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Abstract

For the past few decades, combinatorial optimization techniques have been shown
to be powerful tools for formulating and solving optimization problems arising
from practical situations. In particular, many network design problems have been
formulated as combinatorial optimization problems. With the advances of op-
tical technologies and the explosive growth of the Internet, telecommunication
networks have seen an important evolution and therefore, designing survivable
networks has become a major objective for telecommunication operators. Over
the past years, a big amount of research has then been done for devising efficient
methods for survivable network models, and particularly cutting plane based al-
gorithms. In this paper, we attempt to survey some of these models and the opti-
mization methods used for solving them.

Keywords: Survivable network, heuristic, polyhedral approach, hop-constraint.



1 Introduction

The concept of robust networks is among the most frequently recurring in the
problems of designing telecommunication networks. There exist several ways to
express the network robustness, yet it can be defined as the continued ability of
the network to perform its function in the face of damage and outages. The net-
work design process is extremely complicated because it manages the traffic, the
performance and the resources of the network together and then, one cannot con-
sider it as a single optimization problem. Therefore, it should be broken down
into several optimization problems (topology computation, traffic prediction and
modeling, dimensioning, etc.) which may have their own robustness component.
In this paper, we are only interested in the topology computation problem where
a network is represented as a collection of nodes (switches, routers, hubs, mul-
tiplexers, satellites, base stations, etc.) and connections between them by edges
(optical fibers, electrical wires, etc.), and the robustness of the network topology
will come from itsreliability. The latter depends on the equipment (i.e., link or
node) reliability, but also on the fact how nodes are connected together. Therefore,
the network reliability can be characterized by many parameters such as degree of
each node, average distance between every pair of nodes, connectivity, etc. In this
paper, we base the network reliability on the presence of alternate paths (i.e., the
connectivity parameter) and then, considerdineivability of the network which

can be described as below.

Telecommunication networks, whatever is the nature of the particular layer
(e.g., SDH/SONET, ATM, WDM, IP), have to be immune to equipment failures.
This concept of survivability allows networks to remain functional when links
are severed or nodes fail, that is, network services can be restored in the event
of catastrophic failures. Therefore, one of the main concerns when designing
telecommunication networks is to compute network topologies that provide pro-
tection against network equipment failures. The topology computation problem
is usually the first stage of the overall network design optimization process; the
following ones involving some traffic and routing issues.

The introduction of new control plans (e.g., Generalized MultiProtocol La-
bel Switching (GMPLS) in optical networks) has created, over the last years, a
movement toward networks which should have more complex topologies than
rings. This fact leads to the specification of certain survivability conditions, usu-
ally modeled in terms of node or link connectivity, which should be ensured. Thus,
the topology computation problem we are interested in, caliedvable network
design problem and denoted beNDP, consists of selecting links so that the sum
of their costs is minimized and some given requirements for the number of paths

2



between every pair of nodes are satisfied. In order to respond to node (respectively
link) failures scenarios, the paths between two nodes should fulfill the additional
property that they cannot share any other node (respectively any link), implying
the so-callechode-survivability conditions (respectivelylink-survivability condi-

tions). The survivable network design problem can then be stated in two slightly
different versions according to which of the two kinds of survivability conditions
should be considered.

Consider an undirected gragh = (V, F') whereV represents the node set,
and F the set of edges or potential links. To express the survivability conditions,
we need to introduce the following graph-theoretic concepts. Given two distinct
nodess andt of V, anst-path is a sequenc® = (v, ey, vy, ..., e, v;) Where
k> 1, vy,vy,...,v are distinct nodesy, = s, v, = t, ande; is an edge con-
nectingv; ; andw; (fori = 1,...,k). A collectionP,, P,, ..., P, of st-paths is
callednode-disjoint (respectivelyedge-disjoint) if any node except fog andt (re-
spectively any edge) appears in at most one path. A subgiaphd is called
node-survivable (respectivelyedge-survivable) if for any s, ¢t € V, H contains at
least a prespecified number of node-disjoint (respectively edge-disjoipgths.
Suppose that each edgec E has a certain costle) € R, (e.g., the cost of
digging down a cable and the price of the equipment facilitating communication),
then thenode-survivable network design problem, denoted byNSNDP, consists in
finding a node-survivable subgraph®@fwith minimum total cost, where the cost
of a subgraph is the sum of the cost of its edges. Similarlylitilesurvivable
network design problem, denoted by SNDP, consists of finding a minimum-cost
edge-survivable subgraph 6f

Polyhedral combinatorics is a well established approach to combinatorial op-
timization problems (see, for instance, Schrijver [109]) which may lead to new
exact and approximate solution methods. This paper provides a review and syn-
thesis of polyhedral approaches to the two versions of the survivable network
design problem. The paper is divided into ten sections. In the second section,
we precisely present the model which will be studied throughout the paper, and
we discuss the complexity issue. In Section 3, we overview some polynomially-
solvable cases as well as some of the main heuristics and approximation algo-
rithms devised for the survivable network design problem. Section 4 is dedicated
to an integer linear programming formulation for the SNDP and to a brief descrip-
tion of the so-called polyhedral approach. Some facet-defining inequalities are
then presented in Section 5 where their separation problems are also mentioned.
Section 6 concerns some linear descriptions of the polytopes associated with the
problem on some special classes of graphs. The concept of critical extreme points
is then discussed in Section 7 along with their algorithmic implications. Some
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of the theoretical results presented in the first seven sections were then used in a
branch-and-cut algorithm that is presented in Section 8 with a computational re-
sults based discussion. Finally, before giving some concluding remarks in a last
section, we are interested in the survivable network design problem with length
constraints in Section 9.

The rest of this introduction is devoted to more definitions and notations which
will be used along this paper. The graphs we consider are finite, loopless and con-
nected.

We consider a grapty’ = (V, E) and we denote by the number of nodes of
G, thatis,n = |V]. ForWw C V, we letWW = V' \ . Given two distinct nodes
andv of V, an edge between both is denotedsy For a non-empty node subset
W C V, the set of edges having exactly one endnod®’ins called acut or a
cutset and is denoted by (). Moreover, ifs € W andt ¢ W, thend(W) is
called anst-cut. If W = {u}, we then writed(u) for og({u}). If W, andW;
are two disjoint subsets af, then[IW;, W] denotes the set of edges having one
endnode in/; and the other if¥,. A partition of V' is a collection of disjoint
subsets o/ with union V. The elements of the partition are called gtasses.
Given a partition{ V7, ..., V,, } of the node set’, we denote by (V1,...,V,) the
set of edges with endnodes in two different classes. For all our notations, we don’t
use the subscrigl whenever the grap&’ can be deduced from the context. For
F C E, we denote by/(F) the set of nodes which are spanned by the edges in
F. ForWW C V, we denote by? (W) the set of edges with both endnodedin
and byG(W) = (W, E(WW)) the subgraph induced By'. Givene = uwv € E,
contracting e means deleting, identifying » andwv, deleting the resulting loops
and keeping the new parallel edgesr. Fif C E thenG/F denotes the graph
obtained frontG by contractingt’, that is, by contracting alledgesin If Z C V,
G\ Z is then the graph obtained frot by deleting”Z and the edges incident to
Z. It Z = {u}, we then writeG \ u for G'\ {u}. Thedimension of a polyhedron
P, denoted by dim®), is the maximum number of affinely independent points in
P minus 1. Letu € R"” be a row vector. An inequalityz > « is said to be valid
for Pif P C {z|axr > a}; the setF = {z € P | ax = «} is called theface
defined byax > «a. If dim(F,) = dim(P) — 1, andF, # 0, thenF, is called a
facet, andaz > « is called afacet-defining inequality. Given a polytope” C R",
the dominant of P is the polyhedron given by + R, .



2 A model for the survivable network design prob-
lem

The survivable network design problem has received considerable attention in the
past, and two models precisely specifying the survivability conditions have been
mainly considered. The first one, originally formulated by Steiglitz et al. [110]
and later calledjeneralized Steiner problem by Winter [121], is as follows.

Given an undirected graghi = (V, E) and a cost vectar € RY on the edges, the
node-survivability (respectively link-survivability) conditions are specified by a
symmetric integen x n matrix R = [ry], where the entry,, prescribes the num-

ber of node-disjoint (respectively edge-disjoistypaths needed for, t € V. This

model has been extensively investigated (see for instance [26, 28, 54, 93]) and is
a special case of a more general model introduced by Grotschel and Monma [74]
where, for anys,t € V, survivability is also measured by a minimum number
rg Of disjoint st-paths remained after the deletion of any node subset having a
given cardinalityk,,. This model is a kind of general framework for the SNDP
and it requires the knowledge of considerable amount of data in order to specify
particular connectivity requirements for every pair of nodes. Yet, some data may
not be available in real-world applications and therefore, a slightly more restricted
and realistic model was introduced by Groétschel et al. [75, 76, 77] (see also Stoer
[111]). This second model is based on the specification of node types to model the
survivability conditions as described below, and captures the important aspects of
practical problems.

A generic telecommunication network consists of access networks which con-
nect the terminals (e.g., user nodes) to concentrators (e.g., switches, multiplexers)
and a backbone network which interconnects these concentrators or connects them
to a central unit. The access and backbone networks can be fully or partially con-
nected according to the level of survivability which is required, and their topolo-
gies may differ. The backbone network can also be partitioned into smaller subsets
of nodes, which in turn can be partitioned into even smaller subsets of nodes, im-
plying eventually different levels of survivability requirements. The partitioning
of the network creates a hierarchical structure and makes some nodes be more
important than some other ones, because of their specific functions. The lowest
level of the hierarchy corresponds to the terminals which only require to be con-
nected to the network, whereas a node of the backbone network, the higher level
of the hierarchy it belongs, the “higher” degree of survivability it requires. This
hierarchical structure of telecommunication networks leads to grade the nodes in
the order of their relative importance as described below.



Consider an undirected gragh= (V, E') where each edge € FE has a cost
c(e) € R,. To each node € V, is associated a non-negative integer), called
its connectivity type, that represents its importance of communication from and to
it. The integer vector = (r,, v € V) will then be called theconnectivity type
vector. The node-survivability (respectively link-survivability) conditions are then
stated as the requirement of the existence of at least

r(s,t) = min{r(s),r(¢)} (1)

node-disjoint (respectively edge-disjoint) paths in the subgragh foir any pair

of nodess,t € V. We remark that modeling the survivability conditions us-
ing node types is a particular case of the generalized Steiner problem; it cor-
responds to the case wherg = min{r(s),r(t)} for anys,t € V. Yet, as
mentioned above, such a modeling is particularly suitable for telecommunication
networks. Moreover, this connectivity types based model can be used to model
numerous other applications having hierarchical structures, such as distribution
networks (involving, for instance, major central facilities, minor regional depot),
wireless networks (involving, for instance, base transceiver stations, base station
controllers, transcoder/rate adapter units, mobile switching centers), etc.

Let us denote by,,.., the maximum connectivity type, that is,
Tmae = max{r(u) |u €V},

If 7 < 2, we then deal with theow-survivability case which was shown to be

cost effective and provides an adequate level of survivability for telecommunica-
tion networks [102]. In fact, as failures are not very common in practice, telecom-
munication network designers consider protection strategies which will withstand
single network equipment failures. This fact implies the classification of the nodes
into three kinds: specific nodes which must be protected from single equipment
failures (i.e., nodes € V with r(u) = 2), ordinary nodes which simply have to

be connected to the network (i.e., nodes V" with r(u) = 1), and optional nodes
which may be considered in the network, depending only on some design consid-
erations (i.e., nodes € V with r(u) = 0). However, this traditional protection

for telecommunication networks tends to be now outdated (it was essentially ded-
icated to circuit switched telephone networks), and the new generation networks
(e.g., packet based data networks carrying voice, video or data traffic) require
more complicated and adapted protection strategies to face the competitive en-
vironment. This practical motivation, combined with the interesting theoretical
framework of the model, leads also to considertigh-survivability case, that is,
wherer,,.. > 3.



Expressing the survivability requirements using the connectivity types allows
to model a wide variety of well-known combinatorial optimization problems which
have been intensely studied for several decades. For instance, if the connectivity
type vector is uniform, sayr(u) = k for all w € V wherek is a positive integer,
then the NSNDP (respectively LSNDP) is nothing but taeode connected net-
work problem denoted byNCNP (respectivelyk-edge connected network prob-
lem denoted bykECNP). Furthermore, the 2-node connected network problem
includes thetraveling salesman problem (i.e., find a simple circuit, also called
tour, passing through all the nodes, for which the cost is minimized) as a special
case. In fact, if a large constant is added to the cost of each edge, any optimal
solution of the 2NCNP will have a minimum number of edges, and such a solu-
tion will be an optimal traveling salesman tour. Another famous version of the
SNDP is where the entries of the connectivity type vecttaike their values in
{0,1}. This is the Seiner tree problem which consists of finding a minimum tree
of G, spanning the so-called terminal nodes (i.e., the naded” with r(u) = 1).

(The nodes: € V' with r(u) = 0 are calledteiner nodes.) We notice that this
equivalence between the Steiner tree problem and the survivable network design
problem withr € {0,1}" holds only if the cost of each edge is positive.

Since the survivable network design problem contains, as special cases, known
NP-hard problems such as the traveling salesman problem and the Steiner tree
problem, it is clearly NP-hard in general. Moreover, the traveling salesman prob-
lem is known to be NP-hard in the strong sense, which means that it cannot be
solved by a pseudo-polynomial time algorithm unléss= N P. Therefore, we
have

Theorem 1 [57] The survivable network design problemis strongly NP-hard.

In this paper, we only consider the second model to express the connectiv-
ity requirements, that is, the connectivity types based model. Nevertheless, we
may also deal with the first model in the next section which reviews some of the
most noteworthy works on the survivable network design problem, with a main
focus on the polynomially-solvable cases as well as some devised heuristics and
approximation algorithms.

3 Special cases, heuristics and approximation algo-
rithms

Additionally to the problems mentioned above, some other special cases of the
survivable network design problem have received considerable attention over the
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last century. Hence, there exists a plentiful literature on the different problems
related to the SNDP, and the aim of this section is to present a brief, but as much
complete as possible, overview of it.

3.1 Polynomially-solvable cases

Despite the NP-hardness of the survivable network design problem, it occurs

that this problem may be solved in polynomial time depending on some special

connectivity type vectors, some special edge cost functions and/or some special
classes of graphs.

The survivable network design problem was shown to be polynomially-solvable
if r(u) = 1forallu € V. Infact, this version of the SNDP is nothing but he min-
imum spanning tree problem which is a well-solved combinatorial optimization
problem [3]. If we now have some nodes having their connectivity type equal
to 0, we then deal with the Steiner tree problem which is a well-known NP-hard
problem. However, Lawler [91] gave two algorithms for solving the Steiner tree
problem which are either polynomial in the number of terminal nodes and expo-
nential in the number of Steiner nodes, or vice versa. Thereforegif{0,1}"
and either the number of nodes of connectivity type 0 or the number of nodes of
connectivity type 1 is restricted, the SNDP can be solved in polynomial time.

Another famous version of the survivable network design problem is where
all the nodes have connectivity types equal to O except for exactly two nqgdes
andu, which haver(u;) = r(ug) = 1. This is actually the shortest path problem
betweenu; andu,, for which there exist different polynomial time algorithms
provided no negative-cost cycles. Moreover, if the shortest path must satisfy a
hop-constraint, that is, it has no more thiafinks whereL is a positive integer, a
dynamic programming approach then permits to solve the problem [3]. The hop-
constraint is meaningful for telecommunication networks because of some routing
considerations that might be taken into account (see Section 9). If the connectiv-
ity types associated with,; andu, are now equal t& wherek is a fixed positive
integer, one deals with the-shortest path problem which can also be solved in
polynomial time [113, 114].

Some other polynomially solvable cases of the survivable network design
problem arise from special edge cost functions. If the edge cost are uniform,
that is, they are restricted to be equal to 1, the problem then consists of finding a
node-survivable or edge-survivable subgraph having a minimum number of edges.
For this kind of edge cost functions, the SNDP with node-survivability conditions
has not been solved yet. On the other hand, the SNDP with link-survivability con-
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ditions and uniform edge cost functions was shown to be polynomially solvable
providedr(u) > 1 for all w € V and the use of parallel edges is allowed [111].
The algorithm solving this problem is similar to the one given by Chou and Frank
[26] for the generalized Steiner problem with link-survivability conditions, uni-
form edge cost function and the possibility to use parallel edges in the solution.
Chou and Frank [27] considered the same version of the generalized Steiner tree
problem when no parallel edges but additional nodes are allowed, and they gave a
polynomial time algorithm to solve it.

The survivable network design problem with edge costin } is known as
the augmentation problem which can be stated as follows. It consists of augment-
ing a graph by a minimum number of edgeslinx V' (possibly using parallel
edges) such that the survivability requirements are met. This version of the SNDP
is equivalent to augmenting the graph induced by the edges having costs equal to O
using eventually the edges having costs equal to 1. Frank [54] solved this problem
for the link-survivability conditions (more precisely for the generalized Steiner
problem), and he generalized many results related to the uniform connectivity
type vector case. For the node-survivability conditions, some polynomial-time
algorithms were given to augment a graph to a 2-node connected one [48, 79],
and in those algorithms, no parallel edges are allowed. Moreover, when some
nodes are subject to node-survivability conditions and the other ones only to link-
survivability conditions, Hsu and Kao [79] devised a polynomial-time algorithm
to solve the augmentation problemrifu) = 2 forall u € V.

The survivable network design problem may also be solved in polynomial time
for special connectivity type vectors and underlying graphs belonging to certain
classes. Some of the results related to those polynomially solvable cases will be
discussed in Section 6, and therefore we content ourselves with summarizing the
most important ones below. Thus, let us first define the three classes of graphs
we are going to consider hereafter and in Section 6, and in which the survivable
network design problem has been extensively investigatdehnAgomor ph of K 4
(i.e., the complete graph on four nodes) is a graph obtained fkgrnwhen its
edges are subdivided into paths by inserting new nodes of degree two. A graph is
calledseries-paralld if it contains no homeomorph df, as a subgraph. A graph
is calledouterplanar if it can be drawn in the plane as one cycle with non-crossing
chords. We note that outerplanar graphs are also series-parallel. A graph is said
to be aHalin graph if it consists of a cycle and a tree without nodes of degree 2
whose leaves are precisely the nodes of the cycle.

If r € {0,1}V, the survivable network design problem, which is related to
the Steiner tree problem in that case, can then be solved in polynomial time on
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series-parallel graphs as shown by Takamizawa et al. [115]. For the three classes
on graphs mentioned above, Winter [118, 119, 120] gave polynomial-time al-
gorithms to solve the SNDP with € {0,2}" and either the node-survivability

or the link-survivability conditions. On Halin graphs, Winter [121] also gave
polynomial-time algorithms to solve the survivable network design problem for
both survivability conditions and € {0,3}"V. If the graphG does not havéV,

(the wheel on 5 nodes) as a minor o6idfis a Halin graph, Coullard et al. [32] de-
vised a linear time algorithm for the SNDP with the node-survivability conditions
andr € {0,2}V. (A graphH is aminor of a graphG is H arises fromG by a
series of deletions and contractions of edges and deletions of nodes.) Kerivin and
Mahjoub [85] showed that the link-survivable network design problem w(itt)

even for allu € V can be solved in polynomial time on series-parallel graphs.
The k-edge connected network problem was shown to be polynomially solvable
by Didi Biha and Mahjoub [46] on series-parallel graphs, wheis a positive
integer. Recently, Didi Biha et al. [45] gave a polynomial-time algorithm, based
on the ellipsoid method, for solving the survivable network design problem where
r € {1,2}V and the underlying graph belongs to a subclass of series-parallel
graphs which strictly contains all the outerplanar ones.

3.2 Heuristicsand approximation algorithms

As the survivable network design problem is NP-hard, a considerable amount of
research has been conducted into the design of heuristics and approximation al-
gorithms. (We remind that a-approximation algorithm is an algorithm which
always delivers a solution of cost at mestimes the optimum.) The rest of this
section is devoted to review some among the most important results for these two
non-exact approaches.

In the design of efficient heuristics, the knowledge of structural properties of
the solution is often very useful because of the possible improvements in the prob-
lem formulations. If the edge cost function satisfies the triangle inequalities (i.e.,
c(er) < cleq) + c(es) for every triplet of edgese, es, e3) defining a triangle),
Frederickson and Jaja [55] showed that a 2-edge connected graph can be trans-
formed into a 2-node connected one without any increase of the cost. This result
leads to an equivalence between the node-survivability conditions and the link-
survivability ones if the connectivity types are uniform and equal to 2. For the
same kind of edge cost functions, Monma et al. [101] got a structural description
of the optimal solutions of the 2-node connected network problem, and this work
was later generalized to thenode connected network problem by Bienstock et
al. [17]. In the later, it is also proved that optimahode and:-edge connected
subgraphs may have different costs.
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The first heuristics for the survivable network design problem appeared with
the work of Steiglitz et al. [110]. Actually, they considered the generalized Steiner
problem, and their method is based on a randomized greedy algorithm to pro-
duce an initial feasible solution that is then improved by a local-search approach.
For the SNDP where € {1,2}", Monma and Shallcross [102] used a similar
approach consisting of improving an initial solution generated from information
given by the structural properties of the solution of the 2-node and 2-edge con-
nected network problems. Their improvement heuristics is inspired from some
local search heuristics devised from the traveling salesman problem (e.g., 2-opt,
pretzel). Later, Monma-Shallcross’s heuristics were modified by Ko and Monma
[90] in order to tackle botlk-node and:-edge connected network problems, and
by Clarke and Anandalingram [29] who added a new heuristic to generate initial
feasible solutions.

Over the last two decades, the question of designing approximation algorithms
for the survivable network design problem has been extensively investigated. In
[117], Williamson et al. (see also [56]) used a primal-dual method for approxima-
tion algorithms [62] to achieve an approximation factor of,2.. Later, Goemans
et al. [60] refined the approach of [117], and improved their approximation factor
t0 2H(r'maz), WhereH(n) = 14 5 + & + ... + + is then' harmonic num-
ber. Jain [82] proposed a factor 2 approximation algorithm which is based on
first solving the linear relaxation of the problem and then iteratively rouding off
the solution. We notice that those algorithms were actually devised for a more
general problem which consists of finding a minimum cost subgraph having at
least f(S) edges crossing each cutS), whereS C V and f is a proper func-
tion. (A function f : 2V — Z, is proper if f(V) = 0, f is symmetric, that is,
f(S)=f(V\S)forall S C V,andf satisfies the maximality property, that is,
f(AU B) <max{f(A), f(B)} for any disjoint4d, B C V)

For connectivity type vectors if0, 1,2}", Balakrishnan et al. [10] gave%
approximation algorithm for the link-survivable network design problem. Ravi
and Williamson [107] presented &2k )-approximation algorithm for the-node
connected network problem, and they also gave a 3-approximation algorithm for
the generalized Steiner problem whetec {0,1,2}Y*V. For thek-node con-
nected network problem, a 2-approximation algorithm was devised by Khuller
and Raghavachari [88], provided that the edge cost function satisfies the trian-
gle inequalities. Using a weighted matroid intersection algorithm, Khuller and
Vishkin [89] gave a 2-approximation algorithm for theedge connected network
problem.

There also exist approximation algorithms for the survivable network design prob-
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lem where parallel edges are allowed. Goemans and Bertsimas [59] thus gave a
min{2H (rmaz ), 2¢ }-approximation algorithm for the SNDP withe Z, based

on a new analysis of a well-known algorithm for the Steiner tree problem, where
g denotes the number of distinct connectivity type values. Using a primal-dual
approach, Aggarwal et al. [2] obtained A&, ... )-approximation algorithm

for the survivable network design problem with general connectivity type vec-
tors. Goemans and Williamson [61] used the way in which primal-dual algorithms
solve combinatorial linear programs that have integer integer optimal solutions to
devise a 2{(r,,..)-approximation algorithm for the generalized Steiner problem
where R € Z.*V. Recently, Aggarwal and Garg [1] improved this result by
giving a 2{og, |V'|)-approximation algorithm using some scaling technique.

4 Integer linear programming formulation and as-
sociated polyhedra

The purpose of this paper is to survey the polyhedral combinatorics based re-
sults obtained, over the last decade, for the survivable network design problem
where the survivability requirements are modeled using connectivity type vectors.
Therefore, we now start with formulating the SNDP as an integer linear program.

For the sake of clarity, we remind the statements of the problem. Given an
undirected grapli = (V, E), a connectivity type vector € Z' and an edge
cost functionc € RY, the node-survivable (respectively link-survivable) network
design problem consists of finding a subgrdplof G such that for any pair of
distinct nodes;, ¢t € v, H contains at leashin{r(s), r(¢)} node-disjoint (respec-
tively edge-disjoint)t¢-paths.

An important result in graph theory, relating the disjoint paths between two
given nodes of a graph and the cuts separating these two nodes, is the following
which is known as Menger’s Theorem [100].

Theorem 2 [100] Let G = (V, E) be a graph, and s, ¢ two distinct nodes of V.
Then,

i) the maximum number of edge-digoint st-pathsis equal to the minimumsize
of an st-cut, and

i) the maximum number of node-digoint st-pathsisequal to the minimumsize
of a node cutset disconnecting s and .
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From Theorem 2, it follows that the link-survivable network design problem is
equivalent to the following integer linear program

minimize ) _ c(e)x(e)

subject to

z(e) >0 foralle € £, (2)
z(e) <1 foralle € E, (3)
z(6(W)) > con(W) foral W CV,0 £W £V, 4)
z(e) € {0,1} foralle € E. (5)

Here, forallWw C V0 # W # V, con(W) = min{r(W),r(V \ W)} where
r(W) = max{r(u) : v € W}. Inequalities (2) and (3) are callé&dvial inequali-
tiesand inequalities (4) are calledit inequalities.

It is not hard to see that the following inequalities are also satisfied by any so-
lution to the node-survivable network design problem

(0env(W)) > r(s,t) — |U| foralls,t eV, s#t, and (6)
forall() £U C V \ {s,t} with |U| < r(s, 1),
foral W CV\Uwithse W, teV\W.

Inequalities (6) are calledode cutset inequalities. By adding these inequalities
to the above integer linear program and using again Menger’s theorem, we obtain
an integer linear programming formulation for the NSNDP.

We remark that an equivalent form of inequalities (6) was considered in Grotschel
et al. [75]. In fact, their node cutset inequalities only differ from (6) by their right-
hand side which is

conc\v (W) —|U|,

forU CV,0#U #V and|U| < cong\y(W). Since
con(W) = min{r(W),r(V\ W)}
= min{max{r(s) | s € W}, max{r(t) |t € V\W}}
= max{min{r(s,t) | s € W, t € V.\ W}},
the equivalence is obvious. We decided to write the node cutset inequalities as

in (6) to make the relation between Menger’s theorem and the integer linear pro-
gramming formulation for the NSNDP more straightforward.
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The so-called polyhedral approach [109] has been successfully applied for many
well known NP-hard problems such as the traveling salesman problem and the
max-cut problem. This approach, based on the description of the convex hull of
the solutions of the problem, consists in reducing the problem to a sequence of
linear programming problems by successively adding valid inequalities. More
precisely, we start by considering a “selected” linear relaxation of the problem
given by few inequalities. If the optimal solution of this relaxation, say is
feasible, then it is optimal for the problem. Otherwise, we generate one or more
valid inequalities that are violated hy;, and add them to the linear relaxation.

If the optimal solution of the new linear program is feasible, then we are done.
Otherwise, we generate new violated inequalities, and so on. Unfortunately, this
process does not guarantee any feasible optimal solution. If the last solution we
thus obtained is not feasible, we use some branch-and bound techniques com-
bined with the inequality generation process until an integer optimal solution is
obtained. Such an approach clearly depends on the search for an inequality system
determining (or approximating) the polytopes associated with the solutions of the
node-survivable network design problem and the link-survivable network design
problem. Let us denote by NSND®(r) (respectively LSNDRE,r)) the convex

hull of the solutions of (2)-(5) (respectively (2)-(6)). The polytopes NSNBPY

and LSNDP(,r) are respectively called theode-survivable network polytope

and thelink-survivable network polytope of G. The node-survivable network de-
sign problem is then equivalent to the linear program

minimize{z c(e)x(e) | x € NSNDP@G, 1)},

ecE

while the link-survivable network design problem is the same as solving

minimize{) _ c(e)z(e) | = € LSNDP(G, r)}.
eck

The polytopes LSNDFY, r) and NSNDPG, r) have been extensively investi-
gated in the past years. In [74], Grotschel and Monma thus established the dimen-
sion of both polytopes, and they also characterized which of the trivial inequal-
ities (2) and (3) are facet-defining. In [75], Grotschel et al. considered the low
connectivity case, that is, wherec {0,1,2}", and they described when the cut
inequalities (4) define facets for NSNDO®(r) and LSNDP(, ). Furthermore,
they gave necessary conditions and sufficient conditions for the node cutset in-
equalities (6) to be facet-defining.

For a class of inequalities, tiseparation problemconsists, given a vectay, in
finding a violated inequality in the class or prove that there is none. This problem
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is obviously one of the key ingredients in a polyhedral approach as we previously
described. In fact, a fundamental result, based on the ellipsoid method and due to
Grotschel et al. [73] states a polynomial equivalence of separation and optimiza-
tion. More precisely, we can solve one of the two problems in polynomial time if
and only if we can also solve the other problem in polynomial time. In order to
solve with linear programming techniques the linear relaxations of both problems
NSNDP and LSNDP, that is, when the constraints (5) are dropped, we cannot just
list all inequalities (4) and (6) for the NSNDP, (4) for the LSNDP, because of their
exponential number. However, the separation problems for both classes of in-
equalities (4) and (6) are polynomially solvable using polynomial-time maximum
flow algorithms (e.g., preflow-push algorithm of Goldberg and Tarjan [63] run-
ning in O(n?) time). Therefore, from Grotschel, Lovasz and Schrijver result, the
linear relaxations of both problems NSNDP and LSNDP can be solved in polyno-
mial time.

Since the problems NSNDP and LSNDP are NP-hard, it is unlikely to obtain
complete linear descriptions of the polytopes NSNGR{) and LSNDPG, r)
on general graphs. The basic trivial, cut and node cutset inequalities, the latter
only for NSNDP(, r), suffice to completely describe these two polytopes only in
some special classes of graphs (see Section 6 for some examples). However, as
it will turn out, partial descriptions of those polytopes may be sufficient to solve
the problems to optimality. To this aim, further classes of valid inequalities are
needed to get tighter linear relaxations. The following section presents some of
these classes of inequalities and addresses their associated separation problem. We
mention that those inequalities will be given for LSNIBR (), since their validity
for NSNDP(, ) comes directly from NSNDF¥, ) C LSNDP(G, ). Moreover,
we will restrict ourselves to the low connectivity case (ires, {0, 1, 2}"); similar
constraints can be easily extended to the general case E€ZY).

5 Valid inequalitiesand their separation problem

Throughout this section, we consider a gr&ph- (V, £') and a connectivity type
vectorr € {0,1,2}". The inequalities presented in this section have partitions
of V' as underlying structures. However, some other classes of inequalities, based
on more complicated structures, were introduced as well [111]. For instance, the
widely studied traveling salesman problem is closely related t@ibennected
subgraph problem as mentioned in Section 2. Thus, Grotschel et al. [75] (see
also Stoer [111]) extended to the polytopes NSNBRF{) and LNSDP(, r) the

comb inequalities which are valid for the polytope associated with the solutions
of the TSP. Boyd and Hao [20] introduced the same class of inequalities for the
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2-edge connected network polytope, and gave necessary and sufficient conditions
for these inequalities to be facet-defining.

5.1 Multicut inequalities

Let {V1,...,V,} be a partition oft". If con(V;) = 1fori =1...,p, the graph
obtained from any solution to the LSNDP by contracting every subgfaph),

i =1,...,p, mustthen be connected. Therefore, the following inequality is valid
for the polytope LSNDRE, 7).

z(0(Vi,...,Vp)>p—1 for all partition{V;,...,V,} such that (7)
con(V;) =1, fori=1,...,p.

Inequalities of type (7) are calleshulticut inequalities. In [74], Grotschel and
Monma (see also [75]) showed that inequalities (7), together with trivial inequal-
ities (2) and (3), suffice to describe the polytope LSNGR( whenr(i) = 1 for
allie V.

Moreover, Nash-Williams [103] (see also Tutte [116]) proved that those in-
equalities (7), together with non-negativity ones (2), characterize the dominant of
the polytope LSNDRE, ) in this case of unit connectivity type vectors.

Cunningham [34] showed that,/ifv) = 1 for all v € V, the separation prob-
lem associated with inequalities (7) can be reduced@taninimum cut problems,
and can then be solved in polynomial time. In [12], Barahona reduced the separa-
tion problem for those inequalities to a sequencédfminimum cut problems,
and then derived af (n*) algorithm. Moreover, both algorithms provide the most
violated inequality if there is any.

For the general case wherec Z" and there exists at least a nodec V'
such that-(u) = 0, Grétschel et al. [76] showed that the separation problem for
inequalities (7) is NP-hard. Furthermorey{fu) > 1 for all w € V, as mentioned
by Kerivin and Mahjoub [84], inequalities (7) can then be separated in polynomial
time by applying Cunningham or Barahona algorithms on the graph obtained from
G by contracting the set of nodgs € V' : r(u) > 1}.

5.2 Partition inequalities

In [75], Grotschel et al. introduced a class of valid inequalities for LSNRFPJ,
called partition inequalities, that generalizes the cut inequalities (4). These in-
equalities are as follows. Ldt/,...,V,}, p > 3, be a partition oft” such that
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1 <con(V;) <2fori=1,...,p. Denotel, = {i : con(V;) =2, i =1,...,p}.
The partition mequalltylnduced by{V1,...,V,} is given by

P — 1 |f 12 = @,
P otherwise.

z(6(Vi,..., V) > { (8)

Obviously, if all connectivity types are equal to 2, a partition inequality (8) is im-
plied by sum of the cut constraint$s(1;)) > 2. (We remark that considering the
case where = 2 gives a cut inequality (4).)

The separation problem for the partition inequalities (8) is NP-hard in general
[76]. Grotschel et al. [76] showed that, even in the restricted case where
{0,1}V, the separation problem remains NP-hardr i {1,2}", Kerivin and
Mahjoub [84] proved that the separation problem associated with

where{V1, ..., V,} is a partition ofl/, reduces to minimizing a submodular func-

tion and therefore, it can be solved in polynomial time (see Schrijver [109] for
details on submodular functions). Recently, Barahona and Kerivin [13] devised a
pure combinatorial algorithm, based on the submodular intersection problem, for
separating inequalities (9). They showed that this problem reduces to a sequence
of submodular flow problems, each of them having its complexity dominated by
the one of solving)(n?) minimum cut problems. Combined with the algorithm

of section 5.1 for separating inequalities (8) with a right-hand side equal-tb,
Barahona and Kerivin obtained &h(n") algorithm for the separation problem
associated with the partition inequalities (8).

5.3 F-partition inequalities

Suppose the connectivity type vectas such that(u) = 2 forallu € V. Aclass
of valid inequalities for the polytope LSND&( r) in this case was introduced by
Mahjoub [95] as follows. Consider a partitigiv;, ..., V,} of V and letF’ C
d(V1) with | F'| odd. By adding the inequalities

z(6(V3)) = 2 fori=2,....p,
—z(e) > —1 fore € F,
z(e) >0 fore e 6(V1) \ F

we obtain
20(A) > 2(p—1) — |F],
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whereA = §(V4,...,V},) \ F. Dividing by 2 and rounding up the right-hand side
lead to F

NEVE T (10)
Inequalities (10) are callefi-partition inequalities. Note that if| | is even, the
corresponding inequality (11) is then implied by inequalities (2), (3) and (4).
It is straightforward that inequalities (10) remain valid for LSNDP() when
r €{0,1,2}Y andcon(V;) =2fori=1,...,p.

The partition andF'-partition inequalities are special cases of more general
classes of inequalities given by Grétschel et al. [75] for LSNBRRY{. In [75], the
authors also gave necessary conditions and sufficient conditions for these inequal-
ities to be facet defining. Furthermore, Kerivin et al. [86] considered a subclass of
F-partition inequalities, called generalized odd-wheel inequalities, to give suffi-
cient conditions for inequalities (10) to be facet-defining. They also introduced an
extension of inequalities (10) to the case where the inducing parfition .., 1, }
is such thaton(V;) € {1,2}fori=1,...,p (see Section 7).

The separation problem for thié-partition inequalities is still an open ques-
tion. However, if the set¥; of partitions are singletons, the correspondirig
partition inequalities are then blossom inequalitiestfonatching which can be
separated in polynomial time with the algorithm of Padberg and Rao [105]. More-
over, when the edge subsktis fixed, as pointed out by Baiou et al. [7], the
separation problem for inequalities (10) can be solved in polynomial time. In
fact, one can delete the set of edge$rom GG and consider the resulting graph
G' = (V', E'), say. AnF-partition inG can be written irG’ as

whereV; contains exactly one node of each edgé'ofThere are!”! possibilities

to assign nodes df' to ;. For each one we can contract the nodeg' @f ; and
solve the separation problem for inequalities (11). As Cunningham’s algorithm
and Barahona'’s algorithm provide a most violated multicut inequality, if there is
any, this can then be done in polynomial time. As it will be shown in the sequel,
F-partition inequalities play a central role for solving LSNDP and NSNDP, in the
low connectivity case, within the framework of a cutting plane algorithm.

5.4 General partition inequalities

In [7], Baiou et al. studied a class of inequalities generalizing the multicut inequal-
ities (7). Given a partitio{ V1, ...,V } of IV and two fixed scalarg andb, they
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are of the form
z(0(Vi,...,Vp)) > ap+b. (12)

Inequalities (12) arise as valid inequalities for many variants of the survivable
network design problem. For instance, we remark that the multicut inequalities
(7) correspond to inequalities (12) whete= 1 andb = 1. Baiou et al. called
these inequalities partition inequalities, however in order to avoid confusion, we
will here refer to inequalities (12) agneralized partition inequalities. Baiou et

al. [7] showed that the separation problem for inequalities (12) can be reduced to
minimizing a submodular function, and can then be solved in polynomial time.

Consider now the:-edge connected network problem, that is, the LSNDP
wherer(u) = k for all w € V. Grotschel et al. [75] introduced the following
inequalities

kp
where{Vy, ..., V,}is apartition oft". Inequalities (13) are clearly redundant with

respect to the cut inequalities (4)4p is even. In order to have an approximate
separation routine, instead of separating inequalities (13), one can separate the
inequalities

k

5

which are nothing but inequalities (12) where- % andb = 0.

(3(Vi,.. V) >

Let Z C V be a node set withZ| = ¢t < k£ — 1 and{V;,...,V,} a parti-
tion of V' \ Z. For thek-node connected network problem (i.e., NSNDP where
r(u) = k forallu € V), Grétschel and Monma [74] introduced thade partition
inequalitieswhich are as follows

p—1 ifk—t=1,

2(0ea\z(V1, .-, Vp)) 2 {Mk—ﬂ (14)
2

] if k— 1> 2.

Grotschel and Monma [74] also gave necessary and sufficient conditions for in-
equalities (14) to be facet-defining.Af-¢ = 1, inequalities (14) are then multicut
inequalities, and therefore they can be separated in polynomial tinke- If is
positive and even, they are nothing but inequalities (12) and their separation is also
polynomially solvable. As we mentioned for inequalities (13), one can use Baiou,
Barahona and Mahjoub’s algorithm for separating inequalities (12) in order to ap-
proximate the separation problem for inequalities (14) wlkere is positive and

odd.

19



6 Thepolytopes LSNDP(G,r) and NSNDP(G, r) on
special graphs

In this section, we discuss the polytopes NSNGPJ and LSNDP(,r) in some
special classes of graphs. (See Subsection 3.1 for the definitions of the considered
graphs.) In fact, these polytopes are known in many classes of graphs, and the
inequality systems describing them are separable in polynomial time. Therefore,
by the ellipsoid method [73], one gets polynomial-time cutting plane algorithms
for solving the underlying optimization problems.

In [95], Mahjoub showed that whe@¥ is series-parallel and(u) = 2 for
all u € V, the polytope LSNDRE, r) is given by the trivial inequalities (2) and
(3), and the cut inequalities (4). This linear description was generalized to the
case where € {0,2}" by Baiou and Mahjoub [8] as well as to the case where
r € {0,k}V andk is even by Didi Biha and Mahjoub [47]. Recently, Kerivin and
Mahjoub [85] extended those results to the more general case where the connec-
tivity types are all even.

Theorem 3 [85] If G = (V, E) is series-parallel and r(u) iseven for all u € V,
the polytope LSNDP(G,r) is then completely described by the trivial inequalities
(2) and (3) together with the cut inequalities (4).

To our knowledge, the only linear description of LSNIOR() where even and
odd connectivity types are mixed is due to Didi Biha et al. [45]. Far {1,2}"
and in a subclass of series-parallel graphs containing all the outerplanar graphs,
they showed that the link-survivable network polytope is completely described by
the trivial inequalities (2) and (3), the cut inequalities (4) and the partition inequal-
ities (8).

For connectivity type vectorssuch that(u) = 2 for all u € V', Barahona and
Mahjoub [14] studied the polytopes NSNIP.(-) and LSNDP(, r) in the graphs
that can be decomposed by 3-edge cutsets3-@dge cutset is a cut that consists
of exactly three edges.) They showed that if a gr&ptlecomposes int6/; and
(G, by a 3-edge cutset, the system describing LSNRPYJ is then the union of
both systems describing LSND®{, r) and LSNDP(,, ). As a consequence,
they obtained that inequalities (10) together with the trivial and cut inequalities
completely describe the link-survivable network polytope on Halin graphs for this
case of connectivity type vectors. They also presented similar results for the poly-
tope NSNDPG, ). Some extensions of this work to the case wheee {0, 2}"
were studied in [97].
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In some practical situations, one may need to use more than one link between
two given nodes of an link-survivable network. This case can be seen as a re-
laxation of the link-survivable network problem, and is usually easier to handle.
Let P(G,r) be thedominant of LSNDP(G, ), that is,P(G,r) = LSNDP@G, )
+R%. The polyhedrorP(G, r) is nothing but the convex hull of the solutions of
the relaxed LSNDP when multiple copies of edges are allowed.

In [22], Chopra studied th& (G, r) whenr(u) = k for all w € V andG is an out-
erplanar graph. For this case wittodd, he showed that the following inequalities
are valid for the polyhedro® (G, r)

z(0(Vi,...,Vp)) > %Wp -1 for all partitions{V;,...,V,} of V. (15)

Moreover, he proved the following.

Theorem 4 [22] If G = (V, E) isouterplanar, r(u) = k for all v € V with &
odd, the polyhedron P (G, r) is then given by the non-negativity inequalities (2)
and inequalities (15).

The polyhedronP (G, r) was previously studied by Cornuéjols et al. [30].
They showed that on series-parallel graphs and foy = & for all w € V with
k even, the polyhedrof(G, r) is completely described by the non-negativity in-
equalities (2) and the cut inequalities (4). In [6], Baiou showed that this result also
holds ifr € {0,2}". In the more general class of series-parallel graphs, Didi Biha
and Mahjoub [46] (see also Didi Biha [43]) proved that inequalities (15) remain
valid for the link-survivable network problem wheréu) = & for all v € V" with
k odd. They also showed that inequalities (15) together with the non-negativity
inequalities (2) completely describe the polyhedift, ) in that case. As a
consequence, they obtained that Theorem 4 also holds on series-parallel graphs,
as conjectured by Chopra [22]. This conjecture was also proved independently by
Chopra and Stoer [25]. We remark that inequalities (15) are nothing but a particu-
lar case of generalized partition inequalities (12). Therefore, a direct consequence
of the result of Baiou et al. [7] (see Subsection 5.4), inequalities (15) can be sep-
arated in polynomial time. (We remind that those inequalities are valid for the
LSNDP only if the graph induced by the partition is series-parallel.)

As we mentioned in Section 2, the polytope LSNDP() wherer € {0,1}"
is closely related to the Steiner tree polytope STR{, the extreme points of
which are the incidence vectors of the Steiner trees;/of Over the last two
decades, extensive researches were conducted oli=STHR3, 24, 44, 58, 98].
In [23, 24], Chopra and Rao described several classes of facet-defining inequali-
ties for the dominant of the Steiner tree polytope in both directed and undirected
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cases. Didi Biha et al. [44] studied further facet-defining inequalities which gen-
eralize those introduced in [23, 24]. They also gave some linear description of
STP(@, r) in some non-trivial subclasses of series-parallel graphs. In [98], Mar-
got et al. considered an extended formulation of the Steiner tree problem, and they
showed that it leads to a complete linear description of the associated polytope on
2-trees (i.e., maximal series-parallel graphs). Goemans [58] discussed another
extended formulation of the Steiner tree problem and he characterized the asso-
ciated polytope when the underlying graph is series-parallel. Moreover, he also
described some classes of facet-defining inequalities for the Steiner tree polytope.

The node-survivable network polytope has also been investigated in some par-
ticular classes of graphs. In [14], Barahona and Mahjoub gave a complete descrip-
tion of the polytope NSNDR{, ) on Halin graphs when(u) = 2 forall u € V.
Coullard et al. [32, 33] studied the Steiner 2-node connected subgraph problem,
that is, the NSDNP where € {0,2}". In [32], they gave a linear time algorithm
for the Steiner 2-node connected subgraph problem on Halin graphs and on graphs
non-contractible tdV,, the latter being the graphs that do not reduc81o(i.e.,
the wheel on five nodes) by means of deletions and contractions of edges. They
also described, in [33], the dominant of the polytope LNS®R{ wheredG is a
graph non-contractible t8/, andr € {0,2}".

7 Critical extreme points

Itis well known that the linear relaxation of a combinatorial optimization problem
usually provides near optimal solution. In order to improve this solution, one has
to add valid inequalities which are violated by fractional solutions. Many of these
solutions may be extreme points of the linear relaxation and therefore, character-
izing the extreme points, among the ones of the linear relaxation, which may be
separated in polynomial time, would be of great interest for solving the whole op-
timization problem. This question was first studied by Fonlupt and Mahjoub [49]
for the 2-edge connected network polytope, that is, the polytope LSNDP where
r(u) = 2 forallw € V. They introduced the concept of critical extreme points of
the linear relaxation of the link-survivable network polytope. In this section, we
discuss these extreme points.

Consider a grapliz = (V, E) and suppose(u) = 2 foralluw € V. We
denote byP(G) the polytope given by the trivial inequalities (2) and (3) and the
inequalities

z(6(W))>2  foralWcV, W+#0. (16)

We observe that inequalities (16) correspond to the cut inequalities (4) in the case
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wherer(u) = 2 for all u € V. Moreover, we also point out that the polytope
P(G) is the linear relaxation of LSNDPY, r) in this case.

LetZ be a non-integer extreme point 8fG). LetZ’ be a solution obtained
by replacing some (but at least one) non-integer componentdpf) or 1 (and
keeping all the other componentsfinchanged). I’ is a point of P(G), then
7' can be written as a strict convex combination of extreme poinf3(6f). If y
is such an extreme point, thgns said to bedlominated by 7, and we writeT > 7.
Note that an extreme point @f(G) may dominate more than one extreme point
of P(G). Notice also that, iff dominategj, that is,z > 7, we then have

{ee E|0<yle)<l}Cc{ec E|0<T(e) <1}

The relation> defines a partial ordering on the extreme pointsPdz). The
minimal elements of this ordering (i.e., the extreme poinfer which there is
no extreme poiny such that: - y) correspond to the integer extreme points of
P(G). The minimal extreme points d?(G) are called extreme points oénk 0.
An extreme point: of P(G) is said to be ofank k, for a fixedk, if  only dom-
inates extreme points of rank less or equal than1 and if it dominates at least
one extreme point of rank— 1. We notice that it is an extreme point aP (G) of
rank 1 and if we replace one fractional componentzdby 1, keeping unchanged
the other components, we obtain a feasible p@imf P(G) which can be written
as a convex combination of integer extreme point®(f). We also observe that
the extreme points aP(G) may have rank at mosv’|.

Fonlupt and Mahjoub [49] introduced the following reduction operations with
respect to a solution of P(G).

¢,: Delete an edge with Z(e) = 0.
f,: Contract an edge having one of its endnodes of degree 2.

05: Contract a node subsBt such that(17) is 2-edge connected ande) =
1 foralle € E(W).

Starting from a graplé” and a pointt of P(G), let G’ be a reduced graph and
be a point ofP(G"), both obtained by applying operatiofis -, 6. It is not hard
to see thaf is an extreme point oP(G) if and only if 7’ is an extreme point of
P(G"). Moreover we have
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Lemmab [49] 7 is an extreme point of P(G) of rank 1 if and only if Z’ is an
extreme point of P(G’) of rank 1.

An extreme point of?(G) is said to beeritical [49] if it is of rank 1 and if none
of the operation8;, ,, 65 can be applied for it. By Lemma 5, the characterization
of the extreme points of rank reduces to those of the critical extreme points of
P(G). In [49], Mahjoub and Fonlupt gave the following necessary conditions for
a fractional extreme point dP(G) to be critical.

Theorem 6 [49] Let G = (V, E) be a 2-edge connected graph and 7 a fractional
extreme point of P(G). If T isacritical extreme point of P(G), then the following
hold.

(i) V=viuvzwithvinv? =,
E = E'U E?with E' N E?% = 0),
(V1, E') isanodd cycle,

(VI U V2 E?) is a forest whose set of leaves is V! and such that all the
nodesin V! have degree 3,

(i) m(e) = 5 fore € E,
T(e) =1forall e € E?, and
(i) z(6(W)) > 2 for all cut §(W) suchthat [IW| > 2 and |IW] > 2.

Remark 2.1 By (ii) and (iii) of Theorem 6, ifG supports a critical extreme point,
thenG is 3-edge connected, and(.S)| > 4 for every cut§(S) such thafS| > 2
and|S| > 2.

Theorem 6 has some interesting algorithmic and polyhedral consequences. We
first note that operatiorts, #,, 65 can be performed in polynomial time and in any
order. Consider now a gragh = (V, E') and a critical extreme point. From
Theorem 6, it follows that there exists an odd cy€lef G such thatz(e) = 3 for
e € C'andz(e) = 1fore € E'\ C. MoreoverE \ C induces a forest whose leaves
are precisely the nodes bf(C'). So the inequality

Zx(e) > |C|2+ 1, (17)

ecC

which is valid for the 2-edge connected network problem, is violated. ctu-
ally, a constraint (17) is ah'-partition inequality (10) wheré’ is the set of leaves
of the forest. Thus, by the remark above we have the following.
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Theorem 7 [49] Critical extreme points can be separated from the 2-edge con-
nected network polytope in polynomial time.

Kerivin et al. [86] showed that an inequality (17) is nothing but a special case
of a more general class of facet-defining inequalities for the 2-edge connected
network polytope. Consequently, by Theorem 7, critical extreme points may be
separated by'-partition facets.

The concept of critical extreme points has also been studied by Mahjoub and
Nocq [96] for the 2-node connected network polytope (i.e, NSNRFP) where
r(u) = 2 for all w € V) as well as by Kerivin et al. [86] for the (1,2)-link-
survivable network polytope (i.e., LSND®(r) wherer € {1,2}"). The follow-
ing inequalities

(0o (W)) > 1 forallv e VW Cc V\ {v}, W # 0. (18)

are valid for the 2-node connected network polytope. We observe that these
inequalities are a special case of the node partition inequalities (14). In [96],
Mahjoub and Nocq studied the polyto@€(G) given by inequalities (2), (3), (16)

and (18). This polytope is nothing but the linear relaxation of the 2-node con-
nected network polytope. They extended the concept of extreme points of rank 1
and critical extreme points to the polytoggG). They also gave necessary and
sufficient conditions for an extreme point@fG) to be critical. In particular, they
introduced the following operations defined with respect to a pooftQ(G).

01: Replace a set of parallel edges by only one edge.

¢,: ContractiV C V such thatt(e) = 1 for alle € E(W) and|§(WW)| < 3.
And they proved the following.

Lemma 8 [96] Let = be an extreme point of Q(G) and z’ and G’ be the solution
and the graph obtained from = and G' by repeated applications of the operations
6, 05, 03, 0] and 0;,. Then T isan extreme point of Q(G) of rank 1 if and only if
is an extreme point of Q(G”) of rank 1.

We now look at the case wherec {1,2}V. The F-partition inequalities (10)
can straightforwardly be extended to the case{1,2}" as follows

p1+|F|J
2 )

2(A)>p—1-| (19)

wherep; = [{i | con(V;) = 1, i = 2,...,p}|. We remark here thaf’| is not

necessarily odd. In fact, inequalities (19) are dominated by the cut and trivial in-
equalities if and only ip; and|F'| have the same parity.
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Let R(G,r) be the polytope described by the trivial inequalities (2) and (3),
the cut inequalities (4) and the partition inequalities (8). The interest in consid-
ering the partition inequalities (8) faR(G, r) is because they can be separated
in polynomial time as proved in [84] (see also Section 8). Given a solatioh
R(G, ), the following operations, described in [86] and given with respeat to
extend in a straightforward way the operati®y introduced above, to the case
wherer € {1,2}V.

¢7: Contract an edgev such that(uv) = 1, 7(u) = 1 andz(6(u)) < 2.
64: Contract an edgev such that (u) = 2, |§(u)| = {uv, uw} andr(w) = 2.

Note that these reduction operations, as wefl ag,,, can also be realized in poly-
nomial time. We also notice that operati®y) previously given for the case where
r(u) = 2 for all u € v, can be extended to the (1,2)-link-survivable network prob-
lem by considering node séits C V with 7(u) =2 forallu € .

With a graph obtained fror by contracting an edge = uv € E, we asso-
ciate the connectivity type vectog € {1,2}V'=! such thatr.(w) = con({u,v})
andr.(u) = r(u) if u € V \ {u,v}, wherew is the node that arises from the
contraction ofe. LetG' = (V', E') be a graph obtained by repeated applications
of operationd,, 6, 65, 07, 9. Denote by’ € {1,2}"" the connectivity type vec-
tor corresponding to the gragh’ and byz’ the restriction oft on E’. If z is an
extreme point of2(G, r), thenz' is also an extreme point dt(G’, r'). Moreover
we have the following.

Lemma9 [86] i) If a’x > o' is a valid inequality of the (1,2)-link survivable
network polytope on G’ of type either (4), (8) or (19), then the inequality az > «
wherea(e) = d'(e) ife € E', a(e) = 1 if e hasitsendnodesin different classes of
the partition and o = o/, isvalid for the (1,2)-link-survivable network polytope
on GG. Moreover, if a’'x > o' isviolated by 7/, then ax > « isalso violated by z.
i) If ax > « is a valid inequality of the (1,2)-link-survivable network polytope
on G of type (4) (respectively (8)) (respectively (19)) which isviolated by z, then
there is an inequality, valid for the (1,2)-link-survivable network polytope on G’
of type (4) (respectively (8)) (respectively (19)) which isviolated by z'.

Lemma 9 shows that looking for inequalities of type (4), (8) or (19) which are
violated byz, reduces to looking for such inequalities which are violated:by
onG'. We observe that this procedure can be applied for any soluti®i@f r),
and in consequence, it may permit to separate fractional solutions which are even
not extreme points oR(G, ). Moreover, ifr(u) = 2 for allu € V andz is an
extreme point of?(G) of rank1, then, as mentioned above, there iB-gartition
that cuts off this solution and which can be found in polynomial time. In addition,
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this F'-partition inequality may be facet-defining.

Lemma 9 also holds for the 2-node connected network polytope when we con-
sider the operation,, 6, 07, 0, and the inequalities (16), (14), (10). Actually, in
this case, the grapfi’ is obtained by applications of the operatighsé,, 0], 0.

And if there is one of those inequalities that is violatedibyn G’, then there is
also one that is violated by in G. Thus, as for the (1,2)-link-survivable network
polytope, the separation @fby inequalities of type (16), (14), (10) i reduces
to the separation af’ by these inequalities 6.

Operationd),, 0,05, 67, 05 (respectivelyd,, 6, 03, 07, 0,) have been used by
Kerivin et al. [86] in a preprocessing phase of a cutting plane algorithm for the
(1,2)-link-survivable network design problem (respectively the 2-node connected
network problem). As it will be seen in Section 8, they are very effective for
solving these problems.

8 A branch-and-cut algorithm

Branch-and-cut is the most successful paradigm for solving NP-hard combinato-
rial optimization problems to optimality. This approach has been used for devising
efficient algorithms for the survivable network design problem, starting from the
work of Grotschel et al. [77]. In fact, Grotschel et al. developed a branch-and-cut
algorithm for solving the low-survivability case on real-world instances that have
up to 108 nodes and sparse graphs induced by all the possible links. The theoret-
ical results presented in the previous sections have some interesting algorithmic
applications as shown hereafter by the description of a branch-and-cut algorithm
devised by Kerivin et al. [86] for the (1,2)-link survivable network design prob-
lem and the 2-node connected network problem, denoted later by (1,2)LSNDP
and 2NSNDP respectively.

8.1 Theoverall algorithm

To this aim, we consider a gragh = (V, E), a connectivity type vector €
{1,2} and a cost vectar € RY on the edges afi. We first describe the frame-
work of the algorithm where we use survivable network design problem to refer to
either the (1,2)-link survivable network design problem or the 2-node connected
network problem. The initial linear program is given by the so-called degree in-
equalities (i.e., cut inequalities (4) induced by single nodes) and the trivial in-
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equalities (2) and (3) as follows

minimize Z cle)z(e)
eckE
subject to
r(6(u) > r(u) forallu €V,
0<z(e) <1 foralle € E.

The optimal solutionz € R” of a relaxation of the survivable network design
problem is feasible ift is an integer vector that satisfies all the cut inequalities
(4), as well as the node cutset inequalities (6) for the 2NSNDP. Usually, the solu-
tion z is not feasible for the SNDP and thus, at each iteration of the branch-and-cut
algorithm, it is necessary to generate valid inequalities for the SNDP which are
violated byz. These inequalities are picked on from a pool formed by the cut
inequalities (4), the partition inequalities (8) and thepartition inequalities (19)

for the (1,2)-link survivable network design problem. For the 2-node connected
network problem, the node cutset inequalities (6), the node partition inequalities
(14) and theF'-partition inequalities (10) make up the pools. We remark that all
these inequalities are global (i.e., valid in all the branch-and-cut tree) and several
inequalities may be added at each iteration. Moreover, the separation of those in-
equalities is performed according to the orders specified above, in order to apply
the right separation routine to a class of inequalities.

The separation routines used in the branch-and-cut algorithm are either ex-
act algorithms or heuristics depending on the associated class of inequalities.
Frequently, these separation routines are based on maximum flow computations
that can be done in polynomial time using the efficient preflow-push algorithm
of Goldberg and Tarjan [63] which runs i@ (n?) time. LetG' = (V' E')
be the graph obtained frold andz by repeated applications of the operations
6, 02, 05, 07 and@y (respectivelyd,, 0., ¢, and§)) for the (1,2)LSNDP (re-
spectively 2NSNDP) as described in Section 7. We denote lay {1,2}"" the
connectivity type vector corresponding@, and byz’ the restriction ofc on £'.

In order to speed up the separation routines, the latter are applied on th&fraph
with an edge weight vector given hy. In fact, from Lemma 9, looking for valid
inequalities for the survivable network design problentoviolated byz reduces

to looking for such inequalities i&”’ violated byz'.

The separation of both cut inequalities (4) and node cutset inequalities (6) can
be performed by computing Gomory-Hu trees@n[64]. (A Gomory-Hu tre€l’
on G' has the property that for any pair of nodest € V', the minimumst-cut
in T is also a minimunst-cut in G’, and using Gusfield’s algorithm [78], getting
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T requiresV’| — 1 maximum flow computations.) To deal with the two possible
right-hand sides of the inequalities (4), only the nodes V' with r'(u) = 2

are first considered in a Gomory-Hu tree and then, these nodes are shiwhk in

to provide a graph on which another Gomory-Hu tree is computed. For the node
cutset inequalities (6), their separation reduces to a sequenté édomory-Hu

tree computations. In consequence, an exact algorithm that permits to separate the
cut inequalities (4) (respectively node cutset inequalities (6)) can be implemented
to run inO(n*) time (respectively) (n°) time).

We now turn our attention to the separation of the partition inequalities (8)
which are exclusively considered where {1,2}". An exact algorithm to sepa-
rate those inequalities was given by Barahona and Kerivin [13] and its time com-
plexity isO(n"). However, in the context of a branch-and-cut algorithm, this time
complexity may seem a little too high, and some heuristics were devised for sep-
arating those inequalities [77, 86, 111]. Kerivin et al. [86] thus devised a heuristic
where they consider two cases depending on the value of the right-hand side. In
fact, using Barahona'’s algorithm [12], one can solve exactly the separation prob-
lem of the multicut inequalities (7) and the partition inequalities (9) violated by
more than 1. Kerivin et al. then developed an heuristic to separating the partition
inequalities (9) violated by less than 1. The latter is based on the transformation
of cuts given by a Gomory-Hu tree d@# into partitions by applying Barahona’'s
algorithm to both shores of the cuts. Their whole approach leads to an heuris-
tic for separating the inequalities (8) which can be implemented to ranir?)
times. The separation of the node partition inequalities (14) can be reduced to a
sequence ofV”’| separation problem of multicut inequalities (7) in the graph
with one node less. (We recall that these inequalities are only considered for the
2NSNDP.) Therefore, using Barahona's algorithm, separating the inequalities (14)
can be done i (n®) time.

We finally discuss the separation routines for fygartition inequalities (10)
and (19), the separation problem of which has not been established yet. Therefore,
two heuristics were devised by Kerivin et al. [86] for separating both inequalities
(10) and (19). The idea of the first one comes directly from the study of the
critical extreme points (see Section 7), and especially from Theorems 6 and 7.
This heuristic consists of looking for cycles @@ formed by fractional valued
edges and for any of these cycles, ..., v,), trying to generate a violateH-
partition inequality induced by the partitiofi”’ \ {vy,...,v,},{vi},....{v,}}
and an edge subset among the edges having exactly one extremity in the cycle.
This first heuristic can then be implemented using a recursive algorithm that de-
termines the 2-connected components in a graph, leading@y=ah time com-
plexity. Another heuristic was devised in [86] which transforms cuts containing
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as much edges € E’ with 7'(e) = 1 as possible intd'-partitions. To determin-

ing such cuts, one can compute a Gomory-Hu tre€z6mith the edge weight
vector(1 — 7'(e), e € E'). Given a cuv (W) from the obtained Gomory-Hu tree,

a F-partition inequality is then generated by considering the partition induced by
W and the nodes il and by picking on an edge subgétc §(W). (The same
process can be applied for the partition inducedBynd the nodes ifl’.) This
second heuristic requires the solution®fn) minimum cut problems and runs in
O(n*) time. Another way to generatefa-partition from a cut would be to apply
Barahona's algorithm [12] to each shore of the cut; the complexity of the second
heuristic would then increase @(n°) time.

8.2 Computational experiments

We now briefly discuss some of the computational results obtained by Kerivin et
al. [86] for both (1,2)LSNDP and 2NSNDP using the branch-and-cut algorithm
previously described. The test problems, which consist in complete graphs, came
from the TSPLIB library [108]. Their numbers of nodes were up to 574 when
node types are all equal to 2, and up to 101 whea {1,2}". Moreover, if

the (1,2)-link survivable network design problem was considered, the connectiv-
ity type vector was randomly generated.

Their first series of experiments concerns the SNDP wijth = 2 for all
u € V, that is, the 2-link connected network problem and the 2-node connected
network problem. It appeared that the linear relaxations given by the trivial and cut
inequalities (together with the node-partition inequalities for the 2NSNDP) pro-
vided good lower bounds. The average relative error between these lower bounds
and the optimal values was actually less than 1%. Furthermore, for both prob-
lems, theF-partition inequalities (10) appeared to be very efficient in order to
solve those problems without any need of branching, or at least, to considerably
improve the lower bound given at the root node of the branch-and-cut tree. This
remark confirms the one from Baiou [5] for the 2LSNDP where ARpartition
inequalities (10) are separated in polynomial time by preliminary fixing the edge
subseftt’. Moreover, their experiments also showed that the two separation heuris-
tics for the F'-partition inequalities (10) detected a large enough number of such
violated inequalities and therefore, were very useful. Furthermore, they noticed
that the solution obtained for the 2LSNDP and the 2NSNDP are also optimal for
the traveling salesman problem in the majority of the cases, showing thus that
considering those inequalities in a branch-and-cut algorithm may be useful for
solving the TSP.

Kerivin et al. then considered the (1,2)-link survivable network design prob-
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lem in order to estimate the importance of the partition inequalities (8) ankl-the
partition inequalities (19) in the solution of that problem. They first noticed that
the partition inequalities (8) played a central role for solving the (1,2)LSNDP to
optimality. In fact, by considering them together with thepartition inequalities

(19), the relative error between the optimal value and the lower bound achieved
at the root node considerably decreased, and several problems could be solved
without any branching. A direct outcome of that remark is the efficiency of the
separation routines, presented in Subsection 8.1, to detect violated partition in-
equalities (8). Actually, almost three-quarter of the violated partition inequalities
were detected by the heuristic transforming cuts into partitions, even though vio-
lated multicut inequalities (7) and partition inequalities (9) violated by more than
1 were first sought. Thé'-partition inequalities (19) appeared in a smaller pro-
portion than theF-partition (10) for the SNDP with(u) = 2 for all u € V.
Nevertheless, combined with the cut and partition inequalities, they permitted to
speed up the solution of the (1,2)LSNDP in some cases, and eventually to solve
it to optimality at the root node of the branch-and-cut tree. This implies that the
heuristics for separating thg-partition inequalities may be less efficient for the
(1,2)LSNDP, yet these inequalities seemed to be useful.

Finally, the interest of the reduction operations introduced in Section 7 was
also evaluated in [86] (see also Kerivin [83]) by making the same experiments
with and without them. Kerivin et al. [86] then reported that for both cases (i.e.,
r(u) = 2forallu € V andr € {1,2}") the solutions of the problems consumed
much more CPU time when the reduction operations were not considered. In fact,
getting an optimal solution might need a few seconds with those operations, and
several hours without them. Moreover, using the reduction operations seemed to
make the separation routines be more efficient, the number of detected violated
inequalities being higher in that case. It was also mentioned in [86] that many
of the F'-partitions (10) that cut off fractional solutions of the 2LSNDP and the
2NSNDP in the experiments, were facet-defining-irbecause of the application
of the reduction operations.

9 Survivability with length constraints

In general, survivability requirement is not sufficient to guarantee a cost effective
routing. Indeed, the alternative routing paths may be too long and then, too costly
to be suitable. For instance, an optimal 2-connected network may be a Hamilto-
nian cycle (i.e., a cycle going through all the nodes of the network exactly once).
In consequence, further technical constraints have to be added, in particular one
can impose a limit on the length of the rerouting paths. Actually, there are two
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types of rerouting strategies in telecommunications. The first one, daltat
rerouting, consists in rerouting the traffic between the extremities of the failed
link. This link together with the rerouting path thus form a cycle. A network suit-
able for this strategy would then be one where each link belongs to a cycle (also
called ring) not exceeding a certain length. Such a network is caeld-healing

rings network [122]. This is for instance the case of the SDH/SONET networks.
The second strategy is tad-to-end rerouting. In that case, if a link fails, the
traffic must be rerouted between its origin-destination nodes. In order to limit
the rerouting, one thus must have at least two edges (node)-disjoint paths with
bounded length between each pair origin-destination, so that if one of the paths
fails, the traffic may be rerouted (in a minimum time) on the second one. This
corresponds for instance to the ATM networks and the Internet. In many practical
situations, the length of the routing path is considered as the number of links (also
called hops) in the path, and then we talk abmpg-constrained path. In this sec-

tion, we discuss some variants of these two length constrained survivable network
design problems.

9.1 Survivability with bounded rings

In [52], Fortz et al. considered the problem of designing a minimum cost 2-node
connected network such that each edge belongs to a cycle of a bounded length.
This problem can be presented as follows: Given a gi@iph (V, E) such that

each edge € F has a cost(e) and a lengthi(e), and a positive integek’, the
problem consists of finding a minimum cost 2-node connected subg@V&ph)

such that each edge &f belongs to a cycle of length less or equal tiiénFortz

et al. called this problem th&connected subgraph with bounded rings problem.

This problem is a generalization of tBenode connected subgraph problem, that

is the NSNDP withr(v) = 2 for all v € V. In fact, the latter is nothing but

the 2-connected subgraph with bounded rings problem whes ~c. Fortz et

al. [52] derived valid and facet-defining inequalities for the associated polytope,
and devised separation procedures. They also presented a cutting plane algorithm
and discussed experimental results. In [51], Fortz and Labbé gave a formulation
for the problem based on a set covering approach. They provided further classes
of facets and discussed the associated separation problems. They also reported
computational results obtained with a cutting plane algorithm. For a complete
survey of this problem, see Fortz [50].

In [53], Fortz et al. studied the edge version of the above probleni-tadge
connected subgraph with bounded rings problem (2ECSBR). They considered the
case where the length of each edge is 1. So the problem here is to find a minimum
cost2-edge connected subgraph such that each edge belongs to a cycle with no
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more thank edges. Fortz et al. [53] introduced a class of valid inequalities, and,
using this, they gave an integer programming formulation for the problem in the
space of the design variables. In what follows we describe these inequalities.

LetG = (V,E) be a graph and > 3. If 7 = {V;,...,V,} is a partition
of V, then we letC, = U'_)[V;, Vit ] U [V, V,] and T, = 6(Va, ..., V) \ Ch.
Suppose now that the partitianis such thap > K and lete € [V, V,]. Consider
the inequality

o(T%) > x, (20)

where
Tr =T U ([Vo, Vo] \ {e}). (21)

Fortz et al. [53] showed that inequalities (20) are valid for the polytope associated
with the 2ECSBR. Inequalities (20) are callegtle inequalities. Moreover they
proved the following.

Theorem 10 [53] Let G = (V,E) be a graph and K > 3. The 2ECSBR is
equivalent to the following integer linear programming problem

min E Cele

eck
st. z(6(W))>2 WCV,0£W £V, (22)
z(T¢) > xe e[V, Vk], m=W,...,Vk) is apartition ofV,
and7? is defined by (21), (23)
0<z. <1 ec F, (24)
z.€{0,1} eckE. (25)

By adding to the formulation given by Theorem 10 the constraints
r(dg_,(W))>1, W CV\{v},vey,

we obtain a formulation for the-node connected subgraph with bounded rings
problem (when the lengths are equal to 1).

It is not hard to see that the separation problem for inequalities (20) associ-
ated with an edge = st reduces to finding a minimum weight edge subset that
intersects allst-paths of length< K — 1. Fortz et al. [53] showed that, when
K < 4, this problem reduces to a max-flow problem in an appropriate directed
graph and hence can be solved in polynomial time. As a consequence, they ob-
tained a polynomial time separation algorithm for inequalities (20) wkieq 4.
Unfortunately, McCormick [99] showed that the above constrained min-cut prob-
lem is NP-hard ifK' > 13. A question which is still open is whether or not this
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problem is polynomially solvable fok* = 5. Fortz et al. [53] described further
valid inequalities. And using these inequalities as well as the cycle inequalities
they developed a branch-and-cut algorithm for the 2ECSBR and presented com-
putational results.

9.2 Hop-constrained paths
9.2.1 The Hop-constrained spanning tree problem

Hop-constrains have been considered by Gouveia [65, 66] for the minimum span-
ning tree problem. The problem is then, given a gréph (V, E') with weights on

the links and aoot node, to find a minimum spanning tree such that the (unique)
path between the root and any other node in the graph has no moré theks
(hops), wherd. is a fixed positive integer. This restriction guarantees a specified
level of service with respect to certain performance measures. This problem is
NP-hard even fol. = 2 (see for instance [37]). Gouveia [65] gave a multicom-
modity flow formulation for that problem and discussed a Lagrangian relaxation
improving the LP bound. Gouveia [66] proposed a hop-indexed reformulation of
a multicommodity flow formulation which is based on an extended description
of the L-walk polyhedron. The reported computational results show that the new
formulation is attractive to use wheh is small. Unfortunately, as the number

of variables of the model grows up with, the size of the corresponding linear
programming relaxation may lead to computer storage requirements or to exces-
sive computational time when more dense instances, or instances with a bigger
value of L or a bigger number of nodes are considered. Gouveia and Requejo
[72] proposed a Lagrangian relaxation for the problem which dualizes the hop-
indexed flow conservation constraints. Reported results show that this relaxation
is a good alternative to directly solving the corresponding linear programming re-
laxation. In [37], Dahl studied the problem féar= 2 from a polyhedral point of

view and gave a complete description of the associated polytope when the graph
is a wheel. Gouveia and Janssen [67] discussed a generalization of the previ-
ous problem where two different cable technologies with different reliabilities are
available. They formulated the problem as a directed multicommaodity flow model
and used Lagrangian relaxation together with subgradient optimization to derive
lower bounds. Gouveia and Magnanti [68] considered the problem that consists
in finding a minimum spanning tree such that the number of edges between any
pair of nodes in the tree is limited to a given boubRdi.e., the diameter). This
problem is polynomially solvable ib < 3 and NP-hard ifD > 4. Gouveia and
Magnanti [68] derived single source formulations for the problem based on the
concept of tree centers along with some computational experiments. They also
pointed out that the case whéhis odd is harder to solve than the even one. In
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[69] Gouveia et al. introduced a new modeling approach for the case Wwhen
odd and showed that this approach performs better than the one in Gouveia and
Magnanti [68].

9.2.2 The hop-constrained path problem

The closely related and basic routihgp-constrained path problem has also
seen a particular attention last years. This problem consists of finding between
two distinguished nodesandt a minimum cost path with no more thdnedges
when L is fixed. This problem can be solved efficiently using dynamic program-
ming. In fact, it was this approach which motivated the extended description of
the L-walk polyhedron described in [66]. In what follows we briefly discuss this
problem.

The L-path polytope, denoted byL.PP() is the convex hull of the incidence
vectors of thest-paths having no more thah edges. Clearly, the following in-
equalities are valid foL PP().

z(6(W)) > 1, forall st-cutd(W), (26)

and are calledt-cut inequalities. In [38], Dahl considered the dominant of the

path polytope, that is the polyhedr@®P()+R% . He described a class of valid
inequalities for the problem and gave a complete description of that polyhedron
whenZ < 3. In particular, he introduced a class of valid inequalities as follows.

Let {V4, V4, ..., Vi41} be a partition ofV” such thats € V4, t € V., and
V; #0foralli=1,..., L. LetT be the set of edges= uv whereu € V;, v € V;
and|i — j| > 1. Then the inequality

z(T) = 1, (27)

is valid for theL-path polyhedron. Inequalities (27) and (28) are callgghth cut
inequalities (or jump inequalities [41]). Using the same partition, this inequality
can be generalized in a straightforward way as follows to the case Wheaige-
disjoint paths are required betweeandt

z(T) > K. (28)

The separation problem for these inequalities can be solved in polynomial
time, if L < 3. In fact, it is easily seen that this problem reduces to finding a min-
imum edge set that intersects all thiepaths with no more thah edges. Since
L < 3, as it has been shown by Fortz et al. [53], this can be done in polynomial
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time. Dahl [38] showed that inequalities (27) together with inequalities (26) and
the nonnegativity inequalities completely describe fhpath polyhedron when

K < 3. This implies that for non-negative cos{g), e € F, the hop-constrained
path problem wherl, < 3 is equivalent to minimizing . c(e)z(e) subject to
(26), (27) ande(e) > O foralle € E.

In [104], Nguyen described a general class of valid inequalities fof.tpath
polyhedron, and, using LP-duality, he showed that these inequalities together with
the st-cut inequalities (26) characterize this polyhedron for everife also gave
an efficient algorithm that permits to separate from this polyhedron.

In [41], Dahl and Gouveia considered the directed hop-constrained path prob-
lem. Note that thest-cut inequalities (26) and the-path-cut inequalities (27),
(28) can be easily extended to that problem. Dahl and Gouveia [41] described
a class of valid inequalities obtained by lifting from the direcfegath-cut in-
equalities and showed that these inequalities together with the flow conservation
constraints and the trivial inequalities characterize the direttpath polytope
whenL < 3. They also identified valid inequalities and addressed some polyhe-
dral issues for the case whén> 4.

In [31], Coullard et al. investigated the structure of the polyhedron associated
with the directedst-walks having exactly. arcs of a directed graph, where a di-
rected walk is a directed path that may go through the same node more than once.
They presented an extended formulation of the problem and, using projection,
they gave a linear description of the associated polyhedron. They also discussed
classes of facets of that polyhedron. In [39], Dahl et al. considered the polytope
of the directedst-walks having no more thah arcs. They presented an extended
formulation for the underlyind.-walk problem when. = 4, and used projection
to obtain a complete linear description of that polytope for the same valile of
They also described generalized valid inequalities that define facets for the domi-
nant of that polytope, which, quite surprisingly, shows that obtaining a complete
description for the dominant of th&-walk polytope when, = 4 is much harder
than obtaining such a description for the polytope itself. (Note thati# 3, a
walk is also a path, and then the polyhedral investigation of Dahl and Gouveia
[41] also holds for th&-walk polytope).

9.2.3 The hop-constrained network design problem
A more general network design problem with hop-constraints, that has also
been investigated ihe hop-constrained network design problem (HCNDP). This

can be presented as follows: Given a grépk (V, E') with weights on the links,

36



a set of pairs of terminals and two positive integ&rsand L, find a minimum
weight subgraph such that between each pair of terminals there are akleast
edge-disjoint paths with no more thdnlinks. This problem is NP-hard even
whenK = 1 andL = 2 [40]. In Balakrishnan and Altinkemer [9], the HCNDP
was studied whe®” = 1 within the framework of a more general model for back-
bone networks. The authors gave a mixed-integer programming formulation and
developed a Lagrangian based algorithm to generate lower bounds and feasible
solutions. In a recent work, for the same case, Pirkul and Soni [106] introduced
multicommodity flow based formulations and developed heuristics based on the
linear relaxations. Also extensive computational results are reported.

The HCNDP was considered in Dahl and Johannessen [40Kfet 1 and
L = 2. The authors gave integer programming formulation and described classes
of valid inequalities. Using this, they developed a cutting plane algorithm and
presented computational results. In [80], Huygens et al. studied the HCNDP in the
case when there is only one pair of terminals, sand¢, K = 2 andL = 3. They
gave an integer programming formulation for the problem in this case in the space
of the design variables. They showed thatt¢heut inequalities (inequalities (26)
with right hand side) and theL-path inequalities (28) (witlk’ = 2) together with
the0— 1 integrality constraints formulate this problem, and they gave an extension
of this formulation to the case whe#é > 2. They also discussed the polytope
P(G, L) given by the constraints of the linear relaxation of this formulation. In
particular, they proved the following.

Theorem 11 [80] P(G,L) isintegral, if L < 3.

Theorem 11 implies that the associated polytope is equBl(&, L). In ad-
dition, since the separation problem for tftecut andL-path cut inequalities can
be solved in polynomial time wheh < 3, from Theorem 11, it follows that the
HCNDP whenL < 3, K = 2 and only one pair of terminals is considered can
be solved in polynomial time using a cutting plane algorithm. As pointed out in
[80], the formulation given above (for the HCNDP whér< 3, K = 2 and only
one pair of terminal is considered) is no longer valid for the problem ¥ 4.
However forL. < 3, one can see that this formulation can be easily extended to
the HCNDP with arbitrary number of pairs of terminals.

9.2.4. Related hop-constrained problems
Hop-constraints have also been considered for related network design prob-
lems. In [15], Ben-Ameur defined some classes of 2-connected graphs satisfying

path (and cycle)-length constraints. He introduced some parameters and estab-
lished properties and relationships between these graphs. Moreover, he investi-
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gated the hop-constrained flow problem and gave lower bounds on the number of
edges of these graphs. As a consequence, he obtained some valid inequalities for
the underlying survivable network design problem. Gouveia et al. [71] consid-
ered an MPLS (Multi-Protocol Label Switiching) network design model with hop
constraints. They gave mixed integer programming formulations and discussed
computational results. In [70], Gouveia et al. studied the design of MPLS over
Optical networks. They also used hop constraints to garantee maximum delay
quality of service.

Itai et al. [81] studied the complexity of several variants of the maximum dis-
joint hop-constrained paths problem. This consists of finding the maximum num-
ber of disjoint paths between two nodeandt of length equal to (or bounded by)

K whereK is a positive integer. They showed that the problem is NP-complete
for K > 5 and polynomially solvable for some of the variants for< 4. In
particular, they devised a polynomial time algorithm for the problem when the
paths must be node-disjoint (respectively edge-disjoint) and of length bounded
by K, with K < 4 (respectivelyK < 3). Bley [19] addressed approximation
and computational issues for the node-disjoint and edge-disjoint hop-constrained
paths problems. In particular, he showed that the problem of computing the max-
imum number of edge-disjoint paths between two given nodes of length equal to
3 is polynomial. This result answered an open question in [81].

10 Concludingremarks

In this paper, we surveyed some optimization techniques for the survivable net-
work design problem. We focused on the undirected network case. Nevertheless,
survivability has also been considered in directed networks. In that case, the sur-
vivability conditions are the same as in the undirected case, except that “path”
is replaced by “directed path”. So the formulation given for the undirected case
can straightforwardly be extended to this one. Although its applications to many
practical situations, the directed survivable network design problem has not seen
as much attention as the undirected case. In [36] (see also Dahl [35]) Dahl studied
Steiner problems in directed graphs. He investigated the polyhedral structure and
developed cutting plane algorithms. Ball et al. [11] (see also Liu [92]) studied the
two terminal Steiner tree problem in directed graphs. (Notice that this problem
is solvable in polynomial time.) They proposed an extended formulation for the
problem and used projection to obtain facet inducing inequalities for the associ-
ated polyhedron in the natural space.

Moreover, several researchers investigated directed formulations for variants
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of the link-survivable network design problem. In [21], Chopra introduced a di-
rected formulation for the 2-edge connected subgraph problem. Using projection,
he also showed that some classes of valid inequalities can be obtained from the di-
rected cut inequalities. Magnanti and Raghavan [93] introduced a multicommod-
ity flow formulation for the generalized Steiner problem and edge connectivity.
They showed that this formulation is stronger than the undirected cut formulation,
and they projected out some known classes of valid inequalities.

The capacitated survivable network design problem has also been investi-
gated. For this problem, in addition to the connectivity requirements, we suppose
given a set of demands between some pairs of nodes, a set of discrete capacities
associated with the edges of the graph, each with an associated building cost. The
problem is to construct a survivable network and find which capacities to install
on the edges so that each demand (or some prescribed fraction of the demand) can
be routed in the event of a failure, and the overall cost is mininum. Stoer and Dahl
[112] where the first who considered this problem. They studied the 2-connected
case where at most one edge (node) fails at a time. In [42] (see also [112]), they
devised a branch-and-cut algorithm for the problem and solved a large number
of real-world instances. A more general model including length and routing con-
straints has been considered in [4, 16, 87]. For that model, survivability is pro-
vided using traffic rerouting strategies (e.g., local rerouting, end-to-end rerouting).

Valid inequalities induced by cutsets usually appear as subsystems in formula-
tions for network design problems. Therefore, a deep knowledge of the polyhedra
yielded by these subsystems, in particular concerning their facial structure, may be
of great interest for solving these problems by cutting plane algorithms. Bienstock
and Muratore [18] studied the subsystem induced by a cutset in the capacitated
survivable model. Le€ be a cutset of the graph atddand D two positive inte-
gers. Bienstock and Muratore [18] considered the polyhedtdii, D), convex
hull of the solutions of the following inequality system

Y z(e)>L foralle € C, (29)
eeC\{e}
Zx(e) > D (30)
ecC
z(e) € Zy foralle € C.

Here the variable(e) corresponds to the capacity to install on edgi@equalities
(29) express the fact that in the event of a failure at |éashits of capacity are
required in the surviving links of and inequality (30) is the demand inequality
with D equal to the amount of demand that must go thro@igiBienstock and
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Muratore [18] described valid inequalities and structural properties of the extreme
points of this polyhedron. They also used this in a cutting plane algorithm for the
capacitated survivable network design problem. Magnanti and Wang [94] studied
a similar poyhedron without the demand constraint (30) and with different right-
hand sides in (29).

These investigations are certainly a first step toward the development of a com-
plete and efficient cutting plane approach for the general capacitated model. Such
approach may also be combined with other tools like column generation tech-
niques and approximation algorithms.
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