with two stations

and two homogeneous servers when the buffer size between the stations is zero or one. In this

section we provide our observations about the form of the optimal policy for systems with B > 1.

We randomly generate 50,000 systems with the service rate at each station independently

drawn from a uniform distribution with range [0.5,2.5] and the setup cost drawn from a uniform

distribution with range (0,0.5) (we have also tried a larger range for the setup cost and observed

that most of the optimal policies ended up being of Type 0 with no switching). Furthermore,

the buffer size B between the stations is drawn from a discrete uniform distribution with range

{2, 3, 4, 5}. For each system, we determine the optimal server assignment policy using the policy

iteration algorithm for weakly communicating Markov chains.

Our numerical results for systems with homogeneous servers suggest that the optimal server

assignment policy is similar to that of systems with an intermediate buffer of size one, see

Theorem 4.2 and Figure 2. Both servers have preferred assignments, not primary assignments,

and the optimal policy is a multiple threshold policy when it is of Type 1 or 2. Moreover, if

the optimal policy is of Type 1, one server is dedicated to the slower station. Furthermore, the

thresholds have the special structure described below.

Consider a system where homogeneous servers 1 and 2 have preferred assignments at stations

1 and 2, respectively. If the optimal policy is of Type 2, we observe that t1(1, 2) = B + 2,

t1(2, 2) = l, t2(1, 1) = l + 1, and t2(1, 2) = 0 for some l ∈ {1, . . . , B} and for both γ1 ≥ γ2 and

γ1 < γ2 (note that l = 1 in the policy of Figure 2(a)). This policy is depicted in Figure 3(a). Note

that 1 ≤ l ≤ B guarantees that a server that switches to a less preferred station does not switch

back immediately. We believe that for systems with homogeneous servers, the optimal policy

delays the switchovers because this reduces setup costs without making the servers ineffective.

The similarity of the thresholds t1(2, 2) and t2(1, 1) suggests that it is preferable to keep the

number of jobs in the system close to these thresholds, probably to minimize future setup costs.

Moreover, when the servers are homogeneous, we observe that if the optimal policy is of

Type 1 and server 1 is the switching server, then t1(1, 2) = B + 2 and t1(2, 2) = l for some

l ∈ {0, . . . , B} (note that l = 1 in the policy of Figure 2(b) and l = 0 in the policy of Figure

2(c)). This policy is depicted in Figure 3(b). Like the optimal Type 2 policy, this policy delays

the switchovers because the servers do not have any special skills at any task. Similarly, if the
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(a) Both Servers Switch, Primary Assignment (Type 2)

(b) Only Server 1 Switches (Type 1)

Figure 3: Recurrent States and Optimal Actions in Sections 4.3 and 5.3

optimal policy is of Type 1 and server 2 is the switching server, then t2(1, 1) = l and t2(1, 2) = 0

for some l ∈ {2, . . . , B+2}. Thus, the switching server has a preferred assignment (not a primary

assignment), and the optimal policy maintains a balance between avoiding idling the dedicated

server (i.e., through starvation at the second station) and avoiding setups for the switching

server.

Finally, we show that when γ1 ≥ γ2 and the optimal policy is of Type 1, the threshold where

the switching server returns to its preferred station (station 1) decreases when c increases. It

then follows from Lemma 3.2 that when γ1 < γ2, the threshold where the switching server

returns to its preferred station 2 increases with c. Thus the switching server helps the dedicated

server with more jobs before switching back to its preferred station for larger setup costs.

Proposition 4.1 In a tandem line with two stations, two homogeneous servers (so that µij = γj

for i, j ∈ {1, 2}), and buffer of size B > 1 between the stations, the threshold for the optimal

Type 1 policy decreases as the setup cost c > 0 increases when γ1 ≥ γ2.

Proof: First assume that γ1 > γ2. Let πl = (dl)∞ be a Type 1 policy with t1(2, 2) = l, where

l ∈ {0, . . . , B}. It is not difficult to show that

Pπl = 2γ2((B+2−l−2c)γB+l+4
1 −(B+2−l−4c)γB+l+3

1 γ2−2cγB+l+2
1 γ2

2−γ
B+2
1 γl+2

2 +γl1γ
B+4
2 )

(B+2−l)γB+l+4
1 −(B+2−l)γB+l+2

1 γ2
2−2γB+2

1 γl+2
2 +2γl1γ

B+4
2

.

Some algebra shows that for l ∈ {0, . . . , B − 1}, Pπl − Pπl+1
= (αl,1 + cαl,2)/αl,3, where

αl,1 = 2(γ1 − γ2)2γB+l+2
1 γ3

2

(
(B + 1− l)γB+2

1 γl2 − (B + 2− l)γB+1
1 γl+1

2 + γl1γ
B+2
2

)
,
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αl,2 = 4(γ1 − γ2)3γ2B+l+3
1 γ2(γl+2

1 + γl+1
1 γ2 − 2γl+2

2 ),

αl,3 =
(

(B + 2− l)γB+l+4
1 − (B + 2− l)γB+l+2

1 γ2
2 − 2γB+2

1 γl+2
2 + 2γl1γ

B+4
2

)
×
(

(B + 1− l)γB+l+4
1 − (B + 1− l)γB+l+2

1 γ2
2 − 2γB+1

1 γl+3
2 + 2γl1γ

B+4
2

)
.

The first term in αl,3 is positive for all l ∈ {0, . . . , B − 1}, because it can be rewritten as

(B + 2− l)γB+2+l
1 (γ2

1 − γ2
2)− 2γl1γ

l+2
2 (γB+2−l

1 − γB+2−l
2 )

= (γ1 − γ2)
(

(B + 2− l)γB+2+l
1 (γ1 + γ2)− 2γl1γ

B+3
2

B+1−l∑
i=0

(
γ1

γ2
)i
)

> 2(γ1 − γ2)
(

(B + 2− l)γB+2+l
1 γ2 − γl1γB+3

2

B+1−l∑
i=0

(
γ1

γ2
)i
)
> 0,

where the last inequality follows because γl1γ
B+3
2 (γ1/γ2)i < γB+2+l

1 γ2 for all i ∈ {0, . . . , B+1−l}.

Similar calculations show that the second term in αl,3 is also positive, because it can be rewritten

as

(B + 1− l)γB+2+l
1 (γ2

1 − γ2
2)− 2γl1γ

l+3
2 (γB+1−l

1 − γB+1−l
2 )

> 2(γ1 − γ2)
(

(B + 1− l)γB+2+l
1 γ2 − γl1γB+3

2

B−l∑
i=0

(
γ1

γ2
)i
)
> 0.

Thus we have shown that αl,3 > 0 for l ∈ {0, . . . , B − 1}. Moreover, αl,2 > 0 trivially. This

shows that Pπl > Pπl+1
for large enough c.

Next assume that γ1 = γ2 = ρ. Some algebra shows that for l ∈ {0, . . . , B − 1},

Pπl − Pπl+1
=
ρ
(

2 +B2 +B(3− 2l)− 3l + l2 + 4c(3 + 2l)
)

(1 +B − l)(2 +B − l)(4 +B + l)(5 +B + l)
. (10)

This expression is positive for l ∈ {0, . . . , B − 1} and large enough c. This completes the proof.

2

5 Systems with Homogeneous Tasks

In this section, we consider a tandem line with two homogeneous tasks and two servers. In other

words, we assume the service rates depend only on the server, so that µij = µj > 0 for i, j ∈

{1, 2}. This assumption has been made frequently in other works, even for papers that study

systems without setups, including the bucket brigades results of Bartholdi and Eisenstein [4] and

Bartholdi, Eisenstein, and Foley [5]. Without loss of generality, assume that µ1 ≥ µ2 because

we can relabel the servers otherwise. As in Section 4, we assume that ci(1, 2) = ci(2, 1) = c ≥ 0

for i ∈ {1, 2} and our state space S is as given in (5). More specifically, we will consider systems

with B = 0, B = 1, and B > 1 in Sections 5.1, 5.2, and 5.3, respectively.
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5.1 Systems with Homogeneous Tasks and No Buffer

In this section, we identify the optimal server assignment policy for the system with buffer of

size zero between the stations. The proof of the following theorem is similar to that of Theorem

4.1. It is omitted here for reasons of brevity, however it is provided in Kırkızlar [14].

Theorem 5.1 For a Markovian tandem line with two stations, two flexible servers, and buffer

of size zero between the stations, if µij = µi for i, j ∈ {1, 2}, then the optimal server assignment

policy π∗ = (d∗)∞ is as follows:

(i) If 0 ≤ c ≤ µ2

4µ1+2µ2
, then then d∗(x) = d0(x) for all x ∈ S (see equation (6)) and the recurrent

states are (0, 1, 2), (1, 1, 1), (1, 2, 2), and (2, 1, 2).

(ii) If µ2

4µ1+2µ2
< c ≤ 2µ2

1−µ1µ2

2µ2
1+2µ1µ2+2µ2

2
, then d∗(x) = d1(x) for all x ∈ S (see equation (7)) and the

recurrent states are (0, 1, 2), (0, 2, 2), (1, 1, 2), (1, 2, 2), and (2, 1, 2).

(iii) If c > 2µ2
1−µ1µ2

2µ2
1+2µ1µ2+2µ2

2
, then d∗(x) = a12 for all x ∈ S and the recurrent states are (0, 1, 2), (1, 1, 2),

and (2, 1, 2).

Note that these optimal policies are not unique. In particular, it follows from Lemma 3.2 that

the policies where the roles of the servers are switched are also optimal. Note that the interval

in part (ii) of Theorem 5.1 is non-empty when µ1 ≥ µ2. Moreover, the intervals considered in

the theorem span all values of c ≥ 0.

We see that the optimal server assignment policy in Theorem 5.1 is similar to the optimal

policy provided in Theorem 4.1 for the case where the servers are homogeneous, and has one

of the forms shown in Figure 1. More specifically, both servers have preferred assignments.

For small values of c they both switch to the other station when their assigned station is not

operating. For intermediate values of c, the optimal policy is a multiple threshold policy with

one switching server, and for large values of c, the optimal policy does not allow the servers to

switch (in the recurrent states).

We also see that the policy is not of Type 2 when c > 1
6 , and the policy is of Type 0 when

c > 1. Note that the switching is possible for a larger range of setup costs compared to Theorem

4.1. For example when µ1 = 10 and µ2 = 1, switching policies are optimal when c < 0.856.

However, we saw in Section 4 that when the servers are homogeneous, no switching policy is

optimal for c > 1
2 . When a server is extremely fast compared to the other server, it may be

advantageous to move this server, even for high values of the setup cost, to benefit from the

high service rate. Similarly, when the servers are homogeneous, we take advantage of the faster

station by assigning servers disproportionally to the slower station. However, the impact of
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taking advantage of a fast server is larger than the impact of exploiting a fast station, because

in the former case the throughput can be as large as (µ1 + µ2)/2 (the average service rate of

the two servers), but in the latter case the throughput is bounded by 2 min{γ1, γ2} (twice the

rate of the slower station). Hence, it is possible to benefit more from the differences between

the service rates when the tasks are homogeneous, and this explains why the switching region

is larger in this case.

5.2 Systems with Homogeneous Tasks and Buffer of Size One

In this section, we provide the optimal assignment policy when the buffer size between the

stations is equal to one. The proof of the following theorem is similar to that of Theorem 4.1.

It is omitted here in the interest of space, but can be found in Kırkızlar [14].

Theorem 5.2 For a Markovian tandem line with two stations, two flexible servers, and buffer

of size one between the stations, if µij = µi for i, j ∈ {1, 2}, then the optimal server assignment

policy π = (d)∞ is as follows:

(i) If 0 ≤ c ≤ 4µ2
1µ2+5µ1µ2

2+3µ3
2

12µ3
1+20µ2

1µ2+12µ1µ2
2+4µ3

2
, then

d∗(x) =



a11 if x = (0, z1, z2) for all (z1, z2) ∈ SZ or x = (1, 1, 1),

a12 if x ∈ {(1, 1, 2), (1, 2, 2), (2, 1, 2)},

a21 if x ∈ {(1, 2, 1), (2, 1, 1), (2, 2, 1)},

a22 if x = (3, z1, z2) for all (z1, z2) ∈ SZ or x = (2, 2, 2),

and the recurrent states are (0, 1, 2), (0, 2, 1), (1, 1, 1), (1, 1, 2), (1, 2, 1), (1, 2, 2), (2, 1, 1),

(2, 1, 2), (2, 2, 1), (2, 2, 2), (3, 1, 2), and (3, 2, 1).

(ii) If 4µ2
1µ2+5µ1µ2

2+3µ3
2

12µ3
1+20µ2

1µ2+12µ1µ2
2+4µ3

2
≤ c < min

{
µ2

2µ1
,

2µ4
1+2µ3

1µ2+µ2
1µ

2
2−µ1µ3

2

2µ4
1+4µ3

1µ2+4µ2
1µ

2
2+4µ1µ3

2+2µ4
2

}
, then d∗(x) = d2(x)

for all x ∈ S (see equation (8)) and the recurrent states are (0, 1, 2), (1, 1, 2), (1, 2, 2),

(2, 1, 2), (2, 2, 2), and (3, 1, 2).

(iii) If 2µ5
1 + µ4

1µ2 ≥ µ3
1µ

2
2 + 3µ2

1µ
3
2 + 2µ1µ

4
2 + µ5

2 and µ2

2µ1
< c ≤ 3µ4

1+2µ3
1µ2−2µ1µ3

2

2µ4
1+4µ3

1µ2+4µ2
1µ

2
2+4µ1µ3

2+2µ4
2
,

then d∗(x) = d3(x) for all x ∈ S (see equation (9)) and the recurrent states are (0, 1, 2),

(0, 2, 2), (1, 1, 2), (1, 2, 2), (2, 1, 2), (2, 2, 2), and (3, 1, 2).

(iv) If 2µ5
1 + µ4

1µ2 ≥ µ3
1µ

2
2 + 3µ2

1µ
3
2 + 2µ1µ

4
2 + µ5

2 and c >
3µ4

1+2µ3
1µ2−2µ1µ3

2

2µ4
1+4µ3

1µ2+4µ2
1µ

2
2+4µ1µ3

2+2µ4
2
, then

d∗(x) = a12 for all x ∈ S and the recurrent states are (0, 1, 2), (1, 1, 2), (2, 1, 2), and

(3, 1, 2).
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(v) If 2µ5
1 + µ4

1µ2 < µ3
1µ

2
2 + 3µ2

1µ
3
2 + 2µ1µ

4
2 + µ5

2 and c >
2µ4

1+2µ3
1µ2+µ2

1µ
2
2−µ1µ3

2

2µ4
1+4µ3

1µ2+4µ2
1µ

2
2+4µ1µ3

2+2µ4
2
, then

d∗(x) = a12 for all x ∈ S and the recurrent states are (0, 1, 2), (1, 1, 2), (2, 1, 2), and

(3, 1, 2).

Note that these optimal policies are not unique. In particular, the policies where the roles

of the servers are switched are also optimal. Moreover, the interval in part (ii) of Theorem 4.2

is non-empty when µ1 ≥ µ2, and the interval in part (iii) of Theorem 4.2 is non-empty when

µ1 ≥ µ2 and 2µ5
1 +µ4

1µ2 ≥ µ3
1µ

2
2 + 3µ2

1µ
3
2 + 2µ1µ

4
2 +µ5

2. Note that the intervals considered in the

theorem span all values of c ≥ 0.

As c increases, the optimal policy follows a similar pattern to the optimal policy given in

Theorem 4.2 for systems with B = 1 and homogeneous servers. More specifically, for small

values of c, the optimal policy is of Type 2; for intermediate and high values of c, the optimal

policy is of Type 1 and Type 0, respectively. The recurrent states and optimal actions for the

optimal policy of Type 2 is depicted in Figure 4. The other cases are omitted because they are

same as the ones shown in Figures 2(b), 2(c), and 2(d).

Figure 4: Recurrent States and Optimal Actions for the Type 2 Policy in Theorem 5.2

As in Theorem 4.2, we observe that there are three or four possible optimal policies for differ-

ent values of the setup cost, depending on if the condition 2µ5
1+µ4

1µ2 ≥ µ3
1µ

2
2+3µ2

1µ
3
2+2µ1µ

4
2+µ5

2

is satisfied. Note that this condition implies that the difference between the magnitudes of µ1

and µ2 is larger than in the other case, and hence it is advantageous for server 1 to spend more

time at station 2 before switching to station 1.

When B = 1, we see that for small values of c, there is no preferred assignment of the servers.

More specifically, both servers are at the same station when the other station is not operating.

The servers remain at that station until it is one transition away from being blocked or starved,

at which time the faster server switches to the other station. Furthermore, the slower server also
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switches between the stations for small values of c, because the increase in throughput resulting

from not idling this server dominates the setup cost associated with moving him/her. More

specifically, we see that t1(1, 1) = 2, t1(1, 2) = 3, t1(2, 1) = 0, t1(2, 2) = 1, t2(1, 2) = 0, and

t2(2, 1) = 3. We have four different thresholds for the first server that depend on the previous

locations of both servers.

The Type 2 policy in Theorem 5.2 is different from that in Theorem 4.2 because for small

values of the switching cost, it is possible to take advantage of the faster server by switching

him/her, whereas it is not possible to take advantage of the easier task because each job has

to go through both stations. We also see that the optimal policy is not of Type 2 when c > 1
4

and is of Type 0 when c > 3
2 . When we let µ1 = 10 and µ2 = 1, then we see that the optimal

Policy is of Type 0 when c > 1.309. Hence, switching policies are optimal for a larger range of

setup cost when B = 1 and the tasks are homogeneous, as compared to Theorem 4.2 where the

servers are homogeneous. This conclusion is similar to the one we made for B = 0.

5.3 Systems with Homogeneous Tasks and Multiple Buffer Spaces

Theorems 5.1 and 5.2 provide the optimal server assignment policies for systems with homoge-

neous tasks when the buffer size between the stations is zero or one. In this section we provide

our observations about the form of the optimal policy when B > 1.

We randomly generate 50,000 systems with the service rate of each server independently

drawn from a uniform distribution with range [0.5,2.5] and the parameters B and c chosen as

in Section 4.3. For each system, we determine the optimal server assignment policy using the

policy iteration algorithm for weakly communicating Markov chains. We observe that when the

optimal policy is of Type 1 or 2, it is a multiple threshold policy. Moreover, as in Theorem

5.2, servers do not have preferred assignments in the Type 2 policy, and the faster server is the

switching server in the Type 1 policy. Finally, for large values of c, the optimal policy is of Type

0.

We are able to make some conclusions regarding the threshold values. For simplicity, we only

provide our observations for the case where server 1 is the faster server. If the optimal policy is

of Type 2, we observe that t1(1, 1) = l, t1(1, 2) = B + 2, t1(2, 1) = 0, t1(2, 2) = k, t2(1, 2) = 0,

and t2(2, 1) = B + 2 for some l ∈ {2, . . . , B + 1}, where k = B + 2− l by Lemma 3.2, see Figure

5 (note that l = 2 and k = 1 = B + 2 − l in the policy of Figure 4). This special structure of

the optimal policy ensures that the faster server helps the slower server for multiple jobs before

switching to the other station.

If the optimal policy is of Type 1 and server 1 is the faster server, we see that t1(1, 2) = B+2

and t1(2, 2) = l, for some l ∈ {0, . . . , B}, see Figure 3(b) (note that l ∈ {0, 1} when B = 1 as
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shown in Theorem 5.2). In other words, there are no immediate switchovers. We believe that

this results from the fact that one server is better at both tasks, and hence switching the faster

server immediately back to its preferred station has a higher impact on the setup costs compared

to the throughput. Moreover, this policy maintains a balance between avoiding idling the slower

server (i.e., through starvation at the second station) and avoiding setups for the faster server.

Figure 5: Recurrent States and Optimal Actions for the Type 2 Policy of Section 5.3

We conclude this section by showing that when µ1 ≥ µ2 and the optimal policy is of Type

1, t1(2, 2) decreases when c increases. If we relabel the servers, it then follows from Lemma

3.2 that when µ1 < µ2, t1(2, 2) increases with c. Thus the switching server helps the dedicated

server with more jobs before switching back to its preferred station for larger setup costs.

Proposition 5.1 In a tandem line with two stations, two homogeneous tasks (so that µij = µi

for i, j ∈ {1, 2}), and buffer of size B > 1 between the stations, the threshold for the optimal

Type 1 policy decreases as the setup cost c > 0 increases when µ1 ≥ µ2.

Proof: First assume that µ1 > µ2. Let πl = (dl)∞ be a Type 1 policy with t1(2, 2) = l, where

l ∈ {0, . . . , B}. It is not difficult to show that

Pπl = (µ1+µ2)((B+2−l−2c)µB+l+4
1 −(B+2−l−4c)µB+l+3

1 µ2−2cµB+l+2
1 µ2

2−µ
B+2
1 µl+2

2 +µl1µ
B+4
2 )

2(B+2−l)µB+l+4
1 −2(B+2−l)µB+l+3

1 µ2−µB+3
1 µl+1

2 −µB+2
1 µl+2

2 +µl+1
1 µB+3

2 +µl1µ
B+4
2

.

Some algebra shows that Pπl − Pπl+1
= (βl,1 + cβl,2)/βl,3, where

βl,1 = (µ1 − µ2)2(µ1 + µ2)µB+l+3
1 µ2

(
(B + 1− l)µB+2

1 µl2 − (B + 2− l)µB+1
1 µl+1

2 + µl1µ
B+2
2

)
,

βl,2 = 2(µ1 − µ2)3(µ1 + µ2)µ2B+l+3
1 (2µl+2

1 − µ1µ
l+1
2 − µl+2

2 ),

βl,3 =
(

2(B + 2− l)µB+l+4
1 − 2(B + 2− l)µB+l+3

1 µ2 − µB+3
1 µl+1

2 − µB+2
1 µl+2

2 + µl+1
1 µB+3

2 + µl1µ
B+4
2

)
×
(

2(B + 1− l)µB+l+4
1 − 2(B + 1− l)µB+l+3

1 µ2 − µB+2
1 µl+2

2 − µB+1
1 µl+3

2 + µl+1
1 µB+3

2 + µl1µ
B+4
2

)
.
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The first term in βl,3 is positive for all l ∈ {0, . . . , B − 1}, because it can be rewritten as

2(B + 2− l)µB+3+l
1 (µ1 − µ2)− µl1µl+1

2 (µ1 + µ2)(µB+2−l
1 − µB+2−l

2 )

= (µ1 − µ2)
(

2(B + 2− l)µB+3+l
1 − µl1µB+2

2 (µ1 + µ2)
B+1−l∑
i=0

(
µ1

µ2
)i
)

> 2(µ1 − µ2)
(

(B + 2− l)µB+3+l
1 − µl+1

1 µB+2
2

B+1−l∑
i=0

(
µ1

µ2
)i
)
> 0,

where the last inequality follows because µl+1
1 µB+2

2 (µ1/µ2)i < µB+3+l
1 for all i ∈ {0, . . . , B+1−l}.

Similar calculations show that the second term in βl,3 is also positive, because it can be rewritten

as

2(B + 1− l)µB+3+l
1 (µ1 − µ2)− µl1µl+2

2 (µ1 + µ2)(µB+1−l
1 − µB+1−l

2 )

> 2(µ1 − µ2)
(

(B + 1− l)µB+3+l
1 − µl+1

1 µB+2
2

B−l∑
i=0

(
µ1

µ2
)i
)
> 0.

Thus we have shown that βl,3 > 0 for l ∈ {0, . . . , B − 1}. Moreover, βl,2 > 0 trivially. This

shows that Pπl > Pπl+1
for large enough c.

Next assume that µ1 = µ2 = ρ. Some algebra shows that for l ∈ {0, . . . , B − 1}, Pπl − Pπl+1

is as in equation (10). Hence, Pπl > Pπl+1
for l ∈ {0, . . . , B − 1} and large enough c. This

completes the proof. 2

6 Systems with Heterogeneous Servers and Tasks

In this section, we consider a tandem line with two stations and two heterogeneous servers. Our

state space S is given in (5). We will consider systems with B = 0 and B > 0 in Sections 6.1

and 6.2, respectively. Moreover, we consider general setup costs in our numerical results.

6.1 Systems with Heterogeneous Servers and Tasks and No Buffer

In this section we consider a tandem line with two stations, two heterogeneous servers, and tasks

that do not necessarily have the same average service requirement. More specifically, we study a

system with B = 0 and specialist servers, so that the rate µij ≥ 0 of server i at task j is arbitrary.

This allows us, for example, to model situations where one server is more skilled at one task and

the other server is more skilled at another task. Note that systems with specialist servers have

the most general service rate structure, and hence their analysis is extremely difficult because

the Markov decision analysis is highly complex even for systems with B = 0.

Without loss of generality, we assume that µ11µ22 ≥ µ12µ21 because we can relabel the

servers otherwise. Under our assumptions on the service rates, this implies that µ11 > 0 and
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µ22 > 0. Let ξi ≥ 0 for i ∈ {1, . . . , 10} be as defined in Appendix C, and let βj = ξ2j−1

ξ2j
for

j ∈ {1, . . . , 5}. Let T1 (T2) be the throughput of Type 0 policy with action a12 (a21) used in

each state. Then, we have

T1 =
µ11µ22(µ11 + µ22)
µ2

11 + µ11µ22 + µ2
22

,

T2 =
µ12µ21(µ12 + µ21)
µ2

12 + µ12µ21 + µ2
21

(we use the convention 0/0 = 0). Let φ1, φ2, and Φ be defined as follows:

φ1 = min
{ 1
µ11 + µ21

,
1

µ12 + µ22

}
,

φ2 = min
{ 1
µ11 + µ22

,
1

µ12 + µ21

}
,

Φ = min{φ1, φ2}.

Let θ1, θ2, and Θ be defined as follows:

θ1 = max
{µ11

µ22
,
µ22

µ11

}
,

θ2 =

 max{µ12

µ21
, µ21

µ12
} if µ12 > 0 and µ21 > 0,

0 otherwise,

Θ = max{θ1, θ2}.

The theorem below characterizes the optimal server assignment policy for systems with B = 0

and either small or large switching costs; the sketch of its proof is provided in Appendix C.

Theorem 6.1 For a Markovian tandem line with two stations, two flexible servers whose service

rates satisfy µ11µ22 ≥ µ12µ21, and buffer of size zero between the stations, the optimal server

assignment policy π∗ = (d∗)∞ satisfies the following:

(i) If either 0 ≤ c ≤ min{β1, β2, β5} or β5 ≤ c ≤ min{β1, β2, β3, β4} (whenever this interval is

nonempty), then d∗(x) = d0(x) for all x ∈ S (see equation (6)) and the recurrent states

are (0, 1, 2), (1, 1, 1), (1, 2, 2), and (2, 1, 2).

(ii) If T1 ≥ T2 and c >
(

1 − T1(Φ + φ1)
)

(1 + Θ), then d∗(x) = a12 for all x ∈ S and the

recurrent states are (0, 1, 2), (1, 1, 2), and (2, 1, 2).

(iii) If T1 < T2 and c >
(

1 − T2(Φ + φ1)
)

(1 + Θ), then d∗(x) = a21 for all x ∈ S and the

recurrent states are (0, 2, 1), (1, 2, 1), and (2, 2, 1).

Similar to Theorems 4.1 and 5.1, we observe that the optimal server assignment policy is a

Type 2 policy for small values of c, and it is a Type 0 policy for large values of c. Moreover, the
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optimal policy for small c agrees with the one for systems with c = 0 (as shown by Andradóttir,

Ayhan, and Down [1]). Note that in parts (ii) and (iii) of Theorem 6.1, no setup cost is incurred

because the servers are dedicated, and hence the optimal server assignment policy is determined

by comparing the throughputs under the different dedicated assignments. The lower bounds

on the setup cost in parts (ii) and (iii) of Theorem 6.1 are found by comparing the maximum

possible profit under switching policies and the throughput of the best dedicated policy. Note

that 1− Ti(Φ + φ1) ≥ 0 for i ∈ {1, 2}.

Next we provide our observations about the form of the optimal policy when the servers are

specialists and the setup cost is not necessarily small or large. We randomly generate 100,000

systems with the service rates independently drawn from a uniform distribution with range

[0.5, 2.5], and the setup costs ci(1, 2) and ci(2, 1) for i ∈ {1, 2} drawn independently from a uni-

form distribution with range (0,0.5). We also did the same experiment with c = ci(1, 2) = ci(2, 1)

drawn from a uniform distribution with range (0,0.5) and obtained similar results. For each sys-

tem, we determine the optimal server assignment policy using the policy iteration algorithm for

weakly communicating Markov chains. Note that the number of replications in this section (i.e.,

100,000) is larger than for our other experiments (i.e., 50,000) because we only consider systems

with B = 0.

As in Sections 4.1 and 4.2, we observe that both servers have preferred assignments in each

experiment and the optimal policy is a multiple threshold policy. We now demonstrate these

policies in more detail for a system where servers 1 and 2 have preferred assignments at stations

1 and 2, respectively. If the optimal policy is of Type 2, then we have t1(1, 2) = 2, t1(2, 2) = 1,

t2(1, 1) = 1, and t2(1, 2) = 0, as in Figure 1(a). If the optimal policy is of Type 1 and server 1 is

the switching server, then we have t1(1, 2) = 2 and t1(2, 2) ∈ {0, 1}, as in Figures 1(b) and 6(a).

If the optimal policy is of Type 1 and server 2 is the switching server, we have t2(1, 2) = 0 and

t2(1, 1) ∈ {1, 2}, as in Figures 6(b) and 6(c). Finally, if the setup cost is big, the optimal policy

is of Type 0, as in Figure 1(c).

Policies of Type 0, 1, or 2 were also observed for systems with B = 0 and homogeneous

servers or tasks, as shown in Sections 4.1 and 5.1. However, for these systems, if the optimal

policy is of Type 1 and the switching server is server i ∈ {1, 2}, then ti(2, 2) or ti(1, 1) is never

equal to one; i.e., the policies shown in Figures 6(a) and 6(b) are never optimal. Note that when

the servers are specialists, it may be best to have immediate switchovers in order to exploit the

special skills of the servers, although this increases the number of setups. Hence, we conclude

that the form of the policy is robust to the service rates, but the thresholds can take a broader

range of values in systems with specialist servers.
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(a) Only Server 1 Switches, t1(2, 2) = 1 (Type 1) (b) Only Server 2 Switches, t2(1, 1) = 1 (Type 1)

(c) Only Server 2 Switches, t2(1, 1) = 2 (Type 1)

Figure 6: Recurrent States and Optimal Actions in Section 6.1

6.2 Systems with Heterogeneous Servers and Tasks and Positive Buffer Size

In this section, we study systems with B > 0 and heterogeneous servers. We start by considering

generalist servers, so that the service rate of a server at a station can be represented as the

product of the server’s speed and a constant reflecting the complexity level of the task at the

station. Hence, we have µij = µiγj for i, j ∈ {1, 2}. Service rates of this form can be used to

model situations where each server is equally skilled at all tasks but the tasks are of different

difficulty levels. Note that systems with generalist servers are special cases of systems with

specialist servers, hence their analysis is simpler and we are able to partially characterize the

optimal policy for systems with arbitrary, positive buffer sizes and (constant) setup costs when

the servers are generalists. Moreover, systems with either homogeneous servers or tasks are

special cases of systems with generalist servers; hence this service rate structure is significantly

more difficult to analyze.

We observed in Theorems 4.1 and 5.1 that the policy π0 (as defined in Example 2.1) is

optimal in systems with B = 0 when c is positive but small and either the servers or tasks

are homogeneous. However, when B > 0, the optimal policies provided in Theorems 4.2 and

5.2 are different from π0 even for small values of c > 0. Hence, the servers have a primary

assignment when B = 0 and c > 0 is small, but this is not correct when B > 0. The following

proposition shows that when B > 0, c > 0, and the servers are generalists, the policy π0 (that
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has immediate switchovers) is dominated by policies that have preferred assignments, rather

than primary assignments, including a policy that has no immediate switchovers. The fact that

the optimal policy for c = 0 is suboptimal for all c > 0 when the servers are generalists shows

that the best assignment of servers to tasks is highly sensitive to the presence of setups.

Proposition 6.1 In a tandem line with two stations, two generalist servers, and a buffer of

size B > 0 between the stations, the policy π0 is not optimal when c > 0 because it is better to

delay the switchovers at either end of the line, and better yet to delay the switchovers at both

ends of the line.

Proof: First, assume that µ1γ1 6= µ2γ2. Let π0 = (d0)∞ be as described in Example 2.1. It is

not difficult to show that

Pπ0 =
(µ1 + µ2)γ1γ2

γ1 + γ2
−

2c(µ1 + µ2)γ1γ2(µ1γ1 − µ2γ2)
(

(µ1γ1)B+1 + (µ2γ2)B+1
)

(γ1 + γ2)
(

(µ1γ1)B+2 − (µ2γ2)B+2
) .

Now define the policies π̂ = (d̂)∞ and π̄ = (d̄)∞ such that d̂(1, 1, 1) = d̄(1, 1, 1) = a11, d̄(B +

1, 2, 2) = a22, d̂(x) = d0(x) for x ∈ S \ {(1, 1, 1)}, and d̄(x) = d0(x) for x ∈ S \ {(1, 1, 1), (B +

1, 2, 2)}. In other words, π̂ is a multiple threshold policy that delays switchovers at the beginning

of the line, and π̄ is a multiple threshold policy that delays switchovers at both ends of the line.

One can show that

Pπ̂ =
(µ1 + µ2)γ1γ2

γ1 + γ2
−

2c(µ1 + µ2)γ1γ2(µ1γ1 − µ2γ2)
(

(µ1γ1)B+1 + µ2γ2

(
(µ1γ1)B + (µ2γ2)B

))
(γ1 + γ2)

(
(µ1γ1)B+2 + µ2γ2(µ1γ1)B+1 − 2(µ2γ2)B+2

) ,

Pπ̄ =
(µ1 + µ2)γ1γ2

γ1 + γ2
−
c(µ1 + µ2)γ1γ2(µ1γ1 − µ2γ2)

(
(µ1γ1)B + (µ2γ2)B

)
(γ1 + γ2)

(
(µ1γ1)B+1 − (µ2γ2)B+1

) .

Some algebra shows that Pπ̂ − Pπ0 = ε1
ε2

and Pπ̄ − Pπ̂ = ε3
ε4

, where

ε1 = 2c(µ1 + µ2)γ1γ2(µ1γ1 − µ2γ2)(µ2γ2)B+3
(

(µ1γ1)B − (µ2γ2)B
)
,

ε2 = (γ1 + γ2)
(

(µ1γ1)B+2 − (µ2γ2)B+2
)[(

(µ1γ1)B+2 − (µ2γ2)B+2
)

+µ2γ2

(
(µ1γ1)B+1 − (µ2γ2)B+1

)]
,

ε3 = c(µ1 + µ2)γ1γ2(µ1γ1 − µ2γ2)(µ1γ1 + µ2γ2)(µ1γ1)B+1
(

(µ1γ1)B − (µ2γ2)B
)
,

ε4 = (γ1 + γ2)
(

(µ1γ1)B+1 − (µ2γ2)B+1
)(

(µ1γ1)B+2 + µ2γ2(µ1γ1)B+1 − 2(µ2γ2)B+2
))
.

It is easy to see that ε1
ε2
> 0 and ε3

ε4
> 0. Hence, π̂ is a better policy than π0 and π̄ is a

better policy than π̂. Note that if d̃ is such that d̃(B + 1, 2, 2) = a22 and d̃(x) = d(x) for

x ∈ S \ {(B + 1, 2, 2)}, then the proof of Lemma 3.2 and the above calculations imply that the

long-run average profit under policy π̃ satisfies Pπ0 < Pπ̃ < Pπ̄, and hence π̃ is superior to π0

but inferior to π̄.
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When µ1γ1 = µ2γ2, we can show that

Pπ0 =
µ1γ1(2 +B − 4c)

2 +B
,Pπ̂ = Pπ̃ =

µ1γ1(3 + 2B − 6c)
3 + 2B

,Pπ̄ =
µ1γ1(1 +B − 2c)

1 +B
.

Then Pπ̂ − Pπ0 = 2cBµ1γ1
6+7B+2B2 and Pπ̄ − Pπ̂ = 2cBµ1γ1

3+5B+2B2 . Note that these quantities are strictly

positive for B > 0. Consequently, when c > 0, the policies π0, π̂, and π̃ are never optimal. 2

Proposition 6.1 shows that, as expected, not all nonidling policies are optimal for systems

with generalist servers in the presence of small positive setup costs (unlike the case with c = 0

as shown in Andradóttir, Ayhan, and Down [1]). Note that Proposition 6.1 does not necessarily

hold for systems with specialist servers. In particular, we will now show that the policy π0 may

be optimal for B > 0 and positive setup costs if the servers are specialists.

More specifically, we study systems with specialist servers, B > 0, and nonconstant setup

costs. We randomly generate 50,000 systems with the service rates chosen as in Section 6.1, the

buffer size drawn from a discrete uniform distribution with range {1, 2, 3, 4, 5}, and the setup

costs chosen as in Section 6.1 (as in Section 6.1, we considered both constant setup costs c and

general setup costs ci(1, 2), ci(2, 1) for i ∈ {1, 2}). For each system, we determine the optimal

server assignment policy using the policy iteration algorithm for weakly communicating Markov

chains.

In all the experiments, we observe that when the optimal policy is of Type 1 or 2, it is

a multiple threshold policy. For example, consider the case where the optimal policy is of

Type 2 with servers 1 and 2 having preferred assignments at stations 1 and 2, respectively.

Then, we observe that t1(1, 2) = B + 2, t1(2, 2) = k, t2(1, 1) = l, and t2(1, 2) = 0, where

k, l ∈ {1, . . . , B + 1}. However, unlike in Section 4.3 (see Figure 3(a)), we do not observe

any simple relation between the thresholds k and l. Note that we observed some cases where

l = 1 or k = B + 1 in the optimal policy (i.e., π0 was optimal). Hence, in the presence of

specialist servers, the policy that has primary assignments (so that the servers switch back to

their primary stations as soon as possible) can be optimal, unlike in the case with generalist

servers considered in Proposition 6.1. We believe that this results from the fact that in the case

of specialist servers, each server may outperform the other server at one of the tasks, and it is

possible to take advantage of this difference in skills by allowing immediate switchovers.

When the optimal policy is of Type 2 and the servers do not have preferred assignments (as

in Figures 4 and 5), we also do not observe any special structure in the thresholds (unlike in

Section 5.3). More specifically, when server 1 is the server that switches more often, we observe

that t1(1, 1) = k, t1(1, 2) = B + 2, t1(2, 1) = 0, t2(2, 2) = l, t2(1, 2) = 0, and t2(2, 1) = B + 2,

where k, l ∈ {1, . . . , B + 1}, and thus immediate switchovers are possible. Similarly, when the

optimal policy is of Type 1, it is a multiple threshold policy that allows immediate switchovers
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(unlike the cases when the tasks or servers are homogeneous). For example, if server 1 is the

switching server and (s)he has a preferred assignment at station 1, we see that t1(1, 2) = B + 2

and t1(2, 2) = l, where l ∈ {0, . . . , B + 1} (as in Figure 3(a), except the optimal action in state

(B + 1, 2, 2) can now be a12).

The results described in this section strongly support the conjecture that the optimal policy

for systems with two stations, two servers, and positive setup costs has a multiple threshold

structure. More specifically, we observe that the form of the optimal policy remains the same

even when the buffer size is increased, the servers have different skills at different stations, and

the setup cost depends on both the server and the location of the server.

7 Conclusion

In this work, we have studied the dynamic server assignment problem in the presence of setup

costs. More specifically, we have determined the optimal server assignment policy for tandem

systems with two stations, two servers, constant setup costs, and small buffer sizes when either

the servers or the tasks are homogeneous. We have shown that the optimal policy is of “multi-

ple threshold” type (i.e., servers move between stations when the number of jobs in the system

reaches certain thresholds that may depend on the current locations of servers). Moreover, the

servers generally have preferred assignments (the only exception is when the tasks are homoge-

neous and the value of the setup cost is small, in which case we can take advantage of the faster

server by assigning him/her to both stations). As the value of the setup cost increases, the

optimal server assignment policy reduces the number of servers that move between the stations,

and when there is only one switching server in the system, we have seen that the faster server

or the server that is assigned to the faster station is the switching server. We have also shown

that server movements are more limited when the servers are homogeneous than when the tasks

are homogeneous. Finally, we have identified additional structure for the thresholds in systems

with either homogeneous servers or tasks and arbitrary buffer sizes based on theoretical and

numerical results.

We have also characterized the optimal server assignment policy for systems with two sta-

tions, two specialist servers (i.e., the service rates can be arbitrary), and zero buffers when the

constant setup cost is small or large. Moreover, we have shown that for systems with two sta-

tions, two generalist servers, and positive buffer sizes, the optimal policy for zero setup costs

(in which the servers have primary assignments and only switch to avoid idleness) is no longer

optimal, even for small values of the setup cost. This discontinuity is surprising at first, but can

be explained by the fact that it is possible to reduce the incurred setup cost without impacting
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server effectiveness by having generalist servers complete several jobs at their non-preferred sta-

tions before returning to their preferred stations. By contrast, when the servers are specialists,

it may be optimal to have servers return immediately to their preferred stations in order to take

advantage of their special skills. Finally, we have performed numerical experiments for systems

with specialist servers, larger buffer sizes, and setup costs that are not necessarily constant that

suggest that the optimal policy also has a multiple threshold structure in this setting. Conse-

quently, the form of the optimal policy appears to be robust to the service rates, setup costs,

and buffer sizes.

This work shows that the optimal server assignment policy is highly sensitive to the presence

of even a small setup cost. The inclusion of positive setup times or other costs (e.g., holding

costs) in finite-buffered systems with flexible servers remains an open problem.

Acknowledgments

This research was partly supported by the National Science Foundation under grant CMMI-

0856600. The first author was also supported by the National Science Foundation under grant

CMMI-0400260.

Appendices

A Additional Results for Systems with Homogeneous Servers

In this section we provide the optimal server assignment policy for systems with homogeneous

servers and B ∈ {0, 1} when γ1 < γ2. The following result follows from Theorem 4.1 and Lemma

3.2.

Corollary A.1 For a Markovian tandem line with two stations, two flexible servers, and buffer

of size zero between the stations, if µij = γj for i, j ∈ {1, 2} and γ1 < γ2, then the optimal server

assignment policy π∗ = (d∗)∞ is as follows:

(i) If 0 ≤ c ≤ γ1
4γ1+2γ2

, then d∗(x) = d0(x) for all x ∈ S (see equation (6)) and the recurrent

states are (0, 1, 2), (1, 1, 1), (1, 2, 2), and (2, 1, 2).

(ii) If γ1
4γ1+2γ2

< c ≤ γ2
2

2γ2
1+2γ1γ2+2γ2

2
, then

d∗(x) =


a11 if x = (0, z1, z2) for all (z1, z2) ∈ SZ or x = (1, 1, 1),

a12 if x = (1, z1, z2) for all (z1, z2) ∈ SZ \ {(1, 1)} or

x = (2, z1, z2) for all (z1, z2) ∈ SZ ,

(11)
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and the recurrent states are (0, 1, 2), (1, 1, 1), (1, 1, 2), (2, 1, 1), and (2, 1, 2).

(iii) If c > γ2
2

2γ2
1+2γ1γ2+2γ2

2
, then d∗(x) = a12 for all x ∈ S and the recurrent states are (0, 1, 2), (1, 1, 2),

and (2, 1, 2).

The following result follows from Theorem 4.2 and Lemma 3.2.

Corollary A.2 For a Markovian tandem line with two stations, two flexible servers, and buffer

of size one between the stations, if µij = γj for i, j ∈ {1, 2} and γ1 < γ2, then the optimal server

assignment policy π∗ = (d∗)∞ is as follows:

(i) If 0 ≤ c ≤ γ1
2γ1+2γ2

, then

d∗(x) =



a11 if x = (0, z1, z2) for all (z1, z2) ∈ SZ or x = (1, 1, 1),

a12 if x = (1, z1, z2) for all (z1, z2) ∈ SZ \ {(1, 1, 1)} or

x = (2, z2, z2) for all (z1, z2) ∈ SZ \ {(2, 2, 2)},

a22 if x = (3, z1, z2) for all (z1, z2) ∈ SZ or x = (2, 2, 2),

and the recurrent states are (0, 1, 2), (1, 1, 1), (1, 1, 2), (1, 2, 2), (2, 1, 1), (2, 1, 2), (2, 2, 2),

and (3, 1, 2).

(ii) If γ1
2γ1+2γ2

< c ≤ min{ γ2
2

2γ2
1+2γ2

2
,

2γ1γ2+γ2
1

2γ2
2+4γ1γ2

}, then

d∗(x) =


a11 if x = (0, z1, z2) for all (z1, z2) ∈ SZ or x = (1, 1, 1),

a12 if x = (1, z1, z2) for all (z1, z2) ∈ SZ \ {(1, 1)} or

x = (y, z1, z2) for all y ∈ {2, 3} and (z1, z2) ∈ SZ ,

and the recurrent states are (0, 1, 2), (1, 1, 1), (1, 1, 2), (2, 1, 1), (2, 1, 2), and (3, 1, 2).

(iii) If γ2
2 > γ1γ2 + γ2

1 and 2γ1γ2+γ2
1

2γ2
2+4γ1γ2

< c ≤ 3γ3
2+γ1γ2

2−γ2
1γ2

4γ3
1+4γ2

1γ2+4γ1γ2
2+4γ3

2
, then

d∗(x) =



a11 if x = (0, z1, z2) for all (z1, z2) ∈ SZ or

x = (y, 1, 1) for all y ∈ {1, 2},

a12 if x = (y, z1, z2) for all y ∈ {1, 2} and (z1, z2) ∈ SZ \ {(1, 1)} or

x = (3, z1, z2) for all (z1, z2) ∈ SZ ,

and the recurrent states are (0, 1, 2), (1, 1, 1), (1, 1, 2), (2, 1, 1), (2, 1, 2), (3, 1, 1), and

(3, 1, 2).

(iv) If γ2
2 > γ1γ2 + γ2

1 and c >
3γ3

2+γ1γ2
2−γ2

1γ2
4γ3

1+4γ2
1γ2+4γ1γ2

2+4γ3
2

, then d∗(x) = a12 for all x ∈ S and the

recurrent states are (0, 1, 2), (1, 1, 2), (2, 1, 2), and (3, 1, 2).

(v) If γ2
2 ≤ γ1γ2 + γ2

1 and c >
γ2
2

2γ2
1+2γ2

2
, then d∗(x) = a12 for all x ∈ S and the recurrent states

are (0, 1, 2), (1, 1, 2), (2, 1, 2), and (3, 1, 2).
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B Proof of Theorem 4.1

Lemma 3.1 shows that servers should not be voluntarily idle when station 1 is blocked or station

2 is starved (this is different from involuntary idling due to being assigned to a station that

is either blocked or starved). Furthermore, when both stations are operating, if a server is at

station j ∈ {1, 2} before the previous server completion, any action that idles this server and

assigns the other server to station j cannot be optimal. For example, actions a01 and a20 cannot

be optimal in a state (l, 1, 2), where 1 ≤ l ≤ B + 1, because they are strictly dominated by

actions a11 and a22, respectively (this can be shown through a sample path argument similar

to that in the proof of Lemma 3.1). Moreover, the action a00 results in a zero long-run average

profit if employed in any state, and hence is ignored. Similarly, a22 is never optimal in a state

(0, z) and a11 is never optimal in a state (2, z), for z ∈ SZ . The states (0, 1, 1) and (2, 2, 2) are

transient under any policy π ∈ Π, and the actions in these states do not affect the long-run

average profit. Hence, they are omitted in the proof because any feasible action can be chosen

in these states. Thus, we can use the following action space:

Ax =



{a11, a12, a21} for x ∈ {(0, 1, 2), (0, 2, 1), (0, 2, 2)},

{a02, a11, a12, a20, a21, a22} for x = (1, 1, 1),

{a02, a10, a11, a12, a21, a22} for x = (1, 1, 2),

{a01, a11, a12, a20, a21, a22} for x = (1, 2, 1),

{a01, a10, a11, a12, a21, a22} for x = (1, 2, 2),

{a12, a21, a22} for x ∈ {(2, 1, 1), (2, 1, 2), (2, 2, 1)}.

Since the action and state spaces are finite, Theorem 9.1.8 of Puterman [19] shows the

existence of an optimal Markovian stationary deterministic policy. Furthermore, since γ1, γ2 > 0,

the policies described in the theorem correspond to weakly communicating Markov chains, and

we can use the Linear Program (LP) approach for communicating Markov decision processes as

in Sections 9.5.2 and 8.8.2 of Puterman [19].

Consider the following LP:

max
∑

x∈S
∑

a∈Ax r(x, a)ω(x, a)

s.t.
∑

a∈Ax′
ω(x′, a)−

∑
x∈S

∑
a∈Ax p(x

′|x, a)ω(x, a) = 0, for all x′ ∈ S,∑
x∈S

∑
a∈Ax ω(x, a) = 1,

ω(x, a) ≥ 0, for all x ∈ S, a ∈ Ax,


(12)

where, for all x ∈ S and a ∈ Ax, r(x, a) is the immediate reward of choosing action a in state

x and p(x′|x, a) is the one-step transition probability from state x to x′ if action a is chosen

in state x. Then, in every basic feasible solution corresponding to a policy described in the
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theorem, we can conclude that for each x ∈ S there exists at most a single action ax ∈ Ax

such that ω(x, ax) > 0 as a result of Corollary 8.8.7 of Puterman [19] (which can be applied

because the policies we consider in the description of the theorem result in a single recurrent

class). Furthermore, for every basic feasible optimal solution w∗ if we define Sw∗ = {x ∈ S :∑
a∈Ax w

∗(x, a) > 0}, then the optimal decision rule is as follows:

dw∗(x) =


a if w∗(x, a) > 0 for x ∈ Sw∗ ,

a′ for some a′ such that there exists a state x′ ∈ Sw∗ for which

x′ is reachable from x under action a′ for x ∈ S \ Sw∗ .

Note that the actions in states S \ Sw∗ cannot be chosen arbitrarily as in unichain models.

However, the discussion in Section 9.5.2 of Puterman [19] shows that the decision rule above

results in an optimal solution. Moreover, note that an action a′ that will move the process X ′π

towards a recurrent state always exist. More specifically, if x = (y, z) and x′ = (y′, z′) ∈ Sw∗ ,

we can choose a′ = az if y = y′, a′ = a11 if y < y′, and a′ = a22 if y > y′.

We first prove the optimality of the policy for 0 ≤ c ≤ γ2
2γ1+4γ2

(note that this condition

implies that c ≤ 1
2). Consider the decision rule d, where d(x) is defined as follows for all x ∈ S:

d(x) =



a11 if x ∈ {(0, 1, 2), (0, 2, 1), (0, 2, 2)},

a12 if x ∈ {(1, 1, 1), (1, 1, 2), (1, 2, 2)},

a21 if x ∈ {(1, 2, 1)},

a22 if x ∈ {(2, 1, 1), (2, 1, 2), (2, 2, 1)}.

Now, consider the basic solution ω of the LP (12) corresponding to the policy π = (d)∞. The

associated basis for the LP (12) is

D = {ω((0, 1, 2), a11), ω((0, 2, 1), a11), ω((0, 2, 2), a11),

ω((1, 1, 1), a12), ω((1, 1, 2), a12), ω((1, 2, 1), a21), ω((1, 2, 2), a12),

ω((2, 1, 1), a22), ω((2, 1, 2), a22), ω((2, 2, 1), a22)}.

Let cB be the vector of coefficients of the elements of D in the objective function, B be the

coefficients of the elements of D in the constraint matrix, and b be the right-hand side of the

constraints. Consequently, we have

cB = {−2cγ1,−2cγ1,−4cγ1, γ2 − c(γ1 + γ2), γ2, γ2, γ2 − c(γ1 + γ2),

2γ2(1− 2c), 2γ2(1− c), 2γ2(1− c)},
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and

B =



2γ1/q 0 0 −γ2/q . . . 0 0

0 2γ1/q 0 0 . . . 0 0

0 0 2γ1/q 0 . . . 0 0

−2γ1/q −2γ1/q −2γ1/q (γ1 + γ2)/q . . . 0 0

0 0 0 0 . . . 0 0

0 0 0 0 . . . 0 0

0 0 0 0 . . . −2γ2/q −2γ2/q

0 0 0 0 . . . 0 0

0 0 0 0 . . . 2γ2/q 0

1 1 1 1 . . . 1 1



,

where q is the uniformization constant. Note that the constraint corresponding to one of the

states is redundant, and hence the constraint corresponding to state (2, 2, 1) is eliminated. It

is easy to see that ω is also a stationary distribution for the Markov Chain Xπ (since it has a

finite state space and one recurrent class, the stationary distribution exists). In order to show

the optimality of this basic feasible solution, we need only to show that

∆y = cBB−1vy − cy ≥ 0 (13)

for each nonbasic variable y, where vy is the column in the constraint matrix of the LP (12)

and cy is the coefficient corresponding to y in the objective function (see, e.g., Theorem 3.1 of

Bertsimas and Tsitsiklis [6]).

For states (0, 1, 2), (0, 2, 1), and (0, 2, 2), we have

∆w((0,1,2),a12) = ∆w((0,2,1),a21) = ∆w((0,2,2),a12) = ∆w((0,2,2),a21) =
γ1(γ2 − 2cγ1 − 4cγ2)

γ1 + γ2
,

∆w((0,1,2),a21) = ∆w((0,2,1),a12) =
γ1γ2(1− 2c)
γ1 + γ2

.

It is clear that these quantities are nonnegative when 0 ≤ c ≤ γ2
2γ1+4γ2

. For state (1, 1, 1) we

have

∆w((1,1,1),a02) = ∆w((1,1,1),a20) =
γ1γ2(1− 2c)
γ1 + γ2

, ∆w((1,1,1),a11) = ∆w((1,1,1),a21) = 0,

∆w((1,1,1),a22) = 4cγ2;

for state (1, 1, 2) we obtain

∆w((1,1,2),a02) = ∆w((1,1,2),a10) =
γ1γ2(1− 2c)
γ1 + γ2

, ∆w((1,1,2),a11) = 4cγ1,

∆w((1,1,2),a21) = 2c(γ1 + γ2), ∆w((1,1,2),a22) = 4cγ2;
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for state (1, 2, 1) we obtain

∆w((1,2,1),a01) = ∆w((1,2,1),a20) =
γ1γ2(1− 2c)
γ1 + γ2

, ∆w((1,2,1),a11) = 4cγ1,

∆w((1,2,1),a12) = 2c(γ1 + γ2), ∆w((1,2,1),a22) = 4cγ2;

and for state (1, 2, 2) we have

∆w((1,2,2),a01) = ∆w((1,2,2),a10) =
γ1γ2(1− 2c)
γ1 + γ2

, ∆w((1,2,2),a11) = 4cγ1,

∆w((1,2,2),a21) = ∆w((1,2,2),a22) = 0.

Finally, for states (2, 1, 1), (2, 1, 2) and (2, 2, 1) we have

∆w((2,1,1),a12) = ∆w((2,1,2),a12) = ∆w((2,1,1),a21) = ∆w((2,2,1),a21) =
γ2(γ1 − 4cγ1 − 2cγ2)

γ1 + γ2
,

∆w((2,1,2),a21) = ∆w((2,2,1),a12) =
γ1γ2(1− 2c)
γ1 + γ2

.

These quantities are also nonnegative when c, γ1, and γ2 satisfy the assumptions above (note

that γ2
2γ1+4γ2

≤ γ1
4γ1+2γ2

because γ1 ≥ γ2). Hence we have shown that the inequality (13) is

satisfied for all nonbasic variables. We can conclude that D is an optimal basis for the LP (12),

and consequently π = (d)∞ is an optimal policy when 0 ≤ c ≤ γ2
2γ1+4γ2

. We see that the recurrent

states of Xπ are (0, 1, 2), (1, 1, 1), (1, 2, 2), and (2, 1, 2) under this policy. In the transient states

(i.e., states in S \Sw∗), we can select any action that will take the process to one of the recurrent

states, and this shows that the policy described in the theorem is optimal when 0 ≤ c ≤ γ2
2γ1+4γ2

.

Next, let γ2
2γ1+4γ2

< c ≤ γ2
1

2γ2
1+2γ1γ2+2γ2

2
(which also implies that c ≤ 1

2), and consider the

decision rule d, where d(x) is defined as follows for all x ∈ S:

d(x) =


a12 if x ∈ {(0, 1, 2), (0, 2, 2), (1, 1, 1), (1, 1, 2)},

a21 if x ∈ {(0, 2, 1), (1, 2, 1)},

a22 if x ∈ {(1, 2, 2), (2, 1, 1), (2, 1, 2), (2, 2, 1)}.

Then, the basic solution ω corresponding to the policy π = (d)∞ has the basis

D = {ω((0, 1, 2), a12), ω((0, 2, 1), a21), ω((0, 2, 2), a12),

ω((1, 1, 1), a12), ω((1, 1, 2), a12), ω((1, 2, 1), a21), ω((1, 2, 2), a22),

ω((2, 1, 1), a22), ω((2, 1, 2), a22), ω((2, 2, 1), a22)}.

As before, we will show that inequality (13) holds for every nonbasic variable. More specifically,

for states (0, 1, 2), (0, 2, 1), and (0, 2, 2), we have

∆w((0,1,2),a11) = ∆w((0,2,1),a11) = ∆w((0,2,2),a11) =
γ1(2γ1 + γ2)(4cγ2 + 2cγ1 − γ2)

(γ1 + γ2)2
,

∆w((0,1,2),a21) = ∆w((0,2,1),a12) = 2cγ1, ∆w((0,2,2),a21) = 0.
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These quantities are nonnegative because c > γ2
2γ1+4γ2

. For state (1, 1, 1) we have

∆w((1,1,1),a02) = ∆w((1,1,1),a20) =
γ1γ2(1− 2c)
γ1 + γ2

, ∆w((1,1,1),a11) =
γ1γ2(2cγ1 + 4cγ2 − γ2)

(γ1 + γ2)2
,

∆w((1,1,1),a21) = 0, ∆w((1,1,1),a22) =
γ2(2cγ2

1 + 4cγ2
2 + 4cγ1γ2 + γ1γ2)

(γ1 + γ2)2
;

for state (1, 1, 2) we obtain

∆w((1,1,2),a02) =
γ1γ2(1− 2c)
γ1 + γ2

, ∆w((1,1,2),a10) =
γ1γ2(2cγ2 + γ1)

(γ1 + γ2)2
,

∆w((1,1,2),a11) =
γ1(4cγ2

1 + 8cγ2
2 + 10cγ1γ2 − γ2

2)
(γ1 + γ2)2

, ∆w((1,1,2),a21) = 2c(γ1 + γ2),

∆w((1,1,2),a22) =
γ2(2cγ2

1 + 4cγ2
2 + 4cγ1γ2 + γ1γ2)

(γ1 + γ2)2
;

for state (1, 2, 1) we obtain

∆w((1,2,1),a01) =
γ1γ2(γ1 + 2cγ2)

(γ1 + γ2)2
, ∆w((1,2,1),a20) =

γ1γ2(1− 2c)
γ1 + γ2

,

∆w((1,2,1),a11) =
γ1(4cγ2

1 + 8cγ2
2 + 10cγ1γ2 − γ2

2)
(γ1 + γ2)2

, ∆w((1,2,1),a12) = 2c(γ1 + γ2),

∆w((1,2,1),a22) =
γ2(2cγ2

1 + 4cγ2
2 + 4cγ1γ2 + γ1γ

2
2)

(γ1 + γ2)2
;

and for state (1, 2, 2) we have

∆w((1,2,2),a01) = ∆w((1,2,2),a10) =
γ2(2cγ2

1 + 4cγ2
2 + 4cγ1γ2 + γ1γ

2
2)

(γ1 + γ2)2

∆w((1,2,2),a11) =
γ1(6cγ1 + 8cγ2 − γ2)

(γ1 + γ2)2
, ∆w((1,2,2),a12) = ∆w((1,2,2),a21) =

γ1(2cγ1 + 4cγ2 − γ2)
2(γ1 + γ2)

.

Note that

γ2
2

4γ2
1 + 10γ1γ2 + 8γ2

2

≤ γ1γ2

10γ1γ2 + 8γ2
2

≤ γ1

10γ1 + 8γ2
≤ γ1

2γ1 + 4γ2
,

because γ1 ≥ γ2 ≥ 0. Therefore, the above quantities are all nonnegative because γ2
2γ1+4γ2

< c ≤
γ2
1

2γ2
1+2γ1γ2+2γ2

2
. Finally, for states (2, 1, 1), (2, 1, 2), and (2, 2, 1), we have

∆w((2,1,1),a12) = ∆w((2,1,2),a12) = ∆w((2,1,1),a21) = ∆w((2,2,1),a21) =
γ2(γ2

1 − 2cγ2
1 − 2cγ2

2 − 2cγ1γ2)
(γ1 + γ2)2

,

∆w((2,1,2),a21) = ∆w((2,2,1),a12) =
γ1γ2(2cγ2 + γ1)

(γ1 + γ2)2
.

These quantities are nonnegative because c ≤ γ2
1

2γ2
1+2γ1γ2+2γ2

2
. Hence, the policy π = (d)∞ is an

optimal policy and the recurrent states of Xπ under this policy are (0, 1, 2), (0, 2, 2), (1, 1, 2),

(1, 2, 2), and (2, 1, 2). In the transient states (i.e., states in S \Sw∗),we can select any action that

will take the process to one of the recurrent states, and this shows that the policy described in

the theorem is optimal when γ2
2γ1+4γ2

< c ≤ γ2
1

2γ2
1+2γ1γ2+2γ2

2
.
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Finally, let c > γ2
1

2γ2
1+2γ1γ2+2γ2

2
, and consider the decision rule d, where d(x) is defined as

follows for all x ∈ S:

d(x) =


a12 if x ∈ {(0, 1, 2), (0, 2, 2), (1, 1, 1), (1, 1, 2), (2, 1, 1), (2, 1, 2)},

a21 if x ∈ {(0, 2, 1), (1, 2, 1)},

a22 if x ∈ {(1, 2, 2), (2, 2, 1)}.

The basic solution ω corresponding to the policy π = (d)∞ has the basis

D = {ω((0, 1, 2), a12), ω((0, 2, 1), a21), ω((0, 2, 2), a12),

ω((1, 1, 1), a12), ω((1, 1, 2), a12), ω((1, 2, 1), a21), ω((1, 2, 2), a22),

ω((2, 1, 1), a12), ω((2, 1, 2), a12), ω((2, 2, 1), a22)}.

As before, we will show that inequality (13) holds for every nonbasic variable. More specifically,

for states (0, 1, 2), (0, 2, 1), and (0, 2, 2), we have

∆w((0,1,2),a11) = ∆w((0,2,2),a11) =
γ1(4cγ2

1 + 4cγ2
2 + 4cγ1γ2 − γ1γ2 − γ2

1)
γ2

1 + γ1γ2 + γ2
2

,

∆w((0,1,2),a21) =
γ1(4cγ2

1 + 4cγ2
2 + 4cγ1γ2 − γ2

1)
γ2

1 + γ1γ2 + γ2
2

, ∆w((0,2,1),a11) =
γ1(γ1 − γ2)(2γ1 + γ2)

γ2
1 + γ1γ2 + γ2

2

,

∆w((0,2,1),a12) =
γ3

1

γ2
1 + 2γ1γ2 + γ2

2

, ∆w((0,2,2),a21) =
γ1(2cγ2

1 + 2cγ2
2 + 2cγ1γ2)

γ2
1 + γ1γ2 + γ2

2

.

These quantities are nonnegative because γ1 ≥ γ2 and c >
γ2
1

2γ2
1+2γ1γ2+2γ2

2
. Note that 2γ2

1 ≥

γ2
1 + γ1γ2, and hence γ2

1

2γ2
1+2γ1γ2+2γ2

2
≥ γ2

1+γ1γ1
4γ2

1+4γ1γ2+4γ2
2
. For state (1, 1, 1) we have

∆w((1,1,1),a02) =
γ1γ

2
2

γ2
1 + γ1γ2 + γ2

2

, ∆w((1,1,1),a20) =
γ1(2cγ2

1 + 2cγ2
2 + 2cγ1γ2 + γ1γ2 − γ2

1)
γ2

1 + γ1γ2 + γ2
2

,

∆w((1,1,1),a11) =
γ1γ2(γ1 − γ2)
γ2

1 + γ1γ2 + γ2
2

, ∆w((1,1,1),a21) =
(γ1 + γ2)(2cγ2

1 + 2cγ2
2 + 2cγ1γ2 − γ2

1)
γ2

1 + γ1γ2 + γ2
2

,

∆w((1,1,1),a22) =
γ2(4cγ2

1 + 4cγ2
2 + 4cγ1γ2 + γ1γ2 − γ2

1)
γ2

1 + γ1γ2 + γ2
2

;

for state (1, 1, 2) we obtain

∆w((1,1,2),a02) =
γ1γ

2
2

γ2
1 + 2γ1γ2 + γ2

2

, ∆w((1,1,2),a10) =
γ1(4cγ2

1 + 4cγ2
2 + 4cγ1γ2 + γ1γ2 − 2γ2

1)
γ2

1 + γ1γ2 + γ2
2

,

∆w((1,1,2),a11) =
γ1(4cγ2

1 + 4cγ2
2 + 4cγ1γ2 + γ1γ2 − γ2

2)
γ2

1 + γ1γ2 + γ2
2

,

∆w((1,1,2),a21) =
(γ1 + γ2)(4cγ2

1 + 4cγ2
2 + 4cγ1γ2 − γ2

1)
γ2

1 + γ1γ2 + γ2
2

,

∆w((1,1,2),a22) =
γ2(4cγ2

1 + 4cγ2
2 + 4cγ1γ2 + γ1γ2 − γ2

1)
(γ1 + γ2)2

;
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for state (1, 2, 1) we obtain

∆w((1,2,1),a01) =
γ2

1γ2

γ2
1 + γ1γ2 + γ2

2

, ∆w((1,2,1),a20) =
γ1γ

2
2

γ2
1 + γ1γ2 + γ2

2

,

∆w((1,2,1),a11) =
γ1(γ1 + γ2(2γ1 − γ2))

γ2
1 + γ1γ2 + γ2

2

, ∆w((1,2,1),a12) =
γ2

1(γ1 + γ2)
γ2

1 + γ1γ2 + γ2
2

,

∆w((1,2,1),a22) =
γ1γ2(γ1 + γ2)
γ2

1 + γ1γ2 + γ2
2

;

and for state (1, 2, 2) we have

∆w((1,2,2),a01) =
γ1(8cγ2

1 + 8cγ2
2 + 8cγ1γ2 + γ1γ2 − 3γ2

1)
(γ1 + γ2)2

,

∆w((1,2,2),a10) =
γ2(4cγ2

1 + 4cγ2
2 + 4cγ1γ2 + γ1γ2 − γ2

1)
γ2

1 + γ1γ2 + γ2
2

,

∆w((1,2,2),a11) =
γ1(4cγ2

1 + 4cγ2
2 + 4cγ1γ2 + γ2

1 − γ2
2)

γ2
1 + γ1γ2 + γ2

2

, ∆w((1,2,2),a12) =
γ1(γ1 − γ2)(γ1 + γ2)
2γ2

1 + 2γ1γ2 + 2γ2
2

,

∆w((1,2,2),a21) =
(γ1 + γ2)(4cγ2

1 + 4cγ2
2 + 4cγ1γ2 − γ1γ2 − γ2

1)
2γ2

1 + 2γ1γ2 + 2γ2
2

.

These quantities are nonnegative because γ1 ≥ γ2 and c >
γ2
1

2γ2
1+2γ1γ2+2γ2

2
≥ γ2

1+γ1γ1
4γ2

1+4γ1γ2+4γ2
2
.

Finally, for states (2, 1, 1), (2, 1, 2) and (2, 2, 1) we have

∆w((2,1,1),a21) =
γ2(2cγ2

1 + 2cγ2
2 + 2cγ1γ2 − γ2

1)
γ2

1 + γ1γ2 + γ2
2

,

∆w((2,1,1),a22) = ∆w((2,1,2),a22) =
2γ2(2cγ2

1 + 2cγ2
2 + 2cγ1γ2 − γ2

1)
γ2

1 + γ1γ2 + γ2
2

,

∆w((2,1,2),a21) =
γ2(4cγ2

1 + 4cγ2
2 + 4cγ1γ2 − γ2

1)
2γ2

1 + 2γ1γ2 + 2γ2
2

,

∆w((2,2,1),a12) =
γ2

1γ2

γ2
1 + γ1γ2 + γ2

2

, ∆w((2,2,1),a21) = 0.

These quantities are nonnegative because γ1 ≥ γ2 and c >
γ2
1

2γ2
1+2γ1γ2+2γ2

2
. Hence, the policy

π = (d)∞ is an optimal policy and the recurrent states under this policy are (0, 1, 2), (1, 1, 2),

and (2, 1, 2). In the transient states (i.e., states in S \ Sw∗), we can select any action that will

take the process to one of the recurrent states, and this shows that the policy described in the

theorem is optimal when c >
γ2
1

2γ2
1+2γ1γ2+2γ2

2
. Hence the proof is complete. 2

C Proof of Theorem 6.1

Let ξi, for i ∈ {1, . . . , 10}, be defined as follows:

ξ1 = µ21(µ11 + µ22)(µ12 + µ22),

ξ2 = 2
(

(µ2
11(µ11 + µ12 + µ21 + µ22) + µ21µ22(µ12 + µ22) + µ11(µ12 + µ22)(2µ21 + µ22)

)
,
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ξ3 = µ12(µ11 + µ22)(µ11 + µ21),

ξ4 = 2
(

(µ2
22(µ11 + µ12 + µ21 + µ22) + µ11µ12(µ11 + µ12) + µ22(µ11 + µ21)(µ11 + 2µ12)

)
,

ξ5 = µ21(µ11µ22 − µ12µ21)(µ11 + µ12 + µ21 + µ22) + µ2
11

(
µ2

12 + µ21µ22 + µ12(µ21 + µ22)
)

+µ11

(
µ2

12µ22 + µ21µ
2
22 + µ12µ22(µ21 + µ22)

)
,

ξ6 = 2(µ11 + µ22)
[
µ21

(
µ2

12 + (µ12 + µ21)(µ21 + µ22)
)

+µ11

(
µ2

12 + µ12(2µ21 + µ22) + µ21(µ21 + 2µ22)
)]
,

ξ7 = µ12(µ11µ22 − µ12µ21)(µ11 + µ12 + µ21 + µ22) + µ2
22

(
µ2

21 + µ11µ12 + µ21(µ11 + µ12)
)

+µ22

(
µ11µ

2
21 + µ2

11µ12 + µ11µ21(µ11 + µ12)
)
,

ξ8 = 2(µ11 + µ22)
[
µ12

(
µ2

12 + (µ12 + µ21)(µ11 + µ12)
)

+µ22

(
µ2

21 + µ12(2µ11 + µ12) + µ21(µ11 + 2µ12)
)]
,

ξ9 = (µ11µ22 − µ12µ21)(µ11 + µ12 + µ21 + µ22),

ξ10 = 2(µ11 + µ22)
(
µ2

12 + (µ12 + µ21)(µ21 + µ22) + µ11(µ12 + µ21 + µ22)
)
.

Note that the states (0, 1, 1) and (2, 2, 2) are transient under any policy π ∈ Π. Hence the

actions in these states do not affect the long-run average profit and we omit these states in the

rest of the proof. First assume that 0 ≤ c ≤ min{β1, β2, β5}. Consider the decision rule d, where

d(x) is defined as follows for all x ∈ S:

d(x) =


a11 if x ∈ {(0, 1, 2), (0, 2, 1), (0, 2, 2)},

a12 if x ∈ {(1, 1, 1), (1, 1, 2), (1, 2, 1), (1, 2, 2)},

a22 if x ∈ {(2, 1, 1), (2, 1, 2), (2, 2, 1)}.

Similar calculations to those in the proof of Theorem 4.1 show that the policy π = (d)∞ is an

optimal policy when 0 ≤ c ≤ min{β1, β2, β5}. We see that the recurrent states of Xπ are (0, 1, 2),

(1, 1, 1), (1, 2, 2), and (2, 1, 2) under this policy.

Next, assume that β5 ≤ c ≤ min{β1, β2, β3, β4} (some algebra shows that β5 ≤ min{β3, β4},

hence this interval is non-empty when β5 ≤ c ≤ min{β1, β2}). Consider the decision rule d,

where d(x) is defined as follows for all x ∈ S:

d(x) =



a11 if x ∈ {(0, 1, 2), (0, 2, 1), (0, 2, 2)},

a12 if x ∈ {(1, 1, 1), (1, 1, 2), (1, 2, 2)},

a21 if x ∈ {(1, 2, 1)},

a22 if x ∈ {(2, 1, 1), (2, 1, 2), (2, 2, 1)}.

Similar calculations to those in the proof of Theorem 4.1 show that the policy π = (d)∞ is an

optimal policy when β5 ≤ c ≤ min{β1, β2, β3, β4}. We see that the recurrent states of Xπ are

(0, 1, 2), (1, 1, 1), (1, 2, 2), and (2, 1, 2) under this policy. In the transient states (i.e., states in
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S\Sw∗), we can select any action that will take the process to one of the recurrent states, and this

shows that the policy π∗ described in the theorem is optimal when β5 ≤ c ≤ min{β1, β2, β3, β4}.

This completes the proof of part (i) of the theorem.

Now, assume that the conditions in part (ii) of the theorem are satisfied. Let π′ = (d′)∞,

where d′(x) = a12 for all x ∈ S. The condition T1 ≥ T2 guarantees that π′ is not worse than

the policy π′′ = (d′′)∞, where d′′(x) = a21 for all x ∈ S. Next, we want to show that there is

no policy that allows switching of servers between stations that is better than π′. Without loss

of generality, we only compare π′ with policies that allow switching of servers between stations

and have positive revenue (because π′ is better than any policy with zero or negative revenue).

We denote the set of policies that include switching and have positive revenue by Πs, and we

let S1 = {(1, z) : z ∈ SZ}. Under any π ∈ Πs, there is exactly one departure from the system

between two successive visits of the stochastic process Xπ to a state in S1. We now show that

for all π ∈ Πs, there will be at least one setup with positive probability between every two visits

to S1.

Note that under any π ∈ Πs, every time Xπ leaves the state (1, 1, 1) or (1, 2, 2), there has

to be at least one setup before the next time the process enters a state in S1 (either when

leaving S1 or when coming back to S1), or otherwise the long-run average profit is zero. In state

(1, 2, 1), if µ12 = µ21 = 0 and action a21 is used, then the long-run average profit is equal to

zero, and if an action other than a21 is used, then at least one setup occurs before returning

to S1. Furthermore, if µ12 = 0 or µ21 = 0, any policy that uses the action a21 in S1 results in

at least one setup at an end of the line (otherwise the long-run average profit is equal to zero).

Hence we can assume that µ12 > 0 and µ21 > 0 when Xπ is in state (1, 2, 1). Note that under

any π ∈ Πs, every time Xπ leaves the state (1, 1, 2), there has to be at least one setup with

probability ps ≥ min{ µ11

µ11+µ22
, µ22

µ11+µ22
} > 0 before the next time the process enters a state in

S1. Similarly, when µ12 > 0, µ21 > 0, and Xπ leaves state (1, 2, 1), there has to be at least one

setup before Xπ returns to S1 with probability p′s ≥ min{ µ12

µ12+µ21
, µ21

µ12+µ21
} > 0. The previous

two facts follow because either an action other than a12 (a21) is taken in state (1, 1, 2) ((1, 2, 1)),

in which case there will be at least one setup before returning to S1, or action a12 (a21) is taken

in state (1, 1, 2) ((1, 2, 1)) and there has to be at least one setup at either end of the line before

coming back to S1 (because otherwise π is not a switching policy). The four terms in the lower

bounds on ps and p′s are equal to the probabilities of moving to (0, 1, 2) or (2, 1, 2) under a12 and

the probabilities of moving to (0, 2, 1) or (2, 2, 1) under a21. We have shown that the expected

setup cost between two visits to a state in S1 cannot be less than cps or cmin{ps, p′s} depending

on whether µ12µ21 = 0 or µ12µ21 > 0.

Let v be minimum expected time between two visits to S1 (note that v > 0 because µij <∞
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for i, j ∈ {1, 2}). Then v is the sum of the minimum expected times for leaving S1 (i.e., Φ) and

for returning back to S1 (i.e., φ1), so that v = Φ + φ1. By the renewal reward theorem, we can

conclude that Pπ ≤ 1−cps
v (Pπ ≤ 1−c min{ps,p′s}

v ) when µ12µ21 = 0 (µ12µ21 > 0) for all π ∈ Πs.

Hence, when T1 ≥ 1−cps
v (i.e., c >

(
1−T1(Φ+φ1)

)
(1+Θ)), then no policy in Πs can be optimal.

Consequently, the policy that uses d(x) = a12 for all x ∈ S is optimal. This proves part (ii) of

the theorem.

Finally, assume that the conditions in part (iii) of the theorem is satisfied. Then we must

have µ12 > 0 and µ21 > 0. Similar arguments as for part (ii) show that the policy that uses the

decision rule d(x) = a21 for all x ∈ S is optimal. 2
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