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Abstract

Sensing devices can be deployed to form a network for monitoring a region of interest. This paper investigates detection

of a target traversing the region being monitored by using collaborative target detection algorithms among the sensors.

The objective of the study is to develop a low cost sensor deployment strategy to meet a performance criteria. The paper

defines a path exposure metric as a measure of goodness of deployment. It then gives a problem formulation for the random

sensor deployment and defines cost functions that take into account the cost of single sensors and the cost of deployment.A

sequential sensor deployment approach is then developed. The paper illustrates that the overall cost of deployment canbe

minimized to achieve the desired detection performance by appropriately choosing the number of sensors deployed in each



step of the sequential deployment strategy.
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1 Introduction

Recent advances in computing hardware and software are responsible for the emergence of sensor networks capable of

observing the environment, processing the data and making decisions based on the observations. Such a network can be used

to monitor the environment, detect, classify and locate specific events, and track targets over a specific region. Examples of

such systems are in surveillance, monitoring of pollution,traffic, agriculture or civil infrastructures [10]. The deployment

of sensor networks varies with the application considered.It can be predetermined when the environment is sufficiently

known and under control, in which case the sensors can be strategically hand placed. In some other applications when the

environment is unknown or hostile, the deployment cannot bea priori determined, for example if the sensors are air-dropped

from an aircraft or deployed by other means, generally resulting in a random placement.

This paper investigates deployment strategies for sensor networks performing target detection over a region of interest. In

order to detect a target moving through the region, sensors have to make local observations of the environment and collaborate

to produce a global decision that reflects the status of the region covered [2]. This collaboration requires local processing of

the observations, communication between different nodes,and information fusion [11]. Since the local observations made

by the sensors depend on their position, the performance of the detection algorithm is a function of the deployment. One

possible measure of the goodness of deployment for target detection is calledpath exposure. It is a measure of the likelihood

of detecting a target traversing the region using a given path. The higher the path exposure, the better the deployment. The

set of paths to be considered may be constrained by the environment. For example, if the target is expected to be followinga

road, only the paths consisting of the roads need to be considered.

In this study, the deployment is assumed to be random which corresponds to many practical applications where the region

to be monitored is not accessible for precise placement of sensors. The focus of this paper is to determine the number of

sensors to be deployed to carry out target detection in a region of interest. The tradeoffs lie between the network performance,

the cost of the sensors deployed, and the cost of deploying the sensors. This paper is organized as follows. In section 2, a

definition for path exposure is proposed and a method to evaluate the exposure of a given path is developed. In section 3, the
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problem of random deployment is formulated and several solutions are presented. An analytical study of these solutionsis

given in section 4 and section 5 presents simulation resultsthat are used in section 6 to determine the optimum solution for a

given environment. The paper concludes with section 7.

2 Path exposure

Before formulating the deployment problem, a model for sensor network target detection, a definition of path exposure,

and expressions for evaluating this path exposure are developed.

2.1 Model

Consider a rectangular sensor field withn sensors deployed at locationssi, i = 1; : : : ; n. A target at locationu emits

a signal which is measured by the sensors. The signal from thetarget decays as a polynomial of the distance. If the decay

coefficient isk, the signal energy of a target at locationu measured by the sensor atsi is given bySi(u) = Kjju� sijjk (1)

whereK is the energy emitted by the target andjju � sijj is the geometric distance between the target and the sensor.

Depending on the environment the valuek typically ranges from 2.0 to 5.0 [6].

Energy measurements at a sensor are usually corrupted by noise. IfN2i denotes the noise energy at sensori during a

particular measurement, then the total energy measured at sensori, when the target is at locationu, isEi(u) = Si(u) + N2i = Kjju� sijjk +N2i : (2)

The sensors collaborate to arrive at a consensus decision asto whether a target is present in the region. We consider

two basic approaches for reaching this consensus: Value fusion and Decision fusion [4]. In value fusion, one of the sensors

gathers the energy measurements from the other sensors, totals up the energy and compares the sum to a threshold (�) to

decide whether a target is present. If the sum exceeds the threshold, then the consensus decision is that a target is present. In

contrast, in decision fusion, each individual sensor compares its energy measurement to a threshold (�1) to arrive at a local

decision as to whether a target is present. The local decisions (1 for target present and 0 otherwise) from the sensors are

totaled at a sensor and the sum is compared to another threshold (�2) to arrive at the consensus decision. In some situations,

value fusion outperforms decision fusion and vice versa.
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2.1.1 Value Fusion.

The probability of consensus target detection when the target is at locationu isDv(u) = Prob

" nXi=1 � Kjju� sijjk +N2i � � �#= Prob

" nXi=1 N2i � � � nXi=1 Kjju� sijjk# ; (3)

where� is the value fusion threshold. If the noise processes at the sensors are independent, then the probability density

function of
Pni=1N2i equals the convolution of the probability density functionof N2i , i = 1; : : : ; n. In particular, if the

noise processNi at each sensor is Additive White Gaussian Noise (AWGN), then
Pni=1N2i has a Chi-square distribution of

degreen.

Due to the presence of noise, the sensors may incorrectly decide that a target is present even though there is no target in

the field. The probability of a consensus false target detection isFv = Prob

" nXi=1 N2i � �# : (4)

As above, if the noise processes at the sensors are independent and AWGN, then the false alarm probability can be computed

from the Chi-square distribution of degreen.

2.1.2 Decision Fusion.

For decision fusion, lethd;i be the local decision at sensori in the presence of a target in the region. The probability of

consensus target detection when the target is located atu isDd(u) = Prob

" nXi=1 hd;i(u) � �2#= nXj=�2 X
permutations� jYl=1P1;�(l) � nYl=j+1P0;�(l)
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where�(j) denotes thej-th element of a permutations of sequencef1,2,...,ng, �1 is the threshold used to make the local

decision at each sensor,�2 is the threshold used to fuse the local decisions, andP1;i = Prob[hd;i(u) = 1]= Prob

�N2i � �1 � Kjju� sijjk � , andP0;i = Prob[hd;i(u) = 0]= 1� Prob[hd;i(u) = 1] :
can be computed from Chi-square distribution of degree 1 forAWGN noise process.

Let gd;i be the local decision at sensori in the absence of target in the region. The probability of false target detection at

sensori is

Prob[gd;i = 1] = Prob[N2i � �1] and

Prob[gd;i = 0] = 1� Prob[gd;i = 1]:
Therefore, the probability of consensus false target detection isFd = Prob

" nXi=1 gd;i � �2#= nXj=�20BB@ nj 1CCA � P j1 � P (n�j)0
whereP1 andP0 are not function of the position of the sensor or the target, and are given byP1 = Prob[gd;i = 1]P0 = Prob[gd;i = 0]
The above equations serve as an analytic basis for evaluating exposure as defined in the following subsection.

Note that in value and decision fusion the knowledge of the sensors’ locations can be used when making the detection

decision. For example, a sensor can report values that differ substantially from its neighbors values. This discrepancy can

be analyzed to reduce false alarms or misses and thus improvethe detection performance. However, such algorithms are not

considered in this paper.
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2.2 Definition of exposure

Figure 1 goes here

We defineexposureto be the probability of detecting the target or an intruder carrying out the unauthorized activity, where

the activity depends on the problem under consideration. Inthis paper, the activity considered is the Unauthorized Traversal

(UT) as defined below.

Unauthorized Traversal (UT) Problem: Consider a sensor field withn sensors at locationss1, s2, : : : , sn (see Figure 1).

Further, we assume that the stochastic characterization ofthe noise at each sensor and a tolerable bound,�, on the false

alarm probability are known. LetP denote a path from the west to the east periphery of the sensorfield. A target traversing

the sensor field using pathP is detected if it is detected at some pointu 2 P . We define theexposureof pathP to be the net

probability of detecting a target that traverses the field usingP . The target is assumed to be able to follow any path through

the field and the problem is to find the pathP with the least exposure.

The notion ofexposurewas initially introduced in [7, 8, 9] to evaluate the coverage of a region by a set of sensors

performing target detection. The exposure as defined in these studies evaluates the detectability of a target travelingthrough

a path, but is not a direct measure of it. In [7], the authors relate the exposure of a pathP to the distance fromP to the

sensors and point out two paths of interest. The maximal breach path is defined as a path where its closest distance to any of

the sensors is as large as possible, which is the least exposed path. And the maximal support path is defined as a path where

its farthest distance from the closest sensor is as small as possible, which is the most exposed path. The authors also describe

algorithms for efficiently determining the maximal breach and maximal support path for a given sensor field using Voronoi

diagrams and Delaunay triangulation.

In [8], exposure of a pathP is defined as the total energy that the sensors will gather from the target moving through the

field following P . The smaller this energy the lesser the likelihood of detecting the target and the coverage provided by a

deployment is measured by the minimum exposure when considering all possible paths. An algorithm for determining a path

with the least exposure in this sense is developed in [8]. Thealgorithms presented in [7, 8] assume that all the sensors will

collaborate in performing detection. A similar algorithm for finding minimum exposure is developed in [9] when assuming
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that detection is run locally by only part of all the sensors.

Finally, studies [3, 5, 12] also define metrics to measure thequality of deployment. However, they consider that the sensors

have to fully cover the region in which they are deployed instead of considering the detection of target following paths as

in unauthorized traversal. These studies consider different models for the coverage of each sensor, a probabilistic model

in [5, 12] that accounts for the possible presence of obstacles in the region, and a sensing range model in [3]. The problemis

to reach a desired average coverage as well as maximizing thecoverage of the most vulnerable points of the region.

2.3 Solution to the UT problem

LetP denote a path from the west to the east periphery through the sensor field. A target that traverses the field usingP is

not detected if and only if it is not detected at any time whileit is on that path. Since detection attempts by the sensor network

occur at a fixed frequency, we can associate each detection attempt with a pointu 2 P when assuming that the target traverses

the field at a constant speed. The detection attempts are based on energy measured over a period of timeT during which

the target is moving. Therefore, the detection probabilityassociated with each pointu reflects the measurements performed

during timeT . Considering the path, the net probability of not detectinga target traversing the field usingP is the product

of the probabilities of no detection at each pointu 2 P . That is, ifG(P ) denotes the net probability of not detecting a target

as it traverses over pathP , then, logG(P ) = Xu2P log(1�D(u));
whereD(u) is eitherDv(u) of Dd(u) depending on whether the sensors use value or decision fusion to arrive at a consensus

decision. Note thatD(u) is the probability to detect the target during a time periodT where the target is moving. Therefore,

the energy values used to findD(u) are the average energies measured at each sensor over periodT . Since the exposure

of P is (1 � G(P )), the problem is to find the path which minimizes(1 � G(P )) or equivalently the path that minimizesj logG(P )j (note that,G(P ) lies between 0 and 1 and thuslogG(P ) is negative).

In general, the pathP that minimizesj logG(P )j can be fairly arbitrary in shape. The proposed solution doesnot exactly

compute this path. Instead, we rely on the following approximation. We first divide the sensor field into a fine grid and

then assume that the target only moves along this grid. The problem then is to find the pathP on this grid that minimizesj logG(P )j. Note that, the finer the grid the closer the approximation. Also, one can use higher order grids [8] instead of

7



the rectangular grid as used in this paper. The higher order grids change the runtime of the algorithm but the approach is the

same as with the rectangular grid.

For the target not to be detected while traversing along pathP , it must not be detected at any pointu lying between any

two adjacent grid points ofP . We therefore subdivide any pathP as a chain of grid segments. Let us consider two adjacent

points, sayv1 andv2 on the grid. Letl denote the line segment betweenv1 andv2. Also, letml denote the probability of not

detecting a target traveling betweenv1 andv2 on the line segmentl. Then, from the discussion above, the probabilityml can

be evaluated by finding the detection probabilityD(u) at each pointu 2 l, and it is given bylogml =Xu2l log(1�D(u)) (5)

Note that,ml lies between 0 and 1 and, therefore,logml is negative.

To find the least exposed path, a non-negative weight equal toj logmlj is assigned to each segmentl on the grid. Also, a

fictitious pointa is created and a line segment is added froma to each grid point on the west periphery of the sensor field. A

weight of 0 is assigned to each of these line segments. Similarly, a fictitious pointb is created and a line segment is added

from b to each grid point on the east periphery of the sensor field. A weight of 0 is assigned to each of these line segments.

Figure 2 goes here

The problem of finding the least exposed path from west periphery to east periphery is then equivalent to the problem of

finding the least weight path froma to b on this grid. Such a path can be efficiently identified using the Dijkstra’s shortest

path algorithm [1]. A pseudo-code of the overall algorithm is shown in Figure 2.

Example: Figure 3 shows a sensor field with eight sensors at locationsmarked by dark circles.

Figure 3 goes here

Assume the noise process at each sensor is Additive White Gaussian with mean0 and variance 1. Further assume that the
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sensors use value fusion to arrive at a consensus decision. Then, from Equation 4, we chose a threshold� = 3:0 to achieve a

false alarm probability of 0.187%. The field has been dividedinto a10 � 10 grid. The target emits an energyK = 12 and

the energy decay factor is 2. The figure shows the weight assigned to each line segment in the grid as described above. The

least exposure path found by the Dijkstra’s algorithm for this weighted grid is highlighted. The probability of detecting the

target traversing the field using the highlighted path is 0.926.

3 Deployment

In this section, the problem of sensor deployment for unauthorized traversal detection is formulated and solutions are

identified.

3.1 Problem formulation

Consider a region to be monitored for unauthorized traversal using a sensor network. The energy levelK emitted by a

target of interest and the noise statistics in the region areknown. The sensors are to be deployed over the region in a random

fashion where the sensors locations in the region cannot a priori be determined and only the number or density of sensors can

be chosen. The problem is to find a deployment strategy that results in a desired performance level in unauthorized traversal

monitoring of the region.

The performance is measured by the false alarm probability and the path exposure defined in section 2. The false alarm

probability is independent of the sensor placement and is only determined by the number of sensors deployed and the thresh-

olds used in the detection algorithms. It is assumed to be fixed in this study so that the problem consists of maximizing the

exposure at constant false alarm rate. Since targets can traverse the region through any path, the goal of deployment is to

maximize the exposure of the least exposed path in the region.

Obviously, the minimum exposure in the region increases (iffalse alarm rate is kept constant) as more sensors are deployed

in the region. However, since the deployment is random, there are no guarantees that the desired exposure level is achieved

with a given number of sensors. Indeed some sensor placements can result in very poor detection ability, for example

when the sensors are all deployed in the same vicinity. A study of the statistical distribution of exposure for varying sensor

placement for a given number of sensors can provide a confidence level that the desired detection level is achieved. In

practical situations, only a limited number of sensors are available for deployment and only a limited detection level with
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associated confidence level is achievable for a fixed false alarm rate.

3.2 Solution

Based on the above discussion, we develop a solution method to the deployment problem when a maximum ofM sensors

can be used. Deploying theM sensors results in the maximum achievable detection level but this is not optimal when

considering the cost of sensors. To reduce the number of sensors deployed, only part of the available sensors should be

deployed first and the sensors can then report their position. The random sensor placement obtained can be analyzed to

determine if it satisfies the desired performance level. If it does not, additional sensors can be deployed until the desired

exposure level is reached or until allM available sensors are deployed.

The number of sensors used in this strategy can be minimized by deploying one sensor at a time. However, a cost is

usually associated with each deployment of sensors and deploying one sensor at a time may not be most cost effective if the

cost of deployment is sufficiently large with respect to the cost of single sensors. By assigning distinct costs to both single

sensors and deployment, the optimal number of sensors to be deployed at first and thereafter can be determined. In the next

section, we develop analytical expressions for finding the optimal solution. In general, the optimal cost solution is neither

deploying one sensor at a time nor deploying all the sensors at once.

4 Analytical solution

In this section, we derive an analytical model for the cost ofdeployment. Leted be the desired minimum exposure for

the sensor network to be deployed when a maximum ofM sensors are available for deployment. The position of sensors are

random in the region of interestR and for a given number of sensorsn, the least exposuree is a random variable. LetFn(x)
denote the cumulative distribution function ofe, i.e. the probability thate is less thanx, whenn sensors are deployed.

As mentioned in the previous section, there is no a priori guarantee that the exposureed will be obtained when deploying

the sensors. IfM is the maximum number of sensors available, the confidence ofobtaining a least exposure ofed or more

is 1� FM (ed). For the proposed solution, we assume that the position of the sensors obtained after a deployment is known

so that additional sensors can be deployed if the minimum exposureed is not reached. To evaluate the probability that

the exposureed is reached after additional sensor deployment, we make the following approximation: the distribution of

exposure forn sensors is independent of the exposure corresponding tok of thesen sensors,1 � k � n � 1. This is an

10



approximation since the exposure obtained withn sensors is always higher than the exposure obtained with only k of thesen
sensors,1 � k � n � 1. We observed that the re-deployment of just a few sensors cansubstantially modify the coverage of

the region, for example when filling empty spaces. The approximation is also justified by the loose relation between exposure

and sensors positions. Indeed, a given minimum exposure cancorrespond to many different deployment positions, some of

which can be easily improved by deploying a few additional sensors (e.g. when there is a empty space in the region coverage),

some of which can only be improved by deploying many additional sensors (e.g. when the sensors are evenly distributed on

the region).

As the minimum exposuree is a random variable, the cost of deploying the sensors in steps until the desired exposure is

reached is also a random variableC. We now derive the expression for the expected value ofC. Let ni be the total number

of sensors deployed after stepi. LetS be the maximum number of steps so thatnS = M . Note thatni � ni�1 is the number

of sensors deployed at stepi. Also letCd be the cost of deploying the sensors at each step andCs be the cost of each sensor.

If the desired exposure is obtained after the first step, the total cost of deployment isCd + n1Cs, and this event happens with

probability1� Fn1(ed). Considering all the possible events, the expected cost is given byEfCg = S�1Xi=1 (i:Cd + ni:Cs)0@i�1Yj=1Fnj (ed)1A (1� Fni(ed)) + (S:Cd +M:Cs) S�1Yj=1 Fnj(ed) (6)

Note that a different expression is needed for the cost of step S since no additional sensors are deployed after this step

even when the desired exposure is not achieved.

5 Simulation

In this section, we present results of simulations that wereconducted to collect the exposure distribution function ofthe

number of sensors deployed.

5.1 Method

Figure 4 goes here
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The exposure distribution is obtained by collecting statistics on the exposure when deploying sensors randomly in a

predefined region. The region monitored is of size20� 20 and the random deployment is assumed to be Gaussian, centered

at the center of the region monitored, i.e. the point of coordinates (10,10), and standard deviation 10. Only sensors lying

within the bounds of a predefined deployment region are assumed to collaborate to detect targets. In general, that deployment

region needs to be larger than the region to monitor. Indeed,if sensors are deployed merely in regionR, the edges of the

region are not well covered. This is undesirable when tryingto detect a target traversing the region since paths lying onthe

edge of the region have low exposure. Therefore, adequatelycovering the regionR to prevent undetected traversal requires

deploying sensors beyond the edges ofR as shown in Figure 4. In the simulation conducted, the deployment region has

dimensions 33% larger than the monitored region, i.e. size26:6� 26:6.

For every deployment, the minimum exposure is found using a simulator implementing the algorithm presented in section

2. A decay factor ofk = 2 and maximum energy ofK = 30 are chosen to model the energy emitted by targets (cf

Equation 1). The noise in the time series data is assumed to benormal with variance 1, so that the signal coming from the

target is covered by noise when the target is 6 or more unit lengths away from a sensor. The sensors use value fusion, as

presented in section 2.1.1, to collaborate when making a common decision on the presence of a target in the region. The noisePni=1N2i in the sum of energies fromn sensors, computed in value fusion and appearing in equation3, is from a Chi-square

distribution withn degrees of freedom. The threshold for detection is chosen asa function of the number of sensors to give a

constant false alarm probability. The false alarm probability for each detection attempt is chosen so that the expectednumber

of false alarms is one per hour, assuming that detection attempts occur every 2 seconds.

5.2 Distribution of minimum exposure

Figure 5 goes here

The distribution of minimum exposure were found for the number of sensor deployed varying from 1 to 100. To illustrate

our results, the probability density functions for 15, 30 and 50 sensors are shown in Figure 5.
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We observe that for 15 sensors deployed, the minimum exposure has zero density for values less than the false alarm

probability of .02. The highest density is obtained for values around .08 and then drops exponentially towards zero for higher

values of exposure. For deployment of 30 sensors, we find again that the minimum exposure has zero density for values

below .02, then increases and has the shape of a bell curve centered around .4. For deployment of 50 sensors, densities start

at zero for small values and remain very small for most valuesof minimum exposure. The density slowly increases and has

a large peak for minimum exposure of 1.

As expected, the minimum exposure increases on average as the number of sensors deployed increases. When randomly

deploying 15 sensors, it is very unlikely to obtain a placement providing a desirable minimum exposure. When deploying

30 sensors, most of the exposure levels are equally likely and only poor confidence is given to obtain a desirable exposure

level. When deploying 50 sensors, it is very likely that the sensor placement will give good exposure and this likelihood

keeps increasing with the number of sensors deployed.

Figure 6 goes here

We use the cumulative distribution function obtained from the statistics collected to evaluate the likelihood that thedesired

level of exposureed is obtained for varying number of sensors. The graph of Figure 6 shows the probability that the minimum

exposure is aboveed as a function of the number of sensors deployed fored = 80%; 85%; 90% and95%. These values can

be used to evaluate the cost expressed in Equation 6. The graph shows that the confidence level to obtain a given minimum

exposure leveled increases with the number of sensors deployed. The confidence fored when deploying 100 sensors is above

.999, which is sufficient for most applications, and therefore we did not evaluate the distribution of exposure when deploying

more than 100 sensors.

6 Results

In this section, we evaluate the expected cost of deploying sensors using the simulation results. The optimal number of

sensor to deploy at first and in the succeeding steps can be derived from these results.
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For this cost analysis, the region parameters and signal model are the same as specified in section 5. We further assume

that the number of sensors deployed at every step is constantso thatni�ni�1 = n for all 1 � i � S. In this case, Equation 6

reduces toEfCg = (Cd + n:Cs) S�1Xi=1 i:0@i�1Yj=1Fj:n(ed)1A (1� Fi:n(ed)) + (S:Cd +M:Cs) S�1Yj=1 Fj:n(ed) (7)

Figure 7 goes here

We evaluated the expected cost as a function ofn for three different cost assignments with a desired exposure ofed = 90%.

The three corresponding graphs are shown in Figure 7. The first cost assignment is(Cd = 0; Cs = 1) so that the expected

cost is the expected number of sensors to be used to achieve anexposure of90%. SinceCd = 0, the number of steps used

to deploy the sensors doesn’t affect the cost and it is therefore optimal to deploy one sensor at a time until the minimum

exposureed is reached, as we observe on the graph. Overall, the expectednumber of sensor to be deployed increases withn but we observe a local minimum forn = 55 that can be explained by the following analysis. The expected number of

sensors is a weighted sum ofi:n; 1 � i � S that are the different number of sensors than can be deployedat a time when

deployingn sensors at each step. Forn around 50, the probability that the minimum exposure is above ed varies a lot as

shown in Figure 6 and the weight associated with the first termof the sum (n) increases rapidly while the weights associated

with higher number of sensors decrease. This is the cause of the local minimum and the cost starts to increase again when

the increase inn compensates for the decrease in weights. In other words, theprobability to achieve the desired exposure is

much higher when deploying 55 sensors randomly than when deploying 40 sensors randomly. Therefore, it is less costly to

deploy 55 sensors at every step since one deployment is likely to be sufficient whereas two or more deployments, and thus a

total of 80 or more sensors, are most likely to be needed when deploying 40 sensors at every step.

The second cost assignment is(Cd = 5; Cs = 1) so that the cost of a deployment is equal to the cost of five sensors

(note that only the relative cost ofCd=Cs determines the shape of the graphs). In this case, deployingone sensor at a time

is prohibited by the cost of deployment and the optimal number of sensors to deploy at every step is 22. Again, we find
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that the curve presents a local minimum forn = 55 that is due to the variations in weights. The last cost assignment is(Cd = 100; Cs = 1) and the minimum cost is achieved when deploying 65 sensors atevery step.

These results are specific to the region and the parameters characterizing the signal emitted by the target that were chosen

for the simulation. Similar results can be derived for otherparameters, most of the effort residing in finding the exposure

distributions through simulation.

7 Conclusion

This paper addresses the problem of sensor deployment in a region to be monitored for target intrusion. A mechanism

for sensor collaboration to perform target detection is proposed and analyzed to evaluate the exposure of paths throughthe

region. The minimum exposure is used as a measure of the goodness of deployment, the goal being to maximize the exposure

of the least exposed path in the region.

In the case where sensors are randomly placed in a region to bemonitored, a mechanism for sequential deployment in

steps is developed. The strategy consists of deploying a limited number of sensors at a time until the desired minimum

exposure is achieved. The cost function used in this study depends on the number of sensors deployed in each step and the

cost of each deployment. Through simulation, the distribution of minimum exposure obtained by random deployment was

evaluated for varying number of sensors deployed. These results were used to evaluate the cost of deployment for varying

number of sensors deployed in each step.

We found that the optimal number of sensors deployed in each step varies with the relative cost assigned to deployment and

sensors. The results of this study can be extended to larger regions with different target parameters. The solution proposed in

this paper can also be improved by considering deploying variable number of sensors at each step and this multiple variables

problem requires further investigation.
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Sensor

Figure 1. Example sensor fields for UT problem.



1. Generate a suitably fine rectangular grid.
2. For each line segmentl between adjacent grid points
3. Compute j logml j using Equation 5
4. Assign l a weight equal toj logmlj
5. Endfor
6. Add a link from virtual pointa to each grid point on the west
7. Add a link from virtual pointb to each grid point on the east
8. Assign a weight of 0 to all the line segments froma andb
9. Compute the least weight pathP from a to b using Dijkstra’s

algorithm
10. Let w equal the total weight ofP .
11. Return P as the least exposure path with an exposure equal to1� 10�w.

Figure 2. Pseudo-code of the proposed solution for the UT problem.
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Figure 3. Illustration of the proposed solution for an example UT problem.
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Figure 4. Deployment region vs monitored region
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Figure 5. Probability density function for the distribution of minimum exposure for deployments of
15, 30 and 50 sensors.
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Figure 7. Expected cost of achieving minimum exposure of 90% as function of the number of sensors
for three different cost assignments.
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