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a b s t r a c t

Semi-supervised dimensionality reduction is one of the important topics in pattern recog-

nition and machine learning. During the past decade, Laplacian Regularized Least Square

(LapRLS) and Semi-supervised Discriminant Analysis (SDA) are the two widely-used semi-

supervised dimensionality reduction methods. In this paper, we show that SDA and LapRLS

can be unified into a constrained manifold regularized least square framework. The manifold

term, however, cannot fully utilize the underlying discriminative information. We thus intro-

duce a new and effective semi-supervised dimensionality reduction method, called Learning

from Local and Global Information (LLGDI), to solve the problem. The proposed LLGDI method

adopts a set of local classification functions to preserve both local geometrical and discrimina-

tive information of dataset. It also adopts a global classification function to preserve the global

discriminative information, and an uncorrelated constraint to calculate the projection matrix

for simultaneously solving regression and dimensionality reduction problem. As a result, the

LLGDI method is able to preserve local discriminative, manifold information as well as the

global discriminative information. Theoretical analysis and extensive simulations presented

in the paper show the effectiveness of the LLGDI algorithm. The results also demonstrate LL-

GDI can achieve superior performance compared with other existing methods.

© 2015 Elsevier Inc. All rights reserved.
1. Introduction

Dealing with high-dimensional data has always been a major problem with the research of pattern recognition and ma-

chine learning. Typical applications include face recognition, document categorization, and image retrieval. Thus, finding a low-

dimensional representation of high-dimensional space is of great practical importance. The goal of dimensionality reduction is

to reduce the complexity of input space and embed high-dimensional space into a low-dimensional space while keeping most

of the desired intrinsic information [16,18,28,36,38-43]. Among all the dimensionality reduction techniques, Principle Compent

Analysis (PCA) [19] and Linear Discriminant Analysis (LDA) [1] are the two most popular methods. PCA pursues the direction of

maximum variance for optimal reconstruction, while LDA, a supervised method, finds the optimal projection V maximizing the

between-class scatter matrix Sb and minimizing the within-class scatter matrix Sw in a low-dimensional subspace. Due to the

utilization of label information, LDA can achieve better classification results compared with PCA given sufficient labeled samples

are provided [1,4].
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In general, supervised methods can deliver better performance than unsupervised methods, but obtaining sufficient num-

ber of labeled data for training can be problematic because labeling large number of samples is costly and laborious. On the

other hand, unlabeled samples are abundant and can easily be obtained in numerous real world cases. Compared to supervised

learning approaches that only rely on labeled training data, the idea of semi-supervised learning is to incorporate labeled and

unlabeled data together to improve learning performance [2,3,12–14,44,45]. In brief, semi-supervised learning can be perceived

as a framework that can provide efficient alternative to labeling unlabeled data. Well-known semi-supervised learning methods

include Gaussian Field and Harmonic Fuction (GFHF) [45], Learning from Local and Global Consistency (LLGC) [44] and Special

Label Propagation (SLP) [12]. These methods work in a transductive way by propagating label information from labeled set into

unlabeled set through label propagation. This approach is efficient but it cannot predict class labels of new-coming samples.

This drawback usually results in the out-of-sample problem. In contrast, semi-supervised dimensionality reduction methods not

only reduce the dimensionality, but also naturally solve the out-of-sample problem. Thus semi-supervised methods can usually

deliver better results when dealing with real-world applications.

The two widely-used semi-supervised methods are Semi-supervised Discriminant Analysis (SDA) [3] and Laplacian Regular-

ized Least Square (LapRLS) [9]. These two methods share the same concept of dimensionality reduction, i.e. they first construct a

graph Laplacian matrix to approximate the manifold structure by using both labeled and unlabeled samples. They then perform

dimensionality reduction by adding the graph Laplacian matrix as a regularized term to the original objective function of LDA and

Regularized Least Square (RLS). As a result, the discriminative structure embedded in the labeled samples and the geometrical

structure embedded in labeled and unlabeled data can be preserved. In fact Lap-RLS is essentially derived from the perspective

of regression instead of classification. Lap-RLS can be perceived as a training method that is aimed at training a linear classifi-

cation model by regressing labeled set on the class label, while SDA is a subspace learning method which is aimed for solving

classification problems. Though they both are stemmed from different supervised methods, we in this paper show that both SDA

and Lap-RLS can be unified under a regularized least square framework. As a result, both of them are able to solve regression as

well as subspace learning problems.

The connection and theoretical similarities between SDA and LapRLS can be elaborated under the least square framework. It

should be noted that the regression term in LapRLS and the least square framework is supervised, which mean these two methods

utilize a labeled set to train a linear classification function. Since the number of labeled data is relatively small compared with

unlabeled data, training a linear classification function under a small sample size can be ineffective [21]. Another issue of semi-

supervised method is the utilization of data samples to construct a graph that is used for characterizing the local structure of data

manifold. In SDA and Lap-RLS, local structure is preserved by using a manifold regularized term defined on the affinity matrix

of Gaussian function. But these Laplacian matrixes cannot capture the discriminative information of classes. This is essential

when handling classification problems. In addition, the Gaussian function based affinity matrix is found to be over sensitive to

the Gaussian variance; only a slight variation on the variance may affect the results significantly. Thus, Gaussian function based

affinity matrix is not a popular method for handling complicated image classification and visualization problems. Instead of using

Gaussian function for graph construction, several methods including Locally Linear Reconstruction [22,23], Local Regression and

Global Alignment [30,31] and Local Spline Regression [26,27] have then been proposed.

In this paper, we introduce a newly developed method, Learning from Local and Global Discriminative Information (LLGDI),

for solving the above semi-supervised dimensionality reduction problems. The proposed LLGDI aims to train a classification

function by utilizing all availanle data points. Specifically, our proposed method first relaxes the original supervised regression

term making it a loss term and a global regression regularized term. The loss term measures the inconsistency between the

predicted and initial labels on a labeled set, while the global regression regularized term aims to train the classification function

as well as to calculate the projection matrix for out-of-sample problem. In addition, in order to characterize both manifold and

discriminative structure embedded in a dataset, LLGDI employs a set of local classification function for each data point to predict

the label of its neighboring points. In this way, both local and global discriminative information of a dataset can be preserved

by using the LLGDI method. Also, in order to handle the subspace learning problem, we have also introduced an uncorrelated

constraint into the objective function of LLGDI. As a result, both regression and subspace learning problems can be solved at the

same time.

The main contributions of this work are as follows. First, we address the SDA method into a least square framework and

establish the connections between SDA and LapRLS. Second, in order to relaxe the limitations of the least square framework of

SDA, we develop a new method, called LLGDI. The new method can preserve the local geometrical and discriminative information

of a dataset by using a normalized local discriminative manifold regularization term. Third, we extend the LLGDI method to

perform dimensionality reduction by including a relaxed uncorrelated constraint to the objective function. As a result, both

regression and subspace learning problems can be solved simultaneously. Finally, the relationship between LLGDI and other

state-of-the-art methods are analyzed. Theoretical analysis shows that many other semi-supervised methods are different the

special cases of the LLGDI method.

This paper is organized as follows. In Section 2, the notations and a brief review of LDA, MR and SDA are detailed. In Section 3,

the equivalence between SDA and Lap-RLS under a constrained regularized least square framework is derived. Section 4 presents

the proposed LLGDI method for semi-supervised regression and dimensionality reduction through the introduction of a normal-

ized local discriminative manifold regularization term. Discussion on the relationship between LLGDI and other state-of-the-art

semi-supervised methods is also included. Section 5 demonstrates the extensive simulations and the final conclusions are drawn

in Section 6.
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Table 1

Abbreviations of algorithms used in our work.

Abbreviations Initial Names

LLGDI Learning From Local and Global Information

LDA [4] Linear Discriminant Analysis

SDA [3] Semi-supervised Discriminant Analysis

MR [9] Manifold Regularization

LapRLS/L [9] Linear Laplacian Regularized Least Square

LLGC [44] Learning from Local and Global Consistency

GFHF [45] Gausian Field and Harmonic Fuction

SLP [12] Special Label Propagation

FME [13,14] Flexiable Manifold Embedding
2. Notations and review of related work

In this section, we will first give some notations used in our work and briefly review several related works, which include

Linear Discriminant Analysis (LDA), Manifold Regularization (MR) and Semi-supervised Discriminant Analysis (SDA). Let X =
{Xl , Xu} = {x1, x2, . . . , xl+u} ∈ RD×(l+u) be the data matrix where the first l and the remaining u columns are the labeled and

unlabeled samples, respectively, Yl = {y1, y2, . . . , y j} ∈ Rc×l be the binary label matrix with each column y j representing the class

assignment of x j , i.e. yi j = 1, as the class matrix, where yi j = 1, if x j belongs to the ith class; yi j = 0, otherwise, D and c are the

numbers of features and classes, respectively. We also let G̃ = (Ṽ , Ẽ) be an undirected weighted graph, where Ṽ is the vertex set of

G̃ representing the training samples, and Ẽ is the edge set of G̃ associated with a weight matrix W containing the local information

between two nearby samples. Then, the graph Laplacian matrix that is to approximate the geometrical structure of data manifold

can be defined as L = D − W , where D is a diagonal matrix satisfying Dii = ∑l+u
j=1 wi j . In addition, some abbreviations of algorithms

used in our paper are given in Table 1.

2.1. Linear Discriminant Analysis (LDA)

The objective of LDA is to find an optimal projection matrix V ∗ ∈ RD×d maximizing between-class scatter matrix while

minimizing within-class scatter matrix [4]. Let we denote G = {g1, g2, . . . , gl} = (YY T )−1/2Y ∈ Rc×l as the scaled class indi-

cator matrix [15], where gi j = 1/
√

li, if x j belongs to the ith class; gi j = 0, otherwise. Since YY T is diagonal matrix, then

GGT = (YY T )−1/2YY T (YY T )−1/2 = I. Hence assuming the data matrix Xl is centered, the total-class, between-class and within-

class scatter matrix St , Sb, Sw can be defined as

St =
∑c

i=1

∑
x∈ci

(x − μ)(x − μ)
T = XlX

T
l

Sb =
∑c

i=1
li(μi − μ)(μi − μ)

T = XlG
T GXT

l (1)

Sw =
∑c

i=1

∑
x∈ci

(x − μi)(x − μi)
T = XlX

T
l − XlG

T GXT
l ,

where li is the number of samples in the ith class, μi is the mean of samples in the ith class, and μ is the mean of all labeled

samples. The optimal projection matrix V ∗
LDA

is then formed by eigenvectors corresponding to the d largest eigenvalues of S−1
w Sb

or S−1
t Sb.

2.2. Manifold Regularization (MR)

The MR method [3] extends many methods such as least square and SVM to semi-supervised learning methods by intro-

ducing a manifold regularized term to preserve the geometrical structure. Take the linear Laplacian regularized Least Squares

method (referred as Lap-RLS/L) as an example. The goal of Lap-RLS/L is to fix a linear model y j = V T x j + bT by regressing X on

Y and simultaneously to preserve the manifold smoothness embedded in both labeled and unlabeled set, where V ∈ RD×d is the

projection matrix and b ∈ R1×c is the bias term. The objective function of Lap-RLS/L can be given as

J(V, b) = min
∑l

j=1

∥∥V T x j + bT − yj

∥∥2

F
+ αt‖V‖2

F + αmTr
(
V T XLXTV

)
, (2)

where L = D − W is the graph Laplacian matrix associated with both labeled and unlabeled sets [6], W is the weight matrix

defined as: wi j = exp (−||xi − x j||2/2σ 2), if xi is within the k nearest neighbor of x j or x j is within the k nearest neighbor of

xi; wi j = 0, otherwise, D is a diagonal matrix satisfying Dii = ∑l+u
j=1 wi j , αm and αt are the two parameters balance the tradeoff

between manifold and Tikhonov regularized terms.
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2.3. Semi-supervised Discriminant Analysis (SDA)

Motivated by Manifold Regularization (MR), SDA extends the conventional LDA to preserve geometric structure by adding a

manifold regularized term to the objective function of LDA. The objective function of SDA can be given by

J(V) = max Tr

{(
V T

(
St + αt I + αmXLXT

)
V
)−1

V T SbV

}
. (3)

Similar to LDA, the optimal solution of SDA can be obtained by the Generalized Eigenvalue Decomposition as

SbV ∗
SDA =

(
St + αt I + αmXLXT

)
V ∗

SDA�, (4)

where V ∗
SDA

∈ RD×d is the solution of SDA with each column being the eigenvector of (St + αt I + αmXLXT )−1Sb, and � ∈ Rd×d is

the eigenvalue matrix. It can be observed that the solution of SDA or LDA (LDA is a special case of SDA when αm = 0) is not

unique as V ∗� is also its solution, where � ∈ Rd×d is an arbitrary diagonal matrix. Hence, to make the solution unique, a typical

uncorrelated constraint can be imposed to the objective function of SDA or LDA as

V T
(
St + αt I + αmXLXT

)
V = I. (5)

In this paper, we mainly focus on the solution of SDA or LDA (αm = 0) with the above constraint, which can be reformulated

as follows:

J(V) = max Tr

{(
V T

(
St + αt I + αmXLXT

)
V
)−1

V T XGT GXTV

}
s.t. V T

(
St + αt I + αmXLXT

)
V = I

. (6)

This problem can be solved by a technique of simultaneous diagonalization of three scatter matrices [33].

3. On the equivalence between SDA and Lap-RLS/L under uncorrelated constraint

Previous work in [41] has established a relationship between SDA and Lap-RLS/L using a least square framework, but their

equivalence is not clear. In this section, we will analyze the equivalent relationship between SDA and Lap-RLS/L under an uncor-

related constraint. Specifically, we will first introduce a class labeled induced semi-supervised discriminant analysis (C-SDA). By

using C-SDA as a bridge, we then establish the equivalence between SDA and Lap-RLS/L.

3.1. Class label induced semi-supervised discriminant analysis

The objective function of C-SDA is first given as

J(V) = max Tr

{(
V T

(
St + αt I + αmXLXT

)
V
)−1

V T XY TY XTV

}
s.t. V T

(
St + αt I + αmXLXT

)
V = I

. (7)

It can be observed from Eqs. (6) and (7) that the objective functions of SDA and C-SDA share the similar formulation and their

solutions can be expressed as the eigenvectors to the top eigenvalues of the following matrix(
St + αt I + αmXLXT

)−1
XHT HXT , (8)

where H = G = Y(Y TY)−1/2 for SDA and H = Y for C-SDA. We then show how to calculate the eigenvectors of Eq. (8) [33]. By

performing Singular Value Decomposition (SVD) to St + αt I + αmXLXT , we have St + αt I + αmXLXT = �
∑

�T , where � ∈ RD×D

is an orthogonal matrix,
∑ ∈ RD×D is a diagonal matrix. Let B = ∑−1/2�T XHT and perform the SVD of BBT as:

BBT = P
∑

b

PT , (9)

where P ∈ RD×q is an orthogonal matrix,
∑

b ∈ Rq×q is a diagonal matrix with rank q, then we have the following lemma:

Lemma 1. The eigenvectors to the top d(d ≤ q) eigenvalues of (St + αt I + αmXLXT )−1XHT HXT are given by V ∗ = �
∑−1Pd, where Pd

consists of the first d columns of P.

Proof of Lemma 1. We decompose Eq. (8) as follows:(
St + αt I + αmXLXT

)−1
XHT HXT = �

∑−1/2 ∑−1/2
�T XHT HXT �

∑−1/2 ∑1/2
�T

= �
∑−1/2

BBT
∑1/2

�T

= �
∑−1/2

P
∑

b
PT

∑1/2
�T . (10)
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The second equation holds as �T � = ��T = I. Let VG = �
∑−1P, it follows:{(

St + αt I + αmXLXT
)−1

XHT HXT
}

VG = VG

∑
b

V T
G

(
St + αt I + αmXLXT

)
VG = I. (11)

The first equation indicates that VG is the eigenvector of Eq. (8), where the eigenvalue matrix is the diagonal matrix
∑

b, while

the second equation indicates that VG satisfies the uncorrelated constraint. Hence we prove Lemma 1.

3.2. Equivalence between SDA and C-SDA

Lemma 1 shows that both SDA and C-SDA have the same form of solution. We next show the solutions of SDA and C-SDA are

equivalent. This equivalence is based on the following lemma:

Lemma 2. Let BSDA = ∑−1�T XGT , BC−SDA = ∑−1�T XY T , then BSDA and BC−SDA have the same range space.

The proof of Lemma 2 is straightforward. Since G = Y(Y TY)−1/2, we have BC−SDA = BSDA(Y TY)1/2 or BSDA = BC−SDA(Y TY)−1/2.

Note Y TY ∈ Rc×c is a diagonal matrix, i.e. (Y TY) j j = l j , we then have the range space of BSDA and BC−SDA is the same.

With Lemma 2, we can directly establish the equivalence between SDA and C-SDA, which is based on the following theorem:

Theorem 1. Let the SVD of BSDABT
SDA

and BC−SDABT
C−SDA

be

BSDABT
SDA = PSDA

∑
SDA

PT
SDA

BC−SDABT
C−SDA = PC−SDA

∑
C−SDA

PT
C−SDA, (12)

where PSDA, PC−SDA ∈ RD×r , and r = rank(PSDA) = rank(PC−SDA). Then, there exists an orthogonal matrix R ∈ Rr×r satisfying PSDA =
PC−SDAR. More importantly, if we let VSDA = �

∑−1PSDA and VC−SDA = �
∑−1PC−SDA, we have VSDA = VC−SDAR.

Proof of Theorem 1. It is certainly that PSDAPT
SDA

and PC−SDAPT
C−SDA

are the orthogonal projections on the same range space of

BSDA or BC−SDA. Following Lemma 2, we have both PSDAPT
SDA

and PC−SDAPT
C−SDA

are orthogonal projections on the same subspace.

Since the orthogonal projections on a subspace are unique, we have PSDAPT
SDA

= PC−SDAPT
C−SDA

, and it can also be noted that

PSDA = PC−SDAPT
C−SDAPSDA = PC−SDAR. (13)

where R = PT
C−SDA

PSDA ∈ Rr×r satisfying RRT = RT R = I. In addition, following Lemma 1, since SDA and C-SDA have the same

form of solution, i.e V ∗ = �
∑−1Pd , we have VSDA = VC−SDAR. We thus prove Theorem 1.

Theorem 1 indicates that if we retain all the eigenvectors to the nonzero eigenvalues, i.e. d = r, then the difference between

SDA and C-SDA lies in the orthogonal transformation R. Thus, SDA and C-SDA are equivalent because the orthogonal transforma-

tion can be neglected when we apply a distance-based classifier (such as k nearest neighbor classifier).

3.3. Equivalence between C-SDA and Lap-RLS/L with uncorrelated constraint

The equivalence between C-SDA and Lap-RLS/L under the uncorrelaed constraint is based on the following theorem [17,34,37]:

Theorem 2. Let M be the auxiliary matrix defined as follows:

M = Y XT
(
St + λmXLXT + λt I

)−1
XY T = �	M�T . (14)

where �	M�T is the Singular Value Decomposition of M. We also denote V ∗
E

as:

V ∗
E =

(
St + λmXLXT + λt I

)−1
XY T �	−1/2

M
. (15)

Then, V ∗
E

is the optimal solution of C-SDA, V ∗
E

= V ∗
C−SDA

.

To prove Theorem 2, we first give the following lemma:

Lemma 3. Given two matrixes A and B, then AB and BA have the same non-zero eigenvalues. For each nonzero eigenvalue of AB, if the

corresponding eigenvector of AB is v, then the corresponding eigenvector of BA is u = Bv.

Proof of Theorem 2. Recall that the solution of C-SDA is formed by the eigenvectors of (St + λmXLXT + λt I)−1XY TY XT . Based on

Lemma 3, it has the same nonzero eigenvalues to the auxiliary matrix M; According to Lemma 3 again, if � is the eigenvector to

the nonzero eigenvalues of M, (St + λmXLXT + λt I)−1XY T �� is the eigenvector of the matrix (St + λmXLXT + λt I)−1XY TY XT ,

where � is an arbitrary diagonal matrix as the eigenvectors of Eq. (8) are not unique. Here, if we let � = 	−1/2
M

and V ∗
E

=
(St + λmXLXT + λt I)−1XY T �	−1/2

M
, then it follows V ∗T

E
(St + αt I + αmXLXT )V ∗

E
= I, which indicates V ∗

E
satisfies the uncorrelated

constraint and is the solution of C-SDA in Eq. (7). We thus prove Theorem 2.
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Table 2

Least square framework for solving SDA.

Input: Data matrix X ∈ RD×(l+u) , reduced matrix d and other related parameters.

Output: The projection matrix V ∈ RD×d .

Algorithm:

1. Solve the least square problem of Lap-RLS/L in Eq. (2):

J(V, b) = min
∑l

j=1

∥∥V T x j + bT − yj

∥∥2

F
+ αt‖V‖2

F + αmTr
(
V T XLXT V

)
,

and obtain the optimal solution V ∗
Lap−RLS/L = (St + λmXLXT + λt I)−1XY T .

2. Perform the SVD of the auxiliary matrix as in Eq. (14) M = Y XT (St + λmXLXT + λt I)−1XY T = �	M�T .

3. Output V ∗
SDA = V ∗

Lap−RLS/L�	−1/2
M

.

V

We next establish the equivalence between SDA and Lap-RLS/L by using C-SDA. Following Eq. (2), it can be easily noted that

(St + λmXLXT + λt I)−1XY T is the optimal solution of Lap-RLS/L, then, we have V ∗
E = V ∗

C−SDA
= V ∗

Lap−RLS/L�	−1/2
M

. This indicates
∗
E

is also the optimal solution of Lap-RLS/L with the uncorrelated constraint, which can be given as follows:

J(V, b) = min
∑l

j=1

∥∥V T x j + bT − yj

∥∥2

F
+ αt‖V‖2

F + αmTr
(
V T XLXTV

)
s.t. V T

(
St + αt I + αmXLXT

)
V = I

. (16)

In addition, since the optimal solutions of SDA and C-SDA are the same as analyzed in Section 3.2, i.e. V ∗
SDA

= V ∗
C−SDA

R, hence

by using C-SDA as a bridge, we can establish the equivalence between SDA and Lap-RLS/L under the uncorrelated constraint,

and the problem of SDA in Eq. (6) can be equivalently solved by Eq. (16). The basic steps to solve SDA based on a least square

framework are shown in Table 2. For simplicity, we refer it as LS-SDA.

4. Learning from local and global discriminative information

The connection between SDA and LapRLS/L throws light on their relationship for semisupervised learning. Two issuess still

need to be addressed: (1) the regression term in both LapRLS and LS-SDA is supervised and it only utilizes the labeled set to

train the linear classification function. Since the number of labeled set is small compared with that of unlabeled data, this can

be problematic that the linear classification function can be underfit because of small sample size [21]; (2) the proposed LS-SDA

utilizes Gaussian function based graph Laplacian matrix to characterize the local structure of data manifold. But these Laplacian

matrixes cannot capture the discriminative information of classes for data, which results in degrading classification performance.

In addition, the Gaussian function based affinity matrix is over sensitive to the Gaussian variance. Therefore, Gaussian function

based affinity matrix is less effective for image classification and visualization. In this session, we describe our newly developed

LLGDI to solve the problem.

4.1. Local and global discriminative information embedding

The least square regression term in Lap-RLS/L and LS-SDA in Eq. (16) is

min
∑l

j=1

∥∥V T x j + bT − yj

∥∥2

F
+ αt‖V‖2

F . (17)

Clearly, Eq. (17) is a supervised formulation, as the label y j of x j ( j ≤ l) has already been known. However, since l is usually very

small, the classification function z j = V T x j + b may not be sufficiently trained due to the small sample size. To solve this problem,

we introduce a set of estimated labels Z = {Zl , Zu} = {z1, z2, . . . , zl+u} ∈ Rc×(l+u) by replacing V T x j + b with z j . A regression term

is then added to Eq. (17) as follows:

min
∑l

i=1
‖zi − yi‖2

F + αr

(∑l+u

j=1

∥∥V T x j + bT − z j

∥∥2

F
+ η‖V‖2

F

)
. (18)

Following Eq. (18), the classification function z j = V T x j + b can well be trained by utilizing all the estimated labels as well as

fixing to its initial labels. Here, since Z can be viewed as the global label matrix, by regressing X on Z, the projection matrix V and

bias b actually capture the globally discriminative direction of each class. In other words, the global discriminative information

can be characterized by the regression residual term of Eq. (18). In order to capture the locally discriminative information, we

adopt a local regression model for each data sample x j . Specifically, let Nk(x j) be the k neighborhood set of x j including itself, we

denote Xj = {x j0
, x j1

, . . . , x jk−1
} ∈ RD×k as the local data matrix formed by all samples in Nk(x j), where { j1, j1, . . . , jk} is the index

set of Nk(x j) and j1 = j, x j1
= x j . We also denote Z j = {z j1

, z j2
, . . . , z jk

} ∈ Rc×k as local low-dimensional label matrix in Nk(x j).

Then, the local regression function for all data samples can be given as follows:

min
Zj ,Vj ,bj

∑l+u

j=1

(∑k

i=1

∥∥V T
j x ji

+ bT
j − z ji

∥∥2

F
+ η

∥∥Vj

∥∥2

F

)
. (19)
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However, minimizing the above total errors over all samples in each local patch tends to force each local error α ji
=

‖V T
j

x ji
+ bT

j
− z ji

‖F to become similar to each other. Given some dataset with multi-density distribution, where the data sam-

pling is uniform, treating all the local errors as in Eq. (19) equally may strengthen the contributions of samples in dense

distribution while weaken those in sparse distribution, causing bias exists. To solve this problem, we add a weight vector

� j = {τ j1
, τ j2

, . . . , τ jk
} ∈ R1×k for each local data patch Xj in order to penalize each regression error, which can be shown as

follows:

min
Zj ,Vj ,bj

∑l+u

j=1

(∑k

i=1
τ ji

∥∥V T
j x ji

+ bT
j − z ji

∥∥2

F
+ η

∥∥Vj

∥∥2

F

)
(20)

We will show in Section 4.3 that by choosing a special � j , the graph Laplacian matrix derived from Eq. (20) can also be

a normalized graph Laplacian matrix, which is useful for handling the multi-density dataset. To calculate the local projection

matrix Vj and bias b j in Eq. (20), we set the derivatives to Eq. (20) with respect to Vj and b j to zeros. Then, we have:{
bj = ek
 j

(
ZT

j
− XT

j
Vj

)
/
(
ek
 je

T
k

)
Vj =

(
XjHjX

T
j

+ λI
)−1

XiHjZ
T
j

(21)

where ek ∈ R1×k is a unit vector with size k, 
 j ∈ Rk×k is a diagonal matrix with each element being (
 j)ii = τ ji
, Hj ∈ Rk×k is

the local weighted center matrix defined as Hj = 
 j − (
 je
T
k

ek
 j)/(ek
 je
T
k
). By substituting Vj and b j in Eq. (21) with Eq. (20),

Eq. (20) will be reduced to:

min
Zj

∑l+u

j=1
Tr

(
ZjL jZ

T
j

)
. (22)

where L j = Hj − HjX
T
j
(XjHjX

T
j

+ ηI)−1XjHj . Here, let S j ∈ R(l+u)×k be the selected matrix with each element satisfying (S j)pq = 1,

if p = iq; (S j)pq = 0, otherwise. Then, Z j can be viewed as a selection from Z as Z j = ZS j , and Eq. (22) will be reduced to:

min
Z

∑l+u

j=1
Tr

(
ZSjL jS

T
j ZT

)
= min

Z
Tr

(
ZLdZT

)
. (23)

where Ld = ∑l+u
j=1 (S jL jS

T
j
). In this paper, by integrating Eq. (23) into the objective function of Eq. (17), we formulate our proposed

method as follows:

J(V, Z, b) = min
∑l

i=1
‖zi − yi‖2

F + αmTr
(
ZLdZT

)
+ αr

(∥∥V T X + bT e − Z
∥∥2

F
+ η‖V‖2

F

)
. (24)

The second term in Eq. (24) characterizes the local discriminative and manifold structure of dataset while the third term

characterizes the global discriminative structure of dataset, αm and αr are two parameters balancing the tradeoff between three

terms.

4.3. Solution of LLGDI for simutaneous megression and dimensionality reduction

In this subsection, we will show how to calculate the optimal solution of the proposed LLGDI in Eq. (24). In addition, we will

also discuss how to realize subspace for the proposed LLGDI. By setting the derivatives of Eq. (23) with respect to V and b to zero,

we have:{
b =

(
eZT − eXTV

)
/eeT

V =
(
XLcXT + ηI

)−1
XLcZT

. (25)

where e ∈ R1×(l+u) is a unit vector and Lc = I − eT e/eeT is used for centering the samples by subtracting the mean of all samples.

Similarly, with b and V in Eq. (25), the global regression term can be written as:∥∥V T X + bT e − Z
∥∥2

F
+ η‖V‖2

F = Tr
(
ZLgZT

)
, (26)

where Lg = Lc − LcXT (XLcXT + ηI)−1XLc. Then, Eq. (24) can be rewritten as:

J(Z) = min
Z

Tr
(
(Z − Y)U(Z − Y)

T
)

+ αmTr
(
ZLdZT

)
+ αrTr

(
ZLgZT

)
. (27)

where U ∈ R(l+u)×(l+u) is a diagonal matrix with the first l and remaining u diagonal elements as 1 and 0, respectively. However,

it should be noted that the problems in Eqs. (24) and (27) are derived from regression problem instead of subspace learning

problem (they can only reduce the dimensionality to c, where c is the number of classes). Hence in order to solve both regression

as well as subspace learning problems, we can add an uncorrelated constraint to Eq. (24) which is similar to the LS-SDA as in

Eq. (16). Specifically, recall the uncorrelated constraint in Eq. (16) as

V T
(
St + αt I + αmXLXT

)
V = I, (28)
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Table 3

Algorithm of LLGDI.

Input: Data matrix X ∈ RD×(l+u) , the initial label matrix Y ∈ Rc×(l+u) , number of neighbors k, reduced

matrix d and other related parameters.

Output: The projection matrix V ∈ RD×d .

Algorithm:

1. Form the normalized local regression regularized term Tr(ZLdZT ) = ∑l+u
j=1 Tr(ZSjL jS

T
j
ZT ) as in Eq. (23),

where L j is a graph Laplacian matrix satisfying L j = Hj − HjX
T
j
(XjHjX

T
j

+ ηI)−1XjHj , S j is the selected

matrix with each element satisfying (S j)pq = 1, if p = iq; (S j)pq = 0, otherwise.

2. Form the global regression regularized term Tr(ZLgZT ) = ‖V T X + bT e − Z‖2
F + η‖V‖2

F as in Eq. (26), where

Lg is a graph Laplacian matrix satisfying Lg = Lc − LcXT (XLcXT + ηI)−1XLc .

3. Solving the regression problem as in Eq. (24):

J(Z) = min
Z

Tr
(
(Z − Y)U(Z − Y)

T
)

+ αmTr
(
ZLdZT

)
+ αrTr

(
ZLgZT

)
and obtain the optimal the estimated label matrix Zr = YU(U + αmLd + αrLg)−1.

4. Perform EVD of the auxiliary matrix: YU(U + αmLd + αrLg)−1UY T = �̃
∑̃

�̃T ∈ Rc×c as in Eq. (31).

5. Obtain the optimal projection matrix V ∗ in Eq. (32) as Z∗ = ∑̃−1/2
�̃T YU(U + αmLd + αrLg)−1. Output V ∗ .

Y

we observe the global scatter matrix V T StV = V T XUXTV may not well charactize the global structure of dataset by only utilizing

labeled samples. Here, similar to Eq. (18), we reduce the effect of such global scatter matrix by replacing V T x j with z j . We also re-

place the graph Laplacian matrix L with the local and global discriminative Laplacian matrix αmLd + αrLg, then, the uncorrelated

constraint in Eq. (28) can be relaxed to:

ZUZT + αmZLdZT + αrZLgZT = I. (29)

We then integrate the above relaxed uncorrelated constraint to Eq. (24) and form the problem as follows:

J(Z) = minZTr
(
(Z − Y)U(Z − Y)

T
)

+ αmTr
(
ZLdZT

)
+ αrTr

(
Z(Lc − N)ZT

)
s.t. ZUZT + αmZLdZT + αrZLgZT = I.

(30)

Here, with the constraint added into Eq. (29), Z actually represents the low-dimensional embedding to X and has no meaning

of the estimated label matrix of X. To solve the problem in Eq. (30), we adopt a two-stage approach to calculate the optimal

solution. Specifically, we first set the derivatives of J(Z) with respect to Z to zero and obtain the regression solution as Zr =
U(U + αmLd + αrLg)−1. We then perform the Eigen-value Decomposition (EVD) of the following auxiliary matrix:

YU(U + αmLd + αrLg)
−1UY T = �̃

∑̃
�̃T ∈ Rc×c. (31)

and let the optimal solution Z∗ as:

Z∗ =
∑̃−1/2

�̃TYU(U + αmLd + αrLg)
−1

. (32)

It can be easily verified that Z∗ satisfies Z∗(U + αmLd + αrLg)Z∗T = I, hence Z∗ is the optimal solution of Eq. (30). Finally, the

projection matrix V ∗ can be calculated by replacing Z∗ into Eq. (25). Here, since we have added an relaxed uncorrelated constraint

in Eq. (29) to the objective function of LLGDI as in Eq. (24), by solving this uncorrelated constrained regression problem, the ob-

tained projection matrix V ∗ can reduce the dimensionality to less than c while keeping most desired discriminative information.

As a result, both regression and subspace learning problems can be solved by Eq. (30). The basic steps of the proposed LLGDI

method are shown in Table 3.

4.3. Normalized local discriminative graph Laplacian matrix

It can be easily proved that Ld is a graph Laplacian matrix (seen in the Appendix). But Ld may not be a normalized graph

Laplacian matrix. As pointed in [12], the normalization can strengthen the local regressions in the low-density region and weaken

those in the high density region. Since the data sampling is usually uniform in practice, normalization is useful for handling the

case when the density of dataset varies dramatically. In this subsection, we show that by choosing a special weight vector � j for

each Xj , Ld can be a normalized graph Laplacian matrix.

Specifically, let we consider a data sample xl and let Kl be the index set of those neighborhood set Nk(x j), which contains xl

as a neighbor of x j , i.e. if j ∈ Kl , then xl ∈ Nk(x j), where xl can be denoted as x ji
in the neighborhood set Nk(x j) and i = i(l, j) is

a local index depending on l and j. Obviously, if xl is in the low-density area, it has sparse neighbors and Kl is relatively small.

As a result, its connections to other samples will be weaker than that which has large Kl . Here, to strengthen the connections of

samples in the low-density area, we need to normalize the weights corresponding to each Kl . Let τ l
j

be the weight of x ji
and l be

the global index of x ji
, we then define τ ji

= τ l
j

as follows:

τ ji
= τ l

j ← 1

|Kl| . (33)

where |Kl| is the total index number in Kl . Hence, based on this definition, we have the following theorem:
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Fig. 1. Gray image of reduced space learned by LLGDI without normalization and LLGDI with normalization: two-plate dataset (a) LLGDI without normalization

and (b) LLGDI with normalization.
Theorem 4. With the normalization for each w ji
as in Eq. (33), Ld is both graph Laplaican matrix and normalized graph Laplacian

matrix.

Proof of Theorem 4. The proof that Ld is a graph Laplacian matrix can be seen in the Appendix. In order to prove Ld is a nor-

malized graph Laplacian matrix, we need prove that Ld can be reformulated in a form of Ld = I − Wd and the sum of each row

or column of the affinity matrix Wd is equal to 1. Note that Ld = ∑l+u
j=1 (S jL jS

T
j
) and L j = Hj − HjX

T
j
(XjHjX

T
j

+ ηI)−1XjHj , where

Hj = 
 j − (
 je
T
k

ek
 j)/(ek
 je
T
k
), we first define the affinity matrix Wd as follows:

Wd =
∑l+u

j=1

(
S jW

d
j ST

j

)
, (34)

where each W d
j

satisfies:

W d
j =

(

 je

T
k ek
 j

)
/
(
ek
 je

T
k

)
− HjX

T
j

(
XjHjX

T
j + ηI

)−1
XjHj. (35)

Then, Ld can be reformulated as:

Ld =
∑l+u

j=1

(
S j
 jS

T
j

)
−

∑l+u

j=1

(
S jW

d
j ST

j

)
. (36)

Here for each S j
 jS
T
j
, we have ST

j
eT = eT

k
⇒ S j
 jS

T
j
eT = S j�

T
j
, where S j�

T
j

∈ R(l+u)×1 is a column vector by putting each τ l
j

to

its global index l corresponding to x ji
. We then have:{∑l+u

j=1

(
S j
 jS

T
j

)}
eT =

∑l+u

j=1

(
S j�

T
j

)
= eT , (37)

The second equation holds as
∑

j∈Kl
τ l

j
= ∑

j∈Kl
1/|Kl| = 1 hence the sum of all S j�

T
j

in each element is equal to 1. Then,

following Eq. (37), it indicates
∑l+u

j=1 (S j
 jS
T
j
) is an identity matrix, i.e.

∑l+u
j=1 (S j
 jS

T
j
) = I. Then based on the above analysis, we

can reformulate Ld in a form of Ld = I − Wd . In addition, since Ld is a graph Laplaican matrix (proved in the Appendix), it satisfies

LdeT = 0, then we have

LdeT = 0 ⇒
{∑l+u

j=1

(
S j
 jS

T
j

)
−

∑l+u

j=1

(
S jW

d
j ST

j

)}
eT = 0

⇒
{∑l+u

j=1

(
S j
 jS

T
j

)}
eT =

{∑l+u

j=1

(
S jW

d
j ST

j

)}
eT

⇒ eT =
{∑l+u

j=1

(
S jW

d
j ST

j

)}
eT

⇒ WdeT = eT or eWd = e. (38)

which indicates that the sum of each column or row of Wd is equal to 1. We thus prove the theorem. Theorem 4 indicates that by

choosing a special weight vector τ ji
for each x ji

, Ld can be both graph Laplacian matrix and normalized graph Laplacian matrix.

To show the merit of normalization, we generate a dataset with two classes. Each class follows a Guassian distribution but

with different cores and density. In each class, two samples are selected as labeled set and the remainings are as unlabeled set.

Our goal is to show LLGDI can handle multi-density dataset. Fig. 1 shows the gray images of decision surfaces and boundaries

learned by LLGDI without normalization and LLGDI with normalization. The gray value of each pixel represents the difference of
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distance from the pixel to its nearest labeled samples in different classes after dimensionality reduction. The decision boundaries

are then formed by the pixels with the values equal to 0. In this example, we set the reduced dimensionality as 1. Here, LLGDI

without normalization derives the local graph Laplacian matrix Ld directly from Eq. (19); while LLGDI with normalization derives

the local graph Laplacian matrix Ld from Eq. (20), where τ ji
= τ l

j
← 1/|Kl| is set as in Eq. (33). From Fig. 1, we can observe that

LLGDI without normalization cannot find proper boundary. However, LLGDI with normalization can achieve better performance,

as there are less missing-classified data points separated by the decision boundary, which becomes more distinctive and accurate.

The improved result is believed to be due to the fact that normalization can strengthen the local regressions in the low-density

region and weaken those in the high density region. This is proved to be advantageous to be used for multi-density dataset.

4.4. Discussion and relative work

In this subsection, we discuss the relationship of LLGDI with LS-SDA in Eq. (16) and other state-of-the-art methods including

FME and LRGA.

4.4.1. Relationship to LS-SDA in Eq. (16)

We will first show LS-SDA in Eq. (16) is only a special case of LLGDI. Let αt → ∞, αrη = αt and Ld → L, we have ||V T X + bT e −
Z||2

F → 0 or V T X + bT e = Z. By replacing Z into Eq. (24), the objective function J(V, Z, b) in Eq. (24) will be reduced to Lap-RLS/L

as in Eq. (2). If we further fix the bias term as b = −eUXTV/(eUeT ), the constraint in Eq. (35) will be relaxed to:

ZUZT + αmZLZT + αr

((
V T X + bT e − Z

)(
V T X + bT e − Z

)T + ηV TV

)
= I

→ V T X
(
I − UeT e/eUeT

)
U
(
I − UeT e/eUeT

)
XTV + αmV T XLXTV + αtV

TV = I

→ V T X
(
U − UeT eU/eUeT

)
XTV + αmV T XLXTV + αtV

TV = I

→ V T
(
St + αmXLXT + αt I

)
V = I. (39)

Following Eq. (39), it indicates if we let αr → ∞, αrη = αt and b = −V T XUeT /(eUeT ), the problem in Eq. (24) can be reduced to

that in Eq. (16). The problem of Eq. (16) and Lap-RLS/L are only special cases of LLGDI. But since LLGDI is aimed at characterizing

local and global discriminative information embedded in a dataset, LLGDI is preferable to handle classification problem than the

least square framework in Eq. (16).

4.4.2. Relationship to FME [13,14]

Nie et al. have proposed another unified framework, i.e. Flexiable Manifold Embedding (FME) [13,14], for semi-supervised

dimensionality reduction, in which they verify that LLGC, GFHF and Lap-RLS/L are only special cases in the framework. The basic

objective function of FME can be given as

J(V, Z, b) = min
∑l

i=1
‖zi − yi‖2

F + αmTr
(
ZLZT

)
+ αr

(∥∥V T X + bT e − Z
∥∥2

F
+ η‖V‖2

F

)
, (40)

where L = D − W is the graph Laplacian matrix and W is Gaussian function based affinity matrix. It can be observed that Eq. (40)

is almost the same as the objective function of LLGDI in Eq. (24), when we let Ld → L. But FME is essentially derived for handling

regression problem (it can only reduce the dimensionality to c), whereas it cannot solve subspace learning problem. For the case

of LLGDI, by adding an uncorrelated constraint to Eq. (24), LLGDI can solve both regression and subspace learning problems. In

addition, LLGDI has utilized a normalized local discriminative Laplacian matrix to preserve manifold and discriminative structure

in a dataset. This is a better way than only relying on neighborhood graph.

4.4.3. Relationship to LRGA [30,31]

Recently, Yang et al. have proposed semi-supervised transductive learning method, namely, Local Regression and Global Aligh-

ment (LRGA) [30,31], for multimedia retrieval. They share the similar concept with the proposed method. The basic objective

function of LRGA can be given as:

J(Z) = min
Z,Vj ,bj

∑l

i=1
‖zi − yi‖2

F + αm

∑l+u

j=1

(∑k

i=1

∥∥V T
j x ji

+ bT
j − z ji

∥∥2

F
+ η

∥∥Vj

∥∥2

F

)
. (41)

It can be noted that LRGA is a special case of LLGDI when αr = 0. Therefore, LRGA is only a transductive learning method

and cannot handle out-of-sample problem, while LLGDI is a transductive and inductive learning method. Another superiority of

LLGDI over LRGA is that LLGDI normalized each local regression term. Thus as shown in the simulation results, LLGDI can handle

multi-density dataset remarkably.

4.4.4. Relation to the eigen-image [25]

The paper in [25] presents a method to learn eigen-images from an image to be segmented. It shares the similar concept with

the model in Eq. (19) in the case of graph construction. However, LLGDI is to perform graph construction based on the model of

Eq. (20) which is not Eq. (19). The main difference between Eq. (20) and Eq. (19) is that Eq. (20) normalizes each local regression
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Table 4

Computational complexities of different methods.

Algorithms RLDA/SDA LS-SDA Lap-RLS/L FME LLGDI

Computation complexity O(D2d) O(D3) O(D3) min (O((l + u)
3
), O(D3)) min (O((l + u)

3
), O(D3))
term, while Eq. (19) considers each local regression term equally without normalization. This can be useful as sampling is usually

not uniform in practice, and over-emphasizing neighborhoods with high densities may occlude useful information in sparse

regions. Hence the model in Eq. (20) is superior to the one of Eq. (19). In addition, it should also be noted that in the case of

eigen-images in [40], Eq. (20) can be equal to Eq. (19). This is because for constructing eigen-images, each pixel only connects to

its eight neighborhood pixels, making the total number of connections for each pixel equal in graph construction. In such cases,

normalization can be neglect and Eq. (20) is equal to Eq. (19). In other words, the model of Eq. (19) can be considered a special

case of Eq. (20) when the total number of connections for each data samples or pixels is the same. Thus, the model described in

Eq. (20) can be seen as an extension to the one of Eq. (19).

4.5. Analysis of computational complexity

In this subsection, we will analyze the computational complexity of the proposed LLGDI and compare those with other

state-of-the-art methods. Note that to calculate the projection matrix for the proposed LLGDI method, one needs to calculate

the local regression regularized term Ld , the global regression residual term Lg and the low-dimensional representation Z as

in Eq. (30). (1) For calculating the local regression regularized term Ld = ∑l+u
j=1 (S jL jS

T
j
), where L j = ηG j(GT

j
XT

j
XjG j + ηI)−1GT

j
,

one needs to calculate the inverse of (GT
j
XT

j
XjG j + ηI)−1 ∈ Rk×k for each L j , where the computational complexity for calcu-

lating each L j is O(k3) (k is the number of neighborhoods) and the total complexity for calculating Ld is O((l + u)k3); (2)

for calculating the global regression residual term Lg = N − Lc = LcXT XLc(LcXT XLc + ηI)−1 − Lc, we need to calculate inverse of

LcXT XLc + ηI ∈ R(l+u)×(l+u) or XLcXT + ηI ∈ RD×D, and the computational complexity of this step is O(min ((l + u)3
, D3)); (3) then

the computational complexity for calculating the low-dimensional representation Z in Eq. (30) is O(min ((l + u)2
c, D2c) + c2d),

where O(min ((l + u)2
c, D2c)) is that for solving the least square regression problem of Eq. (27), c2d is that for performing the SVD

of the auxiliary matrix in Eq. (31), i.e. YU(U + αmLd + αrLg)−1UY T = �̃
∑̃

�̃T ∈ Rc×c; finally, the optimal projection matrix V ∗ can

be obtained by (XLcXT + ηI)−1XLcZT = XLc(LcXT XLc + ηI)−1ZT , and the computation complexity can be neglected, as the inverse

of LcXT XLc + ηI or XLcXT + ηI has already been obtained. As a result, since d ≤ c 
 min (l + u, D) and k 
 l + u, the total com-

putational complexity for the proposed LLGDI is O((l + u)k3) + min (O(D3), O((l + u)3))+ min (O((l + u)2
d), O(D2d))+O(c2d) ≈

min (O(D3), O((l + u)3)).

We next analyze the computational complexity of other supervised and semi-supervised methods. For RLDA and SDA, both of

them need to perform the generalized eigenvalue decomposition (GEVD) in order to calculate the projection matrix, and the com-

putational complexities of RLDA and SDA are O(D3) or O(D2d), if only d eigenvectors are involved; for Lap-RLS/L and LS-SDA, both

of the algorithms need to calculate the inverse of regularized Laplacian matrix, which is XLt XT + αt I + αmXLXT ∈ RD×D, hence the

computational complexity of this step is O(D3). In addition, for LS-SDA, it further needs to perform the eigenvalue decomposition

of Y XT (St + λmXLXT + λt I)−1XY T ∈ Rc×c, and the computational complexity is O(c2d). Since d ≤ c 
 D, we have O(c2d) 
 O(D3).

Hence the total computational complexities of Lap-RLS/L and LS-SDA are almost the same, which are O(D3); for FME, following

the work in [9], it is with similar computational complexity of the proposed LLGDI, which is also min (O((l + u)3), O(D3)). This

is because both two methods need to calculate the regression residual term and low-dimensional representation z. The compu-

tational complexities of different algorithms can be seen in Table 4.

From Table 3, we have the following observations: (1) given the dataset is with low dimensionality, i.e. D 
 l + u, the com-

putational complexities of different methods are almost the same, as in such case, the computational complexities of different

methods are close related to the number of dimensionality; (2) given the dataset is with high dimensionality, i.e. l + u 
 D,

FME and the proposed LLGDI are with the smallest computational complexities, as in such case, their computational complex-

ities are close related to the number of dataset. Hence the proposed LLGDI method is more suitable for the dataset with high

dimensionality.

Here, it should be noted that Table 3 only shows the computational complexities of different methods in one simulation.

Though FME and the proposed LLGDI share the same computational complexity as shown in Table 3, we have to say that FME

has one more parameter that needs to be adjusted, i.e. Gaussian covariance in Gaussian function based affinity matrix. However,

the Gaussian function based affinity matrix is sensitive to Gaussian variance and even a small variation can cause the results

dramatically. Hence in practice, some approaches for parameter selection, such as five-fold cross validation, are needed in order

to choose the best value of Gaussian variance, which will greatly increase the computational efforts. But for the proposed LLGDI,

there is no such parameter, as LLGDI is to construct the graph by aligning all local regressions instead of relying on Gaussian

function. As a result, the proposed LLGDI will need much less computational complexity than FME, which is more efficient in

real-world application such as image classification and visualization.
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Fig. 2. Gray image of reduced space learned by KPCA, LDA,SDA and LLGDI: two-cycle dataset (a) KPCA, (b) KPCA+LDA, (c) KPCA+SDA, (d) KPCA+LLGDI.
5. Simulations

In this section, we evaluate our algorithms with three synthetic datasets and several real-world datasets. For the synthetic

datasets, we evaluate the proposed method using two-cycle, two-Swiss-roll and two-plate datasets. For real-world datasets, we

focus on solving the classification problems based on six real-world datasets which are all benchmark datasets. For classification

problem, we use 8 real-world datasets to evaluate the performance of methods, which include UMNIST [5], Extended Yale-B

[9], MIT-CBCL [24], COIL100 [11], ETH80 [10], USPS [8] datasets. Furthermore, we compare our algorithm with state-of-the-art

supervised and semi-supervised algorithms. In the comparative study, we randomly split each dataset into training set and

test set. We also randomly select samples from the training set to form labeled and unlabeled sets. All the training sets are

preliminarily processed with a PCA operator to eliminate the null space before performing dimensionality reduction [19]. All

algorithms used the training set in the output reduced space to train a nearest neighborhood classifier for evaluating the accuracy

of test set.

5.1. Toy examples for synthetic datasets

In this toy example, we generate a dataset with two classes; each follows a cycle distribution with the same core but different

radius. In each class, one sample is selected as labeled set and the remaining as unlabeled set. We then in Fig. 2 investigate

the effectiveness of different methods based on the dataset. Since the distribution of two-cycle dataset is nonlinear, to handle

this problem, we first perform KPCA to the two-cycle dataset; we then use the output in the full-rank KPCA to train the linear

methods [29,35]. Other parameters are set the same as in two-plate dataset. Fig. 2 shows the gray images of decision surfaces

and boundaries obtained by KPCA, LDA, SDA and LLGDI. From Fig. 2 we can observe that for the two-cycle dataset, KPCA fails to

discover the decision boundary in two-cycle datasets. The main reason is that KPCA is an unsupervised method, which cannot

grasp the discriminative structure embedded in the training set. In addition, though LDA is a supervised method, it cannot achieve

better performance to KPCA given insufficient labeled samples, as it still cannot learn a better boundary that well separates the

two classes. In contrast, by using the unlabeled samples to construct the manifold term for preserving the geometrical structure
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Fig. 3. Gray image of reduced space learned by KPCA, LDA,SDA and LLGDI: two-cycle dataset (a) KPCA, (b) KPCA+LDA, (c) KPCA+SDA, (d) KPCA+LLGDI.
embedded into the dataset, SDA can find the precise decision boundary. In practice, since labeling a large number of samples are

time-consuming and impractical, semi-supervised DR methods have become more effective instead of only relying on supervised

methods. In addition, the proposed LLGDI can achieve the best performance, as the decision boundary learned by LLGDI is more

precise than those obtained by SDA. The improvement is reliable due to the fact that LLGDI preserves both local and global

discriminative information embedded in dataset.

In order to further evaluate the effectiveness of the proposed methods, we generate a more challenging two-Swiss-roll dataset

with two classes and each follows a Swiss-roll distribution with the same core but increased radius. In each class, only one sample

is selected as labeled set and the remaining as unlabeled set. Note that the two-Swiss-roll dataset is also nonlinear. We use the

same method to handle the nonlinear problem as in two-cycle dataset. Other parameters are set the same as in two-plate and

two-cycle dataset. Fig. 3 shows the gray images of decision surfaces and boundaries obtained by KPCA, LDA, SDA and the proposed

LLGDI, where the gray value of each pixel and boundary represents the same means as in two-moon and two-cycle dataset. In

Fig. 3(a), we can see that similar to two-cycle dataset, KPCA still fails to discover the decision boundary in two-Swiss-roll dataset.

In Fig. 3(b) and (c), we can also see that LDA and SDA have failed to discover the boundaries between two classes. This fact verifies

that for two-Swiss-roll dataset, the limited labeled samples cannot provide sufficient discriminative information, hence causing

the performance of classification unsatisfied. Moreover, in Fig. 3(c), we can see that even with sufficient unlabeled samples to

preserve the geometrical structure, SDA does not perform well. This is mainly because compared with the two-moon dataset,

the two-Swiss-roll dataset has more complex geometrical structure as the samples in two classes parallel revolve around the

same core. Hence, there is not a clear boundary that can divide the two classes into two sides. In Fig. 3(d), we can see that though

there are still some miss-classified samples, the proposed LLGDI can achieve the best performance in a way that the boundaries

learned by LLGDI can well separate the samples in different classes by parallel revolving the same core. This enhancement is

mainly due to LLGDI can preserve more discriminative information embedded in dataset.

5.2. Image classification

For classification problem, we use 8 real-world datasets to evaluate the performance of methods, which include UMNIST,

Extended Yale-B, MIT-CBCL, COIL-100, ETH-80, USPS datasets. The UMIST dataset is a multi-view face dataset, consisting of 1012
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Table 5

Dataset information and data partition for each dataset.

Dataset Database type #Samples #Dim #Class #Training per class #Test per class

UMNIST [5] Face 1012 1024 20 20 Remains

Extended Yale-B [9] Face 16,123 1024 38 50 Remains

MIT-CBCL [24] Face 3240 1024 10 30 30

COIL100 [11] Object 7200 1024 100 40 Remains

ETH80 [10] Object 3280 1024 80 21 Remains

CASIA-HWDB [8] Hand-written digit 2381 196 10 100 100

Fig. 4. Sample images of real-world datasets: (a) UMNIST dataset, (b) Extended Yale-B dataset, (c) MIT-CBCL dataset, (d) COIL100 dataset, (e) ETH80 dataset, (f)

CASIA-HWDB dataset.
images of 20 people, each covering a wide range of poses from profile to frontal views. The size of each image is 112 × 92 with

256 gray levels per pixel. In our simulation, we down-sample the size of each image to 28 × 23 and no other preprocessing is

performed. The Extended Yale-B dataset contains 16,123 images of 38 human subjects under nine poses and 64 illumination

conditions. Similar to the MIT-CBCL dataset, the images are also cropped and resized to 32 × 32 pixels. This dataset now has

around 64 near frontal images under different illuminations per individual. The MIT-CBCL dataset provides 3240 synthetic images

rendered from 3D head models of 10 people. The head models are generated by fitting a morphable model to the high-resolution

training images. The size of each image is originally 200 × 200 with 256 gray levels per pixel. In our simulation, we down-sample

the size of each image to 32 × 32 and no other preprocessing is performed. The COIL100 dataset consists of images of 100 objects

viewed from varying angles at the interval of five degrees, resulting in 72 images per object. The size of each cropped image is

128 × 128 with 24 bit color levels per pixel. In our simulation, we down-sample the size of image to 32 × 32 and transfer each

image to 256 gray levels. ETH80 dataset contains 80 objects with each object represented by 41 views of images. The original size

of each image is 128 × 128 with 24bit color levels per pixel. Similar to COIL100 dataset, we down-sample the size of image to

32 × 32 and transfer it to 256 gray levels. The CASIA-HWDB dataset is a handwritten image dataset which include both isolated

characters and handwritten texts. In our work, we choose a subset from it which includes 10-digit images from 0 to 9. Then, the

subset has a training set of 2381 samples with an image size of 14 × 14 in 256 gray levels. The detailed information of dataset

and some sampled images of real-world datasets can be shown in Table 5 and Fig. 4. For each dataset, we randomly select 10, 50,

30, 40, 21 and 100 samples from each class as training samples for UMNIST, Extended Yale-B, MIT-CBCL, COIL-100, ETH-80, USPS

datasets. The test set is then formed by the selected or all remaining samples. The data partitioning for each dataset is also given

in Table 5.

Next, we compare our method with other supervised and semi-supervised dimension reduction methods. These methods

include RLDA [1], SDA [3], Lap-RLS/L [2], least square solution for solving SDA in Eq. (16) (Table 1, we refer it as LS-SDA), FME

[13,14] and the proposed LLGDI. Note that PCA is an unsupervised method while RLDA is a supervised method, and the remaining

methods LLGDI are all semi-supervised methods. The simulation settings are as follows: For SDA, Lap-RLS/L, two parameters,

i.e. αt and αm, need to be determined for balancing the trade-off between the manifold and Tikhonov terms. We use five-fold

cross validation to determine the best values and the candidate set is {10−9
, 10−6

, 10−3
, 100

, 103
, 106

, 109}. For RLDA, only the

Tikhonov term parameter αt involves, we use the above candidate set to determine the best value. For FME and the proposed

LLGDI, an addition regularized parameter αr is involved for balancing the trade-off between the regression residual term and

other terms. We also use the same candidate set to determine the best value. The training set in all datasets are preliminarily

processed with PCA operator to eliminate the null space before performing dimension reduction. For supervised methods such
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Table 6

Average classification accuracy over 20 random splits on unlabeled set and test set of different datasets (means ± standard

derivations).

Dataset Method 4 labeled samples per class 7 labeled samples per class 10 labeled samples per class

Unlabeled Test Unlabeled Test Unlabeled Test

Mean ± SD Mean ± SD Mean ± SD Mean ± SD Mean ± SD Mean ± SD

UMNIST Baseline 81.1 ± 0.9 80.2 ± 1.0 88.6 ± 0.7 88.3 ± 0.7 93.1 ± 0.6 93.0 ± 0.7

RLDA 85.2 ± 0.6 85.0 ± 0.7 90.7 ± 0.5 90.4 ± 0.6 95.3 ± 0.4 94.4 ± 0.5

SDA 86.4 ± 0.7 86.3 ± 0.7 92.1 ± 0.6 91.7 ± 0.7 96.2 ± 0.4 95.4 ± 0.5

LS-SDA 86.4 ± 0.7 86.3 ± 0.7 92.1 ± 0.6 91.7 ± 0.7 96.2 ± 0.4 95.4 ± 0.5

Lap-RLS/L 86.6 ± 0.7 86.0 ± 0.8 91.9 ± 0.3 91.9 ± 0.4 95.7 ± 0.5 95.3 ± 0.6

FME 88.2 ± 0.6 87.7 ± 0.6 93.1 ± 0.3 92.9 ± 0.4 96.7 ± 0.5 96.1 ± 0.5

LLGDI 89.0 ± 0.5 88.7 ± 0.5 94.1 ± 0.3 93.7 ± 0.4 97.6 ± 0.5 97.0 ± 0.5

Extended Yale-B Baseline 50.5 ± 1.9 50.1 ± 1.9 63.9 ± 1.5 63.6 ± 1.7 69.8 ± 1.5 69.4 ± 1.6

RLDA 74.8 ± 2.0 74.5 ± 2.1 81.6 ± 1.6 81.1 ± 1.6 89.6 ± 1.5 89.3 ± 1.7

SDA 86.4 ± 1.9 86.0 ± 2.0 89.8 ± 1.7 89.5 ± 1.8 92.8 ± 1.5 92.6 ± 1.5

LS-SDA 86.4 ± 1.9 86.0 ± 82.0 89.8 ± 1.7 89.5 ± 1.8 92.8 ± 1.5 92.6 ± 1.5

Lap-RLS/L 86.7 ± 2.0 86.2 ± 2.2 90.1 ± 1.8 89.7 ± 1.9 93.1 ± 1.6 92.8 ± 1.7

FME 88.2 ± 1.8 88.0 ± 2.0 91.3 ± 1.7 91.1 ± 1.9 93.9 ± 1.5 93.6 ± 1.6

LLGDI 89.4 ± 1.9 89.0 ± 2.0 92.2 ± 1.7 92.0 ± 1.7 94.7 ± 1.5 94.4 ± 1.9

MIT-CBCL Baseline 69.5 ± 3.5 68.9 ± 3.9 80.5 ± 6.9 79.8 ± 7.0 90.3 ± 4.0 90.1 ± 3.8

RLDA 72.6 ± 2.9 73.8 ± 4.6 82.5 ± 7.6 82.2 ± 7.2 92.1 ± 3.2 92.9 ± 3.0

SDA 75.7 ± 2.9 76.9 ± 4.7 84.7 ± 6.7 84.2 ± 6.5 95.0 ± 3.3 94.9 ± 3.1

LS-SDA 75.7 ± 2.9 76.9 ± 4.7 84.7 ± 6.7 84.2 ± 6.5 95.0 ± 3.3 94.9 ± 3.1

Lap-RLS/L 75.2 ± 4.0 76.1 ± 4.1 84.7 ± 6.5 84.1 ± 6.5 93.7 ± 4.3 93.7 ± 3.6

FME 78.4 ± 2.5 78.1 ± 3.2 85.3 ± 5.4 85.1 ± 5.0 95.1 ± 3.7 94.9 ± 3.1

LLGDI 80.9 ± 2.2 80.7 ± 3.1 87.1 ± 5.0 86.4 ± 5.2 96.4 ± 3.5 96.2 ± 3.1

COIL100 Baseline 69.7 ± 3.3 70.1 ± 2.8 77.2 ± 1.9 77.6 ± 1.5 79.8 ± 1.7 80.4 ± 1.8

RLDA 72.5 ± 3.1 73.1 ± 2.7 79.5 ± 1.9 79.3 ± 2.3 82.8 ± 1.7 83.7 ± 1.7

SDA 78.3 ± 2.9 75.4 ± 2.4 81.9 ± 2.0 79.9 ± 2.0 84.0 ± 1.2 83.8 ± 1.7

LS-SDA 78.3 ± 2.9 75.4 ± 2.4 81.9 ± 2.0 79.9 ± 2.0 84.0 ± 1.2 83.8 ± 1.7

Lap-RLS/L 77.4 ± 2.9 75.8 ± 2.6 81.2 ± 1.8 80.0 ± 1.7 83.4 ± 1.4 83.0 ± 1.7

FME 79.6 ± 2.7 79.3 ± 2.3 83.3 ± 1.8 82.7 ± 1.9 85.7 ± 1.4 85.9 ± 1.5

LLGDI 81.8 ± 2.4 81.5 ± 2.4 84.8 ± 1.4 83.3 ± 1.9 86.5 ± 1.5 86.5 ± 1.7

ETH80 Baseline 55.8 ± 3.5 55.2 ± 4.9 65.7 ± 4.4 65.2 ± 4.9 70.9 ± 3.0 71.0 ± 4.6

RLDA 60.4 ± 3.1 60.6 ± 4.3 69.6 ± 5.0 69.8 ± 4.7 74.6 ± 2.9 75.8 ± 4.6

SDA 64.1 ± 3.0 63.7 ± 4.3 71.6 ± 5.0 70.7 ± 4.8 75.7 ± 2.9 76.9 ± 4.7

LS-SDA 64.1 ± 3.0 63.7 ± 4.3 71.6 ± 5.0 70.7 ± 4.8 75.7 ± 2.9 76.9 ± 4.7

Lap-RLS/L 64.9 ± 3.4 65.2 ± 4.0 71.9 ± 5.0 70.6 ± 4.8 75.2 ± 4.0 76.1 ± 4.1

FME 71.2 ± 4.6 71.0 ± 4.2 74.0 ± 4.2 72.8 ± 3.6 77.6 ± 3.5 77.6 ± 3.5

LLGDI 73.6 ± 4.4 73.2 ± 3.8 75.8 ± 3.9 74.5 ± 3.1 79.4 ± 3.0 79.2 ± 3.3

CASIA-HWDB Baseline 56.5 ± 4.8 56.2 ± 3.6 69.1 ± 3.0 68.8 ± 3.3 76.0 ± 3.5 75.6 ± 2.8

RLDA 59.6 ± 4.2 59.9 ± 3.1 73.1 ± 2.8 73.5 ± 3.1 79.6 ± 3.3 79.1 ± 2.5

SDA 62.6 ± 4.2 62.9 ± 3.2 75.1 ± 2.8 75.5 ± 3.1 80.7 ± 3.3 80.1 ± 2.5

LS-SDA 62.6 ± 4.2 62.9 ± 3.2 75.1 ± 2.8 75.5 ± 3.1 80.7 ± 3.3 80.1 ± 2.5

Lap-RLS/L 63.3 ± 4.4 63.5 ± 3.1 73.0 ± 2.7 72.8 ± 3.7 77.4 ± 3.2 77.2 ± 2.3

FME 66.9 ± 3.6 66.9 ± 3.6 77.2 ± 2.5 77.3 ± 2.8 81.5 ± 3.3 80.1 ± 2.4

LLGDI 68.7 ± 3.5 68.1 ± 3.6 78.5 ± 2.6 78.2 ± 2.9 82.8 ± 3.2 82.5 ± 2.2
as RLDA, we use only labeled set to train the learner. For semi-supervised dimension reduction methods, we use all the training

set with both labeled and unlabeled sets to train the learner. Since most of the methods, such as RLDA, SDA, Lap-RLS/L and FME

and the proposed LLGDI have a limited rank of c − 1, we simply reduce the dimensionality of all methods to c − 1. All methods

used labeled set in the output reduced subspace to train a nearest neighborhood classifier in order to evaluate the classification

accuracy of test set. We also compare the performance of nearest neighborhood classifier with other state-of-the-art methods as

a baseline.

The average accuracies over 20 random splits with the above parameters for each dataset are shown in Table 6. From the

simulation results, we can obtain the following observation: (1) given sufficient labeled samples, all the supervised and semi-

supervised dimension reduction methods outperform nearest neighborhood classifier due to the utilization of label information

and feature extraction; (2) the semi-supervised dimension reduction methods are better than the corresponding supervised

methods. For example, SDA outperforms RLDA by about 5–6% in COIL100 dataset with 2 labeled samples per class. For other

datasets, it can outperform by 2–3%. This indicates that by incorporating the unlabeled set into the training procedure, the clas-

sification performance can be markedly improved, as the manifold structure embedded in the dataset is preserved; (3) we also

observe that both SDA and the least square solution in Table 1 can achieve the same classification results due to the reason

as analyzed in Section 3; (4) the proposed LLGDI can deliver better accuracies than those delivered by other semi-supervised

dimension reduction methods such as SDA and Lap-RLS/L by about 3–4% in most datasets. The improvement can even achieve
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Fig. 5. Accuracy vs. ratio between the numbers of labeled set and that of training set: (a) UMNIST dataset, (b) Extended Yale-B dataset, (c) MIT dataset, (d)

COIL100 dataset, (e) ETH80 dataset, (f) CASIA-HWDB dataset.
almost 8% in ETH80 dataset with 2 labeled samples per class. The improvement is believed to be true that LLGDI aims to char-

acterize both local and global discriminative information embedded in dataset, which is better to handle classification problem;

(5) we observe that LLGDI outperforms FME by about 2% in most cases. The main reason is that LLGDI has utilized a normalized

local discriminative Laplacian matrix to preserve both manifold and discriminative structure in dataset, which is better than

only relying on neighborhood graph; (6) we also evaluate LLGDI and compare it with SDA and Lap-RLS/L by fixing the number of

training set and increasing the number of labeled set. The simulation results can be seen in Fig. 5. Following Fig. 5, we can observe

that with the increase of labeled samples, the accuracies of three methods are all improved. However, LLGDI is more robust to

the increase of labeled samples, specifically in COIL100 and USPS datasets. Another observation is that LLGDI can achieve better

performances than SDA and Lap-RLS/L given few labeled samples. The reason for it is LLGDI incorporates local discriminative

information into learning hence is more suitable for handling classification problem.

5.3. Image visualization

In order to further show the superiority of the proposed LLGDI, we demonstrate the visualization of the proposed method

and compare it with other state-of-the-art methods such as PCA, LPP, LDA, SDA in Eq. (16), SDA2 in [41] and the proposed LLGDI.

In this study, we randomly choose the first five classes of COIL100, UMINST, MIT and USPS dataset for simulation. In this dataset,

we randomly choose the training set and testing set as in Table 3. In each training set, we randomly select 2 samples per class

as labeled set for COIL100, UMNIST and MIT datasets while select 5 samples per class for CASIA-HWDB dataset. The remaining

samples per class are selected as unlabeled set. Hence the number of labeled samples is quite few compared with that unlabeled

samples. Our goal is to visualize the test set in the 2d subspace by projecting the test set on the 2d projection matrix learned

by different methods. We do not compare the proposed LLGDI with Lap-RLS/L and FME for the sub-manifold visualization, as

both of the latter methods are actually derived from regression problem and can only reduce the dimensionality reduction to the

number of class c (c is usually larger than 2). The simulation results are shown in Figs. 6–9. From the simulation results, we can

observe: (1) for unsupervised methods such as PCA and LPP, the sub-manifold structure can be well preserved. LPP delivers better

performance than PCA due to the characteristics of LPP that the local information embedded in dataset is preserved; (2) all the

supervised and semi-supervised methods outperform unsupervised methods such as PCA and LPP due to the utilization of label

information; (3) the proposed LLGDI can achieve the much better performance than other methods (especially in COIL100 and

MIT datasets), in a way that the sub-manifold of each object is closely conglomerated, while those belonging to different objects

are clearly separated. The main reason is that LLGDI has incorporated local discriminative information into learning hence is

more suitable for handling classification problem.
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Fig. 6. Visualization performance of different methods: COIL100 dataset (first 5 classes, each color represents an object) (a) PCA, (b) LPP, (c) LDA, (d) SDA, (e)

SDA2, (f) LLGDI.

Fig. 7. Visualization performance of different methods: UMNIST dataset (first 5 classes, each color represents an object) (a) PCA, (b) LPP, (c) LDA, (d) SDA, (e)

SDA2, (f) LLGDI.
5.4. Parameter analysis

In this subsection, we will give the parameter analysis for the LLGDI method. Note that following Eq. (30), the LLGDI method

includes three main parameters, i.e. the local discriminative regularized parameter αm, the global discriminative regularized

parameter αr and the number of neighborhoods k. We only need to provide the detailed analysis for the three parameters. Here,

we first fix the number of neighborhoods k to a certain value, i.e. k = 10, and then evaluate the classification performance by
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Fig. 8. Visualization performance of different methods: MIT dataset (first 5 classes, each color represents an object) (a) PCA, (b) LPP, (c) LDA, (d) SDA, (e) SDA2,

(f) LLGDI.

(a) (b) (c)

(d) (e) (f)

Fig. 9. Visualization performance of different methods: CASIA-HWDB dataset (first 5 classes, each color represents an object) (a) PCA, (b) LPP, (c) LDA, (d) SDA,

(e) SDA2, (f) LLGDI.
choosing different values of αm and αr , where the candidate set for αm and αr is from {10−9
, 10−6

, 10−3
, 100

, 103
, 106

, 109}. Next,

after αm and αr have been tuned to their best value, we study the variation of performance by tuning the number of k from

4 to 40.

The average classification accuracies over random splits of six different datasets with varied αm and αr (k = 10) are shown

in Fig. 10, and the detailed parameter analysis are given in Section 5.4. But in summary, we can draw the conclusion that for
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(a) 4 labels per class
UMNIST dataset

(b) 7 labels per class
UMNIST dataset

(c) 10 labels per class
UMNIST dataset

(a) 4 labels per class
Extended Yale-Bdataset

(b) 7 labels per class
Extended Yale-B dataset

(c) 10 labels per class
Extended Yale-B dataset

(a) 2 labels per class
MIT-CBCL dataset

(b) 3 labels per class
MIT-CBCL dataset

(c) 4 labels per class
MIT-CBCL dataset

(a) 2 labels per class
COIL100 dataset

(b) 3 labels per class
COIL100 dataset

(c) 4 labels per class
COIL100 dataset

(a) 2 labels per class
ETH80 dataset

(b) 3 labels per class
ETH80 dataset

(c) 4 labels per class
ETH80 dataset

(a) 2 labels per class
CASIA-HWDB dataset

(b) 5 labels per class
CASIA-HWDB dataset

(c) 8 labels per class
CASIA-HWDB dataset

Fig. 10. The average accuracies over random splits of UMNIST, Extended Yale-B, MIT-CBCL, COIL100, ETH80 and Digit datasets with varied αm ∈
{10−9

, 10−6
, 10−3

, 100
, 103

, 106
, 109} and αr ∈ {10−9

, 10−6
, 10−3

, 100
, 103

, 106
, 109}.
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(a) UMNIST dataset (b) Extended Yale-B dataset (c) MIT-CBCL dataset

(d) COIL100 dataset (e) ETH80 dataset (f) CASIA-HWDB dataset
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Fig. 11. The average accuracies over random splits of UMNIST, Extended Yale-B, MIT-CBCL, COIL100, ETH80 and Digit datasets with varied number of nearest

neighbors k from 4 to 40.
most datasets, LLGDI method works better when αm is large and αr is small. For example, for UMNIST, COIL100 and ETH80

datasets, LLGDI can achieve much better classification accuracies when αm ≥ 1 and αr ≤ 10−3; for Extended Yale-B, MIT-CBCL

and CASIA-HWDB datasets, such good results can be obtained when 1 ≤ αm ≤ 106 and αr ≤ 10−3. The above observations indicate

that for LLGDI the local regression regularized term plays a more important role in calculating the projection matrix than the

global regression regularized term. This is reasonable because the local regression regularized term characterizes discriminative

information and local geometrical structure of a dataset. Thus LLGDI can preserve more discriminative information instead of

only relying on the global regression regularized term. In practice, since the proposed LLGDI is relatively robust to the parameter

αr . When αr is small (αr ≤ 10−3), we can simply set αr = 10−9 and adjust αm from 1 ≤ αm ≤ 106 for conducting the simulations.

After αm and αr are best tuned according to the above process, we then study the variation of classification performance by

adjusting the number of k from 4 to 40. Fig. 11 shows the average classification accuracies over a number of random splits of six

different datasets with varied k. From Fig. 11, we can see that for most datasets, LLGDI is robust to the parameter k if k is not too

small. For example, in UMNIST, MIT-CBCL and COIL100 datasets, the classification accuracies will almost have no change when

k ≥ 16. Such trends can also be observed in other datasets. In practice, since most of the datasets have wide intervals of k, we

can easily set k for simulations given k is not too small. Clearly, a method that has wide intervals of parameters means it is more

robust to the parameters, which is more suitable and impractical for real-world image classification.

5.5. Analysis of normalized weight vector

In this subsection, we will evaluate the effectiveness of the normalized weight vector. Note that the special weight vector is

to normalize the graph Laplacian matrix of local regression term. The normalization can strengthen the local regressions in the

low-density region but weaken those in the high density region, which is to handle the dataset with multi-density distribution or

imbalanced dataset. This can be useful as sampling is usually not uniform in practice, and over-emphasizing the neighborhoods

with high densities may occlude the information in sparse regions. Our objective is to show the effectiveness of the special

weight vector for handling multi-density distributed dataset from a view of visualization instead of classification.

In this study, we first choose three classes from COIL100, MIT-CBCL and CASIA-HWDB datasets to form training set. We also

let the number of sampled data in each class different from each other, which is used to make the dataset imbalanced or multi-

density distributed. In each training set, we randomly select 2 samples per class as labeled set for COIL100 and MIT datasets

while select 5 samples per class for CASIA-HWDB dataset. The remaining samples per class are selected as unlabeled set. We are

then visualize the training set in the 2d subspace by projecting the training set on the 2d projection matrix learned by LLGDI

without normalization and LLGDI with normalization.

Fig. 12 shows simulation results. From Fig. 2, we can observe that the LLGDI with normalization can achieve much better

performance than LLGDI without normalization, in a way that the sub-manifold of each object is closely conglomerated, while

those belonging to different objects are clearly separated. For example in MIT-CBCL dataset, the green object is with high-density



306 M. Zhao et al. / Information Sciences 324 (2015) 286–309

Fig. 12. Visualization performance compared between LLGDI without normalization and LLGDI with normalization of COIL100, MIT-CBCL and CASIA-HWDB

datasets (first 3 classes with different class numbers, each color represents an object). (For interpretation of the references to color in the text, the reader is

referred to the web version of this article.)
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distribution. Without normalization, the red and blue objects, which are with low-density distribution, will get close to the green

object. However, after normalization by utilizing the special weight vector, the local regressions in the low-density region (red

and blue objects) will be strengthened while those in the high-density region (green object) will be weakened. As a result, the

red and blue objects will be closely conglomerated to their own classes, making the three classes well separated from each other.

The similar observations can also be obtained from other datasets, which verify the effectiveness of the special weight vector for

handling multi-density dataset.

6. Conclusion

In this paper, we propose an effective LLGDI method for semi-supervised regression and dimensionality reduction. LLGDI

is aimed at characterizing local and global discriminative manifold structure in a given dataset. This paper theoretically shows

SDA can be addressed as a least square framework. An interesting equivalent relationship between SDA and Lap-RLS/L is derived

under the uncorrelated constraint. As a result, the least square solution can be used for regression as well as subspace learning

problem.

We propose the LLGDI method to preserve local discriminative, manifold information as well as the global discriminative

information. Our study shows LLGDI can achieve better performances in almost all the studied cases. By adding an uncorrelated

constraint to the objective function, LLGDI is extended to a dimensionality reduction method. As a result, LLGDI is able to solve

regression and dimensionality reduction problem simultaneously. It is useful to show the connections between LLGDI and other

methods. Theoretical results indicate other semi-supervised methods such as Lap-RLS/L, FME can be the special cases of LLGDI.

Despite being able to deliver promising results for image classification and visualization, LLGDI can be further improved. First,

LLGDI method uses two parameters to balance the tradeoff between normalized local discriminative regularized term and global

discriminative regularized term. In this study, they are determined using five-fold cross validation. Introducing a way to adap-

tively adjust the parameters would provide computational advantageous and performance improvement [20]. Second, we have

added a special weight vector to each local regression error for normalizing graph Laplacian matrix. This approach is effective for

handling multi-density dataset, but deriving a new weight vector to eliminate the effects of outliers before normalization would

be useful especially when dataset has outlier problem. Finally, instead of solving image classification and visualization problem,

how to utilize LLGDI for some real-world applications, such as content based image retrieval (CBIR) or even multimedia retrieval

[30,31], are other challenges and of great importance. Our proposed method can be extended or improved to be applicable for

these tasks.
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Appendix

In order to prove that Ld is graph Laplacian matrix, we need to prove Ld is positive semi-definite matrix and the sum of each

row or column of Ld is equal to zero. We first have the following lemmas:

Lemma 3. For each local patch Xj, L j can be reformulated as follows:

L j = ηGj

(
GT

j XT
j XjG j + ηI
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GT
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Proof of Lemma 3. First, it can be easily noted that G jG
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Then, we have:
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= GjG
T
j − Gj

(
GT

j XT
j XjG j + ηI − ηI

)(
GT

j XT
j XjG j + ηI

)−1
GT

j

= ηGj

(
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j XT
j XjG j + ηI

)−1
GT

j . (43)

The second equation holds as A(AT A + λI)−1 = (AAT + λI)−1A, for any matrix A. We thus prove Lemma 3.

Lemma 4. Given a positive semi-definite matrix C, DCDT is a positive semi-definite matrix for any matrix D.

Lemma 5. Given a set of positive semi-definite matrixes {C1,C2 . . . ,Cn}, then
∑n

j=1 Cj is a positive semi-definite matrix.

We neglect the proofs of Lemmas 4 and 5 as they can be seen in [7,32]. Then with Lemmas 3–5, we can easily prove Theorem 4

as follows:

Proof of Theorem 4. Note that following Lemma 3, we reformulate each L j as L j = ηG j(GT
j
XT

j
XjG j + ηI)−1GT

j
. It can

be noted (GT
j
XT

j
XjG j + ηI)−1 is a positive semi-definite matrix, then, following Lemmas 4 and 5, we have each

ηS jG j(GT
j
XT

j
XjG j + ηI)−1GT

j
ST

j
is positive semi-definite matrix and Ld , i.e.
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is also positive semi-definite matrix.

In addition, for each ηS jG j(GT
j
XT

j
XjG j + ηI)−1GT

j
ST

j
, we have ST
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eT = eT
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⇒ LdeT =
∑l+u

j=1

(
ηS jG j

(
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j XT
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j ST
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)
eT = 0. (45)

which indicates that the sum of each row or column of Ld is equal to zero. We thus prove Ld is graph Laplacian matrix.
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