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ABSTRACT In this paper we study the dynamics of belief from an agent-oriented,
semantics-based point of view. In a formal framework used to specify, and to reason
about, rational agents, we define actions that model three well-known changes of belief,
viz. expansions, contractions, and revisions. We treat these belief changes as fully fledged
actions by defining both the opportunity for and the result of these actions, and the
ability of agents to apply these belief-changing actions. In defining the result of the
contraction action we introduce the concept of selection functions. These are special
functions that select a set of states which is to be added to the set of doxastic alternatives
of an agent, thereby contracting its set of beliefs. The action that models belief revisions
is defined as the sequential composition of a contraction and an expansion. We show
that these belief-changing actions are defined in an intuitively acceptable, reasonable
way by proving that the AGM postulates for belief changes are validated. The ability
of agents to apply belief-changing actions is defined in terms of their knowledge and
belief. These definitions are such that actions that an agent is able to perform lead to
desirable states of affairs. The resulting framework provides an intuitively acceptable
and intelligible formalization of expansions, contractions and revisions as actions in an
agent-oriented setting.

1.1 Introduction

The formalization of rational agents is a topic of continuing interest in
Artificial Intelligence. Research on this subject has held the limelight ever
since the pioneering work of Moore [Moore, 1980; Moore, 1985] in which
knowledge and actions are considered. Over the years important contri-
butions have been made on both informational attitudes like knowledge
and belief [Halpern and Moses, 1992; Meyer and Hoek, 1995, and motiva-
tional attitudes? like commitments and obligations [Cohen and Levesque,
1990]. Recent developments include the work on agent-oriented program-
ming [Shoham, 1993], the Belief-Desire-Intention architecture [Rao and
Georgeff, 1991], and cognitive robotics [Lesperance et al., 1995].

!Utrecht University, Department of Computer Science, P.O. Box 80.089, 3508 TB Utrecht,
The Netherlands. Email: bernd@cs.ruu.nl.

2The terms ‘informational attitudes’ and ‘motivational attitudes’ are due to Shoham &
Cousins [Shoham and Cousins, 1994].
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This paper is part of a series of papers in which we developed a the-
orist logic for rational agents, i.e., a logic that is used to specify, and to
reason about, rational agents. We concentrate on informational attitudes
and aspects of action, leaving motivational attitudes (for the moment)
out of consideration. In the basic architecture the knowledge, belief and
abilities of agents, as well as the opportunities for, and the results of,
their actions are formalized [Hoek et al., 1994a]. Subsequent papers ex-
tended this framework with the possibility to deal with nondeterministic
actions [Hoek et al., 1994b], epistemic tests [Linder et al., 1994d], commu-
nication between agents [Linder et al., 1994b], and reasoning by default
[Linder et al., 1994c|. The aim of this paper is a formalization of belief-
changing actions. Belief-changing actions are intrinsically interesting from
a philosophical point of view, but in addition they are very important for
the formalization of rational agents that acquire information from multi-
ple sources. For whenever some source provides reliable information that
contradicts the information that an agent already has, the agent has to
change its beliefs if it wants to incorporate this new information while
keeping its set of beliefs consistent. In this paper we concentrate on three
kinds of belief-changing actions; the formalization of information acqui-
sition from multiple sources is dealt with elsewhere [Linder et al., 1995].
The actions that we formalize are meant to model rational changes of
belief. The probably best known and most prominent formal approach
towards rational belief change is the so called AGM framework as pro-
posed by Alchourrén, Girdenfors and Makinson [Alchourrén et al., 1985;
Girdenfors, 1988]. In this framework rationality postulates — we refer
to these as the AGM postulates  are proposed for three kinds of belief
changes. The first of these is the ezpansion through which some formula
is added to a set of beliefs regardless of whether the resulting set is con-
sistent. Through a contraction some formula is retracted from a belief set,
and revisions add some formula to a set of beliefs, but, in order to main-
tain consistency of the resulting belief set, it might be necessary to remove
some of the old formulae in the set. For any of these changes of belief,
a corresponding action is defined in our framework. As for any action,
we define the states of affairs resulting from execution of belief-changing
actions, conditions that need to be satisfied in order for agents to have the
opportunity to perform these actions, and capacities that the agents must
posses in order to be capable of performing these actions. The resulting
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definitions can be seen as providing a dynamaic logic of belief change, in
which belief changes are modelled as actions in such a way that all AGM
postulates are validated. Several other modal approaches to belief change
have been proposed, of which we briefly mention a few. The approaches
of Fuhrmann [Fuhrmann, 1990] and Grove [Grove, 1988| are inspired by
conditional rather than dynamic logic, and differ substantially from our
approach, in particular with respect to the object language that is used.
De Rijke proposes a highly expressive dynamic formalism, called dynamic
modal logic, which can be used as a unifying framework to compare vari-
ous dynamic approaches to belief change [Rijke, 1994]. The language and
semantics of dynamic modal logic are completely different from ours. Fur-
thermore, it is not straightforward to define the AGM belief changes in
dynamic modal logic; the definitions proposed by De Rijke do not val-
idate all of the AGM postulates. The formalism proposed by Segerberg
[Segerberg, 1994], which is based on propositional dynamic logic, is in
spirit very close to our approach. In effect though, it is different, the
most notable difference being the fact that not all AGM postulates are
validated in Segerberg’s framework.

The rest of the paper is organized as follows. To sketch the context
and the area of application of this research, we start in §1.2 with the
(re)introduction of some of our ideas on knowledge, belief, abilities, op-
portunities and results in a context of multiple agents. In §1.3 we in-
troduce actions that model expansions, revisions, and contractions. We
define the states of affairs following these actions, conditions that need
to be fulfilled for agents to have the opportunity to perform these ac-
tions, and (mental) capacities that agents should have to be capable of
performing these actions. Furthermore we show that these actions satisfy
(slightly adapted) versions of the AGM postulates. In §1.4 we round off.
Proofs that we found too elaborate, trivial, or tedious to include here can
be found elsewhere [Linder et al., 1994a].

1.2 Informational attitudes and actions

At the informational level we consider both knowledge and belief. For-
malizing these notions has been a subject of continuing research both
in analytical philosophy and in AI [Halpern and Moses, 1992; Hintikka,
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1962]. In representing knowledge and belief we follow, both from a syn-
tactical and a semantic point of view, the approach common in epistemic
and doxastic logic: the formula K;¢ denotes the fact that agent 7 knows
¢, and B,y that agent 7 believes ¢. For the semantics we use Kripke-style
possible worlds models.

At the action level we consider results, abilities and opportunities. In
defining the result of an action, we follow ideas of Von Wright [Wright,
1963], in which the state of affairs brought about by execution of the ac-
tion is defined to be its result. An important aspect of any investigation
of action is the relation that exists between ability and opportunity. In
order to successfully complete an action, both the opportunity and the
ability to perform the action are necessary. Although these notions are
interconnected, they are surely not identical [Kenny, 1975]: the ability of
agents comprises mental and physical powers, moral capacities, and hu-
man and physical possibility, whereas the opportunity to perform actions
is best described by the notion of circumstantial possibility. A nice exam-
ple that illustrates the difference between ability and opportunity is that
of a lion in a zoo [Elgesem, 1993]: although the lion will (ideally) never
have the opportunity to eat a zebra, it certainly has the ability to do so.
We postulate that in order to make our formalization of rational agents,
like for instance robots, as accurate and realistic as possible, abilities and
opportunities need also be distinguished in Al environments. The abili-
ties of agents are formalized via the A; operator; the formula A;«a denotes
that agent 7 has the ability to do . When using the definitions of op-
portunities and results as given above, the framework of (propositional)
dynamic logic provides an excellent means to formalize these notions. Us-
ing events do;(«) to refer to the performance of the action « by the agent
i, we consider the formulae (do;(a))¢ and [do;(a)]p. In our deterministic
framework, (do;(a))yp is the stronger of these formulae; it represents the
fact that agent 7 has the opportunity to do o and that doing « results in ¢
being true. The formula [do;(«)]¢ is noncommittal about the opportunity
of the agent to do «, but states that, should the opportunity arise, only
states of affairs satisfying ¢ would result. Besides the possibility to for-
malize both opportunities and results when using dynamic logic, another
advantage lies in the compatibility of epistemic, doxastic and dynamic
logic from a semantic point of view: a Kripke-style semantics can be used
to provide meaning to epistemic, doxastic and dynamic notions.
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Definition 1.2.1 Let a finite set A = {1,...,n} of agents, and some
denumerable sets II of propositional symbols and At of atomic actions be
given. The language £ and the class of actions Ac are defined by mutual
induction as follows.
1. £ is the smallest superset of Il such that
e if p.1) € L then ~p,p V1 €L
e ific A ae Acand ¢ € L then K;p, B;p, (do;(a))¢, A;a € L
2. Ac is the smallest superset of At such that
if o € £ then confirm ¢ € Ac
if a; € Ac and ay € Ac then ay;ay € Ac
if o € £ and a7,a9 € Ac then if ¢ then oy else ay fi € Ac
if o € £ and oy € Ac then while ¢ do ay od € Ac
The purely propositional fragment of £ is denoted by L. The constructs
A, =, <, tt, ff and [do;(a)]p are defined in the usual way. Other con-
structs are introduced by definitional abbreviation: skip is confirm tt,
oY is skip, and a"*'is a; a”.

The confirm action behaves essentially like the test actions in dy-
namic logic [Harel, 1984]. As such this action differs substantially from
tests as they are looked upon by humans: these genuine tests are usu-
ally assumed to contribute to the information of the agent that performs
the test [Linder et al., 1994d], whereas by performing confirm ¢ it is
just confirmed (verified, checked) that ¢ holds. The other actions in Ac
denote respectively sequential composition, conditional composition, and
repetitive composition; skip denotes the void action.

In the following definitions it is assumed that some set {0, 1} of truth
values is given.

Definition 1.2.2 The class M of Kripke models contains tuples M =
(S§,7,R,B,r,c) such that
e S is a set of possible worlds, or states.
e 7:1I xS — {0,1} is a total function that assigns a truth value to
propositional symbols in possible worlds.
e R: A — p(§xS8)is afunction that yields the epistemic accessibility
relations for a given agent. This function is such that R(i) is an
equivalence relation for all 7. For reasons of practical convenience

we define [s]r;) to be {s' € S | (s,5") € R(7)}.
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e B: AXx S — o(S) is a function that yields the set of doxastic
alternatives for a given agent in a given state. To model the kind
of belief that we like to model, it is demanded that for all agents ¢
and for all possible worlds s and s" it holds that:

e B(i,5) =B(i,s') if s’ € [s]r()
) B(?,S’) Q [S‘]R(,)

e r: Ax At - § — p(8) is such that r(i,a)(s) yields the (possibly
empty) state transition in s caused by the event do;(a). This func-
tion is such that for all atomic actions a it holds that |r(i,a)(s)] <1
for all 2 and s, i.e., these events are deterministic.

e c: Ax At - § — {0,1} is the capability function such that
c(i,a)(s) indicates whether the agent i is capable of performing the
action a in s.

Using an equivalence relation to provide the semantics for the knowl-
edge operator, results in the fairly standard and well accepted S5 modal
system modelling knowledge. The common approach to defining the se-
mantics of the belief operator consists of using a serial, transitive and
euclidean relation to denote doxastic alternatives [Kraus and Lehmann,
1988], thereby ending up with a KD45 axiomatization for belief. The ap-
proach that we propose in Definition 1.2.2 differs from the more common
one in that we use a (possibly empty) set instead of a (serial) accessibility
relation to denote doxastic alternatives. The reason for using a set instead
of a relation is a technical one: using sets, while essentially equivalent to
using accessibility relations, allows for concise definitions of the seman-
tics of belief-changing actions. The fact that we allow empty sets, whereas
Kraus & Lehmann demand the accessibility relation to be serial, results
in our notion of belief not validating the D-axiom —(B;p A B;—¢). The
reason for this is that the AGM approach towards belief changes, upon
which we base our definitions of belief-changing actions, presupposes the
existence of inconsistent belief sets: expansions and revisions may result
in the agent having absurd beliefs. Apart from this difference, knowledge
and belief are related to each other as in the system of Kraus & Lehmann.

Definition 1.2.3 Let M = (S, 7, R, B, r, c) be some model from M. For
¢ a propositional symbol, a negation, or a disjunction, M, s = ¢ is defined
as usual. For the other clauses it is thus defined:
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M,s =Kp eVs' e S|(s,s') € R(i) = M, s' = ¢
M, s = Bip &Vs' e Sl € B(i s) = M,s" =y
M, s = (doi(a))p <SIM' M s € r(i,a) (M, s) &M, § |
M,s = A Sc(i,a)(M,s)=1

where r and c are extended as follows:
r(i,a)(M,s) = M, r(i,a)(s)
r(i, confirm ¢)(M,s) = {(M,s)} if M,s = ¢ and 0 otherwise
ri o an)(M,s) = (i, an)(z(i, )M, 5))
r(i,if ¢ then a4 = r(i,a;)(M ()1f./\/l s | ¢ and

else ay £i)(M,s) r (i, 02)( , s) otherwise

r(i,while ¢ = {(M',s) | 3/{: € INIMy, sg ... IMy, si

do aj 0od)(M,s) [Mg,s0=M,s& My, s, = M ' &Vj <k
(M1, 8541 = r(i, confirm ¢; o) (M, s;)]

LM, S E )
where r (i, a)(0) =0
and
c(i, a)(M, s) = c(i,a)(s)
c(i, conflrm p)(M,s) =1if M,s = ¢ and 0 otherwise
c(i, ar; ag) (M, s) = c(i, an) (M, s) & c(i, ag)(x(i, a0 ) (M, 5))
c(i,if ¢ then a4 = ¢(i, confirm ¢;ay)(M,s) or
else ay £i)(M, s) c(i, confirm —y; as)(M, s)
c(i,while ¢ = 1if 3k € N[c(4, (confirm @; ay)";
do ay od)(M, s) confirm —p)(M,s) = 1]
and 0 otherwise
where c (i, a)(0) =1

Validity on the class M of models is defined as usual.

The notion of actions as considered in Definition 1.2.3 generalizes that
of state-transformers as it is typical for dynamic logic [Harel, 1984], and
allows also for actions that transform pairs (Model, State). The reason for
this generalization lies in the fact that we also account for non-standard
actions like ‘to observe’ [Linder et al., 1994d], and ‘to inform’ [Linder et
al., 1994b] in addition to the mundane actions of dynamic logic, and these
non-standard actions transform models rather than states. Also belief-
changing actions are naturally interpreted as transforming models rather
than states; we elaborate on this in § 1.3. Note that as a consequence of
this generalized notion of actions, the functions r and ¢ should in fact be
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retyped for non-atomic actions: instead of taking elements from S as their
third argument they take elements from M x §. To prevent our notation
from becoming to baroque, we leave out this retyping.

With regard to the abilities of agents, the motivation for the choices
made in Definition 1.2.3 is the following. The definition of c(i, confirm )
expresses that an agent is able to get confirmation for a formula ¢ iff ¢
holds. Note that the definitions of r(i, confirm ¢) and c(i, confirm )
imply that in circumstances such that ¢ holds, agents have both the
opportunity and the ability to confirm ¢. An agent is capable of per-
forming a sequential composition aq;ay iff it is capable of performing
a; (now), and it is capable of executing ay after it has performed «;.
An agent is capable of performing a conditional composition, if either
it is able to get confirmation for the condition and thereafter perform
the then-part, or it is able to confirm the negation of the condition and
perform the else-part afterwards. An agent is capable of performing a
repetitive composition while ¢ do a; od iff it is able to perform the
action (confirm ¢;a;)*; confirm —¢ for some natural number .

The following example gives an idea of the expressive power of the
framework defined above.

Example 1.2.4 (Egocentric and altruistic agents) The egocentric
action is described as follows:

‘If agent 7 knows that it will believe that it feels better after
helping its neighbor and it knows that it is able to help, it will
do so, otherwise it will do nothing’

It is possible to express in our system the fact that if agent i believes
to be feeling well before performing the egocentric action, it will believe
to feel either well or even better after performing it. Using some obvi-
ous abbreviations the situation sketched above amounts to the following
validity:

then h else skip)|(B,w; V B;b;)

It is also possible to formalize an altruistic action: agent ¢ will help if
it knows that this will make (some other) agent j feel better. Now it is
possible to express the fact that if agent j is feeling good right now, it
will feel good or even better after ¢ has performed the altruistic action:
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= w; — [do;(if K;[do;(h)]b; then h else skip)|(w; V b;)

1.3 Actions that change one’s mind

Our approach towards belief changes in the agent-oriented, semantics-
based framework of §1.2 is based on the idea that belief changes are
brought about by actions that the agents may perform, i.e., by performing
belief-changing actions, agents expand, contract and revise their beliefs.
We consider the knowledge of agents concerning propositional formulae to
be immune for changes: it persists under the execution of belief-changing
actions. This non-defeasibility of knowledge constitutes one of two  the
other one being veridicality =~ major differences between the two informa-
tional attitudes dealt with in our framework. Due to its non-defeasibility,
knowledge in our framework plays the part that is played by the theorems
of the underlying logic in the AGM framework, viz. that of unassailable
beliefs. As such, we will on occasion refer to knowledge as providing the
principles of agents, the information that the agents will never part from.

From a syntactical point of view, the class of actions Ac is extended
with three new, belief-changing, actions.

Definition 1.3.1 The class Ac of actions (and hence the language £) as
defined in 1.2.1 is extended as follows:

if p € £; then expand ¢, contract ¢, revise ¢ € Ac

The main reason underlying the restriction to propositional formulae
in Definition 1.3.1 is the fact that changes of belief concerning doxastic
or epistemic formulae are not well understood. It is for instance not at
all clear what it means to revise the beliefs of some agent ¢ with the
formula p A =B;p: does or doesn’t the agent believe p A =B;p after its
beliefs are revised with this formula?® Belief changes with propositional
formulae do not suffer from problems like these. From a semantic point of
view the property that makes belief changes with propositional formulae
understandable and more or less predictable is the fact that the truth

*The natural language variant ‘p, and i does not believe p’ of the formula p A =B;p
is considered by Thijsse ([Thijsse, 1992], pp. 131-132) to be a typical example of a non-
contradictory sentence but a contradictory utterance. This implies that although the sentence
in itself is consistent, it is not consistent to believe the sentence.
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value of these formulae in a state of a model depends on the valuation for
that state only.

Proposition 1.3.2 Let M = (S, 7,R, B, r, c) be some Kripke model with
s € S, and let M' = (8", 7", R',B', ¥, ') be some Kripke model with
s' € 8. Then it holds that:

¥p € Nn(p, s) = 7'(p, )] = Vo € Lo[M.s =0 & M, ' = ]

In fact it is not necessary to make a restriction to propositional formu-
lae; it would suffice to restrict oneself to formulae whose truth in the state
of a model is not dependent on the information fluents  represented by
the epistemic accessibility function R and the doxastic accessibility func-
tion B — of the model. In a straightforward extension of the framework
presented here one could allow agents to change their beliefs on their own

or other agents’  abilities and opportunities, or on the results of the
agents’ actions. However, in order to expose our ideas on belief-changing
actions in their purest form, we have decided to follow common practice
in the literature on belief changes and restrict ourselves to propositional
formulae.

The semantics for belief-changing actions as presented in this paper is
based on ideas that generalize those underlying our definition of informa-
tive actions like epistemic tests [Linder et al., 1994d] and communication
actions [Linder et al., 1994b]. Basically, the idea is that changes in the
beliefs of an agent correspond to including and dropping certain items of
information: in the case of an expansion (new) information is included,
contractions lead to the dropping of information, and revisions drop some
items of information and include others. In our modal framework the in-
formation of an agent is formalized through its set of epistemic and dox-
astic alternatives. Hence a natural implementation of the dropping and
inclusion of information is given by the inclusion and dropping of doxastic
alternatives, where the dropping of information corresponds to the inclu-
sion of new worlds into the set of doxastic alternatives of the agent and
the inclusion of (new) information corresponds to a restriction of this set.
Given this intuitive meaning of the semantics of belief-changing actions,
it is obvious that these actions cause transitions between models, thus
generalizing the usual actions from dynamic logic that cause inter-state
transitions within a model.
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Convention 1.3.3 In the rest of this paper we follow the convention that
whenever some model M = (S, 7, R, B, r, ¢) is clear from the context, [¢]
denotes the set of states that satisfy ¢, ie., [¢] = {s€ S | M,s | ¢}.
The relation F.,C o(Ly) x Ly is the derivability relation of classical
propositional logic. The function Th : p(Ly) — ©(Ly) that yields for every
set ® of propositional formula the set {¢ € Ly | ® k., } is the deductive
closure operator associated with the derivability relation F,. Note that
both ., and Th work strictly on a propositional level; expressions like
{Bip} Fepi p vV —p and Th(B;p vV —B;p) are not well-defined. The indexes
7 and 7, possibly marked, always refer to agents.

In the following, we successively define the semantics of the three belief-
changing actions, and study their specific properties. We impose the fol-
lowing properties on all of them:

Definition 1.3.4 We distinguish the following properties of actions «,
where y € L.

o = (doj(a))tt realizability
o = (do;(a))x — [dos(a)]x determinism
o = (doi(a;a))x « (do;(a))x tdempotence

Realizability of an action implies that agents have the opportunity to
perform the action regardless of circumstances, determinism of an action
means that performing the action results in a unique state of affairs, and
idempotence of an action implies that performing the action an arbitrary
number of times has the same effect as performing the action just once. We
say that A € {expand, contract, revise} satisfies any of the properties
of Definition 1.3.4 if the action A satisfies that property for all p € L,.

1.3.1 The expand action

Informally, a belief expansion is an action that leads to a state of affairs
in which some formula is included in the set of beliefs of an agent. In
our framework uncertainties of agents are formalized through the differ-
ent doxastic alternatives that the agent has: if an agent believes neither
@ nor —y then it considers both doxastic alternatives supporting ¢ and
doxastic alternatives supporting =y possible. Expanding the beliefs of the
agent with ¢ may then be implemented by declaring all alternatives sup-
porting - to be ‘doxastically impossible’, i.e., on the ground of its beliefs
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the agent no longer considers these alternatives to be possible. Hence the
expansion of the belief set of an agent can be modelled through a restric-
tion of its set of doxastic alternatives. The definition of the function r
for expansions is a direct formalization of these intuitive ideas: if some
agent ¢ performs an expansion with some formula ¢ in a world s in the
model M, the result of this is that afterwards 7 has restricted its set of
doxastic alternatives to those states that satisfy ¢ (even if there are no
such states).

Definition 1.3.5 Let some model M = (S, 7, R, B, r, c) with s € S, and
@ € Ly be given. We define:

r(i,expand ¢)(M,s) = M’ s where
M =(S,7,R,B' r,c) with
B'(i',s") = B(i',s") if i' # i or 8" &€ [s]r@)
B'(i,s") = B(i,s") N [¢] if &' € [s]r@)

Definition 1.3.5 provides for an intuitively acceptable formalization of
belief expansions as can be seen in the following proposition.

Proposition 1.3.6 For all p,v € Ly we have:
o = [do;(expand ¢)|Biy
e = B;Y) — [do;(expand ¢)|B;v
o =Biv = (Bt <> [do;(expand ¢)|B;v)

The first clause of Proposition 1.3.6 states that an expansion with some
formula results in the formula being believed. The second clause states
that beliefs are persistent under expansions. In this clause the restriction
to propositional formulae 1) is in general necessary. For consider a situa-
tion in which an agent does not believe ¢ and by negative introspection
believes that it does not believe ¢. After expanding its beliefs with ¢,
the agent believes ¢ and, assuming that the resulting belief set is not the
absurd one, it no longer believes that it does not believe ¢. Hence not
all beliefs of the agent persist in situations like these. Note that the first
two clauses combined indicate that our definition of belief, and in partic-
ular the fact that we allow absurd belief sets, is a good one when dealing
with expansions. For an expansion with some formula ¢ in a situation in
which -y is already believed, results in the agent believing both ¢ and
- and hence having inconsistent beliefs. The third clause states that
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in situations where some formula is already believed, nothing is changed
as the result of an expansion with that formula. This latter property is
suggested by the criterion of informational economy [Girdenfors, 1988,
which states that since information is in general not gratuitous, unneces-
sary losses of information are to be avoided. The validities expressed in
Proposition 1.3.6 can be seen as the representation in £ of the second,
third and fourth of the AGM postulates for expansions. The other AGM
postulates are not as neatly expressed in £; nevertheless in §1.3.2 we show
that all of the postulates for expansion are in fact validated.

Besides the properties given above, some other properties — particu-
larly dealing with multiple agents ~ can be shown to hold in our formal-
ization.

Proposition 1.3.7 For all p,v € Ly and x € L we have:

e =K,B,y) — K,[do;(expand ¢)|K;B;¢

e = B,B,1) — Bj[do;(expand ¢)|B,B,¢

o =Biy = (x ¢ [doi(expand ¢)]x)

e expand satisfies realizability, determinism and idempotence

The first clause of Proposition 1.3.7 states that the knowledge of an-
other agent — the watching agent — on the beliefs of the agent perform-
ing an expansion is known (by the watching agent) to persist; the second
clause states the same for the beliefs of the watching agent. The third
clause formalizes the idea that expansions with formulae that are already
believed, cause an universally minimal change: nothing in the universe
changes as the result of such an expansion. The last clause has already
been phrased in the introduction to this section.

It turns out that expansions as formalized in Definition 1.3.5 can be
completely characterized as follows.

Proposition 1.3.8 For all ¢, € Ly we have:
e = [do;(expand ¢)|B;v + Bi(¢ — 1)

Proposition 1.3.8 states that some (propositional) formula ¢ is believed
after an expansion with ¢ if and only if the agent believes that ¢ implies
1) beforehand. As a special case of Proposition 1.3.8 we can prove that an
expansion with some formula results in the agent having absurd beliefs if
and only if the agent believes the negation of the formula beforehand.
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Corollary 1.3.9 For all ¢ € Ly we have:
e = [do;(expand ¢)|B;ff + B¢

1.3.2 Expansions and the AGM postulates

As for contractions and revisions, the AGM postulates are by now the
standard ones to describe rational belief expansions [Alchourrén et al.,
1985; Girdenfors, 1988]. These postulates describe how changes in the
belief set of an agent should work out. In the AGM framework, belief sets
are defined as follows.

Definition 1.3.10 A set ® C L, is an AGM belief set iff & = Th(P),
i.e., ® is closed under the derivability operator of classical propositional
logic. The (unique) absurd belief set, consisting of all formulae from L,
is denoted by K.

In the following definition, K and H denote arbitrary AGM belief sets,
¢ denotes some propositional formula, and the expansion of K with ¢ is
denoted by K.

Definition 1.3.11 The AGM postulates for belief expansion:
(G*1) K7 is an AGM belief set.

- 4
K C ]xw

G*t1 - GT5.

It turns out that our expand action can be seen as providing a belief
expansion in the sense of the AGM postulates. To formulate the AGM
postulates in our framework we introduce our own kind of belief sets.
These belief sets are model-based and indexed with a particular agent.
Furthermore the notion of knowledge sets, as providing the principles or
prejudices that the agent will never part from, is defined below.

Definition 1.3.12 Let M be some Kripke model with s € M. The belief
set of agent 7 in M, s, notation B(i, M, s), is defined by:

® B(i,M,S):{99€£O ‘ Mus):BNQ}
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The knowledge set of agent i in M, s, notation (i, M, s), is defined by:
.K(‘7M7‘>:{¢EEU|MV§‘* 799}
The ezpansion of B(i, M, s) with a formula ¢ € Ly, notation B} (i, M, s),
is defined by:
o BI(i,M,s)={y € Ly | M,s = [doj(expand p)|B;7)}
The unique absurd belief set B is defined to be L.

Theorem 1.3.13 Let M and M’ be Kripke models, with s in M and s'
in M'. The following is true for all p € Ly.

(B*1) B} (i, M, s) is an AGM belief set.
(B*2) ¢ E B*( M, s).

(B*3) Bl M.s) C B(i, M, ).

(B*4) IfgoEB( ,S) then B*(,M,s):B(i,/\/l,s).

(B*5) If B(i, M, s) C B(i, M, s"), then B} (i, M, s) C B (i, M',s").
(B*6) Bf (i, M ) is the smallest set that satisfies BT1  Bt5 as
given above.

B+

Proof: Let M be a model with state s, and let ¢ € Ly be arbitrary. Let
M" be such that M", s = r(i, expand ¢)(M,s).

e (B™1) This postulate follows straightforwardly from the definition
of r for the expand action. If M” is such that B”(i,s) = 0 then
B} (i,M,s) = By, and otherwise B/ (i, M, s) is consistent and de-
ductively closed by definition of = for belief formulae.

e (B"2) Since ¢ is in Ly, it follows by definition of r for expand that
M" " = ¢ for all s € B"(i,s). Hence M" s = B¢ and thus
¢ € Bf(i,M,s).

) (B*S) Let ¢ € B(i,M,s). Then M,s" |= ¢ for all v € B(i,s).
Now B”(? s) C B(1, 9) and since 9 is propositional, it follows that
M" " = 9 for all & € B"(i,s). Hence M",s = B;1 and thus
V€ Br(i, M, s).

e (B*4) Suppose ¢ € B(i, M, s). Then M, s" = ¢ for all s’ € B(i, s).
Since ¢ is propositional, it follows that B(i,s) N [¢] = B(i,s)
and hence B"(i,s) = B(i,s). Then M" = M, and B} (i, M,s) =
B(i, M",s) = B(i, M, s).

e (B™'5) The proof that this postulate is validated is most easily given
as a direct consequence of Proposition 1.3.14. For if B(i, M, s) C
B(i, M’ s") for some model M’ with state s', then Th(B(i, M, s) U
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{e}) € Th(B(i, M',s") U {p}) and Bf(i,M,s) C Bf (i, M',s').
Since the proof of Proposition 1.3.14 does not depend on B*5, this
postulate is validated.

e (B'6) From B*2, B3 and the fact that belief sets are deductively
closed, it follows that Th(B(i, M,s) U {p}) C B} (i, M,s). From
Proposition 1.3.14, the proof of which does not depend on BT6, it
follows that B} (i, M, s) is indeed the smallest set that satisfies B*1
through BT5. O

It is shown in the AGM framework that the postulates formulated
in Definition 1.3.11 completely determine expansions, i.e., whereas the
postulates for contraction and revision leave some degrees of freedom in
defining contractions and revisions, G*1 through G5 uniquely define
expansions. Proposition 1.3.14 a rephrasing of Proposition 1.3.8
states that the same holds in our framework, and furthermore, the unique

definition of expansions that we end up with is identical to the one given
for the AGM framework.

Proposition 1.3.14 For all models M with states s, and for all p € Ly:
o B1(i.M.5) = Th(B(i.M.5)U {})

Proof: We prove that the two sets are equal by proving that each set is
a subset of the other one. So let M be some model with state s and let
@ € Ly be arbitrary.

‘D’ This is shown by the argument given in the proof of B*6: from B*2,
BT3 and the fact that beliefs sets are deductively closed, it follows
that Th(B(i, M, s) U {¢}) C Bf (i, M, s).

‘C’ Suppose that ¢ € Bf(i, M,s). If M',s = r(i,expand ¢)(M, s)
then M’ s" = 1 for all s € B'(i,s). Since ¢ is in Ly, and since
B'(i,s) = B(i,s) N [¢], it follows that M, s' = 4 for all ' € B(i, s)
such that M,s" = ¢. Hence M, s' = ¢ — ¢ for all &' € B(i,s).
Then ¢ — ¢ € B(i, M, s) and ¢ € Th(B(i, M, s) U {¢}). Since ¢
is arbitrary, it follows that B} (i, M, s) C Th(B(i, M, s) U {¢}). O

Note that it is of no use to try and consider the properties formalized
in Proposition 1.3.7 in terms of the AGM framework. For the latter frame-
work deals with the belief set of a single implicit agent only, and
can therefore for instance not express the knowledge of (other) agents.



Actions That Make You Change Your Mind 17

1.3.3 The contract action

A belief contraction is the change of belief through which in general some
formula that is believed beforehand is no longer believed afterwards. As
such, apparent beliefs that an agent has are turned into doubts as the re-
sult of a contraction. In terms of our framework, this change of belief may
be implemented by extending the set of doxastic alternatives of an agent
in order to encompass at least one state not satistfying the formula that
is to be contracted. Consider for example the situation of an agent 7 that
believes p, i.e., p holds in all its doxastic alternatives. When contracting
p from the belief set of the agent, some —p-worlds are added to the set
of doxastic alternatives of the agent. In order to end up with well-defined
Kripke models, these worlds that are to be added, need to be in the set of
epistemic alternatives of s. For in the Kripke models defined in 1.2.2, the
set of doxastic alternatives for a given agent in a given state is contained
in its set of epistemic alternatives in that state. Thus the worlds that are
to be added to the set of doxastic alternatives of the agent are elements
of the set of epistemic alternatives not supporting p.

The problem with defining contractions in this way, is that it is not
straightforward as to decide which worlds need to be added. From the
basic idea that knowledge — acting as the principles of agents — provides
some sort of lower bound of the belief set of an agent, it is clear that in
the case of a contraction with ¢ some states need to be added that are
elements of the set of epistemic alternatives of the agent and do not
support ¢, but it is not clear exactly which elements of this set need to
be chosen.

The approach that we propose to solve this problem is based on the
use of so called selection functions. These are functions that (whenever
possible) select a subset of the set of epistemic alternatives in such a way
that the resulting contract action behaves rationally.

Definition 1.3.15 Let some model M be given. A function o : A x
S X Ly — o(8S) is a selection function for M if and only if it meets the
following constraints for all s, s’ € S and ¢, € Ly.

0. o(i,s,0) =0(i, s cp) if s' € [s]r@)

X1 o(i,s,¢) € [s]r@ N [-¢]

¥2. o(i,s, ) C B(i, 9) if B(? s) N [—¢] # 0

23.0(7999)—0)1&[] o N[=e] =0
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¥4, it [S]R(i) N [[99]] = [5] [M] then U(iv S, 99) = U(iv S, w)
¥5. o(i,s,p AN) Coli,s go) Uol(i,s, 1)

6. if o(i, s, 0 A) N [[—mp]] # 0 then o(i,s,0) C o(i,s, o A1)

The first two of the demands given in Definition 1.3.15 ensure that
applications of the contract action result in well-defined Kripke models:
in all the states of its epistemic equivalence class the agent holds the same
beliefs (¥1), and the agent’s set of beliefs still encompasses its knowledge
after a contraction (X2). Demand Y2 furthermore ensures that no worlds
are added that are superfluous in the sense that they do not invalidate the
formula that is to be contracted. Demands ¥2 to Y6 enforce our notion
of contraction to validate the AGM postulates (in Proposition 1.3.22 we
elaborate on the relation between these demands and the postulates for
contraction). Note that the expressions on the right-hand side of ¥3 and
on the left-hand side of 34 are equivalently phrased as M, s = K;¢ and
M, s E K;(p < 1), respectively.

The definition of r for the contract action is based on the use of
selection functions: a contraction is performed by adding to the set of
doxastic alternatives of the agent exactly those worlds that are picked
out by the selection function.

Definition 1.3.16 Let some model M = (S, 7,R,B,r,c) with s € §
and ¢ € Ly be given. Furthermore, let o be an arbitrary but fixed selection
function for M. We define:

r(i, contract ¢)(M,s) = M’ s where
M = (S, 7,R,B,r,c) with
B'(i',s") = B(,s') if i #ior s & [s]r@
B'(i.s") = B(i,s") Ua(i, s, p) for all s" € [s]rg

Using selection functions to define the semantics for the contract
action indeed results in an acceptable formalization of belief contraction,
as can be seen in the following proposition.

Proposition 1.3.17 For all p,,0 € Ly we have:
e = [do;(contract ¢)|B;v» — B;v
= —-B,;p — ([do;(contract ¢)|B;¥ < B;)
= —K,p — [do;(contract ¢)|-B;¢
= Bi¢ — (B;1) — [do;(contract ¢;expand ¢)|B;1)
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e =K;(¢ <> ¢) = ([doj(contract ¢)|B;¥ <> [do;(contract ¢)]|B;v)

e |= ([do;(contract ¢)|B;v¥ A [do;(contract ¢)|B;v) —
[do;(contract ¢ A ¥)|B;J

e = [do;(contract ¢ AY)]-Bp —

([doi(contract ¢ A 1))|B;) — [do;(contract ¢)|B;1)

The first clause of Proposition 1.3.17 states that after a contraction
an agent believes at most the formulae that it believed before the con-
traction. The second clause states that in situations in which an agent
does not believe ¢, nothing changes as the result of contracting ¢. Again
this property reflects the criterion of informational economy. The third
clause states that a contraction with a contractable formula, this is a
formula not belonging to the agent’s principles, results in the agent not
believing the contracted formula. The fourth clause states that whenever
an agent believes a formula, all beliefs in its original belief set are recov-
ered after a contraction with that formula followed by an expansion with
the same formula. The fifth clause states that contractions with formulae
that are known to be equivalent, result in identical belief sets. The sixth
clause formalizes the idea that all formulae that are believed both after
a contraction with ¢ and after a contraction with 1) are believed after a
contraction with ¢ A 1. Clause 7 states that if a contraction with ¢ A
results in ¢ not being believed, then in order to contract ¢ no more formu-
lae need to be removed than those that were removed in order to contract
@ A 1. This last clause is related to the property of minimal change for
contractions. The validities given in Proposition 1.3.17 represent all of
the AGM postulates for contraction with the exception of the first one;
in §1.3.4 we prove that also the first AGM postulate is validated in our
framework.

Again, some other properties  dealing with multiple agents and uni-
versally minimal change  can be shown to hold.

Proposition 1.3.18 For all ¢, € Ly and for all x € L we have:
= [do;(contract ¢)|K;B;1 — K;B;¢

= [do;(contract ¢)|B;B;y — B,;B;¢

= —B,p — ([do;(contract ¢)|x + )

= B,y — (x « [do;(contract ¢; expand ¢)|Y)

= K;(¢ < ¥) — ([do;(contract ¢)]y +> [do;(contract ¢)|y)
contract satisfies realizability, determinism and idempotence
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The first two clauses of Proposition 1.3.18 state that the a posteri-
ort knowledge and belief of watching agents on the beliefs of an agent
performing a contraction are contained in their a priori knowledge and
belief. The third clause states that contractions with disbelieved formulae
cause no change at all. The fourth clause states that whenever an agent
believes a formula, a contraction with that formula followed by an ex-
pansion with the same formula reduces to the void action and therefore
causes no change. The fifth clause states that for formulae that an agent
knows to be equivalent, a contraction with one formula causes exactly the
same universal change as a contraction with the other formula. By the
last clause, contractions obey the properties given in Definition 1.3.4.

1.3.4 Contractions and the AGM postulates

The AGM postulates for belief contraction are given below. In these pos-
tulates K, ¢, and K;“ are assumed to have their usual connotation, and
K denotes the contraction of K with the formula .

Definition 1.3.19 The AGM postulates for belief contraction:

(G*1) K is an AGM belief set.

(G42) KL C K.

(G3)If ¢ ¢ K then K = K.

(GH4) If o ¢ then ¢ & Ké.

(G'5) 1t ¢ € K then K C (K1)t

(G16) If Fop <> ) then K} = K.
L L 1 1

(G'7) KEAKL C Ry )

(G=8)If o & K, then K, C K.

eAY =

Using the definition of the contract action as given in 1.3.16, it is
indeed the case that this action models contractions in the sense of the
AGM postulates. As was the case for belief expansions, we have to modify
the postulates for belief contraction somewhat to account for the agent-
oriented, semantics-based character of our framework.

Definition 1.3.20 The contraction of B(i, M, s) with ¢ € Ly, notation
B (i, M, s) is defined by:
o B (i, M,s) = {1 € Ly | M, s = [do;(contract ¢)|B;v}
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The sequence of a contraction with ¢ followed by an expansion with ¢ of
B(i, M, s), notation B (i, M, s), is defined by:
) Béj(i, M, s)={d € Ly| M, s |= [do;(contract ¢; expand ¢)|B;v}

Theorem 1.3.21 Let M be some Kripke model. For all s € M and for
all o, € Ly the following are true.

(B*1) B (i, M, s) is an AGM belief set

(B12) Bi(z M, s) C B(i, M, s).

(B3) If p & B(i, M, s) then B (i, M, s) = B(i, M, s).

(BH4) If ¢ & K(i, M, s) then ¢ & B, (i, M, s).

(B'5) If ¢ € B(i, M, s) then B(i, M, s) C BLJ“( M, s).
(B16) If p +> ¢ € K(i, M, s) then Bl( M s) By (i. M. s).
(B*7) B (i, M s)ﬁBl( M,s) C B%Ad)( ,M,s).

(B18) ]fnp 4 wa(‘ M, s) then B,,,(i. M. s) C B:(i,M,s).

Proof: Let M be some Kripke model with state s, and let ¢ be an
arbitrary selection function for M. Let ¢ € Ly be arbitrary, and let
M' s = r(i, contract ¢)(M,s). We show that contractions based on o
satisfy the AGM postulates.

e (B!1) This postulate is easily seen to be satisfied by the same ar-
gument as given for BT1.

e (B12) By demand X1 it follows that o (i, s, ) yields a set of states
from M. It is easily seen that for ¢ € L it holds that if M, s" = ¢
for all ' € &' then for all 8" C &', M, s" = ¢ for all s" € §". Now
if € B,(i,M,s), then M, s' |= 4 for all s € B(i,s) Ua(i,s,¢).
Hence M, s’ = 1) for all s’ € B(i, s), and thus ¢ € B(i, M, s).

e (B13) If ¢ ¢ B(i,M,s), then M,s" = = for some s € B(i,s).
Then B(7, s)N[—¢] # 0, and by X2 it follows that o (i, s, ¢) C B(i, s).
Thus B'(i,s) = B(i, s) and hence B (i, M, s) = B(i, M, s).

e (B4) If v ¢ K(i, M,s), then [s]g N [-¢] # 0. Hence by X3,
o(i,s,¢) # 0, and thus, by X1, B'(i, s) contains some s’ such that
M, s" | —p. Since ¢ is propositional, then also M',s" = —p, and
hence M', s [~ Bip. Thus ¢ & B (i, M, s).

(B15) Suppose ¢ € B(i, M, s). We distinguish two cases:
e ¢ € K(i,M,s). Then o(i,s,) = 0 by ¥£3. Hence B'(i,s) =
(7,8), and Bl( M, s) = B(i,M,s). Then B} (i, M,s) =
B} (i, M, s). Now since ¢ € B(i, M, s) it follows by B4 that
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B r(i,M,s) = B(i, M, s).

e o & K(i, M,s). Then B'(i,s) = B(i,s)US" with &’ = (i, s, ¢).
By X1, &' C [~¢]. Let M",s = r(i,expand ¢)(M',s). Then
by Definition 1.3.5 it follows that B”(i, s) = B'(7, s) N [¢]. Now
since B'(i, s) = B(i,s) US" and since ¢ € B(i, M, s), and thus
B(i,s) N [¢] = B(4,s), we have that B"(i,s) = B(z, s). Hence
B (i,M,s) = B(i, M, s).

Since in both cases B(i, M,s) = B} (i, M,s), also B(i, M, s) C
B. 1 (i, M,s), and hence we conclude that postulate Bl5 is vali-
dated.

e (B*6) Suppose ¢ > 1 € K(i, M, s). Then from 34 it follows that
o(i,s,¢) = a(i,s,v). Thus r(i,contract ¥)(M,s) = M’ s, and
B (i, M, s) = B, (i, M, s).

o (B'7) Let p € BL(i,M,s)NBy(i, M,s). This implies that M, s’ |=
p for all s" € B(i,s)Ua(i,s,¢)Uao(i,s, ). Since by ¥5, o(i, s, o A
V) C o(i,s, @) Ual(i,s, ), it follows that M, s | p for all &' €
B(i, s)Ua (i, s, pA1). But then p € B au (i, M, s). Since p was chosen
arbitrarily it follows that B (i, M, . )ﬁBl( M, s) C Bé/\lp(‘ M, s).
e (B'8) Suppose ¢ & B,,,(i. M, s). Let M” s = r(i, contract (o A
1)) (M, s). We distinguish two cases:

o o & B(i, M,s). Then ¢ Ay & B(i, M, s), since B(i, M, s) is
an AGM belief set. From B3 it follows that B} (i, M, s) and
B, (i, M, s) are both equal to B(i, M, s).

¢ € B(i, M, s). Since ¢ ¢ wa( M, s ), it follows that some
s € o(i,s, o A1) exists such that M" s" = -, and since ¢
is propositional, also M,s" | —p. But then o(i,s,¢ A 1) N
[-¢] # 0, and by X6 it follows that o(i, s, p) C o(i, s, o A ).
Next, for all formulae p € Biw(i,/\/l,s), M, s E p for all
s € B(i,s) Ua(i,s, o A ). Since o(i,s,¢) C o(i,s,p A1) it
follows that M, s’ |= p for all s € B(i,s)Uo (i, s, ¢), and hence
By, (i, M. s) C BX(i, M, s).

Since in both cases Biw(' M, s) C B} (i, M, s), we conclude that

postulate B*8 is validated. O
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1.3.5 Selection functions revisited

In this section we elaborate on the concept of selection functions. In par-
ticular, we show that selection functions can be seen as providing the
semantic counterpart of partial meet contraction functions as defined in
the AGM framework. This link with partial meet contraction functions
leads to a concrete, and fairly simple, instantiation of selection functions.
Furthermore it is shown that our kind of selection functions provides a
strengthening of the selection functions as proposed by Stalnaker in the
context of a conditional logic [Stalnaker, 1968]. We start by relating the
demands imposed on selection functions to the AGM postulates for be-
lief contraction. This relation is presented in the following proposition,
leading to a refinement of the results obtained in Theorem 1.3.21.

Proposition 1.3.22 Let M be some model with state s, and let ¢ € L.
Let r(i, contract ¢)(M, s) be defined as in 1.5.16 but with o replaced by
an arbitrary function ¢ : A x S X Ly — o(S). Then it holds that:

o If ¢ satisfies X1 then B*5 is validated.

o [f< satisfies X2 then B*3 is validated.

e Given that ¢ satisfies X1 it is the case that if ¢ satisfies X3 then

B1t4 is validated.

o If ¢ satisfies X4 then BL6 is validated.

o If ¢ satisfies ©5 then BT is validated.

o [f< satisfies X6 then B*8 is validated.

The implications given in Proposition 1.3.22 cannot be generalized to
equivalences. That is, the conditions imposed on selection functions are
sufficient to bring about validation of the postulates for belief contraction,
but are not necessary to do so. The following example sheds some more
light on this issue.

Example 1.3.23 Consider the single-agent language £, based on Il =
{p,q} and At = {a}. Consider the model M = (S, 7,R,B,r, c) where

g S = TUZ/{,T: {t07t17t2}7u - {UO,Ul,UQ}

o 7(p,t;))=1iff 7(p,u;) =1iff j=00r j=1
(g, t;) =1iff 7(q,u;) =1iff j =0

e R(1) = S?

e B(l,s) ={tg} forall se S

e r is arbitrary
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e c(l,a)(t)=1forallt €T, c(l,a)(u) =0forallteld
Note that although the elements of 7 are copies of the elements of &/ on
the propositional level, they do not satisfy the same set of formula. For
M.t = Aja for each t € T, whereas M, u | —Aa for all u € U. Define
the function ¢ : A X S x Ly — (S) for all s € S as follows:

S(1,s,¢) = {to, uo} if Mty =@
s(1,s,9) = {to} it M =g
(Lisso) ={teT | MtEpU{t} Mty Ep&
MEp& et
S(Iys,p) ={ueld | M,ulptU{ty} it Mty =k
M %@&@b{cplp

The function ¢ is not a selection function for M. In particular, ¢ does

meet only one of the demands given in Definition 1.3.15. To see this, take

some arbitrary s € S.

Since ¢ yields identical results for all s € §, demand X0 is met.

Since ty € ¢(1,s,p) and tg & [-p], demand X1 is not met.

Since ug € ¢(1,s,—p) and ug ¢ B(1, s), demand X2 is not met.

Although S N [—tt] = 0, ¢(1, s, tt) = {t¢}, and hence demand X3 is

not met.

e Although M, tqg E Ki(—=q < (p A —q)), <(1,8,7q) = {to, ug, us}
whereas ¢(1,s,p A =q) = {to, t2}, and hence demand ¥, is not met.

e Since it is the case that ¢(1,s,pAq) = {to,t1,t2}, <(1,s,p) = {to, t2}
and ¢(1,s,q) = {to, ur,us}, <(1,8,p A q) Z <(1,s,p) Uc(1,s,q), and
hence demand X5 is not met.

e Although ¢(1,s,gAp)N[=q] = {t1,ta} #0,<(1,s,9) Z<(1,8,¢AD)
and hence demand Y6 is not met.

Thus ¢ is by no means a selection function for M. It is however easily seen
that when defining r(1, contract ¢)(M,s) based on the non-selection
function ¢, all the AGM postulates as phrased in Theorem 1.3.21 are
validated®.

Despite the negative results of Example 1.3.23, we can prove that when
defining r for the contract action based on some function ¢ that adds

4One way to see this is by remarking that ¢ is a variant of the selection function o, as
presented in Definition 1.3.26 in which one uses the fact that 7- and U/-worlds satisfy exactly
the same sets of propositional formulae.
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doxastic alternatives, validation of the AGM postulates imposes some
weak variants of the demands for selection functions on <.

Proposition 1.3.24 Let M be some Kripke model with state s. Assume
that r(i, contract ¢)(M,s) is defined as in 1.3.16 with o replaced by an
arbitrary function ¢ : A x 8§ x Lo — ©(S). Then if contract is to meet
the demands presented in Theorem 1.3.21 it follows that:

g C(iv‘(;v@) - [g]R(ﬂ

o B(i,s) N [-ol = 0&[slr N [-o] # 0 = cliss.o) 0[] # 0

The fact that our approach using selection functions defines a contrac-
tion function which satisfies the AGM postulates is not as surprising as it
might seem at first sight. Fact of the matter is that selection functions can
be seen as model-based, knowledge-restricted variants of the partial meet
contraction functions defined in the AGM framework. The idea behind
partial meet contraction functions is that, given an underlying logic, con-
tractions validating the AGM postulates can be implemented as follows.
For a belief set K and a formula ¢ that is to be contracted, a partial
meet contraction function yields the intersection of a set of maximal sub-
sets of K that do not entail ¢. More formal, K = N S(K L ¢), where
K 1 ¢ is the set of belief sets K’ that fail to imply ¢ and are maximal
subsets of K, and S is a function that selects some of the elements of
K L . Selection functions can be seen as the semantic counterpart of
partial meet contraction functions. Whereas in partial meet contraction
functions some of the maximal subsets not implying the contracted for-
mula are selected, our selection function picks out some of the maximal
subsets of the belief set not implying the formula, given the model under
consideration. This can be seen as follows. Assume some Kripke model M
with state s to be given. Assume furthermore that M, s | B;p A = K¢
for some ¢ € Ly. Given this model, it is obvious that adding any of the
worlds from [s]gr@) N [-¢] to the set of doxastic alternatives of i results
in a model in which the agent no longer believes ¢. Furthermore, it is
even so obvious that it is sufficient to add exactly one of the worlds from
[s]r@) N [7] in order to result in a model in which the agent no longer
believes ¢. From this point of view, a selection function selects some of
the maximal subsets of a belief set, and the resulting belief set is the
intersection of these maximal subsets, all with respect to the model M.
The following proposition formalizes these informal ideas.
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Proposition 1.3.25 Let some Kripke model M with state s be given.
Let 0 be some selection function for M. Define for ¢ € Lg:

o B(i,M,s) L p={{B(i,M,s)}} if p € K(i, M, s)

o B(i,M,s) Lp={{ve Ly | Vs e€B(i,s) U{s"}M,s" =]} |

s" € [slray N [~} if o & K(i, M, s)
o S(B(i.M,s) Lo)={{ve Ly | Vs €B(i,s) U{s"}
(M. F ]} | 5" € oli, 5. 9)}

Then B (i, M,s) = N S(B(i, M, s) L ¢).

The relation with the partial meet contraction functions as formal-
ized in Proposition 1.3.25 suggest a concrete implementation of selection
functions, the so called All-is-Good, or AiG, function. The idea under-
lying AiG functions is that, whenever necessary, all the states from the
epistemic equivalence class that do not support the formula that is to be
contracted, are added to the set of doxastic alternatives. The AiG func-
tion can be seen as the semantic counterpart of the full meet contraction
function in the AGM framework. When performing full meet contraction
of a belief set K with a formula ¢, the intersection of all maximal subsets
of K not implying ¢ results.

Definition 1.3.26 (The All-is-Good function) Let M be a Kripke
model. The AiG function o, is for all s € M and ¢ in £, defined by:

o 0,(i,s,0) =B(i,s) N [~p] if B(i,s) N [-p] # 0

o 0,(i,5,¢) = [s|ru) N [-¢] otherwise

Proposition 1.3.27 The AiG function o, as given in Definition 1.3.26
1s a selection function.

Proof: We successively show that the AiG function satisfies the demands
for selection functions. So assume that o, is the AiG function for some
model M with states s, s’, and let ¢, € Ly be arbitrary.
¥0. Suppose s € [s|gg). Then B(4,s) = B(i, s') and [s|r@) = [s'|r@) and
hence demand X0 is met.
$1. Since 0,(i, 5, ¢) = B(i, s)N[~¢] C [s]ru)N[~e] if B(i, s)N[-¢] # 0.
and 0,(1, 5, ¢) = [s|r@) N [¢] otherwise, demand X1 is indeed met.
¥32. Since 0,(i,s,p) = B(i,s) N [-¢] C B(i,s) if B(i,s) N [-p] # 0,
demand Y2 is obviously validated.
¥3. Demand X3 follows directly from the definition of the AiG function.
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4. I [s]ryN ] = [slr@N[¢], then both B(i, s)N[=¢] = B(i, s)N[-¢]
and [s]r@) N [¢] = [s]r@e) N [~2]. which suffices to conclude ¥4.
5. We distinguish four cases:

e B(i,s)N[-¢] = 0,B(i,s)N[-¢] = 0. In this case also B(7, s)N
[~V =] = 0. Hence a4(i, 5,0 A ) = [s]rg, [[w V-] =
[sTr) N ([=e] U [=91) = (sl 0 [=e]) U ([] n[-4]) =

0a(iys,0) Ui, s, 1),

e B(i,s)N [ ]] @,B( s) N [-¢] # 0. In this case B(i,s) N
[-oV—¢] = B(i,s)N[-¢]. Since B(4, ) [-¢] # 0, it follows
that o,(i,s, o A1) = 0,(i,s,7).

e B(i,s)N [[—wp]] # 0,B(i,s) N [-¢] = 0. This case is completely
analogous to the previous one, resulting in o,(i, s, A ) =
0a(iy 8, ¢).

e B(i,s)N[-¢] # 0,B(i,s)N ][] # 0. Then also B(i,s)N[-pV
=] # 0. In this case 0,(i,s, 0 A ) = B(i,s) N [-¢ V=] =
B(i,5) N (I~ U [=6]) = (B, 5) 1 [~¢]) U (B(i, ) N [~6]) =
0a(iys,0) Ui, s, 1),

Since in all four cases 0,(i, s, A1) C 0,(i,s,9) Uo.(i,s, 1), we
conclude that X5 is validated.
6. We distinguish two cases:

e B(i,s)N[-pV-1] = 0. In this case both B(i, s)N[-¢] = 0 and
B(7, s)N[-¢] = 0, and by an identical argument as given in the
first case of the proof of 35, we conclude that o,(i, s, ¢ A1) =
0a(iys,0) Ui, s, 1),

e B(i,s)N[-pV 1] # 0. In this case 0,(i,s, o A1) = B(i,s) N
[-¢ Vv =], and since o,(i, s, A ) N [-¢] # 0, also B(i,s) N
[-¢] # 0. Hence 0,(i, s, ) = B(i,s) N [-¢]. Now if B(4,s) N
[-¢] = 0 it follows by an identical argument as given in the
third clause of the proof of ¥5 that o,(i, s, o A1) = 04(i, s, ).
If B(i, s)N[—2] # 0 it follows by an identical argument as given
in the fourth clause of the proof of 35 that o,(i, s, o A ¢) =
0a(iys,0) Ui, s, 1),

Since in both cases 0,(i,s,¢) C 0,(i,s,¢ A1) we conclude that
demand 6 is validated. O
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Proposition 1.3.27 states that AiG functions are indeed selection func-
tions, which implies that defining contractions in terms of AiG functions
results in a validation of the AGM postulates. In light of the general feel-
ing that full meet contraction — and therefore also AiG contraction —
is not completely acceptable since it results in belief sets that are too
small, it is important to recall that the AiG function is but a special in-
stantiation of the general concept of selection functions. It is in particular
not the case that the demands imposed on selection functions force AiG
contraction.

The belief states resulting from an application of the contract action
can be completely characterized in terms of a priori information, i.e.,
knowledge and belief, of the agent. In one of the clauses given below it is
presupposed that r for the contract action is based on the AiG function,
the other clause holds for general selection functions.

Proposition 1.3.28 For all ¢, € Ly we have:
e = B,p — (|do;(contract ¢)|B;1 < B;1)
e = B,y — ([do;(contract ¢)|B;v + (B;Y AKi(—p — v))) if the
definition of r for the contract action 1s based on the AiG function
for all models.

Again the result of Proposition 1.3.28 can be rephrased to make it
more in line with a characterization of full meet contraction in the AGM
framework.

Proposition 1.3.29 For all Kripke models M with state s, and for all
v, € Ly we have:
e o & B(i,M,s) = (e Bj(i,M,s) & e B(i,M,s))
e v e B(i,M,s) = (v € Bj(i.M,s) & ¢ € B(i, M,s)&(—p —
V) € K(i, M, s)) if the definition of r for the contract action is
based on the AiG function for M.

Proof: Let M be some model with state s, and let p, ¢ € Ly be arbitrary.
e Suppose ¢ ¢ B(i,M,s). By B'3 we have that Bé(i, M, s) =
B(i, M, s), and hence ¢ € Bi(?ﬁ,./\/l,s) iff v € B(i, M, s).
e Suppose ¢ € B(i, M, s). Let M', s = r(i, contract ¢)(M, s). Then:
Ve B(i,M.s)
< e B(i, M, s)
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& M s =) for all 8" € B'(i, )
& M s =) for all s" € B(i, s) Uou(i, s, @)
& ./\/l’ "E ¢ for all s € B(4, s) and
s' = for all s € 0,(i, s, p)

& /\/l s' =1 for all s" € B(i, s) and

/\/l, s' = for all ' € [s|ru) N [~¢]
< M, s E B and M, s =K, (—¢p — )
< € B(i,M,s) and =p — ¢ € K(i, M, s) O

Besides the relation between selection functions and partial meet con-
traction functions, another interesting relation exists between our selec-
tion functions and those defined by Stalnaker [Stalnaker, 1968]. Stalnaker
uses selection functions (to avoid confusion we use the term conditional
selection functions to refer to selection functions in the sense of Stalnaker)
in the context of a Kripke style semantics for conditional logic. Given a
Kripke model M and a state s in M, a conditional selection function f
when applied to a pair (¢, s) yields the most preferred or most reason-
able world given ¢ and s. Stalnaker gives four demands that a reasonable
conditional selection function should meet:

1. ¢ is true at f(g,s).

2. f(p,s) is undefined only if s’ is inaccessible from s for all worlds s’

in which ¢ holds.

3. if p is true at s then f(p,s) =s.

4. if pis true at f(1¢, s) and 9 is true at f(¢, s) then f(¢,s) = f(¥,s).
Intuitively, there seems to be at least some resemblance between the ideas
underlying Stalnaker’s conditional selection function and those underlying
our selection functions. For although conditional selection functions aim
at yielding a single world that satisfies a given formula and selection
functions aim at yielding a set of worlds that falsify a given formula, both
aim at yielding ‘reasonable’ results. For conditional selection functions this
reasonableness is enforced through the demands given above, whereas for
selection functions this is enforced through the demands ¥1 through ¥6
as given in Definition 1.3.15. One could ask whether imposing demands
similar to those proposed by Stalnaker would result in selection functions,
and wvice versa. To investigate this relation in our framework we introduce
the notion of s-selection functions. Basically these s-selection functions
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can be seen as conditional selection functions that are at some points
adapted to make them more in line with our framework.

Definition 1.3.30 Let some model M be given. A function s : A x S x
©(S) is an s-selection function for M if and only if it meets the following
constraints for all s € § and for all ¢, € Ly.
S1. -y is true at all states from s(i, s, @)
S2. s(i, s, ) is empty only if " is (epistemically) inaccessible from s for
all worlds s’ in which = holds.
S3. if B(4,s) N [¢] # 0 then s(i, s,¢) C B(i, )
S4. if = is true at all states from s(7, s, 1) and =7 is true at all states
from s(i, s, @), then s(i, s, @) = s(i, s, )

It turns out that all selection functions for a given model, are also
s-selection functions for the model. The converse does however not hold.

Proposition 1.3.31 For all models M, and for all functions ¢ : Ax S x
Ly — o(8) it holds that if < is a selection function for M then < is an
s-selection function for M.

Proof: Let some Kripke model M and function ¢ be given such that ¢ is
a selection function for M. We show that ¢ satisfies the demands for an
s-selection function. The properties S1 through S3 follow directly from
demands 1 through X3, leaving only S4 to be proved. Hence assume that
- is true at all states from ¢(i,s,1) and =7 is true at all states from
(7, s, ). This implies that ¢(i, s,7) C [-¢] and <(7, s, ) C [-9]. From
Y1 it follows that ¢(i, s, ¢) C [s]r@) N [7¢], and hence (i, s, ¢) C [s]r@) N
[=¢] N [~¢]. Analogously it follows that ¢(i, s, 1) C [s]r@) N [~e] N [-¢].
If either [s|giy N [—¢] = 0 or [s]re) N [~¢] = 0, then both <(i,s,¢) =
0 and ¢(i,s,1) = 0 and hence S4 would be met. Hence assume that
[slr@y N [~e] # 0 and [s]re) N[~¥] # 0. Then also [s]gu) N [~¢ V=] # 0.
From ¥3 it follows that none of <(i,s,¢), <(i,s,¢) and (i, s, A ¢) is
empty. By 35 we have that ¢(i,s,0 A 1Y) C <(i,s,¢) Uc(i,s,1). Hence
<(i,5,0 ANY) C ([slry N [2e] N [2¢]) (1) Then <(, s, 0 A ) N [=¢] # 0,
and hence by X6 we have that <(i,s,¢) C <(i,s, o A ¥) (I). Analo-
gously we have that ¢(i,s,v) C <(i,s,¢ A ¥). Hence <(i, s, A ¥) =
<(i,s,0) Ucliys, ). Now = Ki(((mp V ¥) A p) < (¢ A ¢)). Hence
by ¥4, <(i,s,0 A) = ¢(i,8, (7@ V) A p). From 35 it follows that
g(i, 5,0 A w) C §(i7 5,7V w) U g(i, S, @)' Since by X1, §<i7 5,7V w) -
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[ A =], it follows from (1) that ¢(i,s,¢ A Y) Ng(i,s,—p V) = 0.
Hence <(i, s, A ) C ¢(i,8,¢). Combining this with (1) yields that
¢(i,s,0 A1) = ¢(i, s, p). By an analogous argument we conclude from
SR~V 9) A D) © (9 A D) that o5, A 1) = <(irs, ). Thus
(i, 8,¢) =<(i,s,1), which suffices to conclude that ¢ validates S4. Thus
¢ is an s-selection function. O

Proposition 1.3.32 Some Kripke model M and function ¢ : A X S X
Ly — o(S) exist, such that ¢ is an s-selection function for M, but not a
selection function. Furthermore, when defining contractions based on the
function <, not all AGM postulates for belief contraction are validated.

Proposition 1.3.32 states that it is not sufficient to use s-selection func-
tions in defining contractions, for then not all AGM postulates are val-
idated. As such, it is necessary to strengthen the demands proposed by
Stalnaker in order to define AGM contraction in a modal context. Al-
though Example 1.3.23 shows that the strengthening that we propose in
our definition of selection functions is not the necessary and sufficient one,
Theorem 1.3.21 shows that it is at least a sufficient one.

1.3.6 The revise action

Having defined actions that model expansions and contractions, we now
turn to defining actions that model revisions. A revision is a change of be-
liet through which some formula is added to the beliefs of an agent, while
preserving consistency. Our definition of actions that model revisions is
based on the Levi identity [Levi, 1977]. Levi suggested that revisions can
be defined in terms of contractions and expansions: a revision with ¢ can
be defined as a contraction with —p followed by an expansion with .
Given the definitions of contractions and expansions of the previous sec-
tions and the fact that the class of actions Ac that we consider is closed
under sequential composition, the Levi identity provides for a means to
define revisions as the sequential composition of a contraction and an
expansion action.

Definition 1.3.33 Let some model M = (S, 7,R,B,r,c) with s € S
and ¢ € Ly be given. We define:
e r(i,revise p)(M,s) = r(i, contract —p;expand ¢)(M,s)
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Definition 1.3.33 indeed provides for an intuitively acceptable formal-
ization of belief revision.

Proposition 1.3.34 For all p,1,0 € Ly we have:
= [doj(revise ¢)|Biy
= [do;(revise ¢)|B;Y — [do;(expand ¢)|B;v
= —-B,7¢ — ([do;(expand ¢)|B;¥ + [do;(revise ¢)|B;?)
= K,—p < [do;(revise ¢)|B;ff
= K;(¢ < ¥) = ([do;(revise ¢)|B;Y > [do;(revise )| B;?)
= [do;(revise ¢ A ))|B;0 — [do;(revise p;expand ¢)|B;¢
= —[do;(revise ¢)|B;—) —
([doi(revise p;expand ¢)|B;0 — [do;(revise ¢ A ¢)|B;¥)

The first clause of Proposition 1.3.34 states that agents believe ¢ as
the result of revising their beliefs with ¢. The second clause states that a
revision with ¢ results in the agent believing at most the formulae that it
would believe after expanding its beliefs with ¢, i.e., changing the belief
set to incorporate ¢ consistently (if possible)  thisis a revision with ¢
results in a subset of the set of beliefs that results from straightforward
inserting ¢ in the belief set — an expansion with ¢. The third clause
formalizes the idea that expansion is a special kind of revision: in cases
where = is not believed, expanding with ¢ and revising with ¢ amount to
the same action. The left-to-right implication of the fourth clause states
that if = is known, i.e., =@ is among the agent’s principles, then the
revision with ¢ results in the agent believing ff, i.e., the revision results
in the absurd belief set. The right-to-left implication of the fourth clause
states that the agent will believe ff only after it performs a revision with
one of its principles. The fifth clause states that revisions with formulae
that are known to be equivalent have identical results. The sixth clause
formalizes the idea that the revision with the conjunction ¢ A ¢ results
in the agent believing at most the formulae that it would believe after
a revision with ¢ followed by an expansion with ¢. The seventh clause
states that if a revision with ¢ does not result in =7 being believed, then
after revising with ¢ A 1) the agent believes at least the formulae that it
would believe as the result of performing a revision with ¢ followed by
an expansion with . As Gardenfors remarks, clauses 6 and 7 provide for
some sort of minimal change condition on revisions. With the exception of
the first of the AGM postulates for revision, all occur in Proposition 1.3.39
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as validities. In §1.3.7 we come back to the AGM postulates for revision.
Also for revisions we can prove some properties dealing with multiple
agents and universally minimal change.

Proposition 1.3.35 For all o, € Ly and for all x € L we have:

e = [do;(revise ) K;B;1) — [do;(expand ¢)/K,;B;1

e = [do;(revise ¢)|B,;B;1) — [do;(expand ¢)|B;B;¢

o =-Bip — ([doi(revise ¢)]x ¢ [do;(expand ¢)]x)

e S Ki(¢ ¢ ) — ([doj(revise ¢)]y > [do(revise 1)]y)

e revise satisfies realizability, determinism and idempotence

The first two clauses of Proposition 1.3.35 state that the knowledge
and belief of watching agents on the beliefs of the executing agent fol-
lowing a revision are contained in the knowledge and belief following an
expansion. The third clause states that whenever an agent does not be-
lieve some formula, a revision with the formula and an expansion with the
formula constitute identical actions. The fourth clause states the prop-
erty of identical change for known equivalences. The last clause states
that revisions also validate the properties of Definition 1.3.4.

The belief sets resulting from application of the revise action are
characterized as follows.

Proposition 1.3.36 For all ¢, € Ly we have:
o =K,~yp <> [do;(revise ¢)|B,ff
o =By — ([doi(revise 9)|B;Y <> Bi(p — ¢))
o = Ki~p ABimp — ([doj(revise ¢)[Bi < Ki(p — ¢)) if the
definition of r for the contract action is based on the AiG function
for all models.

The first clause of Proposition 1.3.36 states that in cases where an
agent knows the negation of some formula to be true, a revision with
this formula results in absurd beliefs. The second clause states that in
situations where the negation of some formula is not believed, revising
beliefs with the formula amounts to an expansion with the formula. The
last clause states that in situations that are not of the kinds described
in the first two clauses, formulae are believed after a revision with ¢ if
it is known beforehand that ¢ implies the formula, i.e., the belief set of
the agent after a revision with ¢ consists of all those formulae that are
known to be implied by ¢.
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1.3.7 Revisions and the AGM postulates

The AGM postulates for belief revision are given below. In these postu-
lates K, ¢ and K:; are assumed to have their usual connotation, and K;
denotes the revision of K with the formula .

Definition 1.3.37 The AGM postulates for belief revision:

(G* ) K7 is an AGM belief set.
*2) ¢ e K}
) K5 C KF
*4) If —mp ¢ K then K} C K.
) K=K, if and only if I—Cpl .
)If I—Cplgoﬁwthen K =K.
) K ww (Ks*a)jb_
G*8) Tf =) ¢ K%, then (K7%)) C K7,

When defining revision through the Levi identity — starting from ex-
pansions and contractions that satisfy the appropriate postulates — the
AGM postulates for belief revision are met [Girdenfors, 1988; Levi, 1977).
The same holds in our framework.

Definition 1.3.38 The revision of B(i, M,s) with ¢ € L, notation
B (i, M, s), is defined by:

o Bi(i,M,s) ={v € Ly | M,s = [doj(revise p)]B;1}
The sequence of a revision with ¢ followed by an expansion with ¢ of
B(i, M, s), notation B;i(i, M., s), is defined by:

o Bi(i.M,s) ={10 € Ly | M,s = [do;(revise ¢;expand ¥)|B;}

Theorem 1.3.39 Let M be some Kripke model. For all s € M and for
all o, € Ly the following are true.

(B*1) B (i, M, s) is a belief set.

B*2) ¢ € Bx(i, M, s).

B (i, M,s) C B} (i, M, s).

B*4) If ~p & B(i, M, s) then B} (i, M,s) C Bj(i, M, s).
B(i,M,s) =B, if and only if ~p € K(i, M, s).

If o < ¢ € K(i, M, 5) then B} (i, M, s) = Bj (i, M, s).

St M, s) C B (i, M, s).
If = & B (i, M, 5), then B (i, M, s) C B}, (i, M, s).

o)
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Proof: Let M be some Kripke model with state s. Let ¢ be an arbitrary
selection function for M. Let ¢ € L be arbitrary, and let

e M' s=r(i,contract —p)(M, s)

e M" s=r(i,expand p)(M', s) = r(i,revise ¢)(M, s)

e M" s=r(i,expand ¢)(M,s)

We successively prove all clauses of Theorem 1.3.39.

e (B*1) This postulate is shown in the same way as the corresponding
postulates for belief expansion and contraction.

e (B*2) Note that B(i,M,s) = B(i,M",s) = B (i, M', s). From
B*2 it follows that ¢ € Bf(i, M',s), which suffices to conclude
that the postulate is validated.

e (B*3) By definition of r for contract and expand it follows that
B"(i,s) = (B(i,s) U a(i,s, 7)) N [¢]. Now if some formula ¢ €
B (i, M, s), this means that M", s" = ¢ for all s" € (B(4,s) U
o(i,s,~p))N[e]. Since ¢ is propositional this implies that M, s” =
Y for all s € (B(i,s) N []). By definition of r(i, expand ¢) we
have that B"(i,s) = B(i,s) N [¢]. But then M" s" = 4 for all
s" € B"(i,s), and hence M" s = B;1, which implies that ¢ €
B} (i, M,s).

o (B*4) If =p & B(i, M,s), then B(i,s) N [p] # . By demand
Y2 for selection functions, it follows that B'(i,s) = B(i, s). Hence
B"(i,s) = B(i, s) N [¢]. Also B"(i,s) = B(i,s) N [¢], and M", s =
B;v if and only if M", s |= B¢ for all ¢ € Ly. Thus B (i, M, s) =
B(i, M",s) = B(i, M", s) = B (i, M, 5).

e (B*5) We prove two implications.

‘=" Suppose Bj(i,M,s) = By. This implies that B"(i,s) = 0.
Hence by definition of r for contract and expand this implies
that (B(i,s) Ua(i,s, 7)) N [e] = 0. In particular this implies
that o(i, s,7p) N [¢] = 0, and since by X1, (i, s, =~¢) C [¢],
we conclude that o(i, s, =) = 0. It follows by demand X3 that
[s]lr@yNe] = 0. This implies that M, s = =y for all 5" € [s]r@)
and thus M, s = K;—¢, and —¢ € K(i, M, s).

‘<" Suppose =p € K(i, M, s). Then by demand X3, o(i, s, ~¢) =
(. Hence B(i,s) C [~¢] and B'(i,s) C [-p]. Then B"(i,s) =
B'(i,5) N [¢] = 0, and thus B} (i, M, s) = B(i, M",s) = B,.
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e (B*6) Suppose ¢ + ¢ € K(i,M,s). Then also ~¢ < -1 €
K(i, M, s), and by ¥4 it follows that o(i, s, ~¢) = o(i, s, 7). Thus
r(i, contract ¢)(M,s) = r(i,contract ¥)(M,s) = M’ s. Also
B'(i,s) N [¢] = B'(4,s) N [¢], and hence r(i, expand ¢)(M’ s) =
r(i,expand ¢)(M', s). Then it follows that r(i, revise ¢)(M,s) =
r(i,revise ¢)(M, s), and therefore B (i, M, s) = Bj (i, M, s).
(B*7) Assume that My, s = r(i,revise (p A ¥))(M,s), and as-
sume furthermore that M, s = r(i,revise ¢;expand ¥)(M,s).
From the definitions of r for revisions, contractions and expan-
sions, it follows that By (i, s) = (B(i,s) Ua (i, s, ¢ V=) N e A Y]
and By (i, s) = (B(i,s) Ua(i,s,—¢)) N [¢] N [¢]. Hence By(i,s) =
(B(i, s)N[eAy])Ua(i, s, ~pV—1) and By(i, s) = (B(i, s)N[pAY])U
(o(i,s,~p)N[v]). Hence, should o(i, s, ~¢)N[Y] C o(i, s, mpV-1),
then By(i,s) C By(i,s), and therefore B(i, M;,s) C B(i, My, s).
So to prove that o(i,s, =) N [¢] C o(i,s,m¢ V —). Since =
K;(((me V)N (=@ V1)) < =), we have by X4 that o(i, s, ~p) =
o(i,s, (moV =) A (=@ V). From X5 it follows that o(i, s, (—p V
—“VIAN(mpV)) Co(i,s,mpV-Y)Uo(i, s, 7@ V). From X1 we con-
clude that o (i, s, 7@V =) C [ A] and o (i, s, 7@ V) C [pA-1].
Since o (i, s, 7p) C [¢] we have that o(i,s, =) N [¢] C [¢ A ¥].
Hence o(i, s, ~¢) N[¢] C o(i, s, ¢ V=), which was to be proved.
(B*8) Suppose =t & B (i, M, s). To keep our proof understandable
we introduce the following definitions:

My, s = r(i,revise ¢)(M,s)

M, s = r(i,expand )(M;y, s)

My, s = r(i, contract - V ) (M, s)

My, s =r(i,expand ¢ A )(Myy,s) = r(i,revise ¢ A )(M,s)
Using similar arguments as in the proof of B*7 we find that:

Bii(i,5) = (B(i, s) Ua(i,s. =) N [¢]
(B(Zv S) N [[99]]) U U(iu S, _'99)

Bi(i,s) =By
Boi(i,5) = B(i,s) Ua(i,s,mp V 1))
By(i,5) = (B(i,5) Uoli,s,~pV ) 0 [p A Y]
(B(7’ S) N [[99 N ¢H) U 0(7:7 5,79V ﬂﬁ)
Now to prove that By(i,s) C Bj(i,s). For then it follows that
B(i, My, s) C B(i, My, s), which on its turn implies B;,z(?}, M, s) C
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By, (i, M, s5). We distinguish two cases:

e —¢ € B(i, M, s). Then B(i, s) C [~y], and thus B(7, s)N [¢]
(. Hence By1(i,s) = o(i, s, 7p) and By (i, s) = a(i, s, 7¢p) N[
In this case also ~pV =1 € B(i, M, s). Hence B(7, s)N[pAY]
0, and thus By(i,s) = o(i, s, ﬁc,ov—w) Since ) & By (i, M,
it follows that Byq (i, s)N[¢] # 0, and thus o (i, s, —wp) [¥]
From Y1 it follows that o (i, s, 7p)N[pAY] = 0(7,, s, )N [¢]
[v] = o(i,s,~) N [Y] # 0. Then since = K;(((—¢ V =) A
) > —p), we have by 34 that o (i, s, (V=) A=p)N e A
Y] # 0, and by 36 that o(i,s, ~p V =) C o(i,s, (—p V =) A
—¢) = o(i, s, ). Since by X1, o(i, s, 7@V ) C [ A1], and
given that o A @] C [¢], it follows that o(i, s, ¢ V =) C
o(i,s,~p) N [v]. Hence By(i,s) C By(i, s).

e —¢ & B(i, M, s). Note that in this case -V —np ¢ B(i, M, s):
for if -y Vv —nb € B(i, M, s) and —¢ ¢ B(i, M, s), then from
B*4, B*2 and B*3 it follows that {—¢oV =1, ¢} g B (i, M, s).
Since By (i, M, s) is deductively closed by B*1 it follows that
- € B} (i, M, s) which contradicts the assumption that ¢ ¢
B (i, M, s). Hence = V =) ¢ B(i, M, s). This implies that
both B(7, s)N[p] # 0 and B(7, s)N [[cpAw]] # (). Then it follows
by ¥2 that both o(i, s, ~¢) C B(i,s) and o(i,s, ¢ V =) C
B(i, s). Thus By (4, s) = B(4, s)N[¢], Bi(i, s) = (B(?, s)Ne])n
[¢], Bai(i, s) = B(i, s), and B2(7' s) =B(i,s)N [[cp A 1]. Since
for all 8" C S it holds that ("N [¢]) N [¢] =S N e A Y], for
all ¢ and 9 in Ly, it follows that By(i, s) = BQ(Z s).

In both cases By(i,s) C By(i,s), hence B(i, M;,s) C B(i, M,, s),
and thus By (i, M, s) C B}, (i, M, s). O

o
s),
0.
n

Also the result of Proposition 1.3.36 can be rephrased in terms that
make it more in line with the AGM framework.

Proposition 1.3.40 For all models M with state s, and for all p € Ly:
o ¢ € K(i,M,s) = Bi(i, M, s) = By.
o ¢ & B(i, M,s) = B (i, M, s) = Th(B(i, M, s) U{e}).
o —p € B(i, M, s)\K(i, M, s) = B (i, M, s) = Th(K(i, M, s) U{p})
if the definition of r for the contract action is based on the AiG
function for M.
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Proof: Let M be some model with state s, and let ¢ be some arbi-
trary propositional formula. Let M', s = r(i, contract —¢)(M,s), and
let M" s = r(i,expand ¢)(M',s) = r(i,revise ¢)(M,s). We succes-
sively prove the three cases.

e Suppose = € K(i, M, s). Then by definition it follows that M', s =
M, s, and hence M', s = B;—p. Then the expansion with ¢ of the
beliefs of agent i in M, s leads to a model M" such that B”(i, s) =
0, and hence B (i, M, s) = B(i, M",s) = By.

e Suppose ¢ & B(i, M, s). Then it follows from B*3 and B*4 that
B (i, M,s) = B (i, M, s), and by Proposition 1.3.14, B} (i, M, s) =
Th(B(i, M, s) U {p}).

e Suppose —¢ € B(i, M, s)\K(i, M, s). Then by definition of the AiG
function it follows that B'(i, s) = B(7, s) U ([s]r@) N [¢])- By defini-
tion of r(i, expand ¢) it follows that B”(i, s) = B'(i, s) N [¢], hence
B"(i,s) = (B(i, s) U ([s]r) N [¢])) N ], and since —¢ € B(i, M, s)

it follows that B"(i,s) = [s|lgru) N [¢]. By an argument similar
to that given in the proof of Proposition 1.3.14 it is shown that
B (i, M, 5) = Th(K(i, M. 5) U {io}). 0

Again note that, due to its lack of expressive power as compared to our
framework, the reasonable and desirable properties of Proposition 1.3.35
cannot be formalized within the AGM framework.

1.3.8 The ability to change one’s mind

In the previous (sub)sections, we dealt with the formalization of the op-
portunity for, and the result of, the actions that model the belief changes
of agents. Here we look at the ability of agents to change their beliefs.

For ‘mental’” actions, like testing (observing) and communicating, the
abilities of agents are closely related to their (lack of) information. This
observation seems to hold a fortior: for the abstract actions that cause
agents to change their beliefs. For when testing and communicating, at
least some interaction takes place, either with the real world in case of
testing, or with other agents when communicating, whereas the changing
of beliefs is a strictly mental, agent-internal, activity. Therefore, it seems
natural to let the ability of an agent to change its beliefs be determined
by its informational state only.
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The intuitive idea behind the definitions as we present them, is that
the ability to change beliefs can be used to guide the changes that the
beliefs of an agent undergo. In particular, if an agent is able to change
its beliefs in a certain way, then this change of belief should work out as
desired, i.e., it should neither result in an absurd belief set nor cause no
change at all. Another point of attention is given by the observation that
the Levi identity should also be respected for abilities, i.e., an agent is
capable of revising its beliefs with a formula ¢ if and only if it is able to
contract its beliefs with —¢ and thereafter perform an expansion with .

Definition 1.3.41 Let M be some Kripke model with state s, and let
@ € Ly be arbitrary. We define the capability function c for the expand,
contract and revise actions in the following manner:

c(i,expand p)(M,s) =1 & M,s=-B;~p
c(i,contract ¢)(M,s) =1 & M, s = -K;p
c(i,revise ¢)(M,s) = c(i, contract —y;expand ¢)(M, s)

The first clause of Definition 1.3.41 states that an agent is able to
expand its set of beliefs with a formula if and only if it does not already
believe the negation of the formula. The second clause formalizes the idea
that an agent is able to remove some formula from its set of beliefs if and
only if it does not consider the formula to be one of its principles. The
ability for the revise action is defined through the Levi identity.

Proposition 1.3.42 For all ¢ € Ly we have:
e = A,expand ¢ <> K;A expand ¢
= A,expand ¢ — (do;(expand ¢))-B;ff
= A,contract ¢ <> K;A;contract ¢
= A;contract ¢ — (do;(contract ¢))-B;p
= Ajrevise ¢ <> A;contract -y
= Ajrevise ¢ — (do;(revise ¢))(B;p A “Bff)

The first and third clause of Proposition 1.3.42 state that agents know
of their ability to expand and contract their beliefs; a consequence of the
fifth clause is that agents also know of their ability to revise their beliefs.
The second, fourth and sixth clause formalize the idea that belief changes
of which the agent is capable, behave as desired, i.e., an expansion does
not result in absurd belief sets, a contraction leads to disbelief in the
contracted formula, and a revision results in a combination of these.
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1.4 Discussion

In this paper we defined actions that model three well-known rational
changes of belief, viz. expansions, contractions, and revisions. We charac-
terized the states of affairs that result from execution of these actions, the
conditions that decide whether agents have the opportunity to perform
these actions, and the capacities that agents should posses in order to be
able to perform these actions. The action that models belief contractions
is defined using selection functions. These are functions that select a sub-
set of the set of epistemic alternatives of an agent that is to be added to
its set of doxastic alternatives, in order to contract its set of beliefs. We
proved that our kind of selection functions provides a strengthening of
the selection functions proposed by Stalnaker [Stalnaker, 1968|, and can
furthermore be seen as the modal counterpart of the partial meet contrac-
tion functions as defined in the AGM framework. The action that models
belief revision is defined in terms of a contraction and an expansion in a
way suggested by the Levi identity [Levi, 1977]. Agents are capable of per-
forming a belief-changing action only if execution of the action works out
as desired. We showed that our belief-changing actions satisfy the AGM
postulates for belief expansions, belief contractions, and belief revisions,
thereby supporting our claim that the formalization that we present is
both an intuitively and philosophically acceptable one.
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