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Single-Pixel Remote Sensing
Jianwei Ma

Abstract—In this letter, we apply a new sampling theory named
compressed sensing (CS) for aerospace remote sensing to reduce
data acquisition and imaging cost. We can only record directly
single or multiple pixels while need not the use of additional
compression step to improve the problems of power consumption,
data storage, and transmission, without degrading spatial reso-
lution and quality of pictures. The CS remote sensing includes
two steps: encoding imaging and decoding recovery. A noiselet-
transform-based single-pixel imaging and a random Fourier-
sampling-based multipixel imaging are alternatively used for
encoding, and an iterative curvelet thresholding method is used
for decoding. The new sensing mechanism shifts onboard imaging
cost to offline decoding recovery. It would lead to new instruments
with less storage space, less power consumption, and smaller
size than currently used charged coupled device cameras, which
would match effective needs particularly for probes sent very
far away. Numerical experiments on potential applications for
Chinese Chang’e-1 lunar probe are presented.

Index Terms—Aerospace remote sensing, compressed sensing
(CS)/compressive sampling, curvelets, lunar probe, single-pixel
imaging, sparse recovery.

I. INTRODUCTION

R EMOTE sensing by satellites and aerospace probes is an
important approach for deep-space exploration. This in-

volves two basic stages: imaging by a digital camera and trans-
mitting the data back to Earth. Based on conventional imaging
principle, millions of pixels have to be stored momentarily
when we take a picture using a megapixel camera. More pixels
are often needed for higher resolution. However, they require a
huge storage space in memory or hard disk. In order to reduce
the storage, an immediate data compression takes place inside
the camera by an embedded tiny microprocessor performing a
discrete cosine transform for JPEG format or a discrete wavelet
transform for JPEG 2000 format. For instance, a 6.1-megapixel
digital camera senses 6.1 × 106 samples to construct an image,
but in fact, a compressed image with average size smaller than
1 MB is saved in memory. Discarding lots of small transform
coefficients and reconstructing retained significant coefficients
to compressed pictures, in fact, we only save very limited num-
bers for later processing. The procedure is extremely wasteful
for massive data acquisitions and batteries, particularly for
large-scale aerospace remote sensing. On the other hand, in
order to transmit the data collected by satellites back to Earth,
we have to achieve huge compression ratios (CRs), which intro-
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duces inevitable distortions and mosaic artifacts. Our dream is
whether we can only record directly one or very limited pixels
(without the use of additional compression step) to improve
the problems of storage, power consumption, and transmission,
without degrading spatial resolutions and qualities.

A technique called compressed sensing (CS) or compressive
sampling was recently proposed by Candès et al. [1]–[3] and
Donoho [4], which makes it possible to solve these problems.
The CS is an emerging and exciting field of research, which
offers a novel sampling theorem for data acquisition by deal-
ing with the combination of sensing and compression. The
CS theorem says that a compressible unknown signal can be
recovered from highly incomplete sets of linear measurements
by a specially designed nonlinear recovery algorithm. Unlike
traditional measurements that have to satisfy Shannon/Nyquist
sampling theorem, i.e., the sampling rate must be at least
twice the maximum frequency of signals, the CS measurement
only obeys sub-Shannon rate without the limitation of Fourier
bandwidth. The number of necessary measurements is far fewer
than those required by traditional methods. The CS might have
an important impact for design of measurement devices in
various engineering fields, particularly where measurements are
limited by physical constraints or data acquisition is expensive.
A few potential applications of CS theorem have been made [5],
[6], [9]–[11], [13] for compressive imaging, wireless sensing,
optical architecture, etc.

In this letter, we apply the CS for aerospace remote sens-
ing. The CS-based remote sensing includes two stages: on-
board encoding imaging and offline decoding recovery. The
encoding imaging can be implemented by single or multiple
pixels/sensors, so that it could save the sensors, which not
only saves the cost of sensors but also reduces the size and
weight of onboard imaging instruments. Due to without the
use of immediate compression step, the CS remote sensing
can save power consumption. The encoding captures the com-
pressed form of a scene directly, which is important to save the
burden and cost when the data are transmitted back to Earth
from satellites. These properties would match effective needs,
particularly for probes sent very far away. Another potential
advantage of CS imaging is that it can work much more easily
for low light and outside the visible light spectrum due to the
use of only one photon detector, so that it is potential for night-
vision and infrared imaging [9]. In decoding step, we apply
an iterative curvelet thresholding method for recovery. The CS
remote sensing essentially shifts the online imaging cost to the
computational cost of offline recovery.

In the following sections, we describe the encoding and
decoding of the CS remote sensing, respectively.

II. ONBOARD ENCODING: COMPRESSED IMAGING

Mathematically, we handle a fundamental problem of recov-
ering a finite signal x from a small set of measurements y. Let
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Φ be a K × N CS measurement matrix. Here, K � N , i.e., the
rows of matrix are much fewer than the columns of matrix. In
practice, Φ might denote an optical imaging lens. The encoding
can be described as [2]

y = Φx + ε (1)

where ε denotes possible measurement errors or noises. The
K denotes the number of measurements, and N denotes the
dimension of the signal x. It seems hopeless to solve the ill-
posed underdetermined linear systems of equations since the
number of equations is much smaller than the number of
unknown variables. Such problems are common in a vari-
ety of cases, e.g., the number of sensors is limited or the
measurements are extremely expensive and time consuming.
However, most time, x is compressible by a sparse transform
Ψ; thus, we have y = ΦΨϑ + ε. If the measurement matrix Φ
is noiselike incoherent in the Ψ domain, i.e., ΦΨ satisfies a
sufficient condition named restricted isometry property [1], [5],
the CS told us that the sparse coefficients ϑ can be accurately
recovered by solving a sparsity-promoting l1-minimization or
basis pursuit [2]

min
ϑ

‖y − ΦΨϑ‖2
2 + λ‖ϑ‖l1 x = Ψϑ. (2)

The first term is a penalty that represents closeness of the
solution to observed scenes. The second term is a regularization
that represents a priori sparse information of original scenes. λ
is a regularization parameter that can be tuned. Here, we simply
use λ = 1. The best choice for λ depends on the variance of the
noise and problem size parameters.

The CS, in fact, extends traditional pixel sensing to linear
projection sensing, i.e., to measure inner products between the
scene and a set of test functions. If Φ is an identity matrix or its
sensing waveform is spikelike Dirac delta functions, the method
degenerates to traditional space-domain measurements obeying
Nyquist rate. If the waveforms are sinusoids, y is a vector of
Fourier measurements. The choice of Φ and Ψ is critical for
CS. In general, we can hire a measurement matrix by the fol-
lowing rules.

1) Universality: Φ should be noiselike incoherent/
uncorrelated with a variety of sparse transform bases
Ψ for natural scenes. That is to say, Φ and Ψ are as
different as possible; thus, sampling waveforms have
dense representation in Ψ.

2) Optimal performance: For a good Φ, the minimal
number of necessary measurements to obtain a super-
resolution result should be close to the theoretical bound
O(S log N) for an S-sparse N -dimension signal. The
S-sparse means an object with at most S nonzero entries
in a transform domain. The greater incoherence between
Φ and Ψ, the smaller number of measurements is needed.

3) Fast computation: Algorithm of offline recovery involves
repeated applications of ΦΨ. A fast computable Φ is de-
sirable for both encoding imaging and decoding recovery.

4) Physically realizable: Φ should be easily implemented by
a hardware such as an optical or analog system.

Frequently used measurement matrices Φ are random ma-
trices, random partial orthogonal matrices, and randomlike
transforms, because they are incoherent for almost all sparse
transforms. How to build optimal and determined measurement

matrices satisfying all of the aforementioned properties is still
undergoing.

A prototype of a single-pixel digital camera was presented
by Baraniuk et al. [6], [9] of the Rice University by using
0/1 random binary matrices for Φ. Rather than recording pixels
of the scene under view, the compressed-sensing cameras di-
rectly sense geometric and structural information by collecting
random projections using a digital micromirror array, which
requires just one photosensitive sensor instead of millions [9].
This pixel actually is a compressed projection of multipixel
information. This means that the compression step has been
cut because compression is made by optical imaging itself,
which is useful to reduce data acquisition, power, and storage
space. Moreover, fewer light detectors are needed in CS cam-
eras, which saves the cost of expensive detectors. It can also
work much more easily for low light and outside the visible
light spectrum, so that it is potential for night-vision and in-
frared imaging. The single-pixel camera is basically an optical
computer comprising two lenses, a single photon detector, an
analog-to-digital converter, and a digital micromirror device
(DMD). A primary optical scheme of the single-pixel camera
can be found in [9].

As mathematical interpretation, we first reshape the 2-D im-
age into a 1-D signal x = {x1, . . . , xi, . . . , xN} and assemble
the 2-D Φ matrix using random vector Φm = {Φm,1, . . . ,
Φm,i, . . . ,Φm,N} (m=1, . . . , K) in each row. The random Φm

is steered by orienting the bacterium-sized mirrors in DMD.
The reflecting light field is focused on the single photodiode
by lens in order to get one measurement ym =

∑N
i=1 Φm,ixi.

Repeat K times using different Φm to obtain all measurements
y=Φx. Such a repetitive operation can be finished in a mo-
mentary time by tuning the directions of mirrors in DMD.
The camera is single-pixel but multitime (SPMT) imaging. The
SPMT camera carries out a sequential imaging which is slower
than a parallel imaging of a classical charged coupled device
(CCD) camera. However, the SPMT does not need an additional
compression step that is required by classical imaging.

The random matrix used in the Rice’s single-pixel cameras
is universal for general signals, but it is not optimal for a
certain case. In this letter, we apply a so-called 2-D noiselet
transform [10], [12] as a measurement matrix in the single-
pixel cameras. The attractiveness of noiselets is twofold: a fast
transform with O(N) computational complexity is available,
which can provide low computational cost; it provides near-
optimal measurements for most astronomical data, which can
lead less numbers of necessary measurement for a high-quality
recovery [10].

We can also consider random Fourier measurement in Φ [11]
for different applications, e.g., magnetic resonance imaging in
medical engineering and spatially modulated imaging Fourier
transform spectrometer in remote sensing. In this case, we
obtain the K measurements at the same time by using a random
mask on Fourier coefficients of x. This camera carries out a
multipixel but single-time (MPST) imaging in Fourier space.
The physical prototype of MPST cameras can be implemented
easily by an optical system, where the random projections
can be implemented within a single exposure by using a
random phase mask that is placed on a lens. Alternatively,
some prototypes for measurement matrix have also been pro-
posed [13]–[15]. Neifeld and Ke [13] compared three optical
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architectures for compressed imaging: sequential, parallel, and
photon sharing. Each of these architectures is analyzed using
two different types of projection: principal component projec-
tions and pseudorandom projections. The performance of each
architecture-projection combination is quantified in terms of
reconstructed image quality as a function of measurement noise
strength. Other interesting possibilities of the measurement
matrices are available for future work by using, e.g., Toeplitz
block matrices [16] and structurally random matrices [17].

We emphasize that the main contribution of this letter is to
introduce a new sensing mechanism for remote sensing, instead
of a new compression scheme. With regard to the CS-based
lossy compression in comparison with JPEG 2000 format, we
refer readers to the study of Goyal et al. [18]. We proposed
two possible systems including SPMT and MPST for different
applications in remote sensing. The physical significant dif-
ferences between these two encoding approaches are obvious.
The SPMT uses a single sensor with a sequential space-domain
imaging, while MPST uses multiple sensors (but the number of
sensors is still much fewer than those used in traditional CCD
cameras) with a parallel Fourier-domain imaging. They have
respective pros and cons. The SPMT uses far fewer sensors
but has to pay a longer imaging time, while the MPST uses
more sensors but saves imaging time. The fewer photon sensors
would lead to cameras with smaller size, more portable weight,
simpler complexity, and cheaper expense. On the other hand,
the decoding of the SPMT needs more computation cost and
memory than the MPST, which will be addressed in the next
section. Therefore, we say that the compressed-sensing cameras
offer a flexible mechanism to take a tradeoff between the space
and time according to practical requirements.

III. OFFLINE DECODING: ITERATIVE

CURVELET THRESHOLDING

To recover x in (1), the number of nonzero entries and their
locations and amplitudes are all completely unknown a priori.
The a priori knowledge that we can use is the sparsity of x. A
few recovery algorithms of the CS have been recently proposed.
They are based on, e.g., linear programming [1], gradient pro-
jection sparse reconstruction [20], orthogonal matching pursuit
[19], and iterative thresholding [10], [21], [22]. In this letter, we
apply an iterative curvelet thresholding for the decoding of CS.

Curvelet transform [7], [8] is a new geometric multiscale
transform. It can be interpreted as an anisotropic geometric
wavelet transform, which allows an optimal sparse representa-
tion of objects with smooth-curve singularities. Unlike wave-
lets, the system of curvelets is indexed by three parameters: a
scale 2−j , j ∈ N0; an equispaced sequence of rotation angles
θj,l = 2πl · 2−�j/2�, 0 ≤ l ≤ 2�j/2� − 1; and a position x

(j,l)
k =

R−1
θj,l

(k12−j, k22−�j/2�)T, (k1, k2)∈Z
2, where Rθj,l

denotes the
rotation matrix with angle θj,l. The curvelets are defined by

ψj,l,k(x) := ψj

(
Rθj,l

(
x − x

(j,l)
k

))
x = (x1, x2) ∈ R

2.

Let μ = (j, l, k) be the collection of the triple index. The
curvelet coefficients are given by cμ(f) := 〈f, ψμ〉. The for-
ward and inverse curvelet transforms have the same compu-
tational cost of O(N2 log N) for an N × N image [8]. The
motivation to use the curvelet transform for CS is that most

Fig. 1. Compressed remote sensing using MPST with 25% measurements
for lunar probe. (a) Original scene of moon’s surface. (b) Random sampling
scheme. (c) Decode result by zero-filling reconstruction (SNR = 24.02).
(d) Decode result by wavelets and total variation regularization (SNR =
37.73). (e) Decode by iterative curvelet thresholding (SNR = 39.54).
(f) Decoded error by the curvelet method.

natural scenes consisting of line-singularity edges are very
sparse in curvelet domain.

Define a thresholding transform function

Sτ (f,Ψ) =
∑

μ

τ (cμ(f)) ψμ (3)

where τ can be taken as, e.g., a hard thresholding function
defined by a threshold σ > 0, τ(x) = x if |x| ≥ σ and τ(x) = 0
if |x| < σ. We have the iterative curvelet thresholding

xp+1 = Sτ

(
xp + ΦT(y − Φxp),Ψ

)
(4)

where p denotes the index of iterations. The initial value x0

can be set to zeros or a zero-filling reconstruction of initial
incomplete observation [11]. The highly approximate x can
be recovered by stoping the iteration once a given criterion,
e.g., ‖xp+1 − xp‖ < ε, is satisfied. We refer to [7], [8], [23],
and [24] for details of the used second-generation curvelet
transform and [21] for mathematical properties of iterative
thresholding methods.

The decoding is carried out by ground digital computers that
undertake most of computational complexity. In terms of the de-
coding in (4), the MPST camera is faster than SPMT camera be-
cause the measurement matrices Φ in MPST have much smaller
dimensions than those in SPMT. Mathematically, the com-
putational complexity of MPST is O(2P (1 + N)N log N) =
O(2PN log N + 2PN2 log N) for an N × N scene, while
those of SPMT is O(2PKN2 + 2PN2 log N) where log N ≤
K ≤ N2 and P denotes the total number of iterations.

IV. NUMERICAL EXPERIMENTS

Chang’e-1 lunar probe, China’s first circumlunar satellite,
blasted off on October 24, 2007. One of scientific objectives
of Chang’e-1 is to capture 3-D survey of the moon’s surface.
In spite of the stereo design, the currently used CCD camera
in Chang’e-1 includes a wide-angle lens and 1024 × 1024
array sensors. Fig. 1(a) shows a picture of moon’s surface
with resolution of 120 m, captured by the Chang’e-1 at the
height of 200 km. We first consider the MPST camera only
using 25% measurements for the lunar probe. Fig. 1(b) shows
the random sampling point in the Fourier domain. Fig. 1(c)

Authorized licensed use limited to: IEEE Xplore. Downloaded on February 4, 2009 at 01:57 from IEEE Xplore.  Restrictions apply.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

202 IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, VOL. 6, NO. 2, APRIL 2009

Fig. 2. (a) SNR versus number of iterations. (b) Recovery error versus number
of iterations. The horizontal coordinate denotes the number of iterations.

Fig. 3. MPST imaging for a cloud system. (a) and (b) Wavelet decoding
and its error. (c) and (d) Curvelet decoding and its error. (e) and (f) SNR
and recovery error versus number of measurements by the curvelet decoding.
The horizontal coordinate denotes the RMN to total numbers. Dashed lines
denote iterative curvelet thresholding, and solid lines denote iterative wavelet
thresholding.

shows a decoding result using direct zero-filling reconstruc-
tion [11]. Fig. 1(d) shows a decoding result by a proposed
method in [11], which solves a convex optimal problem with
wavelet transform and total variation constraints by nonlinear
gradient projection. Fig. 1(e) shows a result by the proposed
iterative curvelet thresholding. A decaying thresholding value
σ = σ0(1 − k/Kiter) is used, where the initial thresholding
value σ0 = 0.06, k is an index of iterations, and the number
of total iterations Kiter = 40. The curvelet method recovers
edges well and achieves a higher signal-to-noise ratio (SNR)
value than other methods. Fig. 1(f) is decoding error by the
curvelet method, which basically displays a random noise.
The CS camera carries out the compression and denoising at
the same time. Fig. 2 shows the change of SNR and recovery er-
ror as the number of iterations increases by the curvelet method.

Fig. 3 shows performances of the proposed method for an-
other real remote sensing data with vortex structures. Fig. 3(a)
shows a decoding result by an iterative wavelet thresholding

Fig. 4. SPMT imaging for moon’s surface. (a) Original unknown scene.
(b) Random measurement encoding and curvelet decoding. (c) Noiselet mea-
surement encoding and curvelet decoding.

[i.e., using DB4 wavelets instead of curvelets in (4)], con-
sidering 55% measurements. Fig. 3(b) shows the removed
components (decoding error) by the wavelet method. Fig. 3(c)
and (d) shows the decoding result and error by the iterative
curvelet thresholding. Fig. 3(e) shows the change of SNR of
decoding results by the two iterative methods, as the number
of measurements increases from 10% to 55%. It can be seen
that 15% measurements can result in a satisfying result for this
case. Fig. 3(f) shows the corresponding recovery errors as the
number of measurements increases. The dashed line denotes
for the curvelet method, and solid line denotes for the wavelet
method. It can be seen obviously that the curvelet method owns
high-quality decoding results preserving structural edges well.

We next apply the SPMT cameras for remote sensing.
Fig. 4(a) shows an original unknown scene with size 64 × 64.
We first consider random binary measurement matrix in en-
coding step, which is also used in Rice’s single-pixel cameras.
Fig. 4(b) shows a result when we apply a random measurement
matrix and the iterative curvelet thresholding recovery with
55% measurements and 60 iterations. Fig. 4(c) shows the result
when we apply the noiselet transform in the encoding step.
The same decoding method and computational parameters have
been used in Fig. 4(b) and (c). In order to see clearly the
differences between the two encoding approaches, we show the
change of SNR and recovery errors as the number of iterations
increases in Fig. 5(a)–(d). It can be seen that the noiselet-based
imaging method achieves a higher SNR value. Moreover, it has
a faster decay in terms of the recovery errors. Fig. 5(e) and
(f) shows the change of SNR as the number of measurements
increases. Generally, 25% measurements are enough to get
a high-resolution result for engineering requirements. Fewer
measurements would lead to less storage and less decoding
time. From the experiments, the noiselet-based measurements
are better than random matrix measurements to some extent.
However, for a measurement number smaller than 20%, the
noiselet matrix almost fails while the random matrix can obtain
an approximate result.

We remarked that the ratio of measurement numbers (RMN)
is different from the CR that we used in data compression.
Generally, the CR is produced by three steps: sparse transform,
quantification of coefficients, and entropy coding, for lossy com-
pression [18]. However, the RMN means the necessary numbers
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Fig. 5. Comparison of the SPMT imaging with different encoding approaches.
(Left column) Random measurement. (Right column) Noiselet measurement.
(a) and (b) SNR versus iterations. (c) and (d) Recovery error versus iterations.
(e) and (f) SNR versus number of measurements.

to ensure exact (noiseless cases) or highly accurate (noise
cases) reconstruction of original unknown signals. The RMN
is somewhat like a CR that only uses a random transform step.

Finally, we emphasize that the 2-D noiselet (or random)
measurement matrix and random Fourier measurement matrix
are applied only to SPMT and MPST, respectively, in this letter.
We also remark that we do not pay attention to performance
comparisons between SPMT and MPST encoding approaches
in this letter but indicate their respective imaging applications.

V. CONCLUSION

In this letter, we applied a theory of CS for aerospace remote
sensing in order to reduce the cost of data acquisition. The
CS provides a new sensing mechanism where high-resolution
qualities are not directly related to the number of pixels as
before but are related to the sparsity or compressibility of sig-
nals. The compression is implemented by optical imaging itself
without the use of additional compression algorithms. Further
applications on deblurring of the CS-based remote sensing can
be found in [25]. For video imaging, the CS cameras need no
shutter because one merely measures continuously a sequence
through randomized Φm and then reconstructs a video sequence
using a recovery algorithm [9].

Applications of the CS on remote sensing are in their infancy.
A huge computer memory is required by the use of current
SPMT decoding, particularly for large-scale remote sensing.
How to optimally construct the measurement matrices and
corresponding fast recovery methods for practical applications
is our next work. Currently, all experiments were implemented
by computer simulations only. Therefore, another challenging
work is to build a physically realizable hardware optical scheme
for the CS remote sensing, particularly for stereo CS imaging
by exploring a joint sparsity. There is a big room for future
research.
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