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Abstract

Sensing devices can be deployed to form a network for mamgtarregion of interest. This paper investigates detection
of a target traversing the region being monitored by usinfjatmrative target detection algorithms among the sensors
The objective of the study is to develop a low cost sensoogem@nt strategy to meet a performance criteria. The paper
defines a path exposure metric as a measure of goodness of/depit. It then gives a problem formulation for the random
sensor deployment and defines cost functions that take @etouat the cost of single sensors and the cost of deployent.
sequential sensor deployment approach is then developsel pdper illustrates that the overall cost of deploymentlsan

minimized to achieve the desired detection performanceppyopriately choosing the number of sensors deployed ih eac



step of the sequential deployment strategy.
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1 Introduction

Recent advances in computing hardware and software arensifype for the emergence of sensor networks capable of
observing the environment, processing the data and maldaigidns based on the observations. Such a network can tte use
to monitor the environment, detect, classify and locateifigeevents, and track targets over a specific region. Exampf
such systems are in surveillance, monitoring of pollutiwatfic, agriculture or civil infrastructures [10]. The degment
of sensor networks varies with the application consider¢d:an be predetermined when the environment is sufficiently
known and under control, in which case the sensors can btegitally hand placed. In some other applications when the
environment is unknown or hostile, the deployment cannat peori determined, for example if the sensors are air-gesp
from an aircraft or deployed by other means, generally tesyin a random placement.

This paper investigates deployment strategies for seresaranks performing target detection over a region of ingerin
order to detect a target moving through the region, sensoss to make local observations of the environment and coiéeb
to produce a global decision that reflects the status of tjiemecovered [2]. This collaboration requires local preiag of
the observations, communication between different nogied,information fusion [11]. Since the local observatioresdm
by the sensors depend on their position, the performanckeofi¢tection algorithm is a function of the deployment. One
possible measure of the goodness of deployment for targettiten is callegpath exposurelt is a measure of the likelihood
of detecting a target traversing the region using a giveh.p@he higher the path exposure, the better the deployméma. T
set of paths to be considered may be constrained by the eméot. For example, if the target is expected to be folloveing
road, only the paths consisting of the roads need to be cersid

In this study, the deployment is assumed to be random whickgmonds to many practical applications where the region
to be monitored is not accessible for precise placementridass. The focus of this paper is to determine the number of
sensors to be deployed to carry out target detection in amegfiinterest. The tradeoffs lie between the network penforce,
the cost of the sensors deployed, and the cost of deployagahsors. This paper is organized as follows. In section 2, a

definition for path exposure is proposed and a method to at@the exposure of a given path is developed. In sectiore3, th



problem of random deployment is formulated and severaltgnig are presented. An analytical study of these soluii®ns
given in section 4 and section 5 presents simulation retudtsare used in section 6 to determine the optimum solutioa f

given environment. The paper concludes with section 7.

2 Path exposure

Before formulating the deployment problem, a model for semgtwork target detection, a definition of path exposure,

and expressions for evaluating this path exposure are aljgse!
21 Modd

Consider a rectangular sensor field withsensors deployed at locations ¢ = 1,... ,n. A target at location: emits
a signal which is measured by the sensors. The signal frortatget decays as a polynomial of the distance. If the decay
coefficient isk, the signal energy of a target at locatiemeasured by the sensorsatis given by

K
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where K is the energy emitted by the target afid — s;|| is the geometric distance between the target and the sensor.
Depending on the environment the valugypically ranges from 2.0 to 5.0 [6].

Energy measurements at a sensor are usually corrupted bg.nfiN? denotes the noise energy at sensduring a
particular measurement, then the total energy measureshabs, when the target is at locatian is
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The sensors collaborate to arrive at a consensus decisitmwalsether a target is present in the region. We consider
two basic approaches for reaching this consensus: Valuenfasd Decision fusion [4]. In value fusion, one of the seaso
gathers the energy measurements from the other sensais, tptthe energy and compares the sum to a threshdli
decide whether a target is present. If the sum exceeds tbghtbid, then the consensus decision is that a target isprése
contrast, in decision fusion, each individual sensor caepds energy measurement to a threshgld {o arrive at a local
decision as to whether a target is present. The local desgib for target present and O otherwise) from the sensors are
totaled at a sensor and the sum is compared to another thdgghpto arrive at the consensus decision. In some situations,

value fusion outperforms decision fusion and vice versa.



2.1.1 ValueFusion.

The probability of consensus target detection when theetasgat location: is
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wherey is the value fusion threshold. If the noise processes atehsewms are independent, then the probability density
function of """, N? equals the convolution of the probability density functwV?, : = 1,...,n. In particular, if the
noise process/; at each sensor is Additive White Gaussian Noise (AWGN), heéh, N? has a Chi-square distribution of
degreen.

Due to the presence of noise, the sensors may incorrectigieltfitat a target is present even though there is no target in

the field. The probability of a consensus false target dieteds

F, = Prob [Z N2>l . (4)
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As above, if the noise processes at the sensors are indefgeamtbAWGN, then the false alarm probability can be computed

from the Chi-square distribution of degree
2.1.2 Decision Fusion.

For decision fusion, let,; be the local decision at sensoin the presence of a target in the region. The probability of

consensus target detection when the target is locatedisat
n
Dy(u) = Prob lz hai(w) > 72
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wheres(j) denotes thg-th element of a permutations of sequerde2,...,1i}, 1, is the threshold used to make the local

decision at each sensap is the threshold used to fuse the local decisions, and

Pl,z' = Prob[hdyi(u) = 1]
= Prob|N? > n — ;k ,and
|lu— sil|
POVZ' = Prob[hdyi(u) = O]

= 1- Prob[hdyi(u) = 1] .

can be computed from Chi-square distribution of degree RGN noise process.
Let g4; be the local decision at sensoin the absence of target in the region. The probability addeahrget detection at

Sensot is

Prodgs; = 1] = ProdN? > ] and

Proquﬂ' = O] = 1- Proquﬂ' = 1]

Therefore, the probability of consensus false target dietecs
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whereP; and P, are not function of the position of the sensor or the targed, &e given by

P = Prob[gdyi = 1]

Po = Prob[gdyi = O]

The above equations serve as an analytic basis for evaduatpposure as defined in the following subsection.

Note that in value and decision fusion the knowledge of thesees’ locations can be used when making the detection
decision. For example, a sensor can report values that diffiestantially from its neighbors values. This discrepacen
be analyzed to reduce false alarms or misses and thus imgirexdetection performance. However, such algorithms are no

considered in this paper.



2.2 Définition of exposure

Figure 1 goes here

We defineexposureto be the probability of detecting the target or an intruderyging out the unauthorized activity, where
the activity depends on the problem under consideratiothifnpaper, the activity considered is the Unauthorized@nsal
(UT) as defined below.

Unauthorized Traversal (UT) Problem: Consider a sensor field withsensors at locations, s, . .. , s, (see Figure 1).

Further, we assume that the stochastic characterizatitimeafioise at each sensor and a tolerable boandn the false
alarm probability are known. LeP denote a path from the west to the east periphery of the séietthrA target traversing
the sensor field using path is detected if it is detected at some paing P. We define thexposureof path P to be the net
probability of detecting a target that traverses the fieidgi#. The target is assumed to be able to follow any path through
the field and the problem is to find the pdthwith the least exposure.

The notion ofexposurewas initially introduced in [7, 8, 9] to evaluate the covezagf a region by a set of sensors
performing target detection. The exposure as defined iretheglies evaluates the detectability of a target travelingugh
a path, but is not a direct measure of it. In [7], the autholateethe exposure of a path to the distance fron® to the
sensors and point out two paths of interest. The maximalkbrpath is defined as a path where its closest distance to any of
the sensors is as large as possible, which is the least ekpasie. And the maximal support path is defined as a path where
its farthest distance from the closest sensor is as smabhssilge, which is the most exposed path. The authors alswibes
algorithms for efficiently determining the maximal breactdanaximal support path for a given sensor field using Voronoi
diagrams and Delaunay triangulation.

In [8], exposure of a patl® is defined as the total energy that the sensors will gather fhee target moving through the
field following P. The smaller this energy the lesser the likelihood of datgahe target and the coverage provided by a
deployment is measured by the minimum exposure when cairsipk| possible paths. An algorithm for determining a path
with the least exposure in this sense is developed in [8]. algerithms presented in [7, 8] assume that all the sensdts wi

collaborate in performing detection. A similar algorithor finding minimum exposure is developed in [9] when assuming



that detection is run locally by only part of all the sensors.

Finally, studies [3, 5, 12] also define metrics to measurejttadity of deployment. However, they consider that the sens
have to fully cover the region in which they are deployedeast of considering the detection of target following pathis a
in unauthorized traversal. These studies consider diftemdels for the coverage of each sensor, a probabilistidaino
in [5, 12] that accounts for the possible presence of obstdolthe region, and a sensing range model in [3]. The proldem

to reach a desired average coverage as well as maximizingptieeage of the most vulnerable points of the region.
2.3 Solution to the UT problem

Let P denote a path from the west to the east periphery throughetisos field. A target that traverses the field usihs

not detected if and only if it is not detected at any time whiils on that path. Since detection attempts by the sensorankt
occur at a fixed frequency, we can associate each detectanggtwith a point: € P when assuming that the target traverses
the field at a constant speed. The detection attempts ard basenergy measured over a period of tiffi@uring which
the target is moving. Therefore, the detection probabé#gociated with each pointreflects the measurements performed
during time7". Considering the path, the net probability of not detectirtgrget traversing the field usirgis the product

of the probabilities of no detection at each paint P. That is, ifG(P) denotes the net probability of not detecting a target
as it traverses over path, then,

log G(P) = 3 log(1 = D(u),

ueP

whereD(u) is eitherD, (u) of D4(u) depending on whether the sensors use value or decisiomftesarive at a consensus
decision. Note thaD(u) is the probability to detect the target during a time pefibathere the target is moving. Therefore,
the energy values used to fiddl(«) are the average energies measured at each sensor over Peridce the exposure
of Pis (1 — G(P)), the problem is to find the path which minimizes— G(P)) or equivalently the path that minimizes
|log G(P)| (note that7(P) lies between 0 and 1 and thlugs G(P) is negative).

In general, the pat® that minimizeq log G;(P)| can be fairly arbitrary in shape. The proposed solution cmé®xactly
compute this path. Instead, we rely on the following appraation. We first divide the sensor field into a fine grid and
then assume that the target only moves along this grid. Tolkelgm then is to find the patR on this grid that minimizes

|log G(P)|. Note that, the finer the grid the closer the approximatiolsoAone can use higher order grids [8] instead of



the rectangular grid as used in this paper. The higher ondés ghange the runtime of the algorithm but the approachas t
same as with the rectangular grid.

For the target not to be detected while traversing along patih must not be detected at any pointying between any
two adjacent grid points oP. We therefore subdivide any pathas a chain of grid segments. Let us consider two adjacent
points, sayy; andv, on the grid. Let denote the line segment betweanandu-. Also, letm; denote the probability of not
detecting a target traveling betweenandv, on the line segmerit Then, from the discussion above, the probabititycan

be evaluated by finding the detection probabifity.) at each point: € {, and it is given by

logm; =Y log(1 — D(u)) (5)

u€l

Note that,n; lies between 0 and 1 and, therefolkey m; is negative.

To find the least exposed path, a non-negative weight equabgan, | is assigned to each segmérmn the grid. Also, a
fictitious pointa is created and a line segment is added frota each grid point on the west periphery of the sensor field. A
weight of 0 is assigned to each of these line segments. Slyigfictitious pointb is created and a line segment is added

from b to each grid point on the east periphery of the sensor field efgit of O is assigned to each of these line segments.

Figure 2 goes here

The problem of finding the least exposed path from west peripto east periphery is then equivalent to the problem of
finding the least weight path fromto b on this grid. Such a path can be efficiently identified usireyGlijkstra’s shortest

path algorithm [1]. A pseudo-code of the overall algorittmshown in Figure 2.

Example: Figure 3 shows a sensor field with eight sensors at locatimarked by dark circles.

Figure 3 goes here

Assume the noise process at each sensor is Additive Whitedizauwith mead and variance 1. Further assume that the



sensors use value fusion to arrive at a consensus decidiem, ffom Equation 4, we chose a thresheglg 3.0 to achieve a
false alarm probability of 0.187%. The field has been divioitd a10 x 10 grid. The target emits an enerdy = 12 and

the energy decay factor is 2. The figure shows the weightasditp each line segment in the grid as described above. The
least exposure path found by the Dijkstra’s algorithm fas thieighted grid is highlighted. The probability of detedithe

target traversing the field using the highlighted path i26.9

3 Deployment

In this section, the problem of sensor deployment for unanigked traversal detection is formulated and solutions are

identified.

3.1 Problem formulation

Consider a region to be monitored for unauthorized travarsig a sensor network. The energy levélemitted by a
target of interest and the noise statistics in the regiorkaosvn. The sensors are to be deployed over the region in @nand
fashion where the sensors locations in the region cannabsd pe determined and only the number or density of sensams c
be chosen. The problem is to find a deployment strategy tkattssin a desired performance level in unauthorized tsaler
monitoring of the region.

The performance is measured by the false alarm probabilifythe path exposure defined in section 2. The false alarm
probability is independent of the sensor placement andlisdetermined by the number of sensors deployed and thethres
olds used in the detection algorithms. It is assumed to bd fix¢his study so that the problem consists of maximizing the
exposure at constant false alarm rate. Since targets casrdeathe region through any path, the goal of deploymert is t
maximize the exposure of the least exposed path in the region

Obviously, the minimum exposure in the region increasesl§e alarm rate is kept constant) as more sensors are dploy
in the region. However, since the deployment is randomgthee no guarantees that the desired exposure level is adhiev
with a given number of sensors. Indeed some sensor placemantresult in very poor detection ability, for example
when the sensors are all deployed in the same vicinity. Aystiddhe statistical distribution of exposure for varyingiser
placement for a given number of sensors can provide a comfdiavel that the desired detection level is achieved. In

practical situations, only a limited number of sensors amdlable for deployment and only a limited detection levéihw



associated confidence level is achievable for a fixed falsenalate.

3.2 Solution

Based on the above discussion, we develop a solution methbd deployment problem when a maximumiéfsensors
can be used. Deploying th& sensors results in the maximum achievable detection laviettis is not optimal when
considering the cost of sensors. To reduce the number obsedeployed, only part of the available sensors should be
deployed first and the sensors can then report their positidre random sensor placement obtained can be analyzed to
determine if it satisfies the desired performance levelt tfdes not, additional sensors can be deployed until theetksi
exposure level is reached or until &l available sensors are deployed.

The number of sensors used in this strategy can be minimigedeploying one sensor at a time. However, a cost is
usually associated with each deployment of sensors andylaglone sensor at a time may not be most cost effective if the
cost of deployment is sufficiently large with respect to thstof single sensors. By assigning distinct costs to botylsi
sensors and deployment, the optimal number of sensors tefleyed at first and thereafter can be determined. In the next
section, we develop analytical expressions for finding thigneal solution. In general, the optimal cost solution igmer

deploying one sensor at a time nor deploying all the sensansce.

4 Analytical solution

In this section, we derive an analytical model for the costigbloyment. Let, be the desired minimum exposure for
the sensor network to be deployed when a maximu¥aensors are available for deployment. The position of geree
random in the region of interegt and for a given number of sensotsthe least exposureis a random variable. Lef, (x)
denote the cumulative distribution function«fi.e. the probability that is less tharr, whenn sensors are deployed.

As mentioned in the previous section, there is no a priorrgotze that the exposueg will be obtained when deploying
the sensors. Ifi/ is the maximum number of sensors available, the confidenobtaining a least exposure of or more
is1— Far(eq). For the proposed solution, we assume that the positioneo$ehsors obtained after a deployment is known
so that additional sensors can be deployed if the minimunogxe, is not reached. To evaluate the probability that
the exposure; is reached after additional sensor deployment, we makedit@ning approximation: the distribution of

exposure fom sensors is independent of the exposure correspondihgofahesen sensors] < k < n — 1. Thisis an

10



approximation since the exposure obtained wittensors is always higher than the exposure obtained withoofl thesen
sensors] < k£ < n — 1. We observed that the re-deployment of just a few sensorsuastantially modify the coverage of
the region, for example when filling empty spaces. The apgpration is also justified by the loose relation between expes
and sensors positions. Indeed, a given minimum exposurearagspond to many different deployment positions, some of
which can be easily improved by deploying a few additionakses (e.g. when there is a empty space in the region coJerage
some of which can only be improved by deploying many addéisensors (e.g. when the sensors are evenly distributed on
the region).

As the minimum exposure is a random variable, the cost of deploying the sensors pssiatil the desired exposure is
reached is also a random varialtle We now derive the expression for the expected valu€ oket n; be the total number
of sensors deployed after step_et S be the maximum number of steps so that= M. Note that:; — n;_; is the number
of sensors deployed at stépAlso letC'; be the cost of deploying the sensors at each stearixe the cost of each sensor.
If the desired exposure is obtained after the first step,dta tost of deployment i€’y + n1C, and this event happens with
probabilityl — F,,, (eq). Considering all the possible events, the expected costés ¢y

E{C} = Z_: (ch + nZCs) (1:[ Fnj(ed)) (1 — Fnl(ed)) + (SCd + MCS) 1:[ Fnj(ed) (6)

i=1 j=1

Note that a different expression is needed for the cost @f Steince no additional sensors are deployed after this step

even when the desired exposure is not achieved.

5 Simulation

In this section, we present results of simulations that veereducted to collect the exposure distribution functiorief

number of sensors deployed.

51 Method

Figure 4 goes here
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The exposure distribution is obtained by collecting staigson the exposure when deploying sensors randomly in a
predefined region. The region monitored is of stgex 20 and the random deployment is assumed to be Gaussian, @kntere
at the center of the region monitored, i.e. the point of cowtes (10,10), and standard deviation 10. Only sensong lyi
within the bounds of a predefined deployment region are asdumcollaborate to detect targets. In general, that deptoy
region needs to be larger than the region to monitor. Indéesbnsors are deployed merely in regiéh the edges of the
region are not well covered. This is undesirable when tryindetect a target traversing the region since paths lyinthen
edge of the region have low exposure. Therefore, adequebsisring the regiorR to prevent undetected traversal requires
deploying sensors beyond the edgeshbés shown in Figure 4. In the simulation conducted, the depeoyt region has
dimensions 33% larger than the monitored region, i.e. %6z& x 26.6.

For every deployment, the minimum exposure is found usirighalator implementing the algorithm presented in section
2. A decay factor oft = 2 and maximum energy ok’ = 30 are chosen to model the energy emitted by targets (cf
Equation 1). The noise in the time series data is assumed riotoeal with variance 1, so that the signal coming from the
target is covered by noise when the target is 6 or more ungtfenaway from a sensor. The sensors use value fusion, as
presented in section 2.1.1, to collaborate when making arammdecision on the presence of a target in the region. Theenoi
>-¢_, N2 inthe sum of energies from sensors, computed in value fusion and appearing in equdfiisffrom a Chi-square
distribution withn degrees of freedom. The threshold for detection is choserfuasction of the number of sensors to give a
constant false alarm probability. The false alarm probkfibr each detection attempt is chosen so that the expeateter

of false alarms is one per hour, assuming that detectiomptteoccur every 2 seconds.

5.2 Distribution of minimum exposure

Figure 5 goes here

The distribution of minimum exposure were found for the nembf sensor deployed varying from 1 to 100. To illustrate

our results, the probability density functions for 15, 3@ &® sensors are shown in Figure 5.
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We observe that for 15 sensors deployed, the minimum expdsas zero density for values less than the false alarm
probability of .02. The highest density is obtained for ws@round .08 and then drops exponentially towards zerddbiehn
values of exposure. For deployment of 30 sensors, we findhapat the minimum exposure has zero density for values
below .02, then increases and has the shape of a bell curteredraround .4. For deployment of 50 sensors, densitigs sta
at zero for small values and remain very small for most vabfaainimum exposure. The density slowly increases and has
a large peak for minimum exposure of 1.

As expected, the minimum exposure increases on average asihber of sensors deployed increases. When randomly
deploying 15 sensors, it is very unlikely to obtain a placetrgroviding a desirable minimum exposure. When deploying
30 sensors, most of the exposure levels are equally likedycanty poor confidence is given to obtain a desirable exposure
level. When deploying 50 sensors, it is very likely that teasor placement will give good exposure and this likelihood

keeps increasing with the number of sensors deployed.

Figure 6 goes here

We use the cumulative distribution function obtained frdva $tatistics collected to evaluate the likelihood thatisred
level of exposure; is obtained for varying number of sensors. The graph of E@ushows the probability that the minimum
exposure is above; as a function of the number of sensors deployed for 80%, 85%, 90% and95%. These values can
be used to evaluate the cost expressed in Equation 6. Thk ghaws that the confidence level to obtain a given minimum
exposure level; increases with the number of sensors deployed. The conidene; when deploying 100 sensors is above
.999, which is sufficient for most applications, and therefwe did not evaluate the distribution of exposure whenalgph

more than 100 sensors.

6 Reaults

In this section, we evaluate the expected cost of deployéng@'s using the simulation results. The optimal number of

sensor to deploy at first and in the succeeding steps can hved&om these results.
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For this cost analysis, the region parameters and signakhaod the same as specified in section 5. We further assume
that the number of sensors deployed at every step is corsstahaty; —n;_; = nforall 1 < ¢ < S. Inthis case, Equation 6

reduces to

S—1 i—

E{C} = (Ca+n.Ce) Y i [ [] Finlea) | (1= Finlea))

T
i=1 Jj=

Figure 7 goes here

We evaluated the expected cost as a functionfof three different cost assignments with a desired exposti; = 90%.
The three corresponding graphs are shown in Figure 7. Thecist assignment i&Cy = 0, C; = 1) so that the expected
cost is the expected number of sensors to be used to achiespasure 0H0%. SinceCy; = 0, the number of steps used
to deploy the sensors doesn't affect the cost and it is tbezadptimal to deploy one sensor at a time until the minimum
exposure: is reached, as we observe on the graph. Overall, the expeatetier of sensor to be deployed increases with
n but we observe a local minimum fer = 55 that can be explained by the following analysis. The expmeotember of
sensors is a weighted sumof, 1 < ¢ < S that are the different number of sensors than can be deplalyadime when
deployingn sensors at each step. FRemaround 50, the probability that the minimum exposure is abQwaries a lot as
shown in Figure 6 and the weight associated with the first @frthe sum ) increases rapidly while the weights associated
with higher number of sensors decrease. This is the causeedbtal minimum and the cost starts to increase again when
the increase im compensates for the decrease in weights. In other wordgrtiability to achieve the desired exposure is
much higher when deploying 55 sensors randomly than wheloyieg 40 sensors randomly. Therefore, it is less costly to
deploy 55 sensors at every step since one deployment iy tixéle sufficient whereas two or more deployments, and thus a
total of 80 or more sensors, are most likely to be needed wkptogling 40 sensors at every step.

The second cost assignment(is; = 5,C; = 1) so that the cost of a deployment is equal to the cost of fiveosens
(note that only the relative cost 6f;/C; determines the shape of the graphs). In this case, deployiagensor at a time

is prohibited by the cost of deployment and the optimal nundfesensors to deploy at every step is 22. Again, we find

14



that the curve presents a local minimum for= 55 that is due to the variations in weights. The last cost assegn is
(Cq = 100, Cs = 1) and the minimum cost is achieved when deploying 65 sensesseay step.

These results are specific to the region and the parametaraatlrizing the signal emitted by the target that were ehos
for the simulation. Similar results can be derived for otharameters, most of the effort residing in finding the expesu

distributions through simulation.

7 Conclusion

This paper addresses the problem of sensor deployment gi@nreo be monitored for target intrusion. A mechanism
for sensor collaboration to perform target detection ispmsed and analyzed to evaluate the exposure of paths thtbagh
region. The minimum exposure is used as a measure of the gesdhdeployment, the goal being to maximize the exposure
of the least exposed path in the region.

In the case where sensors are randomly placed in a region twobé&ored, a mechanism for sequential deployment in
steps is developed. The strategy consists of deploying igelinrmumber of sensors at a time until the desired minimum
exposure is achieved. The cost function used in this stuggmt#s on the number of sensors deployed in each step and the
cost of each deployment. Through simulation, the distrdsubf minimum exposure obtained by random deployment was
evaluated for varying number of sensors deployed. Thesgtsesere used to evaluate the cost of deployment for varying
number of sensors deployed in each step.

We found that the optimal number of sensors deployed in eghvaries with the relative cost assigned to deployment and
sensors. The results of this study can be extended to lazgems with different target parameters. The solution pssg in
this paper can also be improved by considering deployiniglsbr number of sensors at each step and this multiple vagab

problem requires further investigation.
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Figure 1. Example sensor fields for UT problem.
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Generate a suitably fine rectangular grid.

For each line segment between adjacent grid points
Compute | log my | using Equation 5

Assign | a weight equal tolog m |

Endfor

Add a link from virtual pointa to each grid point on the west
Add a link from virtual pointb to each grid point on the east
Assign a weight of 0 to all the line segments framrandb
Compute the least weight patt? from « to b using Dijkstra’s
algorithm

Let w equal the total weight oP.

Return P as the least exposure path with an exposure equal to
1—10"".

Figure 2. Pseudo-code of the proposed solution for the UT problem.
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Figure 3. lllustration of the proposed solution for an example UT problem.
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