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The importance of considering the entire response time
(RT) distribution in testing formal models of cognition is
now widely appreciated. Fitting a model to mean RT alone
can mask important details of the data that examination
of the entire distribution would reveal, such as the behav-
ior of fast and slow responses across the conditions of an
experiment (e.g., Heathcote, Popiel, & Mewhort, 1991),
the extent of facilitation between perceptual channels
(Miller, 1982), and the effects of practice on RT quantiles
(Logan, 1992). Techniques for testing hypotheses based
on the RT distribution have been developed (Townsend,
1990). In addition, the RT distribution provides an impor-
tant meeting ground between theory and data; the ability
of a model to predict the observed shape of the RT distri-
bution is seen as a critical test of that model (Luce, 1986).

Many models state explicitly the characteristics of RT
by specifying it as a random variable. All of the informa-
tion about a random variable is contained in its probabil-
ity density function (density, for short) or cumulative dis-
tribution function (CDF).1 The density represents the
likelihood that an RT is observed within some arbitrarily
small window of time, whereas the CDF represents the
probability that an RT is less than or equal to some spe-
cific time. Most models of RT predict CDFs that are ogi-
val: monotonic, nondecreasing S-shaped functions that
begin at zero and asymptote at one. The RT densities pre-
dicted by most models are, in contrast, bell shaped: non-

monotonic, usually positively skewed, and unimodal.
Despite their differences, the density and CDF are math-
ematically equivalent ways of stating the properties of a
random variable.

The shape of the density often provides clues to the kind
of random variable and, therefore, potentially to the can-
didate processes underlying the execution of a particular
RT task. To investigate density shape from a sample of
RTs requires that those RTs be used as the basis of an es-
timate of the density. As we will demonstrate in this paper,
some density estimation techniques more accurately re-
cover the true shape of the density than do others. In ad-
dition, it is often a goal of analysis to fit or estimate the
parameters of a model, which also may require an estimate
of the density or the CDF. The model-fitting strategy
used will determine the accuracy of the estimated param-
eter values. Although a number of computer programs
are now available to assist researchers in plotting and per-
forming fits of models to RT distributions (Cousineau &
Larochelle, 1997; Dawson, 1988; Heathcote, 1996), no
detailed assessment of the techniques most commonly
used in density and parameter estimation currently exists
in the psychological literature, especially in the context
of the most likely models to be examined in such estima-
tions. The purpose of this article is to provide such an
evaluation.

Two separate but related estimation issues must to be
addressed. The first is the purely descriptive problem of
accurately estimating the shape of the distribution from
which a sample was derived, without making assump-
tions about the functional form of the population. This
problem has been the focus of most of the work in the sta-
tistical area of nonparametric density estimation (Dev-
roye, 1987; Silverman, 1986; Tapia & Thompson, 1978).
The second issue is the analytical problem of accurately
estimating the parameters of a presumed distribution or,
simply, fitting a model to the sample. To estimate these
parameters, we may need to make use of a density or a
CDF estimate, the same estimate used to investigate the
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Among the most valuable tools in behavioral science is statistically fitting mathematical models of
cognition to data—response time distributions, in particular. However, techniques for fitting distribu-
tions vary widely, and little is known about the efficacy of different techniques. In this article, we assess
several fitting techniques by simulating six widely cited models of response time and using the fitting
procedures to recover model parameters. The techniques include the maximization of likelihood and
least squares fits of the theoretical distributions to different empirical estimates of the simulated dis-
tributions. A running example is used to illustrate the different estimation and fitting procedures. The sim-
ulation studies reveal that empirical density estimates are biased even for very large sample sizes. Some
fitting techniques yield more accurate and less variable parameter estimates than do others. Methods
that involve least squares fits to density estimates generally yield very poor parameter estimates.
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shape of the distribution, as we will describe in some de-
tail below.

In what follows, we first discuss the different ways to
estimate the shape of an RT distribution (either the den-
sity or the CDF) and the properties of each estimator. Us-
ing a small sample, we illustrate the techniques by which
densities and CDFs are estimated. We then present a
simulation study, in which the quality of each estimator
is explored. We explain how models are fit to data and
then fit models to the simulated data to test the accuracy
of different parameter estimation techniques. The study
had two goals: first, to determine which of the nonpara-
metric density estimators most popular in psychological
research are the most accurate, and second, to determine
how best to estimate the parameters of a model, using
these density estimates. We also explore the effects of
sample size on the accuracy of the density and parameter
estimates. The results demonstrate that certain density
estimators, including the popular Vincent estimator (Rat-
cliff, 1979), are highly biased estimators of the true den-
sity function and that model f its to density estimates
(rather than maximum-likelihood estimates or fits to es-
timates of the CDF) often fail to recover accurate param-
eter values.

DENSITY AND CUMULATIVE
DISTRIBUTION FUNCTION ESTIMATORS

There is a large statistical literature concerning various
parametric and nonparametric density function estimators
(see, e.g., Tapia & Thompson, 1978, for a historical re-
view). Parametric density estimators make assumptions
about the functional form of the empirical density, and
the estimate is constructed by finding the best parameters
for the density function, given the data. For RT data, the
most common parametric estimate of the density is the
ex-Gaussian, the convolution of a normal and an expo-
nential random variable. This distribution has been shown
to fit empirical RT distributions well, and so it has been
used to characterize RT densities (Hockley, 1984; Juhel,
1993; Rohrer & Wixted, 1994; Spieler, Balota, & Faust,
1996; Wixted & Rohrer, 1993), even when the ex-Gaussian
is not generated by the model of interest (Heathcote et al.,
1991; Ratcliff, 1978; Ratcliff & Murdock, 1976). Indeed,
there is good evidence that many RT distributionsare not
distributed as ex-Gaussians, at least for weak signals (Bur-
beck & Luce, 1982; Green & Luce, 1971; see Luce, 1986,
for a review).

In contrast, nonparametric estimators use the charac-
teristics of the data to arrive at an optimal shape without
making assumptions about a particular functional form.
There are many ways to estimate the density function non-
parametrically. These include histograms, kernel esti-
mates, nearest neighbor estimates, and orthogonal series
estimates, among others. We are most interested in histo-
gram and kernel estimators, the two types of estimates

most commonly found in the RT literature (e.g., Ashby,
Tein, & Balakrishnan, 1993; Green & Smith, 1982; Tol-
hurst, 1975).

For the following discussion, it will be useful to estab-
lish some notation. The time taken to make a response is
indicated by the random variable T. Let the data observed
be represented by the random vector T 5 {T1, T2, . . . ,
TN}, where N is the total number of observations, and Ti
is the i th RT observed. We call T an independent and
identically distributed sample: Each Ti is assumed to be
statistically independent from every other Tj , and all the
Ti s are generated by exactly the same process. This pro-
cess produces RTs with CDF FT (t) and density function
fT (t), and the data T are a sample from this distribution.
The goal is to estimate FT and/or fT , using the sample T.
An estimate of either FT or fT will be denoted as F̂T or f̂T .

If the observations in T are ordered from smallest to
largest, we can examine the properties of T(i ), the ith larg-
est observation or order statistic in the sample. Let the
order statistics of the data be represented by the vector
{T(1), T(2), . . . , T(M )}, and the number of times each statis-
tic is observed in the vector T by {n1, n2 , . . . , nM}, where

To construct an estimate, it may be necessary to specify
an array of points t 5 {t0, t1, t2 , . . . , tr} distributed over
the range of T. The number of observations mi in the
half-open interval [t i2 1, ti) (where the square bracket and
the parenthesis indicate that the interval includes t i2 1 but
excludes ti) will be denoted by the vector m 5 {m1, . . . ,
m r}, where

Estimates of a parameter or a function are random
variables. They may vary widely over different samples. A
sample mean Xw is a good example of an estimate; it es-
timates the mean µ of the distribution from which the sam-
ple was taken. Different samples from the same distrib-
ution will yield different values of Xw . For our purposes,
we must define two important properties of estimators.
First, an estimator is unbiased if, on average, it equals
the value of the parameter or function that it estimates.
That is,

E[ f̂ ] 5 f,

where the notation E[X ] represents the expected value
(mean) of the variable X. The sample mean is an unbiased
estimator: E[XXw ] 5 µ. This means that the average of all
the sample means computed from all possible samples
of size N drawn from a distribution with a mean of µ will
equal µ. Second, an estimator is consistent if it converges
in probability to the parameter or function that it esti-
mates. In other words, the probability that the estimate
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differs from the thing estimated becomes zero as the
sample size N grows:

for any positive number e, no matter how small. The sam-
ple mean is also a consistent estimator of the population
mean µ. If an estimator is consistent, we can be confident
that the error in the estimate is getting smaller as N gets
larger.

Another important characteristic of an estimator is
whether it maximizes the likelihood of observing the data.
The probability of the data is the joint probability of sam-
pling the entire set of observations from T1 to TN : P(T ) 5
P(T1 ù T2 ù . . . ù TN). Because the observations are as-
sumed to be independent from each other, the probabil-
ity of the sample is therefore

the product of the probabilities of each separate obser-
vation. For a particular set of parameter estimates q̂ 5
{q̂1,q̂2 , . . . , q̂n}, the likelihood of the sample T is given by

(1)

where fT (t; q̂ ) is the density function of the model being
fit to the data, which replaces the P(T ) notation used
above. The function L is a measure of how likely a par-
ticular data set is for a particular set of parameters q̂. If q̂
is chosen so that L(q̂ ) is as large as possible, q̂ is called a
maximum-likelihood estimate of the true parameters
q 5 {q1, q2 , . . . , qn}. Maximum-likelihood estimates do
not necessarily exist, and they are not necessarily unique;
under general conditions, they are consistent (Bickel &
Doksum, 1977).

Other important characteristics of estimators warrant
concern, such as their relative efficiency (their variance
relative to the variance of any other estimator of the same
parameter or function) and sufficiency (whether or not
the estimate can be improved by considering some other
aspect of the data). We will concern ourselves primarily
with unbiasedness and consistency. Although unbiased
estimators are usually preferable to biased ones, the use
of a biased, consistent estimator may be warranted if it
is more efficient than an unbiased estimator. For kernel
estimators, which we present below, there are only small
differences in efficiency across the different alternatives.
Interested readers should consult Silverman (1986) for a
basic treatment of these issues or Devroye (1987) or Tapia
and Thompson (1978) for a more advanced discussion.

We will now present the computations for estimating
CDFs and density functions. To motivate this discussion,
we use a working example in the form of a small (N 5 50)
data set sampled from a Weibull distribution (see Table 1).

We first discuss the CDF and then go on to the density
functions.

The Cumulative Distribution Function
The CDF FT (t) has a natural nonparametric estimator

in the cumulative relative frequency. The cumulative rel-
ative frequency is given by

(2)

and is computed for our Weibull sample and shown in
Table 1, column 3.

Constructing this estimate is straightforward and, likely,
familiar to most readers. Suppose, for instance, we wish
to estimate the value of FT (t) for t 5 756. Using Table 1,
we see that 756 lies between the 19th and 20th order sta-
tistics. Therefore, from Equation 2,

The true value of FT (756) is .396, using the parameters
given in Table 2 and the expression for the Weibull CDF
given in the Appendix.

The cumulative relative frequency estimator of the CDF
(Equation 2) has a number of desirable properties. It is
unbiased and consistent, and it is asymptotically normal
(Bickel & Doksum, 1977). That is, for every value t, the
distribution of F̂T (t) will approach a normal distribution
with mean µ 5 FT(t) (the value of the true CDF at the
point t) and standard deviation s, which we will not pre-
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Table 1
Order Statistics (T( j )) for a Sample of 50 Observations

Drawn From a Weibull Distribution With
Mean m 5 800 and Variance s 2 5 1002

j T( j ) nj Fj j T( j ) nj Fj j T( j ) nj Fj

1 673 1 .02 17 747 1 .36 33 820 2 .72
2 676 1 .04 18 750 1 .38 34 825 1 .74
3 680 1 .06 19 753 1 .40 35 828 1 .76
4 687 1 .08 20 758 1 .42 36 833 1 .78
5 697 1 .10 21 766 2 .46 37 836 1 .80
6 698 1 .12 22 771 1 .48 38 852 1 .82
7 703 1 .14 23 778 1 .50 39 858 1 .84
8 704 1 .16 24 780 1 .52 40 865 1 .86
9 710 1 .18 25 796 1 .54 41 868 1 .88

10 712 2 .22 26 799 1 .56 42 871 1 .90
11 718 1 .24 27 804 1 .58 43 886 1 .92
12 721 1 .26 28 805 1 .60 44 910 1 .94
13 725 1 .28 29 806 1 .62 45 966 1 .96
14 732 1 .30 30 809 1 .64 46 998 1 .98
15 735 1 .32 31 810 1 .66 47 1016 1 1.00
16 740 1 .34 32 816 1 .68

Note—Each order statistic occurred nj times in the sample. The cumu-
lative relative frequency Fj = S j

i =1 nj /50.
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sent here. The cumulative relative frequency estimate of
FT, therefore, is well behaved and well understood.

For model-fitting and graphical purposes, we need to
determine the values of t for which F̂T (t) is to be computed.
We could examine all the points within a finite range (e.g.,
500, 501, 502, . . . , 1,200 msec). Or, we could examine all
the points that were observed in a sample, {T(1), T(2), . . . ,
T(M )}. Nothing prevents us from using a large number of
points except computational expense. A more frugal ap-
proach is to select a small number of ts for which F(t) is
to be estimated across the range of the sample. We can do
this by selecting a fixed step size (e.g., 50 msec) and ori-
gin (e.g., t0 5 500 msec), as we do for the fixed-width
histogram (discussed below). Or, equivalently, we could
select ts on the basis of the density of the sampled times,
using percentiles (Logan, 1992; Van Zandt, Colonius, &
Proctor, 2000). Because of the direct relationship between
percentiles and several of the density estimators, we chose
to use percentiles. Also, by basing the estimated points on
percentiles, we ensure that we obtain estimates evenly
over values of F̂T(t), and so the shape of FT(t) is accurately
estimated. The shape of the fixed-step CDF estimate will
not necessarily be as accurate, because if too few or poorly
located points are used, it is possible to skip over most of
the CDF. Using the percentiles has the added benefit of
being automatic: There is no need to investigate each data
set to determine the appropriate origin and step size, which
undoubtedly differ across subjects and conditions.

For the percentile-based CDF estimate, the quantiles
of the sample are computed that correspond to the desired
points on the CDF estimate. We chose the deciles for the
distribution estimates in this paper, plus the 0th and 100th
percentiles. Using the data in Table 1 and averaging over
times with a common percentile rank, the deciles are com-
puted and shown in Table 3. Consider, for example, the
30th percentile. All times t between 732 and 735 could be
the 30th percentile—that is, P(RT < t) 5 .30. Therefore,
we will estimate the 30th percentile, using the midpoint
between 732 and 735:

5 733.5.

The true value of the 30th percentile is 734.774, using
the parameters given in Table 2.

The estimated CDF can be viewed by plotting the com-
puted quantiles on the x-axis and the corresponding per-
centile ranks on the y-axis. In Figure 1, the points on the
y-axis are always the same (0, .1, .2, etc.), but the corre-
sponding points on the x-axis are taken from Table 3.
The points on the x-axis will vary from sample to sample.
The dashed line is the true CDF computed by using the
parameters in Table 2 for the Weibull distribution.

The Density Function
We focus our attention next on histogram and kernel es-

timates, the two types of density estimates most commonly
found in RT studies. It should be noted that there are other
density estimators available, most notably the naive or
Rosenblatt estimator, nearest neighbor estimators, and
spline and orthogonal series estimators (see Silverman,
1986, or Tapia & Thompson, 1978, for discussions of these
alternatives), which we will not discuss because they have
not previously been used in a psychological context. Fur-
thermore, none of these alternatives has significant advan-
tages over the estimators we discuss here.

732 + 735
}}

2

Table 2
The Parameter Values Used in the Simulations of Each Model

Model Parameters

Diffusion T0 5 672.36 a 5 7.85 z 5 3.93 x 5 2 .02
Ex-Gaussian µ 5 705.13 s2 5 1000 t2 5 9,000
Gamma T0 5 600 l 5 .02 K 5 4
Race T0 5 655.14 lC 5 .0126 lI 5 .0032 KC 5 2 KI 5 2
Wald T0 5 600 µ 5 200 l 5 800
Weibull x 5 652.72 a 5 163.15 k 5 1.5

For the Weibull, the parameter x is a base time parameter. Parameter values were se-
lected so that each model predicted a mean response time (RT) of 800 msec and an RT
variance of 1002 msec2.

Table 3
Percentiles Computed From the Sample in Table 1,
Using Deciles and Vincent’s Procedure (Vincentiles)

Percentile Deciles Vincentiles

0 673.0
5 682.6

10 697.5
15 705.4
20 712.0
25 721.6
30 733.5
35 745.0
40 755.5
45 767.8
50 779.0
55 796.8
60 805.5
65 812.2
70 820.0
75 828.4
80 844.0
85 862.8
90 878.5
95 955.2

100 1,016.0
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Histogram Estimates
We will examine two types of histogram estimators.

The first is the standard fixed-width histogram, in which
observations are combined into bins of equal width, and
the second is the more general variable-width histogram,
in which bins are not necessarily equally spaced. The
array of points t 5 {t0, t1 , . . . , tr} defines the bin bound-
aries of the histogram, and the height of the bars depict
density, so that the bar areas are equal to the proportion
of observations that fall within each region.2 For example,
if a bin stretches from 500 to 550 msec and 25% of the ob-
servations fall in that bin, the height of the bar would be
1/200 [.25/(550 2 500) 5 1/200].

Using t 5 {t0, t1, . . . , tr}, where t0 represents the ori-
gin of the histogram or the smallest value of T to be con-
sidered, we may write the general histogram estimate as

(3)

where I{Ti, [tk 2 1, tk)} is the indicator function

Equation 3 is a rather obtuse way of stating that the height
of the histogram estimate is proportional to the number
of observations within the bin covered by the bar. The in-
dicator function allows us to count the number of obser-
vations that fall in the same bin as the selected value of
t ( [tk, tk+1)). Each Ti that is in the same bin as t causes the
indicator function to add 1 to the sum in Equation 3. For
t contained within the k th interval [tk 2 1, tk), the height of
the density estimate (histogram) at that point equals mk /
[N ? (tk 2 tk 2 1)]. Writing the histogram estimate as in
Equation 3 makes obvious its close relationship to the
kernel estimate, as we will see below.

For the fixed-width histogram, the points t 5 {t0, t1,
. . . , tr} are separated by a constant distance hN, so that
tk+1 5 tk + hN. The parameter hN is called a smoothing
parameter: The larger it is, the smoother the final density
estimate will be. We selected an origin of t0 5 500 msec
and a step size of hN 5 50 msec for all the histogram es-
timates, regardless of sample size. The upper and lower
limits of each bin are therefore defined by t 5 {500, 550,
600, 650, . . .}, and the histogram bars are centered on
{525, 575, 625, . . .}. Returning to our example (Table 1),
the number of observations within each bin is m 5 {0, 0,
0, 6, 12, . . .}. The first bar of nonzero height will be cen-
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Figure 1. Decile estimate (points) of the cumulative distribution function (CDF) for the data presented in Table 1. The
curve drawn through the estimates shows the true CDF for the distribution from which the data were sampled.
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tered on 675 msec. There are m4 5 6 observations that
occur in the fourth interval [650, 700). Using Equation3,

f̂ (t) 5 5 .0024

for all t [ [650, 700). The next bar, centered on 725 msec,
has height

f̂ (t) 5 5 .0048

for all t [ [700, 750). Continuing in this way, we obtain
the fixed-width histogram estimate shown in Figure 2,
panel A. Superimposed on the estimate is the density for
the Weibull distribution from which the observations were
sampled.

Along with the fixed-width histogram estimator, we
will examine two variable-width histogram estimators.
One we will call the decile estimate, which defines 11
boundary points: t1, t2, . . . , t9 are the nine deciles (10%,
20%, . . . , 90%) computed from the sample in the same
way as for the CDF, plus the minimum (t0 5 T(1)) and
maximum (t10 5 T(M )) observed value of T. The other is

the better-known Vincent histogram, introduced by Rat-
cliff (1979), in which the boundary points are also de-
fined by 10 (different) quantiles (approximately 5%, 15%,
. . . , 95%) and the minimum and maximum are not used
in the histogram. The strength of the Vincent estimator is
that it allows for distributional averaging over a group of
subjects or conditions, and this is the context in which it
is typically used (e.g., Balota & Spieler, 1999; Spieler
et al., 1996). We will use the Vincent histogram as a non-
parametric density estimator without averaging.

For the decile estimate, the deciles shown in Table 3 are
used as the real upper and lower limits of the histogram
bars. The height of each bar is chosen so that the area of
the bar is equal to .10, the relative frequency of observa-
tions falling within each region. The bar is then centered
at the midpoint of the upper and lower limits. For example,
the first bar of the estimate will extend from 673.0 to
697.5 msec, a distance of 24.5 msec, and it will be centered
on 685.25 msec. The estimated density, the height of the
bar, is

f̂ (t) 5 5 .0041
.10
}
24.5

12
}
(50)(50)

6
}
(50)(50)

Figure 2. Fixed-width histogram (panel A), decile histogram (panel B), Vincent histogram (panel C), and Gaussian kernel (panel D)
density estimates for the data presented in Table 1. The curve drawn through the estimates shows the true density function of the dis-
tribution from which the data were sampled.
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for all t [ [673.0, 697.5). Similarly, the next bar extends
from 697.5 to 712.0 msec, a width of 14.5 msec, and is
centered on 704.75 msec. The height of the bar is

f̂ (t) 5 5 .0069

for all t [ [697.5, 712.0). Continuing in this way, we ob-
tain the decile histogram estimate shown in Figure 2,
panel B.

The Vincent estimate is obtained in a manner very
similar to that for the decile estimate. First, however, the
vincentiles3 must be computed. Following Vincent’s pro-
cedure (e.g., Ratcliff, 1979), each of the observations
given in Table 1 are duplicated 10 times (one duplication
for each desired vincentile). Then, the first 50 (N ) du-
plicated observations are averaged to give the first vin-
centile. The number so obtained,

(10 ? 673 + 10 ? 676 + 10 ? 680 + 10 ? 687 + 10 ? 697)

5 682.6 msec,

is supposed to estimate the 5th percentile.4 The next 50
observations are averaged to give 705.4 msec, an esti-
mate of the 15th percentile, and so on, to obtain the vin-
centiles shown in Table 3.

To construct the Vincent estimate, histogram bars of
equal area (.10, in our case) are drawn with upper and
lower limits given by the vincentiles. So, the first bar of
the estimate has a height of .10 / (705.4 2 682.6) = .0044.
This bar will be centered at (682.6 + 705.4 msec) / 2 5
694 msec, the midpoint of the interval between the first
and the second vincentile, corresponding roughly to the
10th percentile. Using the vincentiles in Table 3, we con-
struct nine bars encompassing 90% of the sample. The
upper and lower 5% of the data are not represented in the
density estimate, although they contributed to the com-
putation of the vincentiles. The Vincent estimate is shown
in Figure 2, panel C.

Gaussian Kernel Estimator
The fourth density estimator we will consider is the

Gaussian kernel estimate (Parzen, 1962), given by

(4)

The function f is the standard Gaussian density:

For any value t, the estimate of the density at t is con-
structed by centering a Gaussian density over t. Each ob-
servation in the sample contributes an amount to the es-
timate equal to the height of the Gaussian curve at the
observation’s location. To compute the smoothing param-
eter hN, we used Silverman’s (1986) method:

where q1, q3, and s are the first and third quartiles and the
standard deviation of the sample, respectively.

For the sample shown in Table 1, hN 5 18.0442. Con-
sider the estimated density for t 5 690 msec. From Table 1,
there is an observation of 673 msec. This observation
contributes

to the estimate. The next observation, 676 msec, contributes

We continue in this way throughout all the observations
in the sample and compute

f̂ (690) 5 (.26 + .30 + . . .) 5 .0039

(see Equation 4). To determine the estimated density at
the point 720 msec, the Gaussian is shifted to 720 msec,
and the process is repeated, giving f̂ (720) 5 .0050. The
Gaussian kernel density estimate for the sample in Table 1
is shown in Figure 2, panel D, for 60 equally spaced points
along the time axis. Note that although the Gaussian ker-
nel estimator seems not to do as well as the other esti-
mators in this figure, on average it performs the best, as
shown below.

Like the CDF estimate, the number of points at which
the Gaussian kernel estimate is computed can be very
large or small. The only concerns in deciding which points
to use are the computational expense and the ability of
the estimate to represent the true density. We selected the
number of points (60) relatively arbitrarily, although it
served our purposes well. For visualizing density func-
tions, the number of points used does not matter much,
except that enough points be used. There may well be some
tradeoffs, however, if too many or too few points are used
in model-fitting attempts, which will be discussed below.

Properties of the Estimators
In Figure 2, it is clear that different density estimators

can sometimes lead to very different ideas about the prop-
erties of a distribution. The fixed-width histogram esti-
mate in panel A shows only a hint of bimodality, but the
Gaussian kernel estimate in panel D shows two clear
modes and, potentially, a third in the upper tail. We have
already presented the properties that make an estimator
desirable—unbiasedness and consistency—and we will
now discuss these properties in the context of nonpara-
metric density estimators.
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The histogram and Gaussian kernel estimators are gen-
eral weight function estimators (Silverman, 1986). This
means that each can be written as

where the weight function w(x, t) is positive and integrates
to 1 over t. This ensures that the estimate f̂T is itself a prob-
ability density. Under general conditions on the function w,
which are satisfied for the estimators we are examining,
we can state some general properties of the histogram and
kernel estimators. Note that the critical parameter of the
estimators is hN, explicit in the Gaussian kernel and fixed-
width histograms, but not in the variable-width histogram.
The parameter hN determines the extent to which the esti-
mate is smoothed; for example, in the Gaussian kernel es-
timator, hN is the standard deviation of a Gaussian distri-
bution. The larger hN is, the smoother the estimate will be.
For the histograms, hN determines the width of the bins.

Unlike the CDF estimator F̂(t), the density estimators are
not usually unbiased or consistent. If limN®¥ hN 5 0, the es-
timator f̂T will be asymptotically unbiased. This means that
if N is large enough, the average of the estimate will equal
the true density: limN®¥ E[ f̂T] = fT . If, as well, limN®¥
NhN 5 ¥, then f̂T is consistent (Parzen, 1962). The impor-
tant thing to note is that the asymptotic behavior of f̂T is not
determined by N, except through changes in hN. If hN is not
changing appropriately with N, increasing the sample size
will not always help to decrease the bias of the estimate.

This fact warrants repeating. Usually, one may be as-
sured of the robustness of common statistical procedures
when the sample size is large enough. Means become nor-
mal, variance ratios become distributed like F (df1, df2 ),
and so forth. The comfortable habit of increasing N to
safeguard against unknown violations of statistical as-
sumptions will not improve the accuracy of a density es-
timator if the smoothing parameter of that estimator is
chosen poorly. Furthermore, the extent of bias (and hence
the optimal hN) depends on the underlying and presum-
ably unknown density function fT . The accurate estimation
of a density function is not, therefore, a trivial matter.

Of the three density estimators discussed, only the
Gaussian kernel estimator has the benefit that not only
are the conditions for asymptotic unbiasedness and con-
sistency satisfied, but the mean integrated squared error
(the continuous version of the sum of squared errors
[SSE] ) decreases faster than the histogram estimators
with increases in N. That is, it is more efficient than any
of the histogram estimators. It also has the benefit of be-
ing automatic; the parameter hN can be selected accord-
ing to the statistics of the sample. Similarly, the variable-
width Vincent and decile histograms are automatic; the
bin boundaries are determined by the statistics of the
sample. This is not true of the fixed-width histogram,
where the origin and bin width may need to be adjusted
on the basis of the characteristics of a particular sample.
The importance of the existence of an automatic strat-
egy for selecting the smoothing parameter should not be

underestimated. Consider, for example, how one might
select the parameter hN if (as in the present case) one had
several dozen densities to estimate. In Figure 2, for in-
stance, should hN be made relatively small to reflect the
multimodel nature of the sample, or should it be made rel-
atively large to reflect the unimodal nature of the popu-
lation? How do we decide when we do not know fT?

Because it is asymptotically unbiased, consistent, and
efficient, the Gaussian kernel estimator should recover
the true underlying density more accurately than the his-
togram estimators. Furthermore, any parameter estima-
tion technique dependent on a density estimate will be
less accurate than a parameter estimation technique de-
pendent on the unbiased and consistent CDF estimate.
Because the extent of bias and the rate with which bias
decreases with N (if at all) depends on the shape of the
true density function fT , there will also be large, model-
specific effects on accuracy of estimation when different
techniques are used. In the rest of this article, we seek to
answer the following three questions: (1) Which density
estimate provides the most accurate recovery of the shape
of the underlying density? (2) Can accurate parameter
estimation techniques be based on any of these density
estimates? (3) What is the minimum sample size neces-
sary to achieve a reasonable degree of accuracy in either
the density or the parameter estimates?

METHODS

RT data from six models were generated. The equations
for the densities and CDFs for each model are given in the
Appendix. Each distribution arises from a well-established
cognitive model. The diffusion model (Ratcliff, 1978) has
been used to explain RT and accuracy in a wide range of
choice response experiments. The ex-Gaussian model
was originally proposed to represent a two-stage cogni-
tive process, in which the time to make a decision was
exponentially distributed (Hohle, 1965; or normally dis-
tributed, McGill, 1963) and the sum of the remaining per-
ceptual and response-processing times was normally
distributed (Hohle, 1965; or exponentially distributed,
McGill, 1963). The gamma model represents the pro-
cessing time for a number of serially arranged exponen-
tial processing stages (McClelland, 1979; McGill, 1963).
The Poisson race model represents the accumulation of
information on parallel perceptual (or response) chan-
nels (Pike, 1973; Townsend & Ashby, 1983; Van Zandt
et al., 2000). The Wald distribution arises from a diffu-
sion process with one absorbing boundary and has been
used to explain simple (detection) behavior (Emerson,
1970; Wald, 1947), as well as to describe the firing pat-
tern of simple neurons (Rudd, 1996). Finally, the Weibull
model describes RT (under certain conditions; see Colo-
nius, 1995) when a large number of parallel processes
compete to produce a response (Logan, 1988, 1992, 1995).

For each of the six models, 500 samples of size N 5
50, 100, 500, 1,000, and 10,000 were generated (a total
of 500 3 5 = 2,500 samples for each model). For each of
these samples, nonparametric distribution and density es-
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timates were obtained as described above (5 nonpara-
metric estimators 3 2,500 samples 5 12,500 estimates for
each model). Then, using these distribution and density
estimates, the original parameters of the models were re-
covered, using seven parameter estimation techniques
(7 3 2,500 samples 5 17,500 recovered parameter sets
for each model). We examined first the nonparametric
distribution and density estimates, to determine how
well each estimator recovered the true shape of the distri-
bution or density from which the sample was derived (see
Figures 4–13). Then, after fitting each model back to the
samples that each model generated, we examined how
well the original parameters were recovered (see Figures
15–20). We will now describe the specific methods used
in each step of this procedure.

Simulations
The models were simulated by sampling randomly from

the appropriate distributions, with parameters constrained
so that each simulated RT distribution had a mean µ 5
800 and variance s 2 5 1002, approximately what might
be expected if RTs were measured in a choice response
task. The parameter values for each model, plus a base
time component, are given in Table 2. The skewness for
each distribution varied between1.0 and approximately
2.0, with the gamma having the least skew (1.0) and the
diffusion having the most (approximately 1.7).

The workhorse of the simulations was a uniform ran-
dom number generator presented by Press, Teukolsky, Vet-
terling, and Flannery (1992; “ran3”), which is based on
Knuth (1981). Gaussian random numbers were generated
using the Box–Muller method (Knuth, 1981), by way of
the routine also provided by Press et al. All the models
were simulated by exploiting known relationships be-
tween the desired variable and the available uniform and
Gaussian random variables. In the simplest cases, we used
the method of transformation (Press et al., 1992).

Some unique problems arose with the analyses of the
race and diffusion models that made it necessary to treat
these models somewhat differently from the others. For
these models, we needed to obtain accuracies as well as
RT data from the simulations. The race model and the dif-
fusion model both generate correct and incorrect re-
sponses, but only the RTs for correct responses were fit.
For the race model, correct and incorrect RTs were gen-
erated naturally as the minimum statistic of two gammas;
occasionally, the “incorrect” gamma was the smallest and
so determined the RT. Accuracy for the race model was
therefore determined by the number of times the correct
gamma was faster than the incorrect gamma. For the dif-
fusion model, incorrect responses were generated accord-
ing to a binomial process before each RT was simulated.
A uniform random number was generated, and if that
number was less than the probability of a correct response
(as calculated from the parameters of the model), a cor-
rect RT was generated. Otherwise, an incorrect RT was
generated. For both the race model and the diffusion
model, the simulations proceeded until the desired sample

size of correct RTs was obtained. In this way, we obtained
both a sample of RTs and an accuracy for each sample.

For each model, 500 independent samples of sizes 50,
100, 500, 1,000, and 10,000 were generated (approxi-
mately 35 3 106 total samples, well within the cycle length
of the random number generator). Observations were not
duplicated within larger samples; for example, the obser-
vations that made up the sample of size 50 were not the
first 50 observations in the sample of size 10,000. Den-
sity and CDF estimates were computed for each model and
each sample size.

Nonparametric Estimates
Nonparametric CDF and density estimates were ob-

tained exactly as described in the previous section. For
the fixed-width histogram estimates, observations were
placed into bins 50 msec wide, with the first real lower
limit at 500 msec. The height of each bar was equal to the
relative frequency of observations within the bar divided
by 50 msec (the width of the bar; see Equation 3). The
quantile-based histograms were estimated in two ways,
as was described above. First, the deciles were estimated
and used as the real upper and lower limits of 10 histo-
gram bars. Second, the procedure advocated by Ratcliff
(1979) was used. The major difference between the two
techniques is the inclusion of the minimum and the max-
imum in the decile estimate. The upper and lower 5% of
the data are not shown in the Vincent estimate, meaning
that only 90% of the total probability mass is represented
in 9 bars. The different techniques for computing quan-
tiles and vincentiles result in different bin boundaries. The
Gaussian kernel estimator was computed according to
Silverman (1986), as was described above. The Gaussian
estimates were calculated at 60 equally spaced points
along the range of each sample.

The empirical CDF was estimated by the same deciles
as those that were used to construct the decile histogram.
The 0th and 10th (minimum and maximum) deciles were
also included in the CDF estimate.

Fitting the Models
We used two basic techniques for fitting the models to

each sample. The first technique was maximum-likelihood
estimation. The second technique was the method of least
squares, which required the nonparametric distribution
and density estimates. In all the applications in this paper,
we fit each model to the data sets that were generated by
it; we never fit an incorrect model. Our goal was to deter-
mine how well the parameters of the models could be re-
covered when those parameters were known. Most of these
models can very easily be made to mimic each other
(Van Zandt et al., 2000; Van Zandt & Ratcliff, 1995), and
so we did not attempt to fit models to samples that they did
not generate. Because the true model is known and the
correct parameters are used to initiate the fits, our analy-
ses represent a best-case scenario. We will now illustrate
the maximum-likelihood and least squares techniques, re-
turning once again to our example to make matters clear.
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Maximum Likelihood
The goal of maximum-likelihood estimation is to find

estimates of the model parameters such that the proba-
bility of the sample is as great as possible. Maximum-
likelihood estimation procedures do not require that a
nonparametric estimate of the density or CDFs be com-
puted from the data before a model is fit to the data. In es-
sence, maximum-likelihood estimation is parametric in
that a specific density must be selected to compute the like-
lihood L(q̂ ) (see Equation 1). The parameters that maxi-
mize L(q̂ ) can then be used (by plugging them back into
the expression of the density) to generate a parametric
density estimate, if desired.

After the model to be fit has been selected (the Weibull,
for our example), an initial set of parameters must be cho-
sen to begin to fit the model. For our fits, we always be-
gan with the correct parameters, those that were used to
generate the data. The starting values for the Weibull fits
were x 5 652.72, a 5 163.15, and k 5 1.5, or q̂ 5
{652.72, 163.15, 1.5}. The likelihood for these values is
computed by using Equation1. For computational ease, we
can work instead with the log-likelihood function, given by

(5)

The parameters that maximize the log-likelihood function
will also maximize the likelihood function. Each obser-
vation is entered into the density function, along with q̂,
to compute the log likelihood. Using Table 1, the pa-
rameter starting values, and the Weibull density from the
Appendix,

The parameters are then systematically adjusted in an at-
tempt to make ln L(q̂ ) larger. (See Wickens, 1982, for a
more general treatment of maximum likelihood in this
context.)

The log-likelihood function for the Weibull distribution
is a surface in four-dimensional space. Figure 3, panel A,
shows the log-likelihood surface produced by holding
k̂ fixed and varying x̂ and â for the sample in Table 1.
Maximum-likelihood estimation yields the values of x̂,
â, and k̂ that give the largest likelihood, or the highest
point on the surface shown in Figure 3. For our sample,
the highest point on the surface is given by x̂ 5 668.89,
â 5 130.81, and k̂ 5 1.47.

In this example, and in this paper, maximum likelihood
has been applied to the sample as a whole. There are in-

stances where maximum likelihood has been applied to
fit a model to a nonparametric distribution estimate (e.g.,
Heathcote, 1996). In these situations, the likelihood func-
tion is usually changed to

where the likelihood is computed for a fixed number of
estimated points ti rather than the observations Ti . This
is useful for the variable-width histograms when the es-
timate is actually an average obtained over subjects, as in
Vincent averaging (Ratcliff, 1979). However, it is not
recommended for single samples, because it requires
that the sample be replaced with a small number of sample
statistics to compute the likelihood (e.g., 10, if the tis
represent 10 vincentiles), resulting in a poorer estimate
of the parameters than if the entire sample had been used.5
Maximum likelihood also will not be of use for f ixed-
width estimates, such as the fixed-width histogram or the
kernel estimator, because maximum likelihood depends
on the way in which observations are scattered. If all the tis
are equally spaced, every sample will look exactly the
same, regardless of the distribution from which it came.

There are other ways that likelihood might be com-
puted from these estimates, but they are more compli-
cated and rarely used. For these reasons, we did not attempt
maximum-likelihood estimates using nonparametric den-
sity estimates; least squares estimates were used instead.

Least Squares Estimation
The goal of least squares estimation is to choose pa-

rameters such that the SSE between the model and the
data is as small as possible. In our analyses, the data is a
nonparametric CDF or density estimate, and the model
is the functional form of the CDF or density. For a partic-
ular set of parameters q̂ 5 {q1, . . . , qn}:

where f̂T is the empirical estimate of the density (or
CDF), fT (x; q̂ ) is the theoretical density (or CDF) being
fit, and t 5 {t0, t1, t2, . . . , tr} is a fixed number of points
spanning the range of the sample. Least squares estima-
tion therefore requires that a density or CDF estimate be
used to recover the model parameters; rather than using
the entire sample, the sample is summarized by the esti-
mated height of the density at only a few points.

As for maximum likelihood, a model and starting val-
ues for its parameters must be selected. Also, a nonpara-
metric estimate to which the model is to be fit must be
selected. Then, for some number of points on the non-
parametric estimate, the corresponding predicted value
of the model density is computed. The difference between
the theoretical and the estimated density is computed,
squared, and added to the SSE. More specifically, using
the same starting values as before, the true values of the
Weibull parameters, we can compute SSE(q̂ ) for the fit
of the Weibull to the Gaussian kernel estimate (shown in
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Figure 3. Log likelihood (panel A) and sum of squared error (panel B) for fits of the Weibull model to the
data presented in Table 1. The Weibull parameters are j and a , and k is fixed in these figures.
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Figure 2, panel D). The first point estimated by the Gauss-
ian kernel is t 5 667.30 msec. The height of the estimate
at this point is .0018. Using the parameters given in Table 2
and the Weibull density given in the Appendix, the height
of the curve at t 5 667.30 msec is

This point therefore contributes (.0018 2 .0027)2 5 1 3
10 2 6 to the SSE. Continuing in this way over all the points
in the density estimate yields SSE(q̂ ) 5 3.2 3 10 2 5.

Just like the log-likelihood function, SSE(q̂ ) for the
Weibull is a surface in four-dimensional space. Figure 3,
panel B, shows the SSE(q̂ ) surface produced by holding k̂
fixed and varying x̂ and â. The best fit of the model is
given by those parameters that make SSE(q̂ ) as small as
possible. For our sample, those values are x̂ 5 603.64,â 5
195.65, and k̂ 5 2.39. Notice that even though the model
is the same and the starting values of the parameters are
the same, the final recovered values of the parameters are
very different for maximum-likelihood and least squares
estimations.

Minimizing SSE(q̂ ) for a model that is nonlinear in its
parameters (as all of our models are) is called nonlinear
regression. If the model has been correctly specified and
the error at each point to be fit is normally distributed with
equal variance, estimating q, the true parameter vector, by
minimizing SSE(q̂) is desirable for a number of reasons.
The resulting estimated set of parameters q̂ is asymptot-
ically normally distributed and unbiased. The estimate q̂
has minimum variance and maximizes the likelihood of
the sample for the model being fit; that is, minimizing
SSE(q̂ ) will give the same results as maximum-likelihood
estimation. However, the normal, equal variance errors
assumption likely does not hold in our case, which raises
a number of concerns about performing ordinary least
squares minimization as we have done.

The first concern is the homogeneity of variance of the
errors. For fitting densities, we should not expect the var-
iances to be equal; errors should be larger at the tails of the
density than at the mode because of the higher frequency
of observations at the mode. The second concern is the
correlation between the errors: Are the errors uncorrelated
with each other or, if not, are they stationary? Or do they
depend on the point at which the function is estimated?
In practice, it is impossible to answer these questions,
because the theoretical form of the density or CDF is not
known. Therefore, we cannot compute the variance struc-
ture of the errors. With independent, heteroscedastic er-
rors, there are a number of techniques that can be used, in-
cluding weighted least squares and linearization, that can
convert the nonlinear, heteroscedastic regression prob-
lem into a linear, homoscedastic problem and so guaran-
tee unbiased, maximum-likelihood parameter estimates.

However, it is likely also that the errors are correlated and
nonstationary, in which case there is no straightforward
technique to reduce the problem to the linear homogeneous
case. As a result, the best approach is an ordinary (un-
weighted) least squares minimization, with the under-
standing that standard inferential statistics on the result-
ing parameters will require more complicated analyses
(Gallant, 1987).

Our results show that the ordinary, unweighted SSE min-
imization will result in reasonably good parameter val-
ues if the density/CDF estimates used in the minimization
are appropriate. But it should be noted that more sophis-
ticated nonlinear regression techniques are available, and
should they be used, they might improve the ability to re-
cover parameters using other estimates.

Typical Practice
It is not always easy to determine from a Method or

Results section what procedure people have used to fit a
model to data. There are potentially many features of a
parameter estimation technique, and it is frequently the
case that some features are glossed over for the sake of
brevity. At this point, we will discuss who has used which
techniques and what techniques are used by the most
popular model-fitting routines.

By far the most common f itting technique is maxi-
mum likelihood (Hockley, 1984; Ratcliff, 1978; Ratcliff
& Murdock, 1976). One routine available to perform
maximum-likelihood estimation of ex-Gaussian and Wei-
bull parameters is that of Cousineau and Larochelle (1997).
Many people also use maximum likelihood on the vincen-
tiles of a sample (Balota & Spieler, 1999; Heathcote et al.,
1991; Ratcliff, 1979, 1988; Spieler et al., 1996). Heath-
cote’s (1996) RTSYS routine has been frequently cited.
RTSYS is particularly useful because it performs either
maximum-likelihood estimation fits to the whole sam-
ple (e.g., Leth-Steenson, King Elbaz, & Douglas, 2000)
or to the vincentiles when averaging is used (e.g., Mad-
den et al., 1999; Plourde & Besner, 1997). As we noted
above, maximum-likelihood estimation fits to vincentiles
are less accurate than maximum-likelihood estimation fits
using the whole sample, even when the sample is small.
However, when one is performing maximum-likelihood
estimation fits to an average (i.e., Vincentized) distribu-
tion, the only option available is to use the vincentiles.

Many people also fit models by minimizing SSE be-
tween either the theoretical and empirical density func-
tions (Blough, 1988; McElree, 1998; McElree & Dosher,
1993) or the CDFs (Logan, 1992; Van Zandt et al., 2000).
Some fits have been performed by minimizing the Pear-
son c2 goodness-of-fit statistic, which is a variant of the
SSE minimization performed on the CDF (Nosofsky &
Palmeri, 1997; Possamai, 1991; P. L. Smith & Vickers,
1988; Strayer & Kramer, 1994; Van Zandt et al., 2000).
The c2 function to be minimized is constructed by plac-
ing the observed RTs into bins [0, t1), [t1, t2 ), . . . , [tr 2 1,
tr), [tr , ¥), typically selected so that the proportion of
RTs falling into each bin is equal [Oi 5 1/(r + 1) for each
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bin i]. The expected proportions of observations in each
bin equals E1 5 F(t1; q̂ ), E2 5 F(t2; q̂ ) 2 F(t1; q̂ ), . . . ,
Er 5 F(tr ; q̂ ) 2 F(tr 2 1; q̂ ), Er+1 5 1 2 F(tr ; q̂ ), for the
theorized CDF F. The function minimized in the fits is
then

for a sample of size N. Dawson’s (1988) routine fits the ex-
Gaussian distribution by minimizing c2(q̂ ), where obser-
vations have been binned by using vincentiles.

Once a strategy for fitting a model has been selected,
a method for finding parameters that minimize or maxi-
mize the desired function must also be selected. We turn
now to the issue of optimization, or finding the mini-
mum or maximum point on a surface.

Optimization Techniques
There are a number of ways to perform a nonlinear

sum of squares minimization (or likelihood maximiza-
tion), the most well studied being perhaps Gauss–Newton
(Gallant, 1987). Unfortunately, many minimization meth-
ods (including Gauss–Newton) depend on the quality of
the initial guess for q̂ and how well behaved the functions
SSE(q̂ ) and ln L(q̂) are. (A well-behaved function is one
that is fairly smooth and does not have too many local
minima.) One technique that we have found to be very re-
liable with poorly behaved functions and inaccurate start-
ing values is that of an iterative simplex method. A simplex
algorithm (Nelder & Mead, 1965) is a routine that attempts
to find global minima (see also Dawson, 1988; Heathcote,
1996). It is so named because it constructs a simplex
(an n-dimensional polygon with n + 1 vertices) in the
n-dimensional space defined by the n parameters compos-
ing q̂ . A triangle in two-dimensional space is an exam-
ple of a simplex. The value of SSE(q̂ ) or 2 ln L(q̂) is com-
puted at each corner of the simplex, and the simplex
reorients itself around the corner with the lowest value. This
process is repeated until the simplex is squeezed into a sin-
gle point, the value of q̂ at the minimum. (Note that min-
imizing 2 ln L(q̂ ) is equivalent to maximizing ln L(q̂ ).)

In practice, a “global” minimum is global only when
no smaller minimum can be found. On surfaces as irreg-
ular as the ones typically produced by fitting RT data, there
is almost always another minimum lurking beyond the
region of the parameter space covered by a single iteration
of the simplex. Therefore, the simplex algorithm iterates
many times; each time, the previous best value of q̂ is used
as the starting point, and the corners of the new simplex
are constructed by perturbing each element of q̂ by a
normal random variable. With each successive iteration,
the variance of the perturbations is increased, causing
larger and larger simplexes to be constructed. In this way,
the iterative process acts much like simulated annealing.
After settling into a local minimum, the perturbation pro-

cess “shakes” the parameters harder and harder in an at-
tempt to cover the entire parameter space. For most of the
model fits, 40 iterations were used. Occasionally, fewer it-
erations were used for the purposes of speed. For instance,
the diffusion fits occasionally required as long as an hour
for 5–10 iterations. When the iterations seemed very slow,
only 20 were performed. The SSE and likelihood func-
tions usually changed very little after 5–10 iterations.

One advantage that we had in these fits is that we knew
what the true parameters were (so Gauss–Newton prob-
ably would have performed quite well). One of the great-
est challenges in model fitting is the selection of good
starting values for any minimization process. It is often
the case that a nonlinear fitting problem’s dependence on
good starting values is so great that the true parameters
need to be approximately known before attempting to
find them. Not knowing the true parameter values, or us-
ing very poor starting values, can result in settling into a
local minimum or a complete failure of the minimization
routine to converge. At the very least, using poor starting
values increases the variance of the parameter estimate.
In the fits that we performed, the starting values of the
parameters were always the actual values of the parameters
that were used to generate the data. If there were no error
in the data, the minimization routine would be unable to
find any better parameters and would stop. However, there
is considerable error in the simulated data and in the result-
ing density and CDF estimates, and so the parameters that
minimize SSE or maximize ln L are never exactly equal
to the original values. Occasionally, they aren’t even close
to the original values. This tendency for error to skew the
values of the parameters is caused by the fitting algorithm’s
attempts to accommodate even fluctuations that are due
to error.

In application, we are forced to use inaccurate starting
values when we attempt to fit a model to a set of RT data
generated by an unknown process. It is not possible to
determine whether the fluctuations observed in a partic-
ular density or CDF estimate are due to error or to the pro-
cess. Therefore, the results that we present in this paper
represent the optimal or best-case situation. There is no
error variance that is due to poor starting values, and any
variance in the recovered parameters we know must be
due to error in the data (as opposed to a potentially mis-
specified model). Our results can therefore speak directly
to the influence of different density and CDF estimators
on the variance of the parameters. It must be kept in mind,
however, that misspecifying the starting values will in-
crease the variance of the estimates, and may increase
the bias of the estimates as well.

For each fit to each model, using each sample size and
density/CDF estimation technique, we recovered param-
eter values by minimizing SSE (or c2) or maximizing
ln L. This was done 500 times, so that we could estimate
the variance of both the density/CDF estimates and the
parameters themselves.

c q2
2

1

1

( ˆ)
( )= -

=

+

åN
O E

E
i i

ii

r



RT DISTRIBUTIONS 437

RESULTS

We begin by exploring the accuracy of the different
density and CDF estimators—that is, how well each es-
timator recovered the true shape of the density or CDF
that was the basis of the simulation. Then we will present
the results of the parameter estimations.

Density and CDF Estimates
For each of the 500 simulated data sets for each model

at each sample size, the estimated densities and CDFs were
computed. These estimates were averaged across sim-
ulations. For the fixed-width histogram and the Gaussian
kernel estimators, the mean and variance of the height of
each bar were computed. For the variable-width histo-
grams, the means and variances of the height of each bar
and each bar midpoint were computed. For the CDF es-
timator, the mean and variance of the percentiles were
computed. These means and variances were used to con-
struct Figures 4–13. Note that bars around mean density

and CDF estimates are standard deviations and not stan-
dard errors. Bias, the difference between the mean esti-
mate and the true density, is plotted separately with the
standard error of the mean estimate around each point.
The proportion of estimated points that show no signifi-
cant bias (as indicated by z tests performed at each esti-
mated point) are given in Table 4.

Histogram Estimates
The averaged estimate is shown in Figures 4 and 5 for

the decile-based and Vincent variable-width histograms.
Because both the limits of the histogram bars and the
heights of the bars vary across data sets, the standard de-
viations were calculated for both. The standard devia-
tions are plotted as the major and minor axes of an “error
ellipse” around the average (midpoint and height) point
for each bar.6 A number of shortcomings of these esti-
mates are immediately clear. One concern is the fact that
the variable-width histograms are severely biased for
smaller sample sizes. This is evident for sample sizes of

Table 4
Proportion of Nonsignificant Differences (by z Tests, a 5 .05)

Between the Mean Estimates for Each Estimator and the True Density

Model

Estimator N Diffusion Ex-Gaussian Gamma Race Wald Weibull

Decile 50 .00 .00 .00 .00 .00 .00
(10) 100 .00 .00 .00 .00 .00 .00

500 .20 .10 .10 .10 .10 .10
1,000 .30 .40 .50 .40 .30 .50

10,000 .30 .20 .50 .40 .30 .50
Vincent 50 .00 .00 .11 .00 .00 .00
(9) 100 .11 .11 .11 .11 .00 .22

500 .44 .33 .67 .56 .44 .67
1,000 .44 .56 .78 .67 .67 .67

10,000 .67 .33 .00 .22 .67 .00
Fixed 50 .75 .75 .75 .89 .88 .94
(16) 100 .88 .56 .75 .81 .81 .94

500 .63 .63 .69 .69 .81 .69
1,000 .63 .50 .56 .63 .69 .56

10,000 .19 .19 .25 .31 .25 .25
Kernel 50 .73 .73 .70 .70 .80 .63
(30) 100 .83 .60 .67 .77 .60 .73

500 .67 .63 .70 .67 .77 .67
1,000 .83 .70 .63 .83 .77 .70

10,000 .83 .73 .70 .77 .80 .83
Distribution 50 .56 1.00 .89 .67 1.00 .78
(9) 100 1.00 .78 .67 .78 .78 .89

500 .89 .89 1.00 1.00 1.00 1.00
1,000 1.00 1.00 1.00 1.00 .89 .67

10,000 1.00 .89 .89 .89 1.00 1.00
Maximum 50 .27 .39 .24 .21 .21 .18
likelihood 100 .27 .48 .52 .24 .36 .21
(33) 500 .33 .82 .73 .36 .88 .27

1,000 .27 .91 .52 .48 .70 .24
10,000 .64 .91 .82 .30 .97 .88

Distribution 50 .21 .33 .30 .15 .27 .18
density 100 .15 .52 .52 .06 .52 .24
(33) 500 .21 .82 .76 .09 .73 .30

1,000 .55 .91 .88 .09 .76 .24
10,000 .97 .91 .85 .09 .97 .88

Note—The number of points at which the density was estimated is given in parenthe-
ses next to each estimator. The “distribution density” is the density estimator derived
from fits to the cumulative distribution function.
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Figure 4. Average decile histogram estimates, with standard deviation ellipses indicating plus or minus one standard deviation in
the height and midpoint of the estimate. Estimates are calculated for each model at each sample size. The true density is the curve
drawn on each plot.

Figure 5. Average Vincent histogram estimates, with standard deviation ellipses indicating plus or minus one standard deviation in
the height and midpoint of the estimate. Estimates are calculated for each model at each sample size. The true density is the curve
drawn on each plot.
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Figure 6. Average bias (average estimate minus true density) for decile histograms, with
error bars indicating plus and minus one standard error around the average. Bias is mul-
tiplied by 104 and presented for each model at each sample size.
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Figure 7. Average bias (average estimate minus true density) for Vincent histograms,
with error bars indicating plus and minus one standard error around the average. Bias
is multiplied by 104 and presented for each model at each sample size.
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50 and 100, where the average height of the curve is quite
consistently higher than the actual density function. As
sample size increases, the extent of bias decreases but is
still evident for samples as large as N 5 1,000. Although
it is difficult to see in Figures 4 and 5, there are also pat-
terns of bias that do not disappear as the sample size be-
comes extremely large. Another concern is the extent of
variation around the mean estimate, which does not dis-
appear until N 5 1,000. The potential for obtaining a
highly inaccurate estimate is quite great for all but the
largest sample sizes.

Figures 6 and 7 show the bias for each estimate at each
sample size for each model for the decile and Vincent es-
timates, respectively. The last bar of the decile his-
tograms (centered on the 95th percentile) is, on average,
considerably higher than the actual height of the density,
as is indicated by the significant positive bias in Fig-
ure 6, and is widely variable. This effect, as well as the
overall overestimation of the density, is probably due to
the dependence of the 95th percentile on the maximum
statistic (i.e., the 100th percentile or slowest RT). Because
it is difficult to estimate this accurately (each curve ex-
tends to positive infinity), the last bar of the histogram is
also inaccurate. This effect can be appreciated by noticing
that not only does the bias for the last point decrease as
N increases, but it also shifts systematically to the right.

The Vincent histograms did not show this problem as
severely, because the uppermost 5% of the data were not

included in the plot. However, whereas the decile-based
variable-width histograms had difficulty with the last bar
of the histogram, the Vincent estimates had difficulty with
the first bar. For each model, as sample size increased,
the Vincent estimate tended to underestimate the height
of the density at the first point. This was especially prom-
inent for the diffusion model, in which the Vincent esti-
mate was poor for the first two points of the estimate at
even the largest sample size. Figure 7 shows the negative
bias at the first point for each model. As for the decile-
based histograms, this may again be due to the difficulty
of estimating extrema: The minimum, in this case, is dif-
ficult to estimate accurately. However, failing to observe
a minimum that was small enough should have resulted
in an overestimation of the density, rather than in the ob-
served underestimation. For example, in the decile-based
estimates, there is another bias that seems to be specific
to the ex-Gaussian model. The first point of the histogram
overestimates the true height of the density. Accurate es-
timation of the minimum would be a greater concern for
the ex-Gaussian model, which takes on values to nega-
tive infinity, than for any of the other models.

Figures 6 and 7 show that the variable-width histo-
grams are consistent estimators of the density function:
As sample size increases, the bias decreases. However,
they are inefficient: Both the decile and the Vincent es-
timators are highly biased, and significant bias persists
up through samples of size N 5 10,000. As is shown in

Figure 8. Average fixed-width histogram estimates, with bars showing plus or minus one standard deviation in the height of the es-
timate. Estimates are calculated for each model at each sample size. The true density is the curve drawn on each plot.



442 VAN ZANDT

Figure 9. Average bias (average estimate minus true density) for fixed-width his-
tograms, with error bars indicating plus and minus one standard error around the aver-
age. Bias is multiplied by 104 and presented for each model at each sample size.
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Table 4, even for N = 10,000, most of the estimated points
on the density function shown in Figures 4 and 5 devi-
ated significantly from the true density function. Over-
all, the Vincent histograms were less variable than the
decile-based histograms and showed fewer significant
deviations (as assessed by z tests at each point) than did the
decile-based histograms at intermediate sample sizes.

One might conclude from Figures 4 and 5 that the ob-
served bias is not so bad, because the curve for the true
density runs through the standard deviation ellipses around
the mean estimate (see, e.g., the estimates for N 5 50 in
Figures 4 and 5). This conclusion would be wrong. The
ellipses do not represent the standard error of the mean,
which was computed for the bias plots, but the standard
deviation of the height of the estimate at each point. If
the plots were constructed using standard errors, the radii
of the ellipses would be reduced by a factor of Ï 5w 0w 0w : The
radius of the largest ellipse pictured for the N 5 50 esti-
mates would be reduced approximately to the radii of the
ellipses for the N 5 10,000 estimates. The standard er-
rors associated with the height of the estimates are shown
around the bias points in Figures 6 and 7. The extent of
variation in the estimates and the persistent bias indicate
that not only is an estimate likely to be highly inaccurate,
but also that parameter estimates based on fits to these
estimates are going to be inaccurate and that the inaccu-

racies in the parameters will be a recurring problem for
even very large sample sizes.

The average estimates for the fixed-width histograms
are presented in Figure 8, and their bias is presented in
Figure 9. From these f igures, it is clear that, like the
variable-width histograms, the fixed-width histogram is
highly variable and significantly biased at all sample
sizes. Although the extent of variation and bias is less for
the fixed-width histogram than for the variable-width
histograms, the fixed-width histogram is not consistent:
Bias persists through the largest sample size, and unlike
the other histograms, the extent of bias seems unaffected
by increases in the sample size. The major problem with
this estimator is located at the mode of the distributions,
where the density is underestimated for all the models at
all the sample sizes. The points in Figure 9 can be directly
compared with the points in Figure 8; the large negative
differences at the early points on the bias curves corre-
spond to the mode or the points immediately preceding
the mode.

As is shown in Table 4, the number of significant de-
viations between the mean fixed-width histogram estimate
and the true density function actually increased with sam-
ple size. The reason for this was explained above. Be-
cause the smoothing parameter hN does not decrease
with increases in N, the estimator is not guaranteed to be

Figure 10. Average Gaussian kernel estimates, with bars showing plus or minus one standard deviation in the height of the estimate.
Estimates are calculated for each model at each sample size. The true density is the curve drawn on each plot.
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Figure 11. Average bias (average estimate minus true density) for Gaussian kernel es-
timates, with error bars indicating plus and minus one standard error around the aver-
age. Bias is multiplied by 104 and presented for each model at each sample size.
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either asymptotically unbiased or consistent. The increase
in significant deviations from the curve with increases in
N reflects the fact that the bin boundary distance (hN 5
50 msec) is inappropriate for larger samples (although it
does fairly well for smaller samples).

Gaussian Kernel Estimates
The average estimates for the Gaussian kernel estima-

tors are presented in Figure 10, and their bias is presented
in Figure 11. This estimate, too, is very biased and highly
variable at smaller sample sizes and tends to underesti-
mate the mode as the fixed-width histogram estimates do.
However, the extent of bias attenuates quickly with sam-
ple size and seems to have all but disappeared by N 5
1,000 (except for the diffusion model), although signif-
icant bias remains at N 5 10,000. Table 4 shows that the
proportion of nonsignificant differences is uniformly high
across sample sizes, unlike the histogram estimates, mak-
ing this estimator the most accurate of the density esti-
mators we have examined.

Cumulative Distribution Function Estimates
The average CDFs are shown in Figure 12, and their

bias is presented in Figure 13. There is very little variance

in the estimates, even at the smallest sample size. The
estimates are relatively unbiased at all sample sizes, and
there are no model-specific failures of the estimates. Vari-
ance seems to be largest at the higher deciles (the 90th,
in particular) but negligible at the smallest deciles, even
when N 5 50. Table 4 gives the proportion of nonsignif-
icant differences between the mean quantiles and the
true quantiles. Unlike the other estimators, there is little
effect on the number of significant differences with in-
creasing sample size, since most of the differences are
nonsignificant even at N 5 50. (The minimum and max-
imum percentiles were not included in the bias analysis.)

Summary
The results of these analyses demonstrate that the most

commonly used density estimates are highly variable and
biased and that this bias persists even for very large sam-
ple sizes. Of the nonparametric density estimates, the
Gaussian kernel estimator suffers the least from bias and
model-specific inaccuracies. The CDF estimates are rel-
atively unbiased for all the sample sizes and have very
small variance. From these results, we may speculate that
the parameter values derived from least squares f its to
nonparametric density estimates would be less accurate

Figure 12. Average cumulative distribution function (CDF) estimates, with bars showing plus or minus one standard deviation in
the placement of each decile. Estimates are calculated for each model at each sample size. The true CDF is drawn on each plot.
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Figure 13. Average bias (average estimate minus true decile) for cumulative distribu-
tion function estimates (deciles), with error bars indicating plus and minus one standard
error around the average. Bias is presented for each model at each sample size.
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than those derived from least squares fits to the CDF or
from maximum-likelihood procedures. We turn now to
an analysis of the recovered parameter values.

Parameter Recovery
Each model was fit to the data from each of its own

simulations (thus, there were 500 fits for each model to
each density or distribution estimate). For least squares
fits, each of the 500 density and CDF estimates com-
puted in the previous analysis were used. Maximum like-
lihood and c2 minimization were also used for each of
the 500 simulations at each sample size for each model.
The recovered parameters that minimized the SSE or c2

or maximized the likelihood were then averaged across
simulations for each estimation technique. One important
characteristic of the parameters is that, within a model,
the parameters are usually correlated to some degree. So,
for example, the three parameters of the gamma distrib-
ution tend to be highly correlated. The mean RT is de-
termined by the base time T0 and the number of exponen-

tial waiting times K. If K is very large, T0 will have to de-
crease to compensate. Also, if K is very large, the rate l
may have to increase. Therefore, variances are correlated
across the parameters, and it is difficult to determine the
precise reasons for variance differences in parameters
for different models. In an attempt to make comparisons
easier, similar parameters in the models (e.g., T0) are
plotted on identically scaled axes.

A few words are in order concerning the fits to the dif-
fusion and race models. Recall that these models predict
not only the speed of a single response, but also the ac-
curacy of that response and the speed of the alternative
(incorrect) response. There are several approaches that
might be taken to f it the data from these simulations.
One is to ignore the alternative response and to fit only
the RT distributions for the “correct” response—that is,
f (t | correct). However, the race and diffusion models are
extremely flexible, and there is a range of parameter val-
ues that can approximate a density f (t; q) if accuracy and
the incorrect RTs are neglected. For example, three sets
of parameters were recovered from fits to three different
simulations of the diffusion model with N 5 10,000. The
parameters yielded three different accuracies for the sim-
ulation (.14, .46, and .85, vs. the true accuracy of .83).
The (theoretical) CDFs and densities for these three sets
of parameters are shown (as broken lines) in Figure 14,
along with the true CDF and density function (the dis-
tribution that produced the data; solid lines). The differ-
ent curves are virtually indistinguishable, even though the
parameters are quite different and yield very different
accuracies. Parameter recovery was quite poor for least
squares fits to all of the estimators computed for the dif-
fusion model when only correct RTs were fit.

Another approach could involve fitting not only the
correct but also the incorrect RT distributions. In practice,
there are rarely as many incorrect as correct RTs, and so
the two distributions would have to be unequally weighted
in any optimal fitting routine. The instability of the esti-
mates for the incorrect distribution could potentially skew
the parameters recovered for the correct distribution.
Therefore, although the incorrect RTs do help constrain
the parameters, it is not clear that the constraints are ben-
eficial over and above the constraint provided by accu-
racy alone (such was used here). One useful approach
would be to fit the models to RTs collected across several
experimental conditions, in which it might be assumed
that a subset of the parameters (say, those corresponding
to response thresholds or bias) is constant and the rest
(all those corresponding to stimulus quality) vary. This
approach seems to promote accurate recovery of the pa-
rameters (Van Zandt et al., 2000).

For the fits reported here, we constrained the densities
and CDFs by the accuracy of each simulation. This was
done by fitting the joint RT density f (t, correct) to the
joint empirical estimates instead of fitting the condi-
tional RT density f (t | correct) to the conditional empirical
estimates. The area under the joint RT density f (t, cor-
rect) must equal the accuracy.7 Fitting the joint RT den-

Figure 14. Three diffusion cumulative distribution functions
(CDFs) and densities for three different sets of parameters pro-
ducing very different accuracy levels. The true density/CDF is also
plotted but is difficult to see. The three parameter sets (T0 , z, a ,
j ), recovered by fitting the true model to a sample of size N 5
10,000 without regard for accuracy and using three different sets
of starting values, were (673.31,3.94,8.17,.02), (673.52,3.75,6.95,.00),
and (672.15,3.89,7.90,2 .02).
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sities and distributions therefore implicitly fits the accu-
racy as well. All the diffusion and race density and CDF
estimates were multiplied by the observed proportions
of correct responses [N/(N + n), where n is the number
of incorrect responses and N is the sample size; there
were always N correct responses], to obtain estimates of
the joint densities and CDFs. The joint density and CDFs
of the diffusion and race models were fit to these modi-
fied estimates to recover the parameters. As we will show,
the resulting parameters were comparable (in terms of
bias and variability) with the parameters recovered for the
single-response models.

Occasionally, for certain models, the parameters that
minimized the SSE were wildly wrong. Such fits usually
happened at the smaller sample sizes and were specific
to particular density estimates. This was a problem es-

pecially for the Wald distribution, where the best-fitting
values of µ and l were prone to become very large, which
was offset by very small values of T0. Such estimates were
removed from the analysis under the assumption that they
would be considered unacceptable in practice (and per-
haps a different set of starting values would be used in
another fitting attempt). For the Wald distribution, fits
that gave values of µ or l greater than 100,000 were not
included in these analyses. The total number of fits (out
of 500) deleted for the Wald distribution were 87 and 35
for N 5 50 and 100 for the decile-based histograms, 58
and 20 for N 5 50 and 100 for the Vincent histograms, 14
and 1 for N 5 50 and 100 for the f ixed-width histo-
grams, and 13 and 3 for N 5 50 and 100 for the Gaussian
kernel estimates. For the diffusion model, fits that gave
values of a greater than 2,000 were not included in these

Figure 15. Average recovered parameters for the diffusion model with each technique at each sam-
ple size. Error bars are plus and minus one standard deviation. The true value of each parameter is
shown as the solid horizontal line.
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analyses. The total number of fits deleted for the diffusion
model were 42, 18, and 1 for N 5 50, 100, and 500 for
the decile-based histograms, 27 and 12 for N 5 50 and
100 for the Vincent histograms, and 8 and 1 for N 5 50
and 100 for the Gaussian kernel estimates. Note that al-
though these fits were deleted from the parameter aver-
ages, the density estimates on which they were based were
included in the density estimate analyses above.

The diffusion. In Figure 15, the four parameters for the
diffusion model are shown for each sample size and es-
timation technique. Fits to the histogram estimates yielded
the poorest parameter estimates, with high bias and very
large variance for the variable-width histograms and sig-
nificant bias in parameters T0 and x for the fixed-width
histogram at N 5 10,000. Fits to the CDFs yielded the best
outcome, with very little bias and small variance, and re-
covered the parameters very accurately even for N 5 50.
The maximum-likelihood parameters are excellent at all
the sample sizes, except for the parameter x. Unfortunately,
the maximum-likelihood technique recovered biased val-
ues of x even at the largest sample size, and the variance
of the estimate did not significantly decrease with sam-

ple size. The Gaussian kernel estimator and c2 fits, al-
though they performed better than the histogram estima-
tor fits, did not perform as well as the CDF estimator
fits, producing biased and variable parameter estimates
at all the sample sizes (see, e.g., x for N 5 10,000 using
the Gaussian kernel and a and z using c2 minimization).

The ex-Gaussian. The parameters for the ex-Gaussian
model are shown in Figure 16. Again, the nonparametric
density estimate fits performed poorly—especially the
Vincent estimate fits, which yielded highly biased s and
t estimates with very large variance even for samples of
size N 5 10,000. The fact that the Vincent estimate fits
perform so poorly for the ex-Gaussian distribution is in-
teresting, considering that for applications in which the
ex-Gaussian is fit to data by using least squares, the Vin-
cent estimate is used (Dawson, 1988; McElree, 1998;
McElree & Dosher, 1993). The maximum-likelihood es-
timates and the fits to the CDF accurately recovered the
parameter values even at the smallest sample sizes, show-
ing very little bias and smaller variance than the density
estimates. Although the Gaussian kernel estimate and c2

minimization fits outperformed the histogram estimates,

Figure 16. Average recovered parameters for the ex-Gaussian model with each technique at each
sample size. Error bars are plus and minus one standard deviation. The true value of each parameter
is shown as the solid horizontal line.
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they did not do as well as the CDF estimate fits. Overall,
the maximum-likelihood parameter estimates are the least
biased and least variable for the ex-Gaussian model.

The gamma. The three parameters for the gamma dis-
tribution are shown in Figure 17. There is considerable
variance in these estimates for all six techniques until
N 5 500. The gamma distribution is an example of a dis-
tribution, similar to the example provided by the diffusion
model above, where a single distribution can be well fit
by a large number of quite disparate sets of parameter val-
ues. In many of the fits in the smaller sample sizes, the
shape parameter K reached the value 20 (the largest per-
mitted magnitude; values of K greater than 20 did not
significantly change the shape of the distribution, which
was at that point approximately normal). Large values of
K produced large values of l. For fits using the variable-
width histogram estimators, K was maximized in ap-
proximately 10% of the fits for samples of size N 5 100.
For fits using all other estimators, including the fixed-
width histogram, this occurred in less than1% of the fits.
For the decile-based variable-width histogram fits, there
is bias evident in the parameter estimates even for the
largest sample size. The maximum-likelihood estimate,

CDF estimate, and c2 minimization fits are performing
comparably, although the CDF estimates are more biased
at the smallest sample size and slightly more variable at
all the sample sizes. The best parameter recovery for the
gamma distribution is accomplished by the maximum-
likelihood estimates.

The race. The recovered parameters for the race model
are shown in Figure 18. All the parameters are plotted on
the same scale as that for the gamma distribution. It is
immediately obvious for this model that, although the
CDF and maximum-likelihood estimates seem to per-
form better than any of the others overall, all the esti-
mates had considerable difficulty recovering the param-
eters lI and K I, the parameters determining the behavior
of the losing counter in the race. Furthermore, there is no
clear improvement with these estimates with increases
in sample size. Even though the fits were constrained by
the probability of counter C winning the race, this con-
straint was not enough to force accurate recovery of the
parameters for counter I. The behavior of counter I had
only a modest effect on the overall RT distribution. Even
at the largest sample size, only the maximum-likelihood
estimates produced low bias for these parameters, but

Figure 17. Average recovered parameters for the gamma model with each technique at each sample
size. Error bars are plus and minus one standard deviation. The true value of each parameter is shown
as the solid horizontal line.



RT DISTRIBUTIONS 451

they are still more variable than the parameters recovered
for the other models at this sample size. For small sample
sizes, the CDF fits were less variable and biased than any
of the other estimates, but for larger samples the maximum-
likelihood estimates recovered the parameters best.

The Wald. Estimates for the parameters of the Wald
distribution are shown in Figure 19. The histogram esti-

mates again performed poorly, with large biases at small
sample sizes that attenuate but persist through the largest
sample size. The maximum-likelihood, c2, and CDF es-
timates were unbiased, and the maximum-likelihood es-
timates were of minimum variance and quite accurate
with sample sizes as small as N 5 100. It should be noted
that the parameter l is highly variable and often reached

Figure 18. Average recovered parameters for the race model with each technique at each sample size.
Error bars are plus or minus one standard deviation. The true value of each parameter is shown as the solid
horizontal line.
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very large values that were offset by very small values of
T0. Therefore, the relatively small error bars around the
maximum-likelihood and CDF estimates for the smaller
sample sizes represent considerable variance, in com-
parison with the variance in the parameters of the other
models. The Vincent histogram estimate thus experienced
considerable difficulty accurately estimating l even when
N 5 1,000. It was also biased to overestimate T0 at N 5
10,000. Overall, the maximum-likelihood and CDF esti-
mates recovered the parameters best and with comparable
accuracy, with the maximum-likelihood estimate having
the least variance.

The Weibull. Shown in Figure 20 are the estimates for
the Weibull distribution. The CDF and c2 estimates were
unbiased at all the sample sizes, with small variance. The
maximum-likelihood estimates were slightly biased at
the smaller sample sizes, but this bias effect disappeared
for samples of size N 5 500 and larger. The variable-width
histogram estimates performed quite poorly at the smaller
samples, but by N 5 500, all the estimators accurately
recovered the parameters.

Goodness of fit. An important aspect of parameter es-
timation that we have not yet discussed is the determi-

nation of whether or not a model fits the data well. In
practice, after parameters for a model are estimated, a
goodness-of-fit statistic such as c2 is computed for the
fit model. Although there are many goodness-of-fit sta-
tistics from which one could choose (e.g., Chechile, 1998;
Read & Cressie, 1988) and many ways that model f its
can be compared across different models (Gallant, 1987;
Golden, 1999; Myung, 1999), we will concentrate on c2,
the most commonly reported goodness-of-f it statistic.
First, it is desirable that the model-fitting technique that
one chooses should produce low c2 values when the model
is correctly specified. Unfortunately, although c2 is by
far the most popular goodness-of-fit statistic, it is very
powerful at larger sample sizes. As N grows, c2 often in-
dicates significant deviations from a model, when in fact,
none exist, as we will soon see.

For the estimation techniques discussed above, we cal-
culated the c2 goodness-of-fit statistic for each fit to each
model. Using the deciles (plus the minimum and maxi-
mum) for each data set, 10 bins were defined, each con-
taining 10% of the observations in that data set. The ex-
pected frequency of observations within those bins was
computed by integrating each theoretical density between

Figure 19. Average recovered parameters for the Wald model with each technique at each sample size.
Error bars are plus and minus one standard deviation. The true value of each parameter is shown as the
solid horizontal line.
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the bin boundaries. Successive bins were collapsed to-
gether to obtain at least five observations for both observed
and theoretical frequencies [so the c2 statistics shown here
are not the same as the values of c2(q̂ ) minimized in fit-
ting]. For small samples, this occasionally resulted in neg-
ative degrees of freedom. In this situation, the data set
was not included in the c2 calculation. We computed the
proportion of c2 tests that indicated significant devia-
tions from the model, using an a level of .05. Because
the models that were fit were in fact the models that gen-
erated the data, we might have expected to see approxi-
mately a 5 .05 of the fits with significant deviations.
Unfortunately this was not the case. The proportion of
significant c2 statistics are shown in Table 5 for each
model and technique. The footnotes indicate the propor-
tion of simulations included (out of 500) after eliminating
those with unacceptable parameter values and/or negative
degrees of freedom.

The table shows that the extent to which an estimation
technique results in good fits depends on the model being
fit. The diffusion and race models produced large num-
bers of significant deviations even though the model be-
ing fit was the true model. Fits to the variable-width his-
tograms also show large proportions of poorly fit models.

The other techniques, using the fixed-width or kernel es-
timators, or maximum likelihood or f its to the CDFs,
have approximately the expected number of poor fits for
an a level of .05. However, as N becomes very large, all
the models and all the techniques produced higher than
expected failure rates for the models. This is because of
the sensitivity of c2 to sample size; small variations that
are due to noise at large sample sizes are exaggerated by
a factor N in the computation of the c2 statistic. It should
be noted that, with the exception of the diffusion and the
race models, the maximum-likelihood estimates and
least squares fits to the CDF produced the lowest model
failure rate at larger sample sizes.

GENERAL DISCUSSION

We have examined two aspects of a number of tech-
niques for estimating densities and the CDFs. The first was
how well each technique recovered the true shape of the
density or the CDF. The second was how well each tech-
nique, when embedded in a nonlinear least squares fitting
routine, recovered the original parameters of the models.

All of the histogram estimators were highly biased, es-
pecially at small sample sizes. Although the bias gener-

Figure 20. Average recovered parameters for the Weibull model with each technique at each sample
size. Error bars are plus and minus one standard deviation. The true value of each parameter is shown
as the solid horizontal line.
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ally declined with sample size, some of these estimators
were still significantly biased even when sample size was
very large (N 5 10,000). The extent of bias for the various
estimators was dependent on the shape of the density. For
example, fixed- and variable-width histogram estimates
of the diffusion model and ex-Gaussian distributions were
noticeably biased even when sample sizes were very large.
The Gaussian kernel estimators were less biased than the
histogram estimates but were of comparable variance.

In contrast to the density estimates, CDF estimates
showed little bias and had small variance even at the
smallest sample sizes, and there were no obvious model-
dependent effects on bias or variance for the CDF esti-
mates. It should be noted that the decile-based histogram
is the density estimate that would be derived from dif-
ferencing (taking the derivative of) the CDF estimate,
and the decile estimate was one of the most biased and
variable of the density estimates. Therefore, the consis-
tency of the CDF estimate is not transferred to a consis-
tent density estimate by differencing (a notoriously inef-
ficient way of estimating the derivative of a function).

Parameter estimates derived from minimizing the SSE
between the density and CDF estimates and the model
density and CDFs were evaluated according to their bias
and variance. All the density estimates produced biased
parameter estimates for small sample sizes, and for some
models, this bias persisted even until the sample size was
very large. The histogram estimates were particularly
poor for recovering accurate parameters. At smaller sam-
ple sizes, the histogram estimates occasionally permitted
SSE(q̂ ) to be minimized by highly inappropriate param-
eter values. The maximum-likelihood estimation tech-
nique was, overall, the best at recovering unbiased, mini-
mal variance parameter estimates, followed closely by least
squares fits to the CDF estimate. The maximum-likelihood
and CDF fits also resulted in the lowest model failure rate,
as measured by the c2 goodness-of-fit statistic.

For the parameter estimates, there were strong model-
dependent effects on bias and variability. For example, the
race model parameters were not well recovered by any of
the estimation techniques. This result contrasts with re-
sults presented by Van Zandt et al. (2000) showing that

Table 5
Proportion of Significant x 2 Statistics

for Each Fitting Technique and Sample Size N

Fitting Technique

Model N Decile Vincent Hist Kernel MLE CDF Chi

Diffusion 50 .65† .74† .46* .31* .20* .32* .53*
100 .60* .66* .50 .19* .06* .09 .32
500 .70* .84 .99 .54 .18* .19 .27

1,000 .65 .84 1.0 .54 .11 .15 .16
10,000 .85 .98 1.0 .90 .39 .40 .36

Ex-Gaussian 50 .40* .35* .12 .11 .11 .05* .11*
100 .38* .33* .08 .08 .08 .04 .05*
500 .40* .79 .15 .11 .13 .08 .07

1,000 .60 .90* .20 .12 .13 .08 .07
10,000 1.0 1.0 .91 .29 .31 .20 .17

Gamma 50 .25* .19 .09 .07 .09 .07 .10
100 .22 .12 .05 .05 .04 .04 .04
500 .23 .31 .13 .12 .08 .08 .08

1,000 .21 .32 .15 .11 .10 .10 .10
10,000 .55 .65 .60 .28 .26 .26 .22

Race 50 .60‡ .60‡ .55‡ .42‡ .36‡ .43‡ .51‡
100 .61 .61 .42* .30 .19* .32 .32
500 .65 .79 .60 .58 .25* .55 .52

1,000 .74 .87 .67 .63 .24* .58 .59
10,000 .98 1.0 1.0 .93 .44* .73 .73

Wald 50 .35* .29* .12* .09* .09* .05 .09*
100 .31 .30 .09 .07 .05 .05 .07
500 .34 .68 .19 .12 .09 .08 .09

1,000 .30 .75 .20 .13 .09 .08 .09
10,000 .90 .95 .64 .27 .22 .20 .17

Weibull 50 .37* .39 .15 .16 .13* .06 .15*
100 .40 .44 .11 .11 .07 .04 .07
500 .49 .75 .58 .28 .12 .12 .21

1,000 .65 .79 .75 .28 .12 .13 .24
10,000 .99 .87 1.0 .84 .21 .39 .43

Note—Significance was determined using an a level of .05. Degrees of freedom var-
ied depending on how cells were collapsed to obtain expected bin frequencies of at
least 5. Footnotes indicate the proportion of fits for which c2 could be calculated. Hist,
histogram; MLE, maximum-likelihood estimation; CDF, cumulative distribution func-
tion. *Less than 100%, †Less than 80%, ‡Less than 40%.
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Figure 21. Average density estimates derived from maximum-likelihood estimates, with bars showing plus or minus one standard
deviation in the height of the estimate. Estimates are calculated for each model at each sample size. The true density is the curve
drawn on each plot.

Figure 22. Average density estimates derived from cumulative distribution function (CDF) estimates, with bars showing plus or
minus one standard deviation in the height of the estimate. Estimates are calculated for each model at each sample size. The true den-
sity is the curve drawn on each plot.
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Figure 23. Average bias (average estimate minus true density) for maximum-likelihood
estimates, with error bars indicating plus and minus one standard error around the av-
erage. Bias is multiplied by 104 and presented for each model at each sample size.
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Figure 24. Average bias (average estimate minus true density) for distribution esti-
mates, with error bars indicating plus and minus one standard error around the average.
Bias is multiplied by 104 and presented for each model at each sample size.
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race model parameters could be accurately estimated if
a number of experimental conditions were fit simultane-
ously. The contrast between their results and the present
findings suggests a general principle for all such curve-
fitting exercises: All data should be used in the fit to the
greatest extent possible (including error RTs, if sufficient
are present) to avoid erroneous estimates.

Parametric Density Estimates
These results demonstrate that the two techniques that

do not allow direct inspection of the shape of the density
function, the maximum-likelihood and the CDF fits, are
best at recovering the parameter values for the six RT
models examined. The shape of the density function is
more intuitively diagnostic of the type of random variable
that gave rise to it than is that of the CDF, which looks
pretty much the same for all random variables. This result
suggests that one way to examine the density function
might be to estimate it parametrically, by generating the
theoretical density by using the parameters estimated by
maximum likelihood or fits to the CDFs.

To explore this approach, we computed the density
functions for each simulation at each sample size from the
parameters found by maximum-likelihood and least
squares fits to CDFs. The average density functions are
shown in Figures 21 and 22. The two techniques have
comparable variance, although variance is slightly smaller
for the maximum-likelihood curves (Figure 21) than for
the CDF fits (Figure 22). The maximum-likelihood esti-
mates have much smaller bias than do any other density
estimate for all the models except the diffusion and the
Weibull, even at the smallest sample size. By N 5 100
observations, the variance of the estimates are small in
comparison with the nonparametric estimates, except for
the portions of the densities that are changing very rapidly.

Table 4 shows that there are fewer nonsignificant dif-
ferences between the estimate and the true density func-
tion for the maximum-likelihood estimation and CDF
techniques and that the rate at which bias decreases de-
pends strongly on the model being fit. When N 5 500,
the proportion of nonsignificant differences for the ex-
Gaussian, gamma, and Wald models is equivalent to the
proportion observed for the Gaussian kernel estimator,
but the kernel estimator was more accurate for the rest.
Overall, the parameters from the CDF fits gave more ac-
curate density estimates than did the maximum-likelihood
estimation parameters (except for the race model), but
these estimates are not generally as accurate as the kernel
estimates.

These f indings suggest that for graphical purposes,
when an explicit model is being fit, density estimates
could be constructed parametrically, using the parameters
recovered from maximum-likelihood or least squares
CDF fits. These density estimates will be more accurate
than the histogram estimates. However, especially for
sample sizes less than N 5 500, the Gaussian kernel esti-
mator will still be less biased for some models (compare
Figure 11 with Figures 23 and 24). The density estimates

derived from the CDF fits for the race model were quite
poor, for example. Also, these parametric estimates of the
density might smooth over systematic deviations in the
data that nonparametric estimates would reveal, such as
the presence of bimodality.

The Vincent Estimator
The Vincent estimator is probably the most popular non-

parametric density estimator in use today (e.g., Balota &
Spieler, 1999; Blanco & Alvarez, 1994; Hockley, 1984;
McElree, 1998; McElree & Dosher, 1993; Ratcliff, 1978,
1979; Ratcliff & Murdock, 1976; Reber, Alvarez, &
Squire, 1997). Because of its popularity, it was particu-
larly important to us to determine how well this technique
recovered the true shape of the density. As it turned out,
the Vincent estimator was the poorest of the estimators
we investigated. Note that the Vincent estimator is most
useful as a vehicle for obtaining an average distribution
shape across different subjects or conditions in an exper-
iment. We have not investigated the effects of averaging
in this paper. However, it should be clear that any weak-
ness in the method that arises before averaging will be car-
ried over to the estimate obtained after averaging.

One interesting finding was the interaction between
the Vincent estimator and the ex-Gaussian distribution.
The variable-width histogram estimates were generally
very poor for recovering the ex-Gaussian parameters if
the estimates were used for least squares fits (see Fig-
ure 16). Occasionally, the ex-Gaussian is estimated by
fitting the Vincent histogram estimate; the resulting es-
timate is then twice removed from the raw data (Dawson,
1988; McElree, 1998; McElree & Dosher, 1993). The
Vincent estimate is an inaccurate estimator of the density,
and ex-Gaussian parameters are recovered poorly from it.
We therefore investigated the implications of using the ex-
Gaussian as a density estimate based on fits to the Vin-
cent estimate to determine how badly error is compounded
by using both procedures.

We first investigated whether the parametric ex-Gaussian
density estimate, computed from parameters recovered
from least squares fits to the Vincent estimate, accurately
recovered the true ex-Gaussian density. We generated the
density estimates from the ex-Gaussian parameters de-
rived from the Vincent fits (shown in Figure 16) and av-
eraged those estimates for the plots shown in Figure 25
(top panel). The critical comparison is between these
plots, where the ex-Gaussian densities themselves are av-
eraged, and the Vincent histogram estimates (Figure 5,
second row). Compared with the Vincent estimates,
there is a serious bias for the ex-Gaussian densities
across the range of the distribution, one aspect of which
is the underestimation (negative bias) of most of the den-
sity tails at all the sample sizes (see Figure 26, top panel,
vs. Figure 7, second row). Furthermore, the variance of
the ex-Gaussian estimate declines only slightly with
sample size. Compared with the estimates of the densities
derived from maximum-likelihood or kernel estimation,
these are quite poor estimates indeed.
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Next, we investigated the extent to which accurate
densities could be recovered when the true density was not
ex-Gaussian. Using maximum-likelihood estimation and
least squares fits to the Vincent histograms, we computed
the best-fitting ex-Gaussian parameters for the simula-
tions of the gamma model. These ex-Gaussian parameters

were used to generate parametric estimates of the gamma
densities: an “SSE” estimate for the ex-Gaussian fit by
least squares and a “maximum likelihood” estimate for
the ex-Gaussian fit by maximum-likelihood estimation.
We then fit the gamma density back to both ex-Gaussian
density estimates, using least squares. This analysis sim-

Figure 25. Average ex-Gaussian (top panel) and gamma density estimates (bottom two panels), using the ex-Gaussian as a para-
metric density estimate. For the ex-Gaussian and gamma (SSE ) estimates, ex-Gaussian parameters were estimated from least squares
fits to the Vincent histogram estimates. For the gamma (maximum-likelihood estimates, MLE) estimates, MLE was used to fit the ex-
Gaussian to the gamma data. The bars show plus or minus one standard deviation in the height of the estimate. Estimates are calcu-
lated for each model at each sample size. The true density is the curve drawn on each plot.

Figure 26. Average bias (average estimate minus true density) for parametric ex-Gaussian
density estimates for ex-Gaussian data (top panel) and gamma data (bottom two panels).
Error bars indicate plus and minus one standard error around the average. Bias is mul-
tiplied by 104.
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ulates the use of the ex-Gaussian as a parametric density
estimate when the ex-Gaussian is not necessarily the
model of interest (Heathcote et al., 1991; Ratcliff, 1978;
Ratcliff & Murdock, 1976; but our fitting procedures are
not the same as those used in these references). The av-
erage ex-Gaussian density estimates are shown in Fig-
ure 26 (bottom two panels); there is a consistent bias to
overestimate the true mode of the gamma distribution and
to underestimate the tails at all the sample sizes. Variance
around the SSE estimate does not decrease with sample
size, nor does bias. Table 6 shows the proportion of non-
significant deviations between the average SSE estimate
and the true density at each sample size. The accuracy of
the estimate does not improve with increases in N, and
overall accuracy is nowhere near as good as the accuracy
of the kernel estimates. The maximum-likelihood esti-
mates are more biased than the SSE estimates, but the vari-
ance around the maximum-likelihood estimates is smaller
and decreases as N increases.

The gamma parameters recovered from the least squares
fits to the SSE and maximum-likelihood ex-Gaussian es-
timates are shown in Figure 27. The parameters derived
from fits to the SSE estimates are biased at all sample

sizes, and the magnitude of bias and variance does not de-
crease with sample size. Although the maximum-likelihood
estimates were more biased than the SSE estimates, the
parameters recovered from fits to the maximum-likelihood
estimates were less variable and less biased than those re-
covered from fits to the SSE ex-Gaussian estimates. This
is probably due to the smaller variance of the maximum-
likelihood estimates. However, the parameters recovered
from the maximum-likelihood estimates are still not as

Figure 27. Average gamma parameter estimates recovered from least squares fits of the gamma model
to the parametric ex-Gaussian density estimates (sum of squared errors [SSE ] and maximum-likelihood
estimates [MLE]). Error bars are plus and minus one standard deviation. The true value of each param-
eter is indicated by the solid horizontal line.

Table 6
Proportion of Significant Differences ( a 5 .05)

Between the Mean Estimates for the Ex-Gaussian
Parametric Estimators and the True Density

Sample Size

Model 50 100 500 1,000 10,000

Ex-Gaussian .76 .64 .73 .76 .79
Gamma (SSE) .79 .82 .85 .79 .82
Gamma (MLE) .92 .95 1.00 1.00 1.00

Note—The densities were estimated at 37 equally spaced points. The
parameters for the ex-Gaussian data were estimated by least squares
fits to the Vincent estimator. The parameters for the gamma data were
estimated by least squares f its of the ex-Gaussian to the Vincent esti-
mator (SSE) and by maximum-likelihood estimation. (MLE).



RT DISTRIBUTIONS 461

accurate as those recovered using maximum-likelihood
estimates directly or least squares fits to the CDF with-
out using the ex-Gaussian as a parametric estimate of the
density.

The ex-Gaussian has been advocated as a general de-
scription of the unimodal, positively skewed RT distrib-
ution, and it has been extremely useful in that regard. Rat-
cliff and others (Heathcote et al., 1991; Hockley, 1984;
Ratcliff, 1978, 1979; Ratcliff & Murdock, 1976) used the
ex-Gaussian for data smoothing: It is a very flexible den-
sity function and is well able to fit a wide range of uni-
modal, positively skewed curves. This ability, however,
does not constitute evidence that RTs are distributed as
true ex-Gaussians, although converging evidence might
be found to support such a claim (Rohrer & Wixted, 1994).
However, some researchers now use the “ex-Gaussian
nature of latency distributions” not only as a data sum-
mary device, but also to tease apart what are believed to
be two independent cognitive processes (Hockley &
Murdock, 1987; Madden et al., 1999; Plourde & Besner,
1997; Possamai, 1991), one reflected in the µ and s2 pa-
rameters and the other in the t parameter. This argument
depends on several assumptions, the most important
being the appropriateness of the ex-Gaussian distribu-
tion for characterizing RTs. Even if the ex-Gaussian were
the correct model, our results indicate that the ex-Gaussian
parameters can be difficult to recover unless the sample
size is fairly large. Therefore, the behavior of the µ and
t parameters across experimental conditions should be
interpreted cautiously.

CONCLUSIONS AND RECOMMENDATIONS

We conclude this paper with a number of simple sug-
gestions for data analysis. With respect to visualizing the
density function, if an explicit model is not to be fit to the
data, the density should be estimated by using a Gauss-
ian kernel estimator. The parameters of the estimate can
be calculated automatically, and the error in the estimate
decreases faster (with N ) than the error in any of the other
density estimators that we examined. The variable-width
histogram estimators (i.e., the decile and Vincent histo-
grams) should be avoided, because they are biased even
for large sample sizes and their large variances preclude
their use for small sample sizes.

If a formal model is to be fit to the data, the parameters
of the model should be estimated by the maximum-
likelihood technique or by least squares fits to the CDF.
If a density estimate is then required to visualize the data,
the parameters recovered from either of these fits can be
used to generate a parametric estimate of the density func-
tion only with caution; the accuracy of the density esti-
mates so computed will depend on the model. Although
the accuracy of these parametric estimates can be compa-
rable with that of the Gaussian kernel estimate, the Gauss-
ian kernel estimator may be a better choice for some mod-
els. After parameter recovery, if goodness of fit is measured

with c2, the results of the c2 test, if significant, should not
be taken too seriously. For some models, even small sam-
ple sizes will produce large (significant) c2 statistics.

Finally, the number of observations required to obtain
accurate estimates of the density and model parameters
depends not only on the process that generated the data,
but also on the model being fit to the data and the tech-
nique used to fit it. If direct fits to the CDF or maximum-
likelihood estimation is used, reasonable accuracy can
be obtained with samples of N 5 100 or smaller when the
model is correctly specified. However, the underlying
process is not observable (i.e., the model is not likely to
be correctly specified), and so it will not be possible to
determine the degree to which an estimator might fail.
Caveat emptor.
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NOTES

1. A third way of characterizing a random variable is by way of its
hazard function. One benefit of hazard function analyses is that, in the
absence of parameter variability, the hazard function is more diagnos-
tic of a particular model than either the density or the CDF. Unfortu-
nately, hazard function estimation can be quite tricky (Bloxom, 1984,
1985; Luce, 1986). Also, if parameter variability is present in a data set,
hazard functions become less diagnostic (Van Zandt & Ratcliff, 1995).
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APPENDIX

The models simulated in this paper are described by the following density and CDFs. Interested readers
might also consult Luce (1986) for additional details of the models. All the models but the ex-Gaussian and
the Weibull have a base time parameter T0 , which shifts the distribution along the positive axis by T0. This pa-
rameter is represented by specifying the density and CDFs as f (t + T0) and F(t + T0), respectively, to make the
expressions more compact. To obtain the expression for, say, f (t), simply replace the variable t on the right
hand side of each equation with t 2 T0 .

The Diffusion Model
With four parameters, T0, a, z, and x (the drift variance parameter s2 is unobservable and was set equal to

0.1), the density of the time to absorb at 0 starting at z is given by

This is an alternate form of the density given by Feller (1968) that converges for values of t close to zero. The
variable P is the probability of reaching 0 before reaching a:

The density f (t + T0) can be integrated to give the CDF:
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We will not consider hazard function estimates in this paper for these
reasons and also because hazard functions are not typically used for pa-
rameter estimation.

2. Note that the histogram density estimator is different from a fre-
quency histogram, in which the height of each bar is equal to the pro-
portion of observations within the bar interval.

3. Thanks are due Andrew Heathcote for providing this useful nomen-
clature.

4. It is not strictly true that vincentiles are evenly spaced and centered
over the desired quantiles. To see this, suppose that a small sample is ob-
tained: {1, 3, 3, 6, 7}. We wish to compute three evenly spaced quantiles
(the 16.67th, 50th, and 83.33rd percentiles). Using linear interpolation,
these quantiles are 0.83, 3, and 6.17, respectively. However, using Vin-
cent’s procedure, they are 1.8, 5.4, and 6.6. Again using linear interpo-
lation, these quantiles correspond to the 28th, 72nd, and 92nd percentile
ranks, respectively; they are not the expected quantiles, and they are not
evenly spaced. We investigated the behavior of vincentiles for several
distributional forms, including the gamma and the Weibull. In general,
the average vincentiles were in the neighborhood of the desired quantiles
but were biased. The vincentiles tended to be pulled in the direction of a
distribution’s skew, as is demonstrated for the small sample above.

5. To see that this must be true, with maximum-likelihood estima-
tion, we estimated ex-Gaussian parameters, using both the entire sam-
ple and only 10 vincentiles computed for the same sample. For 500 sam-
ples of each sample size, the parameters estimated from the vincentiles
were significantly poorer than those estimated from the entire sample,
even when the sample was very large. We then computed 10 exact quan-
tiles (with percentile ranks of 5%, 15%, . . . , 95%) for the ex-Gaussian
with parameters µ 5 705.13, s 5 31.62, and t 5 94.87. Using maximum-
likelihood estimation on the 10 exact quantiles (and using the true pa-
rameters as starting points), the recovered parameters were µ 5 697.07,
s 5 28.51, and t 5 97.43. Therefore, the 10 quantiles, even though they
were exact, were not sufficient to recover the original parameters exactly.
Replacing the exact quantiles in the maximum-likelihood estimation

routine with sample statistics (such as vincentiles) only makes the pa-
rameter estimates less accurate.

6. The ellipses are meant to give an indication of the variance in bar
placement as well as bar height. They are not meant to represent the two-
dimensional variance around the height of the density. Because the height
and width of the bars are negatively correlated, a true two-dimensional
equiprobable ellipse would be slanted to the left. The correlation be-
tween the midpoint of the bar and its height is not perfect, however, and
the height and width of each bar on the histogram is correlated with the
height and width of every other bar on the histogram. Neither is the vari-
ance around the mean likely to be symmetric. Computing the true equi-
probable ellipse is therefore not a trivial problem.

7. The distribution of the finishing time (when the process ends re-
gardless of the outcome) for both the race and the diffusion models has
a density function of the form

f(t) 5 f(t, correct) + f(t, incorrect).

In other words, the time that the process ends can be due to the time to
make either a correct or an incorrect response. Usually, we concentrate
only on the correct RTs, or f (t | correct). By the definition of a condi-
tional probability,

f(t | correct) 5 ,

and therefore,

f (t, correct) 5 f (t | correct) P(correct).

Because the integral of the conditional density f (t | correct) over all ts
must equal one,

Fitting f (t, correct) must, then, implicitly incorporate the probability of
a correct response.

P f t dt( ) ( , ) .correct  correct= ¥
ò0

f (t, correct)
}}
P(correct)
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where erf(x) is the error function

and the sign function

The Ex-Gaussian Distribution
The ex-Gaussian distribution is the convolution of a normal (Gaussian) random variable, with mean µ and

variance s 2, with an exponential random variable with mean t. The base time parameter T0 is unobservable,
since it simply shifts the parameter µ. The density of the ex-Gaussian is

where F is the standard normal CDF. The ex-Gaussian density can be integrated to yield the CDF

The Gamma Distribution
A gamma random variable is the sum of K exponential variables each with mean 1/l. The density function is

and the CDF is

The Poisson Race Model
The density function of the race model is the density of the minimum of two gamma random variables TI

and TC, one representing the correct response (C) and the other representing the incorrect response (I). There
are five parameters: T0, lC, lI, KC, and KI. The density is conditioned on the response being correct:

which, when integrated, yields

The factor P is the probability that the correct response was given:
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The Wald Distribution
The Wald (or inverse normal) distribution with parameters µ and l arises from a diffusion process with in-

finite upper bound a. The density of the time to absorption at 0 is

The integral of this density can be computed to give

The relationships between the Wald parameters and the diffusion parameters are that l 5 z2/s2 and µ 5
2 z /x, where z is the starting point of the process, s 2 is the drift variance, and x is the drift rate.

The Weibull Distribution
The Weibull distribution is a limiting distribution of the minimum statistic. Under general conditions, the

value of the smallest of N random variables tends to the Weibull distribution as N gets large. The density of
the Weibull distribution is

for t > x, and the CDF is

The parameter x is a base time parameter.

(Manuscript received October 22, 1998;
revision accepted for publication October 25, 1999.)
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