
Proxy MSS based Synchronous Checkpointing
Approach for Mobile Distributed Systems

Pradeep Kumar Sharma

Research Scholar, Dept. of Computer Science, Mewar Univ., Chittorgarh(Raj.)

Parveen Kumar
Professor, Bharat Institute of Engineering & Technology, Meerut (UP)

Surender Jangra

Associate Professor, Deptt. of IT Engg., HCTM, Kaithal(Haryana)

Abstract: Mobile Distributed systems (MDSs) are made up of Mobile host (MH), Base Station (BS) and Mobile
Support Station (MSS). Among which MSSs play a key role in mobile environment. This paper presents a low
overhead Proxy MSS based framework to handle the fault in mobile distributed Systems. In the proposed scheme,
one MSS lot of proxy MSS works as per the workload. One proxy MSS handles the specific group of BS. It is also
suggested that all checkpointing data and their related overheads are forwarded to the proxy MSSs and as a result
the workload of Mobile Hosts (MHs) will reduce substantially and battery power can be saved. Moreover, all the
coordinated message and checkpoint requests will be decreased. The proposed non-blocking proxy based
synchronous checkpointing approach has a simple data structure and forces minimum numbers of process to take
checkpoint . At the end of the paper simulation results show the comparative analysis in different perspectives. Thus,
in view of its unique features, the proposed scheme would be efficient and suitable for mobile distributed systems.
Keword: Checkpointing, Mobile Host (MH), Mobile Support System (MSS), Proxy MSS.

I. INTRODUCTION

To make the distributed application robust and recoverable against various types of failure, lot of checkpointing
algorithms developed in the past years [2], [3], [4], [6-8]. However, little attention has been devoted to
checkpointing algorithms for MDSs[Figure 1]. Now a day’s wireless networks, and mobile devices become
pervasive, it is necessary to extend the capability of checkpointing to wireless and mobile environment. The
MHs have several new characteristics like host mobility, limited battery power and lack of stable storage. In
addition, wireless connections is more unreliable in term of frequently disconnections, limited bandwidth,
limited geographical area compared to wired connection. Due to the above unique characteristics of mobile
environments, it is not appropriate to directly apply checkpointing and recovery protocols designed for
distributed systems to MDSs [1], [5]. So any checkpointing approach for fault tolerant in mobile environment
should consider these distinguishing features in their application. Hence the recent research also considered for
mobile computers [1], [5], [9-16].

Figure 1 Working Block Diagram Mobile Distributed System (MDS)

Mostly checkpointing algorithms for distributed and mobile systems follow two-phase [1], [2], [4]. In the first
phase initiator process forwards tentative checkpoint request to all its dependent nodes and when it knows that
all the participated processes takes tentative checkpoints successfully, then it forwards the permanent checkpoint
request in the second phase. Both the tentative and permanent checkpoints are stored on the stable storage of the

MHs

 Fixed High Speed Wired N/W

MSS

MSS

Wireless Cell

MSS

MSS

FH

International Journal of Innovations in Engineering and Technology (IJIET)

Vol. 3 Issue 4 April 2014 194 ISSN: 2319 – 1058

MSS. A permanent checkpoint is a local checkpoint at a process and is a part of a CGC. A tentative checkpoint
is a temporary checkpoint that is made a permanent checkpoint on the successful termination of the checkpoint
algorithm. In case of a single failure, all the participating processes roll back only to their permanent
checkpoints for recovery.

II. RELATED WORKS AND PROBLEM FORMULATION

MDSs environments require efficient use of the limited bandwidth and limited resources of portable devices,
such as battery power and memory etc. Mobile devices have low computation power, memory and wireless
bandwidth between MHs and MSS. Hence, transferring unnecessary checkpoints and rollbacks may waste a
large amount of computation power, bandwidth and energy. All the above traditional two phase checkpointing is
an expensive fault tolerance method for two reasons: (i) it may involve unnecessary node rollbacks (ii) it
requires large number of control messages. As a result it affects the bandwidth and power negatively. Existence
of mobile nodes in a DS, introduces new issues likes mobility, disconnection, finite power source and lack of
stable storage. So compared to traditional distributed environment, mobile networks are typically slow with low
bandwidth and throughput.

Cao and Singhal [5] introduce a mutable checkpoint approach for mobile systems by assuming that MHs have
the sufficient memory to store the checkpoint temporarily. These mutable checkpoints are neither a tentative
checkpoints nor a permanent checkpoint and need not to be saved on stable storage. These mutable checkpoints
can be saved anywhere, e.g., the main memory or local disk of MHs. Taking such mutable checkpoints avoids
the overhead of transferring large amount checkpoint data to the stable storage of MSS over the wireless
network and during failure processes rollback locally to previous consistent committed state by discarding the
mutable checkpoint.

Figure 2, shows the inconsistency exists in Cao and Singhal’s algorithm [5]. P4 initiates the checkpointing
algorithms, takes the tentative checkpoints C4,1 and sends the checkpoint request message to processes P3 and P5,
as it depends on these. So, P3 and P5 take tentative checkpoints after receiving the request.

 Figure 2 An example showing inconsistency in algorithm [5]

After taking checkpoint C3,1, P3 sends M4 to P2. P2 doesn’t take mutable checkpoint before delivering M4
because it hasn’t sent a message since last checkpoint (condition (2) false). After receiving M5 from P2, P1
receives checkpoint request from initiator and request P2 to take checkpoint further. So M4 become orphan
message. Although this scheme produces CGS with little overhead but it also fails to overcome the storage

C5,0

C6,0

C7,0

C4,0

C1

P7

C1,0

C2,1

C1,1

M5

M4

C5,1

C4,1

M7

M6

M3

M2

M1

P6

P5

P4

P3

P2

P1

C3,1

C2,0

C3,0

Permanent Checkpoint Checkpoint Request Message

Computation Message

International Journal of Innovations in Engineering and Technology (IJIET)

Vol. 3 Issue 4 April 2014 195 ISSN: 2319 – 1058

overhead on mobile devices.

In this paper, we have designed a proxy based fault tolerance architecture and algorithm for MDSs which
ensures consistency, accounts for mobility, provides fault tolerance and recovery in mobile environment with
minimum overhead.

III. PROPOSED PROXY BASED ARCHITECTURE

MDS is a distributed system where some part of the computation are executed on large number of mobile
hosts(MHs) and some part on few static hosts (SHs). MHs are more vulnerable than SHs to both communication
and failures, as they are more prone to theft, loss, disconnection and accidental damage since user carry them
around with them. In addition, there is a wireless connection between MHs and MSS which is more unreliable
and failure prone than wired. Due to above reasons stable storage on MHs are not considering stable and MHs
transfers their data on stable storage of their local MSS. To take into account the vulnerability of the MHs in to
MDSs we design new proxy based frameworks to handle fault.

Figure 3 Proxy based architecture

In the architecture shown in Figure 3, MHs are executed on mobile devices which are connected over wireless
link using a network protocol that support host mobility with Proxy MSS (PMSS) and SHs are connected over
wired link directly with the MSS using standard TCP/IP protocol. All messages exchange between one MH to
another go through the PMSSs. PMSSs maintains process state on the behalf of the MHs. It keeps a copy of the
MHs state in its memory and continuously updates the state as it receives messages to and from the client. After
receiving the checkpoint request from the initiator node, PMSSs will just mark the latest checkpoint as tentative.
It means there is no need to sends the checkpoint request to MHs over wireless link, as the tentative checkpoints
contains the latest copies of states. However, if the copy of latest checkpoint expired from the stable storage of
PMSSs, only then it asks to MH to send the latest checkpoint data again. We will use the term PMSS and MH
interchangeably when there is no ambiguity. All the components are work as follow in the architecture:

Proxy MSS (PMSS): There is a single PMSS upon each wireless cell and all the communication between MH
and MSS go through PMSS. First, MH sends message to PMSS, then PMSS forwards them to their destinations.
On the receipt of checkpoint request from the initiator, PMSS will just mark the received snapshot as
tentative(depending upon condition) and save it on its local memory, which will save the time to connect to
MHs and receive the snapshot, as all the related information are available on it. It also notify to its local MSS
about its willingness to take checkpoint by sending request message through wired link. As messages are
transferred through PMSS, each PMSS maintains the following SEND and REPMSST table related to each
MHs.

Wireless Cell’s

Wireless Cell’s

PMSS PMSS

PMSS PMSS

mhs

Fixed
Host

Fixed High Speed
Wired Network

MSS2 MSS3

MSS1

MSS4
MSS..n

M

SM

PMSS: Proxy MSS M: Monitor

SM: Super Monitor MSS: Mobile Supports Station

International Journal of Innovations in Engineering and Technology (IJIET)

Vol. 3 Issue 4 April 2014 196 ISSN: 2319 – 1058

Table 1 SEND Table

Message Status Message Seq. No. Destination Message ID

In the Table message have the following status:

0- Buffered message i.e., message received but not sent to destination
1- Forwarded message i.e., message sent to destination but not acknowledge
2- Processed message i.e., acknowledge for above sent message received
3- Archived message i.e., message sent during CI.

On the other hand RECPT table contains the following attributes where message status has values 0, 1 and 2.
Here 0 represent that acknowledgement is sent, 1 for not acknowledged and 2 for, message received during
previous CI.

Table 2 RECPT Table

ACK Status Message Seq. No. Source

If PMSS received a message from MSS but destination MH is currently disconnected, the message is labeled 0
as buffered and put them in to MBQ. When the disconnected MH reconnects, all the buffered message are
forwarded in the same order as they are arrive at the PMSS. A buffered message that has been forwarded to its
destination but whose acknowledge is not received at the PMSS is labeled 1 as forwarded m essage and it
converted into label 2 as processed message after receiving the acknowledgement. Both buffered and forwarded
message are available on the PMSS. In such way message status will modify at happening of any event.

Monitor (M): Monitors inspects the status of the systems state and keep the records of failure, disconnections
and the location of mobile nodes. It also keeps the record of total number of message sent, received, and
sequence number of each MHs and handle the lost message, orphan message and garbage collection activities.

Super monitor(SM): Super monitor helps in maintaining the global state of the system. It also maintains the
information regarding failure, disconnection and location related information of all the MHs upon MSS level.

IV. SYSTEM MODEL

A mobile system is a distributed system where some of processes are running on mobile hosts (MHs) [1].The
term “mobile” means able to move while retaining its network connection. A host that can move while retaining
its network connection is an MH and connected to Proxy MSS (PMSS) or Mobile Host Proxy (MHP) via a
reliable network that supports mobility. An MH communicates with other nodes of system via PMSS and
special nodes called mobile support station (MSS). An MH can directly communicate with an MSS only if the
MH is physically located within the cell serviced by MSS through the PMSS. A cell is a geographical area
around base station in which it can support an MH. An MH can change its geographical position freely from
one cell to another cell or even area covered by no cell. At any given instant of time an MH may logically
belong to only one cell; its current cell defines the MH’s location and the MH is considered local to MSS
providing wireless coverage in the cell. An MSS has both wired and wireless links and acts as an interface
between static network and a part of mobile network.

In our system model there are n spatially separated sequential processes denoted by P0, P1,.., Pn-1, running on
MHs or MSSs, constituting a mobile distributed computing system. Each MH/MSS has one process running on
it. The processes do not share memory or clock. Message passing is the only way for processes to communicate
with each other and work on fail-stop model. Each process progresses at its own speed and messages are
exchanged through reliable channels, whose transmission delays are finite but arbitrary. Communication
between the MHs and the PMSS and between PMSSs and MSS are assumed to be lossless and FIFO. It also
includes the processes of MHs, which have been disconnected from the PMSS but their checkpoint related
information is still with this PMSS. MHs and PMSSs uses application level checkpoint sequence number to
maintain the consistency and message sequence number to detect the lost or duplication of messages.

International Journal of Innovations in Engineering and Technology (IJIET)

Vol. 3 Issue 4 April 2014 197 ISSN: 2319 – 1058

V. PROPOSED CHECKPOINTING ALGORITHM

1. On checkpoint initiation:

Let MHq is an MHin and initiates the checkpointing process, it sends the checkpoint initiation request to its local
PMSS and resumes its working. If PMSS is already participated in any GC recording then it discards the request
and informs to the MHq. On the other hand, on receipt the checkpoint initiation request it takes a tentative
checkpoint on its own local storage, increments its csn, set weight to 1, set its PMSS_state to 1, set trigger
set(pidq, csnq[q]), set minsetq[] and sends checkpointing request to all the PMSSs such that minsetq[i]=1 and
where i ≠ q.

2. On receiving checkpointing request:

Upon receipt of the checkpoint request with trigger, minset[] and weight from PMSSq, PMSSp will compare
recv_csn with its old_csn, that is if and only if old_csnp ≤ recv_csn and deciding to take checkpoint. After
receiving the request it reply negatively or positively to the initiator nodes and also forwarded this message to its
dependent nodes which are not a part of minset.

3. Termination of algorithm:

At PMSSq, when it is conforms that all concerned processes takes checkpoints successfully means weight
become 1, it sends commit message to all PMSSs to convert their checkpoints into permanent one. In another
case if time out occurs or it receives negative acknowledgement from any MH, then it forwards abort message.

4. On receiving commit or abort message:

All PMSSs converts their tentative checkpoints into permanent one after receiving the commit message. If it
receives the abort message, CPs will discard the tentative checkpoints from its personal storage memory but data
is available on PMSSs. Hence, our proxy based approach does not awake the MHs during checkpointing and
requires very less control message over wireless network.

5. On receiving and sending computation message during checkpointing:

When a process Pi runs on MHi sends a computation message to process Pj which run on MHj, it piggybacks his
csn, trigger, and minset with the message. This computation message proceeds through the PMSS both at
sending and receiving end i.e. MHi first sends message to its PMSS which is PMSSi, then PMSSi sends this
message to PMSSj, and at last PMSSj transfer this message to its destination MH which is MHj. On receiving
end following actions are taken by PMSSj:
a) if (o ld_csnj[i]>= m.cs ni[i]): it means both the processes take latest checkpoint related to the current
initiation. So in such case process only receive the message and updates the data structure.
b) if (old_csnj[i] < m.csni[i]): in such case the following actions are taken
(i) i f (P i  mi nset[]):takes tentative checkpoint.(as process is a part of minset and definitely gets the
checkpointing request from the initiator).

(ii) i f ((P i  mi nset[]) (Bitwise l ogical A ND of sen dvi []  minset[] is not a ll zero)): process does not
belongs to minset and send any computation message to the processes which belongs to minset, since its last
checkpoint, it takes tentative checkpoint (as there is a good probability that process will get the checkpoint
request).
(iii)) if ((Pi  minset[]) (Bitwise logical AND of sendvi []  minset[] is all zero)) : in such case there is a
probability that a process do not get any checkpoint request; process buffers the message.

VI. WORKING EXAMPLE

We explain our checkpointing algorithm with the help of an example. Consider the distributed system as shown
in Figure 4. Note that when a computation message is sent after taking the checkpoint it piggybacked with
minset[]. The entire computation message is piggybacked with the csn and dependency vector. Assume that
process P4 initiate checkpointing process in Figure 4. First process P4 takes its checkpoint and increment its csn
number from C4,0 to C4,1 compute minset[] (which in case of Figure 3 is {P1, P3, P5}). This means that the
initiator process is directly or transitively dependent on these processes. Hence, when P2 initiate a checkpoint all
of these processes should take their checkpoints in order to maintain global consistent state. Therefore P2 sends
the checkpoint request along with minset[] to process P1, P3 and P5. When P3 receives the checkpoint request it
takes the tentative checkpoint and sends message M4 by attaching minset [1011100], trigger set(P4, C4,1), and
csn3=1. After receiving message M4, P2 first compare m.csn3 (which is 1) with its old_csn2[3](which is 0). As P2
does not belongs to minset, not sent any message to the processes which are in minimum set and m.csn3 >
csn2[3]. Hence, P2 takes forced checkpoint, update its trigger set to (P4, C4,1), increment its csn2 from 1 to 2, and
updates the csn2[3] from C4,0 to C4,1.

International Journal of Innovations in Engineering and Technology (IJIET)

Vol. 3 Issue 4 April 2014 198 ISSN: 2319 – 1058

Figure 4 An example of proposed approach

After taking forced checkpoint it sends message M5 to P1. P1 takes tentative checkpoint directly due to
minset[P1]= =1 and set c_state = =1(as P1 knows that it is the part of minset and get the checkpoint request
from the initiator in future and when it get the checkpoint request it ignore the request).P2 check its dependency
and find out that it receives computation message from P2 since its last checkpoints.

So, it sends checkpoint request to the process P1 with weight and reply with remaining weight and new_ddv2
[P1] = =1 to the initiator. After receiving the checkpointing request from P1, P2 converts its forced checkpoints
in to tentative one and reply to the initiator. Initiator compute the Uminset[P1, P2, P3, P4, P5] by taking the union
of minset{ P1, P3, P4, P5} and new_ddv1{P2}.

At last, when P2 receives positive responses from all relevant processes(weight = =1) it issues commit request
along with the exact minimum set [P0, P1, P2, P3, P4] to all processes. On receiving commit following actions
are taken. A process, in the minimum set, converts its tentative checkpoint into permanent one and discards its
earlier permanent checkpoint, if any. On the other hand if it receives the negative response from any one of the
processes which belongs to the minset, it sends the abort message to all processes which belongs to Uminset[].
On receiving abort, processes discard the tentative checkpoint, if any; reset c_state, tentative, g_chkpt etc and
update ddv[] and minset[].The system is consistent.

VII. PERFORMANCE ANALYSIS

Before analyzing the algorithm, we understand the factors that affect the recovery in distributed and mobile
systems. The following factors affect the recovery [17]:
 Failure rate of MHs: Due to the wireless connectivity with network and limited battery power MHs are

more prone to failure. If failures are more frequent, then transaction has to rollback every failure, which
increases the total execution time.

 Memory constraints: Storing data on the PMSS requires lots of memory space on the PMSS. Hence, it is
requires to adopt some garbage collection approaches for PMSSs.

 Wireless connectivity: Due to weak wireless link between MH and PMSS, only essential write event should
be transferred over wireless link.

 Recovery time: The recovery time depends upon the recovery scheme and methods used for checkpointing
algorithm.

In our approach all the log information are stored in Proxy MSS (PMSS). When a MH moves within the same
cell, no log information is transferred, as PMSS handles all the data of the cell. In such way handoff,
disconnection, and failure cost can be reduced. When a MH moves in another cell, then it carries the id number
of previous PMSS and its own id, for the purpose of registration with other PMSS. When a MH register with

C2,1

C5,0

C6,0

C7,0

C4,0

C

P7

C1,0 C1,1

M5

M4

C5,1

C4,1

M7

M6

M3

M2

M1

P6

P5

P4

P3

P2

P1

C3,1

C2,0

C3,0

Permanent Checkpoint Checkpoint Request Message

Computation Message Forced Checkpoint

International Journal of Innovations in Engineering and Technology (IJIET)

Vol. 3 Issue 4 April 2014 199 ISSN: 2319 – 1058

other PMSS, then the previous PMSS sends all the log information to the new PMSS over wired link. In [89] the
authors presented the following relationship between recovery time, failure rate, handoff threshold, and recovery
probability.
 Recovery rate vs. failure rate: Both the failure rate and recovery time is contradicted to each other. Failure

recovery affects the checkpoint information as higher the failure rate, fewer the checkpoint information are
transferred through wireless link.

 Recovery time v s. H andoff thres hold: handoff threshold time also affects to the recovery time as lower
value of the handoff threshold, requires multiple handoff which has the fewer checkpoint information, and
takes less time during recovery. Hence, recovery time increase the handoff threshold.

 Recovery probability vs. failure rate: As a higher failure rate indicates lesser computation, so lesser log
entries are created due to checkpointing. Hence, recovery probability increases as the failure rate increases.

In order to evaluate proxy MSS based approach, we simulate a message passing based mobile environment with
a number of MSSs and MHs which are randomly placed in these MSSs initially. In fact, an MH sends a message
to its supporting MSS in order to deliver it to another MH. This message is routed among the system’s MSSs in
order to reach the supporting MSS of the destination MH, and finally it reaches the destination MH through its
supporting MSS. We consider random delivery delays for each of these message transmissions. An MH triggers
a checkpointing process randomly so it sends the related request to its supporting MSS, and other relevant
reactions based on sending and receiving batch checkpoint requests take place in response to this checkpoint
initiation according to the implementation of our proposed algorithm in the simulation.
We compared the results in figure 5,6 and 7 of our proposed algorithm with Cao and Singhal’s algorithm and
MSS based protocols. Moreover, in the proposed approach is orphan message free. The advantages mentioned
indicate that the proposed checkpointing scheme presents a more practical perspective of tolerating mobile
distributed systems against faults, and is also efficient and suitable for such systems.

Figure 5 Number of Checkpoint Requests

International Journal of Innovations in Engineering and Technology (IJIET)

Vol. 3 Issue 4 April 2014 200 ISSN: 2319 – 1058

Figure 6 Number of Checkpoints

Figure 7 Size of System Message (bytes)

VIII. CONCLUSION

The existence of mobile nodes in a distributed system introduces new issues and makes the traditional algorithm
inadequate for MDSs. These issues are host mobility, frequently disconnection, weak wireless connectivity,
limited power of hand-held devices, lack of stable storage on MHs hand-held devices etc. In this paper, we
presented a proxy MSS based checkpointing scheme which may be very useful for MDSs as it reduces the
recovery time and overheads on large scale. In this approach checkpoints are stored on resource rich Proxy MSS
(PMSS) for saving the processor cycle, memory and power of wireless hand-held devices. MHs need not send
any extra coordination messages through the wireless network and so battery power is also saved. Since PMSS
hides frequent client disconnection, handoff, failure from the MSS, fewer reconnect requests are sent to MSS.
On the other hand, since our approach is based on non-blocking coordinated checkpointing approaches, the
system would take a minimum number of checkpoints which makes it suitable of mobile and hand held devices.

International Journal of Innovations in Engineering and Technology (IJIET)

Vol. 3 Issue 4 April 2014 201 ISSN: 2319 – 1058

REFERENCES

[1] Acharya A. and Badrinath B.R., “Checkpointing Distributed Application on Mobile Computers”, in the Proc. of the 3rd Int’l Conf. on

Parallel and Distributed Information Systems, pp. 73-80, Sept. 1994.
[2] Koo R. and Toueg S., “Checkpointing a nd R oll-Back Recovery for D istributed Sy stems”, IEEE Trans. on Software Engg., Vol.13,

No.1, pp.23-31, Jan. 1987.
[3] Jangra Surender, Sejwal Arvind, Kumar Anil, Sangwan Yashwant “Low Overhead T ime Coordinated Checkpointing A lgorithm for

Mobile Distributed Systems”, Published by Springer in Lecture Notes in Electrical Engineering ,Volume 131 , Page no. 173-182.
[4] Surender Kumar, R.K.Chauhan and Parveen Kumar, “Designing and Performance Analysis of Coordinated Checkpointing Algorithms

for Mobile Distributed Systems”, International Journal of Distributed and Parallel Systems [IJDPS] (AIRCC France), Vol.1, No.1, pp.
61-80, Sept. 2010.

[5] Cao G. and Singhal M., “Mutable Checkpoints: A N ew Checkpointing A pproach for M obile Computing Sy stems”, IEEE Trans. on
Parallel and Distributed Systems, Vol. 12, No.2, pp. 157-172, Feb. 2001.

[6] R K Chauhan, Parveen Kumar Lalit Kumar, “A coordinated checkpointing protocol for mo bile computing systems”, Int’l Journal of
information and computing science, Accepted for Publication, Vol. 9, No. 1, 2006.

[7] Chauhan R.K., Kumar P. and Kumar L., “Non-intrusive C oordinated C heckpointing Protocol for Mobile C omputing Sy stems: A
Critical Survey”, ACCST Journal of Research, Vol. IV, No.3, 2006.

[8] Sunil Kumar, R K Chauhan, Parveen Kumar, “A M inimum-process C oordinated Checkpointing P rotocol for M obile C omputing
Systems”, International Journal of Foundations of Computer science,Vol 19, No. 4, pp 1015-1038 (2008).

[9] Cao G. and Singhal M., “On the Impossibility of Min-process Non-blocking Checkpointing and an Efficient Checkpointing Algorithm
for Mobile Computing”, in the Proc. of the Int’l Conf. on Parallel Processing, pp.37-44, Aug. 1998.

[10] Neogy S., Sinha A., and Das P., “Distributed Checkpointing using Synchronized Clocks,” in the Proc. the 26th IEEE Annual Int’l Conf.
Computer Software and Applications (OMPSAC’02), pp. 199-206, 2002.

[11] Lin Chi-Yi, Way Szu-Chi and Kuu SyoYen, “An Efficient Time-Based Checkpointing Protocol for Mobile Computing Systems over
Mobile IP”, Mobile Networks and Applications (Kluwer Acdemic Publisher Netherland), pp. 687-697, 2003.

[12] Tsai J., “An E fficient I ndex-Based Checkpointing P rotocol with Constant si ze Control In formation on Me ssages,” IEEE Trans. on
Dependable and Secure Computing, Vol. 2, No. 4, pp. 278-296, Oct-Dec 2005.

[13] Najib A. Kafahi, Said AI-Bokhitan and Ahmed AI-Nazer, “On Disk-based and Diskless Checkpointing for P arallel and Distributed
Systems”, An Empirical Analysis, Information Technology Journal, Vol. 4(4), pp. 367-376, 2005.

[14] Mandal P.S. and Mukhopadhyaya K., “Performance A nalysis of Different C heckpointing and R ecovery Schemes using Stochastic
Model” Journal of Parallel and Distributed Computing, No.66, pp. 99-107, 2006.

[15] Lee, P.A., and Anderson T., “Fault Tolerance Principles and Practice Edition”, Springer-Verlag, New York, 1990.
[16] Randell B., “Reliable Computing Systems”, Operating Systems: An Advanced Course, Springer-Verlag, New York, pp.282-391, 1979.
[17] Gadiraju S. and Kumar Vijay, “Recovery in th e mob ile wireless environments using mobile ag ents”, IEEE Trans. on Mobile

Computing, Vol. 3, June 2004.

International Journal of Innovations in Engineering and Technology (IJIET)

Vol. 3 Issue 4 April 2014 202 ISSN: 2319 – 1058

