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Abstract. Modeling drivers’ behavior is essential for the rapid prototyping of 

error-compensating assistance systems. Various authors proposed control-

theoretic and production-system models. Based on psychological studies 

various percepts and measures (angles, distances, time-to-x-measures) have 

been proposed for such models. These proposals are partly contradictory and 

depend on special experimental settings. A general computational vision theory 

of driving behavior is still pending. We propose the selection of drivers’ 

percepts according to their statistical relevance. In this paper we present a new 

machine-learning method based on a variant of the Bayesian Information 

Criterion (BIC) using a parent-child-monitor to obtain minimal sets of percepts 

which are relevant for drivers’ actions in arbitrary scenarios or maneuvers. 
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1   Introduction 

The Human or Cognitive Centered Design of intelligent transport systems requires 

computational models of human behavior and cognition [1, 2]. Particularly the 

modeling of drivers’ behavior is essential for the rapid prototyping of error-

compensating assistance systems [1]. Based on psychological studies [3, 9-11, 13, 20, 

21] various percepts and measures (angles, distances, time-to-x-measures) have been 

proposed for such models. These proposals are partly contradictory and depend on 

special experimental settings. A general computational vision theory of driving 

behaviour is still pending. 

Due to the variability of human cognition and behavior, the irreducible lack of 

knowledge about underlying cognitive mechanisms, and irreducible incompleteness of 
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knowledge about the environment [1] we conceptualize, estimate and implement 

models of human drivers as probabilistic models: Bayesian Autonomous Driver 

(BAD) models. In contrast to [21], BAD models don’t need to be programmed like 

traditional simulation software but are condensed and abstracted in an objective 

manner using machine-learning techniques from human behavior traces.  

2   Bayesian Autonomous Driver Mixture-of-Behaviors Models 

In earlier research [14] we developed a BAD model with Dynamic Bayesian 

Networks based on the Bayesian Programming approach [1] and on the assumption 

that a single skill is sufficient for lateral and longitudinal control. Later, we realized 

that for modeling the complex competence of human drivers a skill hierarchy is 

necessary. We modified the simple BAD model architecture to a hierarchical modular 

probabilistic architecture to construct driver models by decomposing complex 

maneuvers into basic behaviors and vice versa: Bayesian Autonomous Driver 

Mixture-of-Behaviors (BAD MoB) models [5, 6, 15, 16].  

BAD MoB models consist of Gating-, Behavior-Classification-, and Action-

models. Their functional interaction allow the generation of context dependent driver 

behavior by sequencing and mixing pure basic behaviors [5, 6] (Fig. 1). 
 

 

Fig. 1. Exemplary mixing of behaviors in a BAD MoB model assembled from two Action-models, one 

Behavior-Classification, and one Gating model. The Gating-model calculates a weighted sum over the 
answers of the two Action-models, according to the appropriateness of their corresponding behaviors, 

respectively their probabilities or mixing coefficients, inferred by the Behavior-Classification-model. 

Based on a skill hierarchy, partitioning complex scenarios into maneuvers and 

maneuvers into simpler behaviors (cf. Fig. 2), each behavior is modeled by an Action-

model. This is implemented by a dynamic Bayesian network that realizes the sensor-

motor schema of the desired behavior. It can be utilized to infer the conditional 

probability distribution (CPD) of the actions given the former actions and the current 

percepts: P(Actions
t
|Actions

t-1
,Percepts

t
). For each complex scenario (or maneuver) in 
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the skill hierarchy a Behavior-Classification-model is used to infer the 

appropriateness of the corresponding simpler maneuvers (or behaviors). A Gating-

model computes a weighted sum over the inferred CPDs of the Action-models by 

using the appropriateness of their corresponding behaviors, inferred by the Behavior-

Classification-models in the form of mixing coefficients (Fig. 1). By calculating 

weighted sums over the mixture distributions BAD MoB models are able to combine 

mixture distributions in a hierarchically manner. Thus these models allow the 

combination of pure behaviors into more complex maneuvers and maneuvers into 

scenarios. 

BAD MoB models sample random values Actions
t
 = actions

t
 from the inferred 

CPD P(Actions
t
|Actions

t-1
,Percepts

t
) every 50ms. These are used as motor commands 

to autonomously control (simulated) vehicles. 

2.2   Skill hierarchy  

For an experimental BAD MoB in the racing simulation TORCS3, we defined a skill 

hierarchy of three hierarchical layers. The Racing Scenario was partitioned into the 

three maneuvers LaneFollowing, CarFollowing and Overtaking. LaneFollowing was 

partitioned into the behaviors for driving on a straight segment (Straight), through a 

wide curve (Wide) and through a sharp curve (Sharp), etc. pp. (Fig. 2). 
 

 

Fig. 2. Skill hierarchy for a racing scenario with three hierarchical layers.  

2.1   Training Phase 

The learning of a BAD MoB model requires time series of human behavior traces. 

These were obtained from a single driver, who drove several laps on two different 

racing courses in the TORCS simulation. We recorded approximately 15000 data 

samples. Each time-stamped data record contained values for 211 discrete random 

variables (Table 1): two action-variables Acc
t
 and Steer

t
, denoting the position of a 

combined acceleration and braking pedal and the steering wheel angle, four behavior-

variables representing the partitioning of the task hierarchy (Fig. 2) and a set of 205 

time-independent (estimates of distances and angles) and time-dependent percept-

variables (TDPs), similar but not identical to Lee’s time-to-x (tau) measures [12, 13, 

17].  

                                                           
3 http://torcs.sourceforge.net/ (last retrieved 2011-01-31) 
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Table 1. Overview of the two action-variables, four behavior-variables and 205 percept-

variables defined for the foveal and ambient visual channel of the driver [7]. 

Variable Range Description 

Acc
t
 {0,…,14} Position of a combined acceleration and braking pedal. Ranges from 

full braking (0) to full acceleration (14). 

Steer
t
 {0,…,29} Steering wheel angle. Ranges from full turning to the right (0) to full 

turning to the left (29). 

B
t
Sc {0,…,2} Represents the maneuvers LaneFollowing, CarFollowing and 

Overtaking that compose the Racing Scenario. 

B
t
LF {0,…,2} Represents the LaneFollowing behaviors Straight, Wide and Sharp. 

B
t
CF {0,…,2} Represents the CarFollowing behaviors FollowStraight, FollowWide 

and FollowSharp. 

B
t
OT {0,…,2} Represents the Overtaking behaviors PassOut, PassCar and PassIn. 

LS
t
 {0,…,20} Longitudinal speed of the ego-car. 

FCA
t
5m, 

FCA
t
10m, 

…, 

FCA
t
250m 

{0,…,20} 50 Fixed-Distance Course Angles. 

 

SCA
t
0.2s, 

SCA
t
0.4s, 

…, 

SCA
t
10.0s 

{0,…,20} 50 Speed-Dependent Course Angles. 

 

FLA
t
5m, 

FLA
t
10m, 

…, 

FLA
t
250m 

{0,…,20} 50 Fixed-Distance Lane Angles. 

 

SLA
t
0.2s, 

SLA
t
0.4s, 

…, 

SLA
t
10.0s 

{0,…,20} 50 Speed-Dependent Lane Angles. 

 

NCA
t
 {0,…,20} Nearest Alter-Car Angle. 
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NCS
t
 {0,…,20} Nearest Alter-Car Space. 

 

NCD
t
 {0,…,20} Nearest Alter-Car Distance. 

 

NCVA
t
 {0,…,20} Nearest Alter-Car Viewing Angle. 

 

2.3   Learning of Relevant Peephole Percepts 

Until now the structures of skill hierarchies have to be created manually. But both the 

graph-structure of Action- and Behavior-Classification-models and the parameters of 

their (conditional) probability distributions can be obtained by machine-learning 

methods from time series of human behavior traces. To completely cover the skill 

hierarchy (Fig. 2) nine Action- and four Behavior-Classification-models have to be 

learnt [5, 6]. The structure of four complimentary Gating-models can then be derived 

automatically from the structure of the Action- and Behavior-Classification-models. 

To ensure efficiency for the real-time control of a BAD MoB model, we constrain 

the structure of Action- and Behavior-Classification-models to dynamic (first order 

markov) naïve Bayesian Classifiers. For Action-models we further assume the action-

variables Acc
t
 and Steer

t
 to be independent given both of the former actions Acc

t-1
 and 

Steer
t-1

, and that a percept must not be conditioned on both Acc
t
 and Steer

t
. These 

assumptions allow the boosting of the inference performance by splitting the intended 

CPD P(Acc
t
,Steer

t
|Acc

t-1
,Steer

t-1
,Percepts

t
) into two independent distributions 

P(Acc
t
|Acc

t-1
,Steer

t-1
,Percepts

t
) for longitudinal and P(Steer

t
|Acc

t-1
,Steer

t-1
,Percepts

t
) 

for lateral control.  

Our BAD MoB models rest on the assumption that there is considerable uncertainty 

about the relevant percepts for realization and classification of natural driving 

behaviors. So the relevant percepts should be identified during the modeling process. 

We rely on a step-wise structure-learning technique that exploits the probabilistic 

foundations of Bayesian driver models and determines the ‘peephole’ percepts from a 

universe of hypothetical possible or available percepts based on the Bayesian 

Information Criterion (BIC) [4, 8, 18].  

2.3.1   The Parent-Child Bayesian Information Criterion 

The BIC rewards how well a model fits the data while penalizing the model 

complexity. Let δ denote a set of n data rows associated with the behavior to be 
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generated by an Action-model 𝜋A or the mixture of behaviors to be classified by a 

Behavior-Classification-model 𝜋B, L(δ|𝜋) denote the likelihood of δ given a model 𝜋, 

and size(𝜋) denote the size or complexity of a model 𝜋 (we define as the number of 

edges in the DBN of the model) then the BIC for an Action-model 𝜋A is defined as 
 

 
 

n
size

L A
A log

2
|log 


  

    
n

size
perceptsactionsactionsP A

n

i
A

iii log
2

|,,log
1

1 


 
  

(1) 

and the BIC for a Behavior-Classification-model 𝜋B is defined as 

 
 

n
size

L B
B log

2
|log 


  

    
n

size
perceptsbehaviorbehaviorP B

n

i
B

iii log
2

|,,log
1

1 


 
 . 

(2) 

To focalize on the intended purpose of Action- and Behavior-Classification-

models, we evolved a version of the BIC, which we refer as the Parent-Child BIC 

(PCh-BIC), where the likelihood is replaced by a parent-child-monitor [4]. Following 

the foregoing definition, the PCh-BIC for an Action-model 𝜋A is defined as 
 

    
n

size
perceptsactionsactionsP A

n

i
A

iii log
2

,,|log
1

1 


 
  (3) 

 
while the PCh-BIC for a Behavior-Classification-model 𝜋B is defined as 

    
n

size
perceptsbehaviorP B

n

i
B

ii log
2

,|log
1





 . (4) 

2.3.2   Learning Procedure 

As the learning procedure of pertinent percepts doesn’t differ between Action- and 

Behavior-Classification-models, it will be described for the learning of Action-models 

only: Starting with an initial Action-model 𝜋A without any percepts (Fig. 3), new 

percepts are included in a step-wise manner.  
 

 

Fig. 3. DBN of an initial or blind Action-model and Behavior-Classification-model without any 

used percepts. 

By now, a simple greedy-heuristic is used. For each one of the available percepts, 
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the PCh-BIC is calculated for the initial model extended by an edge from the action-

variable Acc
t
 to the respective percept. Using the intended inference for longitudinal 

control P(Acc
t
|Acc

t-1
,Steer

t-1
,Percepts

t
) as the parent-child-monitor, the PCh-BIC is 

calculated by: 
 

    
n

size
ncvafcasteeraccaccP A

n

i
A

ii

m

iii log
2

,,...,,,|log
1

5

11 


 
 . (5) 

 
The percept leading to the best PCh-BIC (Fig. 4) can be seen as the most pertinent 

percept of the given possibilities for longitudinal control and is permanently included 

in the model.  
 

 

Fig. 4. Plot of PCh-BICs computed for an Action-model selecting one of 205 possible percepts 

for longitudinal control at a time. The PCh-BIC is maximized for a time-dependent percept 

SLAt
4.0s, revealing it as the most pertinent percept of the given possibilities for longitudinal 

control. 

Next, for each of the remaining percepts, the PCh-BIC is calculated for the 

improved model extended by a new edge from the action-variable Steer
t
 to the 

respective  percept.  Using  the  intended  inference  for  lateral  control   

P(Steer
t
|Acc

t-1
,Steer

t-1
,Percepts

t
) as the parent-child-monitor, the PCh-BIC is 

calculated by: 
 

    
n

size
ncvafcasteeraccsteerP A

n

i
A

ii

m

iii log
2

,,...,,,|log
1

5

11 


 
 . (6) 

 

 

Fig. 5. Plot of PCh-BICs computed for an Action-model using one of 204 remaining possible 

percepts for lateral control at a time. The PCh-BIC is maximized for a time-dependent percept 

SLAt
0.8s, revealing it as the most pertinent percept of the given possibilities for lateral control. 

The percept leading to the best PCh-BIC (Fig. 5) can be seen respectively as the 
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most pertinent percept of the given possibilities for lateral control and is likewise 

included permanently in the model. 

The procedure will then be repeated with the new model. In this step-wise manner 

percepts are added until the PCh-BIC can’t be improved any longer for any percept 

conditioned by Acc
t
 or Steer

t
. As a result the learning procedure selects a minimal set 

of peephole percepts.  

3   Results and Discussion 

Using the learning procedure we revealed the most relevant peephole-percepts for all 

the nine Action-models and four Behavior-Classification-models of the skill hierarchy 

(Fig. 2). Learning the Action-models, 15 peephole percepts could be revealed as 

pertinent for longitudinal control, with the speed LS
t
 and the time-independent percept 

FLA
t
5m being the two most frequent ones (Table 2). 

Table 2. Summary of the most relevant 15 peephole percepts used for longitudinal control. 

Nr. Percept Times used Relevant for longitudinal control in the 

1 FCAt
40m 1 PassCar Action-model 

2 FCAt
80m 1 FollowSharp Action-model 

3 FCAt
110m 1 FollowWide Action-model 

4 FCAt
135m 1 Sharp Action-model 

5 FCAt
225m 2 FollowStraight and PassIn Action-model 

6 FLAt
5m 3 Wide, Sharp and FollowWide Action-model 

7 SCAt
0.4s 1 PassIn Action-model 

8 SCAt
3.2s 1 Wide Action-model 

9 SLAt
4.0s 1 Straight Action-model 

10 SLAt
8.4s 1 FollowStraight Action-model 

11 SLAt
9.0s 1 PassOut Action-model 

12 LSt 4 Straight, Sharp, FollowStraight and PassOut Action-model 

13 NCAt 1 FollowSharp Action-model 

14 NCDt 1 FollowWide Action-model 

15 NCVAt 1 FollowSharp Action-model 

 

For lateral control 22 pertinent percepts could be revealed, with the time-

independent percept FCA
t
5m and the time-dependent percept SLA

t
0.8s being the most 

frequent ones (Table 3). 

Table 3. Summary of the most relevant 22 peephole percepts used for lateral control. 

Nr. Percept Times used Relevant for lateral control in the 

1 FCAt
5m 4 Straight, Sharp, FollowStraight and PassOut Action-model 

2 FCAt
65m 1 PassIn Action-model 

3 FCAt
75m 1 Sharp Action-model 

4 FCAt
175m 1 Sharp Action-model 

5 FCAt
190m 2 Straight and FollowWide Action-model 

6 FLAt
5m 1 PassOut Action-model 

7 FLAt
10m 1 FollowSharp Action-model 
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8 FLAt
15m 1 FollowWide Action-model 

9 FLAt
75m 1 PassIn Action-model 

10 FLAt
135m 1 FollowWide Action-model 

11 FLAt
185m 1 Wide Action-model 

12 FLAt
225m 1 FollowStraight Action-model 

13 SLAt
0.2s 2 FollowWide and FollowSharp Action-model 

14 SLAt
0.8s 3 Straight, Wide and Sharp Action-model 

15 SLAt
1.2s 1 FollowSharp Action-model 

16 SLAt
1.6s 1 Sharp Action-model 

17 SLAt
2.0s 1 PassCar Action-model 

18 SLAt
8.8s 1 PassOut Action-model 

19 SLAt
9.6s 1 FollowSharp Action-model 

20 SCAt
0.4s 1 Wide Action-model 

21 SCAt
0.6s 1 FollowStraight Action-model 

22 NCDt 1 PassOut Action-model 

 

Table 4 shows a summary of all used peephole percepts pertinent for classification 

of appropriate maneuvers or behaviors in the four Behavior-Classification-models.  

Table 4. Summary of the most relevant 11 peephole percepts used for behavior-classification. 

Nr. Percept Times used Relevant for classification of driving behavior in the 

1 FCAt
30m 1 LaneFollowing Behavior-Classification-model 

2 FCAt
60m 1 LaneFollowing Behavior-Classification-model 

3 FCAt
205m 1 Racing Scenario Behavior-Classification-model 

4 FLAt
5m 2 CarFollowing and Scenario Behavior-Classification-model 

5 FLAt
200m 1 CarFollowing Behavior-Classification-model 

6 FLAt
240m 1 CarFollowing Behavior-Classification-model 

7 SCAt
0.2s 1 Overtaking Behavior-Classification-model 

8 SCAt
0.6s 2 LaneFollowing and CarFollowing Behavior-Classification-model 

9 SCAt
8.2s 1 LaneFollowing Behavior-Classification-model 

10 NCAt 1 Overtaking Behavior-Classification-model 

11 NCDt 1 Racing Scenario Behavior-Classification-model 

 

Using only the 41 different peephole percepts that could be revealed during the 

learning process, the resulting BAD MoB model is able to drive on different racing 

courses in the TORCS simulation environment while overtaking slower vehicles 

(videos are available at http://www.lks.uni-oldenburg.de/46350.html).  

For validation purposes we classed each of the models with a ranking of each five 

theoretical models of equal structure ranging from a totally uninformed model, 

solving the intended parent-child monitors (cf. (5) and (6)) with P(searched|known) = 

1/⌊searched⌋ (a probability equal to randomness), to a perfect model, solving it with 

P(searched|known) = 1 (a probability equal to certainty). Based on these rankings, the 

Racing Scenario Behavior-Classification-model is the best, while the Overtaking 

Behavior-Classification-model is the worst of the four Behavior-Classification-

models, though all of them show very great results. The Action-models allow a greater 

space for future improvement, with the PassCar Action-model being the best and the 

Sharp Action-model being the worst of all nine Action-models. As a next step, the 

percepts obtained should be validated by experiments with human drivers [16]. 
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