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Abstract

In numerical algebraic geometry, a witness point set W is a key object for performing nu-
merical computations on a projective scheme X of pure dimension d > 0 defined over C.
If X is arithmetically Cohen-Macaulay, W can also be used to obtain information about X,
such as the initial degree of the ideal generated by X and its Castelnuovo-Mumford reg-
ularity. Due to this relationship, we develop a new numerical algebraic geometric test for
deciding if X is arithmetically Cohen-Macaulay using points which lie (approximately) on
a general curve section C of X. For any curve, we also compute other information such as
the arithmetic genus and index of regularity. Several examples are presented showing the
effectiveness of this method, even when the ideal of X is unknown.
Key words and phrases. Numerical algebraic geometry, witness set, arithmetically
Cohen-Macaulay, Castelnuovo-Mumford regularity, arithmetic genus
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1 Introduction

Let Pn denote the projective space of dimension n over C and let X ⊂ Pn be a pure-dimensional
projective scheme of dimension d > 0. A fundamental goal in computational algebraic geom-
etry is to compute information about X, especially when the ideal of X is not known. If X
is arithmetically Cohen-Macaulay (aCM), information about X, such as the initial degree of
the ideal generated by X, Castelnuovo-Mumford regularity, Hilbert function, Hilbert polyno-
mial, and Hilbert series, can be recovered from general hyperplane (and hypersurface) sections
of X. Therefore, a procedure for deciding the arithmetically Cohen-Macaulayness of a scheme
is a key problem in computational algebraic geometry. For any curve (a pure-dimensional pro-
jective scheme of dimension 1), invariants such as the arithmetic genus, Castelnuovo-Mumford
regularity, and index of regularity also provide important information.

Since defining equations for X may not be known, e.g., X may be a pure-dimensional com-
ponent of some other scheme Y or the image of an algebraic set under an algebraic map, we
propose a test for deciding if X is aCM given the following. First, one needs the ability to sample
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points lying (approximately) on each irreducible component of a general curve section of X. If
each such component is generically reduced, then this is all that is required. For each generically
nonreduced component C of the general curve section of X, one needs to be able to compute
the local multiplicity structure, via a Macaulay dual space, with respect to the intersection of C
and a general hyperplane. For example, suppose that f is a system of homogeneous polynomials
and, by abuse of notation, define f−1(0) to be the scheme defined by f . These computations can
be performed when X is a pure-dimensional subset of the scheme f−1(0). That is, X may be a
proper subset of f−1(0) so that equations defining X exactly are not known, e.g., see Section 5.5.

One key fact of schemes of dimension at least 2 is that arithmetically Cohen-Macaulayness
is preserved under slicing by a general hyperplane (or hypersurface). In particular, a pure-
dimensional scheme X of positive dimension is aCM if and only if a general curve section of X is
aCM. A numerical test is provided in [17] that determines if a curve C is aCM. This test relies on
computing Hilbert functions of zero-dimensional schemes defined by intersecting C with general
hypersurfaces of various degrees. Due to the increasingly higher degree zero-dimensional schemes
under consideration, this test becomes impractical for curves of even moderate degree.

The main result of this paper is an effective version of a test for arithmetically Cohen-
Macaulayness (Corollary 3.3) which immediately yields an algorithm given the ability to com-
pute Hilbert functions up to a specified degree. Section 2.5 considers this Hilbert function
computation building on [13] (see also [23]). The upper bound on our test is sharp, as demon-
strated by the example in Section 5.3, which is also used to compare our new approach with
that of [17]. We also describe how to compute other invariants for any curve.

Two important topics related to symbolic computations in algebraic geometry are minimal
free resolutions and complexity of Gröbner basis computations. The arithmetically Cohen-
Macaulayness of a scheme is related to the length of a minimal free resolution via the relationship
between projective dimension and depth in the Auslander-Buchsbaum formula (see [8] for a
general overview). Over fields of characteristic zero, e.g., Q and C, the Castelnuovo-Mumford
regularity of the ideal I defining a scheme X is equal to the maximum degree of the elements
in a Gröbner basis when working with generic coordinates in the reverse lexicographic ordering
(see [6] for more information). Thus, the Castelnuovo-Mumford regularity provides a measure
of complexity for performing symbolic computations on I.

The arithmetic genus and geometric genus are two invariants of a curve C of particular
interest in computational algebraic geometry. These genera must be equal if C is smooth. A
numerical algebraic geometric procedure for computing the geometric genus is presented in [5]
which was extended in [19] to curves which arise as the image of an algebraic set under a
polynomial map. The geometric genus of a general four-bar coupler curve was verified to be one
in [5] with the arithmetic genus of such a curve computed in Section 5.1.

Even though it is not directly related to deciding the arithmetically Cohen-Macaulayness of
a projective scheme, we note that a symbolic-numeric approach for computing Hilbert functions
and Hilbert polynomials in local rings is described in [23]. This approach is based on computing
the Macaulay dual space of an ideal at a point that (approximately) lies in the solution set of
the ideal. There are no assumptions related to the point, e.g., multiple components could pass
through the point including embedded components. The practicality of this approach, especially
for high dimensional components, is limited by the stopping criterion which requires that the
Macaulay dual space is computed in degree up to twice the maximum degree of a “g-corner.”

The rest of this article is organized as follows. Section 2 provides the necessary background
information to describe the numerical algebraic geometry methods used throughout. Section 3
develops an algorithm for deciding the arithmetically Cohen-Macaulayness of a curve with Sec-
tion 4 considering the general case. Several examples are presented in Section 5. In particular,
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Section 5.2 considers σ4(P2×P2×P3), which is related to the so-called Salmon problem [1]. Sec-
tion 5.4 studies a problem arising from theoretical physics related to the nature of the vacuum
space in the Minimal Supersymmetric Standard Model.

2 Background

2.1 Arithmetically Cohen-Macaulay

A positive dimensional projective scheme X with ideal sheaf IX is said to be arithmetically
Cohen-Macaulay (aCM) if

Hi
∗(IX) = 0 for 1 ≤ i ≤ dimX (1)

where Hi
∗(IX) denotes the ith cohomology module of IX . Equivalently, a projective scheme X

is aCM if and only if its coordinate ring has Krull dimension equal to its depth [24] (in this case,
the coordinate ring is called a Cohen-Macaulay ring). All zero-dimensional schemes are aCM
and a consequence of the above definition is that all aCM schemes must be pure-dimensional.

Example 2.1 Consider the curves in P3:

C = {(s3, s2t, st2, t3) | (s, t) ∈ P1} and Q = {(s4, s3t, st3, t4) | (s, t) ∈ P1}

with corresponding ideals

I(C) = 〈xz − y2, yw − z2, xw − yz〉 and I(Q) = 〈xw − yz, x2z − y3, xz2 − y2w, z3 − yw2〉.

The curve C is the twisted cubic curve while Q is a smooth rational quartic curve. The twisted
cubic curve C is well-known to be aCM while [10, Ex. 1.7] shows that Q is not. We verify
this statement using the definition by comparing the Krull dimension and depth. Clearly,
both coordinates rings have Krull dimension 2. Computations using the Depth package of
Macaulay2 [12] find that the depth of C is 2 and the depth of Q is 1.

The cohomology characterization presented in (1) imposes conditions on the Hilbert function,
which is defined next. For a curve, Corollary 3.3 presents an effective test of arithmetically
Cohen-Macaulayness that can be performed using numerical algebraic geometric computations.

2.2 Hilbert functions, genus, and regularity

Let X ⊂ Pn be a projective scheme with corresponding homogeneous ideal I ⊂ C[x0, . . . , xn].
Let C[x0, . . . , xn]t denote the vector space of homogeneous polynomials of degree t, which has
dimension

(
n+t
t

)
, and It = I ∩ C[x0, . . . , xn]t. The Hilbert function of X is defined as

HFX(t) =

{
0 if t < 0(
n+t
t

)
− dim It otherwise.

(2)

The initial degree of X is the smallest t such that dim It > 0. If X = Pn, that is, I = 〈0〉,
then the initial degree is defined as −∞. If X = ∅, that is, I = 〈1〉, then the initial degree is 0.
For all other schemes X ⊂ Pn, the initial degree is a positive integer.

Since HFX(t) = 0 for t < 0, we will express HFX via the list HFX(0), HFX(1), HFX(2), . . . .
The generating function of HFX is called the Hilbert series of X, namely

HSX(t) =

∞∑
j=0

HFX(j) · tj .
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One key operation on Hilbert functions is taking differences, e.g., the first difference ofHFX is

∆HFX(t) = HFX(t)−HFX(t− 1) for all t ∈ Z.

By (2), we know ∆HFX(t) = 0 for t < 0 and ∆HFX(0) = 1. One can also iterate this process.
For example, the kth difference of HFX is

∆kHFX(t) = ∆ ◦ · · · ◦∆︸ ︷︷ ︸
k times

HFX(t).

The Hilbert function of X becomes polynomial in t for t � 0. That is, there exists a
polynomial HPX , called the Hilbert polynomial of X, such that HFX(t) = HPX(t) for all t� 0.
The Hilbert polynomial has rational coefficients with highest degree term degX

(dimX)! · t
dimX . When

X is a curve, the Hilbert polynomial of X has the form

HPX(t) = degX · t+ (1− gX) (3)

where gX is the arithmetic genus of X.

Example 2.2 Consider the quartic curve Q ⊂ P3 from Ex. 2.1. From the generators of I(Q),
it is easy to compute, e.g., via Macaulay2 [12], the following:

HFQ = 1, 4, 9, 13, 17, 21, 25, . . . , HSQ(t) = (1 + 2t+ 2t2− t3)/(1− t)2, and HPQ(t) = 4t+ 1.

From HFQ, the initial degree of Q is 2. From HPQ and (3), the arithmetic genus of Q is gQ = 0.

We will discuss two types of regularity for X. The index of regularity of X is the smallest
integer ρX such that HFX(t) = HPX(t) for all t ≥ ρX . Let IX be the sheafification of the
ideal I corresponding to X. The Castelnuovo-Mumford regularity of X is

regX = min{m | Hi(IX(m− i)) = 0 for all i > 0}.

If X is aCM, ρX , regX, and dimX are related as follows.

Proposition 2.3 Suppose that X ⊂ Pn is an aCM scheme.

1. regX = ρX + dimX + 1.

2. Let L ⊂ Pn be a general linear space with codimL ≤ dimX and Z = X ∩ L. Then,
regZ = regX and ρZ = ρX + codimL.

Proof. See, for example, [7, Remark 2.5a] for Item 1. Item 2 follows immediately by combining
[24, pg. 30] and Item 1. 2

For aCM schemes, this proposition shows that the index of regularity increases under inter-
section with a general hyperplane. Thus, the index of regularity can be negative so that the
Hilbert polynomial has roots at negative integers. Section 5.2 presents an example of this.

The following will be used in Section 3 for computing regC where C ⊂ Pn is a curve, that
is, a union of irreducible one-dimensional projective schemes.

Proposition 2.4 Let C ⊂ Pn be a curve and H ⊂ Pn be a general hyperplane. If W = C ∩H,

regC = max{ρC + 1, ρW + 1} = min{t ≥ ρW + 1 | ∆HFC(t) = HFW (ρW )}. (4)
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Proof. By [7, Lemma 2.6], regC = max{ρC + 1, regW}. Since dimW = 0, W is aCM yielding
regW = ρW + 1 by Item 1 of Prop. 2.3 and HFW (ρW ) = degC. The last equality thus follows
from [7, § 3]. 2

For example, using the notation of Prop. 2.4, if C is also aCM, then ρW = ρC + 1 so that

regW = regC = ρW + 1 = ρC + 2. (5)

Example 2.5 From HFQ and HPQ presented in Ex. 2.2, we have ρQ = 2. If W = Q ∩ H for
a general hyperplane H ⊂ P3, one can use [13] to compute HFW = 1, 3, 4, 4, . . . and ρW = 2.
Hence, (4) yields regQ = 3 and, since (5) does not hold, this again shows Q is not aCM.

2.3 Witness sets

Both Prop. 2.3 and 2.4 consider general linear sections of schemes. This is amenable to numerical
algebraic geometry where the fundamental data structure of an irreducible algebraic set, a
witness set, is based on linear sections of complimentary dimension.

Let f be a system of homogeneous polynomials in C[x0, . . . , xn] and V ⊂ Pn be an irreducible
algebraic set of dimension d which is an irreducible component of V(f) = {x ∈ Pn | f(x) = 0}.
Then, a witness set for V is a triple {f,L,W} where L ⊂ Pn is a general linear space of
codimension d and W = V ∩ L ⊂ Pn, a witness point set consisting of deg V points. We refer
the reader to [25] for more details about witness sets.

Example 2.6 Let C ⊂ P3 be the twisted cubic curve, as described in Ex. 2.1, and

f(x, y, z, w) =

[
xz − y2
yw − x2

]
.

Clearly, V(f) = C∪V(x, y). So, a witness set for C is {f,L,W} where L = V(x+y−z+2w) and

W = {(8,−4, 2,−1), (2, 1 +
√
−3,−1 +

√
−3,−2), (2, 1−

√
−3,−1−

√
−3,−2)} ⊂ P3.

We note that L is defined via a linear polynomial with integer coefficients only for illustration.

One key operation in numerical algebraic geometry, called sampling, is the ability to use a
witness set {f,L,W} for V to produce a collection of arbitrarily close numerical approximations
of arbitrarily many smooth points on V . In particular, suppose that x ∈ W = V ∩ L and let
L∗ ⊂ Pn be a linear space of codimension d. Consider the path z(t) : [0, 1] → V defined by
z(1) = x and z(t) ∈ V ∩ (t · L+ (1− t) · L∗). Except on a Zariski closed proper subset of choices
for L∗, z(t) is a smooth point of V for all t ∈ [0, 1], i.e., z(0) is also a smooth point of V . We
note the smooth points of V are (path) connected since V is irreducible.

Rather than consider V as an irreducible component of V(f) ⊂ Pn, one can consider V as
a subscheme of the scheme defined by f which, by abuse of notation, we will denote as f−1(0).
For simplicity, we also say that {f,L,W} is a witness set for the scheme V . The system f can
be used to obtain the local scheme structure at generic points of V . If the multiplicity of V
with respect to f is greater than 1, we can use isosingular deflation [20] to compute another
system fV of homogeneous polynomials in C[x0, . . . , xn] such that, as a set, V ⊂ V(fV ) and has
multiplicity 1 with respect to fV . That is, one uses fV to sample points on V but uses f to
compute the Macaulay dual space, which is described in the following subsection.
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We close this subsection by considering one other “type” of witness set, namely a pseu-
dowitness set [18, 19]. For simplicity, suppose that f : Cn → Cm is a polynomial system and
and π : Cn → Ck is a projection onto the first k coordinates. Let V ⊂ V(f) be an irre-
ducible component of dimension d and thus Y = π(V ) ⊂ Ck is an irreducible algebraic set.
The scheme of interest is the projectivization of Y , denoted X = P(Y ) ⊂ Pk, which can be
sampled via Y . Thus, a pseudowitness set for Y is the quadruple {f, π,L,W} where L ⊂ Cn
is the linear space of codimension d constructed below and W = V ∩ L. If ` = dimY ≤ d, let
L : Ck → C` and L′ : Cn → Cd−` be systems consisting of general linear polynomials. Then,
L = V(L(x1, . . . , xk), L′(x1, . . . , xn)) ⊂ Cn. With this setup, |π(W )| = deg Y .

2.4 Macaulay dual spaces

One way to computationally understand the local structure of a scheme is via Macaulay dual
spaces. Since this will be exploited in Section 2.5, the following provides a brief overview with
expanded details presented in the books [22, 26].

For α = (α0, . . . , αn) where αi ∈ Z≥0, define

|α| = α0 + · · ·+ αn, α! = α0! · · ·αn!, and xα = xα0
0 · · ·xαnn .

For a fixed x∗ ∈ Cn+1, let ∂α : C[x0, . . . , xn]→ C be the operator defined by

f 7→ 1

α!

∂|α|f

∂xα

∣∣∣∣
x=x∗

so that ∂α

 ∑
β∈(Z≥0)n+1

cβ(x− x∗)β
 = cα.

For convenience, we often write ∂α as ∂xα which simply computes the coefficient of (x− x∗)α in
a Taylor series expansion centered at x∗. In particular, for α = 0, since xα = 1, we will write
∂α as ∂1 which simply yields the constant term of the Taylor series expansion centered at x∗.
For j ≥ 0, consider the linear space of all such differential operators spanned by elements of the
form ∂α with |α| ≤ j, namely

Dj
x∗ =

∑
|α|≤j

cα∂α

∣∣∣∣∣∣ cα ∈ C

 .

Then, for an ideal I ⊂ C[x0, . . . , xn], the jth Macaulay dual space of I at x∗ is

Dj
x∗ [I] =

{
∂ ∈ Dj

x∗

∣∣∣ ∂(g) = 0 for all g ∈ I
}
.

Numerical approaches for computing Dj
x∗ [I] using closedness subspaces are presented in [15, 27].

Example 2.7 For I = 〈x2 − z2, xz − z2, xy − z2〉 ⊂ C[x, y, z] and x∗ = 0 ∈ C3, one has

D0
0[I] = span{∂1},

D1
0[I] = span

(
D0

0[I] ∪ {∂x, ∂y, ∂z}
)
,

D2
0[I] = span

(
D1

0[I] ∪ {∂x2 + ∂xy + ∂xz + ∂z2 , ∂y2 , ∂yz}
)
,

D3
0[I] = span

(
D2

0[I] ∪ {∂x3 + ∂x2y + ∂x2z + ∂xy2 + ∂xyz + ∂xz2 + ∂yz2 + ∂z3 , ∂y3 , ∂y2z}
)
.
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The particular case of interest is when I ⊂ C[x0, . . . , xn] is a homogeneous ideal such that
x̂ ∈ Pn is an isolated point of V(I) = {x ∈ Pn | f(x) = 0 for all f ∈ I}. By treating x̂ ∈ Pn as
a line through the origin in Cn+1, a random affine hyperplane A ⊂ Cn+1 will intersect this line
in one point, say x∗ ∈ Cn+1. If p is a linear polynomial such that A = V(p), consider the ideal
J = I + 〈p〉 ⊂ C[x0, . . . , xn]. Since x∗ is an isolated point in V(J) ⊂ Cn+1,

Dx∗ [J ] =

∞⋃
j=0

Dj
x∗ [J ]

is a vector space of dimension equal to the multiplicity of x∗ with respect to J . In partic-

ular, there must exist j∗ ≥ 0 such that Dj∗

x∗ [J ] = Dj
x∗ [J ] for all j ≥ j∗. The vector space

Dx∗ [J ] = Dj∗

x∗ [J ] is called the Macaulay dual space of J at x∗ and a Macaulay dual basis is any
basis of this finite-dimensional vector space.

Example 2.8 Reconsider I ⊂ C[x, y, z] from Ex. 2.7 with x̂ = (0, 1, 0) ∈ P2. By taking
A = V(p) where p(x, y, z) = 2x+ 3y − 4z − 6, we have

J = 〈x2 − z2, xz − z2, xy − z2, 2x+ 3y − 4z − 6〉 and x∗ = (0, 2, 0) ∈ C3.

One can easily compute

D0
x∗ [J ] = span{∂1},

D1
x∗ [J ] = span

(
D0
x∗ [J ] ∪ {4∂y + 3∂z}

)
,

D2
x∗ [J ] = D1

x∗ [J ]

so thatDx∗ [J ] = D1
x∗ [J ]. Thus, x∗ and x̂ have multiplicity 2 with respect to J and I, respectively.

2.5 Interpolation

The key computational step in our approach for deciding the arithmetically Cohen-Macaulayness
of a curve is the computation of the Hilbert function of the curve and its general hyperplane
section in particular degrees. For zero-dimensional schemes, such as the general hyperplane
section of a curve, the Hilbert function and index of regularity can be computed using the
approach of [13] after fixing a general affine patch as in Section 2.4. For curves (and higher
dimensional schemes), the Hilbert function in a particular degree can be computed by considering
a sufficiently large zero-dimensional subscheme (see also [23]). This computation is summarized
in Algorithm 1 which uses the ability to sample points on each irreducible component of a curve
and compute Macaulay dual spaces when the multiplicity is greater than one.

For a finite set of points W , HFW (t) is simply the rank of the matrix whose rows are the tth

degree Veronese embedding of the points in W . If a point has scheme structure defined via a
Macaulay dual space, the corresponding matrix constructed via [13] has a row for each element
of a Macaulay dual basis for each point.

Theorem 2.9 Subject to genericity, Algorithm 1 is an algorithm that computes HFC(t).

Proof. Using the notation of Algorithm 1, we clearly have 0 ≤ h1 ≤
(
n+t
t

)
. Since either h1

must increase by at least one or remain the same during each loop, Algorithm 1 terminates in at
most

(
n+t
t

)
loops. Since I(C) ⊂ I(S), we always have h1 = HFS(t) ≤ HFC(t) ≤

(
n+t
t

)
. Thus,

if h1 =
(
n+t
t

)
, then HFC(t) =

(
n+t
t

)
.
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Algorithm 1 Numerical computation of HFC(t)

Input: A collection of irreducible curves C1, . . . , Cr ⊂ Pn where each Ci is represented via a
witness set {fi,Li,Wi} and an integer t ≥ 1.

Output: HFC(t) where C := C1 ∪ · · · ∪ Cr.
1: Initialize h0 := −1, h1 := 0, and S := ∅.
2: while h0 6= h1 and h1 <

(
n+t
t

)
do

3: Set h0 := h1.
4: for i = 1, . . . , r do
5: Use sampling (possibly facilitated using isosingular deflation [20]) to compute a point

ĉ ∈ Pn contained in Ci ∩ H where H ⊂ Pn is a random hyperplane. Let ` be a linear
form so that H = V(`).

6: Pick a random affine patch of Pn via a random affine linear polynomial p. Compute the
point in Cn+1 corresponding to ĉ in V(p). Denote it by c∗ ∈ Cn+1.

7: Compute a basis Bc∗ for Dc∗ [〈fi, `, p〉] and append {c∗, Bc∗} to S.
8: Compute h1 := HFS(t) =

(
n+t
t

)
− dim I(S)t via [13].

9: return HFC(t) := h1.

Suppose that r = 1, that is, C is irreducible and assume that we have reached where h0 = h1.
If f ∈ I(C)t, then clearly f ∈ I(S)t. If f ∈ I(S)t, then, since ∂1 ∈ Dc[〈fi, `, p〉], standard
interpolation theory provides that f ∈

√
I(C). Since I(C) is a saturated homogeneous primary

ideal, if f /∈ I(C), then the multiplicity of C must be smaller with respect to I(C) + 〈f〉 than
with respect to I(C). However, this is impossible since h0 = h1 ensures that the multiplicity
has not decreased, i.e., I(S)t = I(C)t.

When r > 1, since the algorithm uses points on every irreducible component of C, the
algorithm is simply performing the intersection I(C1)t ∩ · · · ∩ I(Cr)t = I(C)t via [13]. This

follows immediately from linear algebra since the null space of a matrix of the form

[
A
B

]
is

the intersection of the null space of A and the null space of B. 2

Example 2.10 Reconsider I = 〈x2 − z2, xz − z2, xy − z2〉 from Ex. 2.7 now as an ideal in
C[x, y, z, w]. Thus, I defines a curve C ⊂ P3 having two irreducible components C1 and C2 with

I(C1) = 〈x− z, y − z〉, I(C2) = 〈x, z2〉, and I = I(C) = I(C1) ∩ I(C2).

To use Algorithm 1, we will only assume we are given the polynomial system

F (x, y, z, w) =

 x2 − z2
xz − z2
xy − z2


which will be the polynomial system in a witness set one can compute for C1 and C2. From
the witness set, it is easy verify that Cj has multiplicity j with respect to F (and I). Thus,
isosingular deflation [20] is used to construct a polynomial system for sampling C2.

Applying to C1: Since C1 has multiplicity one, applying Algorithm 1 to C1 is simply
computing HFC1(t) by performing standard interpolation at arbitrarily many points in C1. In
this case, each c∗ ∈ C4 is of the form (a, a, a, b) for some a, b ∈ C. For example, to compute
HFC1

(2), each loop adds a row of the form[
a2 a2 a2 ab a2 a2 ab a2 ab b2

]
. (6)
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The resulting values of h1 computed by Algorithm 1 are 1, 2, 3, 3 yielding HFC1
(2) = 3.

Applying to C2: Since C2 has multiplicity two, each new point under consideration in
Algorithm 1 applied to C2 imposes two conditions. In each loop, suppose that ` = `1x+ `2y +
`3z + `4w and p = p1x+ p2y + p3z + p4w − 1 for random `i, pi ∈ C. Then, c∗ ∈ C4 is precisely

c∗ =

(
0,

`4
`4p2 − `2p4

, 0,
`2

`2p4 − `4p2

)
and a basis Bc∗ for Dc∗ [〈F, `, p〉] consists of the following two elements:

∂1 and δ := (`3p4 − `4p3)∂y + (`4p2 − `2p4)∂z + (`2p3 − `3p2)∂w.

For example, to compute HFC2
(2), each loop adds the two rows 0 0 0 0

`24
(`2p4 − `4p2)2

0
−`2`4

(`2p4 − `4p2)2
0 0

`22
(`2p4 − `4p2)2

0 0 0 0
2`4(`4p3 − `3p4))
`2p4 − `4p2

`4
`2`3p4 − 2`2`4p3 + `3`4p2

`2p4 − `4p2
0 −`2

2`2(`2p3 − `3p2))
`2p4 − `4p2

 . (7)

The resulting values of h1 computed by Algorithm 1 are 2, 4, 5, 5 yielding HFC2
(2) = 5.

Applying to C: At each loop, three conditions are added: one from C1 and two from C2.
For example, to compute HFC(2), each loop adds the three rows in (6) and (7). The resulting
values of h1 computed by Algorithm 1 are 3, 6, 7, 7 yielding HFC(2) = 7.

Since the previous example is actually arithmetically Cohen-Macaulay, we now consider a
similar example which is not.

Example 2.11 Consider the ideal I = 〈xy − xz, x2 − xw, yz2 − z3, xz2 − z2w〉 ⊂ C[x, y, z, w]
which defines a curve C ′ ⊂ P3 having two irreducible components C ′1 and C ′2 with

I(C ′1) = 〈x− w, y − z〉, I(C ′2) = 〈x, z2〉, and I = I(C ′) = I(C ′1) ∩ I(C ′2).

Applying to C ′1: Just as with C1 in Ex. 2.10, C ′1 has multiplicity one. Each c∗ ∈ C4

computed by Algorithm 1 is of the form (a, b, b, a) for some a, b ∈ C. For example, to compute
HFC′1(2), each loop adds a row of the form[

a2 ab ab a2 b2 b2 ab b2 ab a2
]
. (8)

The resulting values of h1 computed by Algorithm 1 are 1, 2, 3, 3 yielding HFC′1(2) = 3.
Applying to C ′2: This is the same as described above in Ex. 2.10 since C ′2 is the same as C2.
Applying to C ′: As with Ex. 2.10, each loop adds three conditions: one from C ′1 and two

from C ′2. For example, to compute HFC′(2), each loop adds the three rows in (8) and (7). The
resulting values of h1 computed by Algorithm 1 are 3, 6, 8, 8 yielding HFC′(2) = 8.

3 Computations for a curve

The following considers curves with Section 4 exploring higher-dimensional cases.
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3.1 Computing invariants

Let C ⊂ Pn be a curve, that is, C is a union of one-dimensional irreducible schemes. The defining
equations for C may be unknown, but we assume that we have either a witness set or a pseudo-
witness set for each irreducible component of C, thereby providing the ability to sample points
from each irreducible component of C. We also need the ability to compute HFC(t) for specified
values of t, which, for example using Algorithm 1 only additionally requires the ability to com-
pute the corresponding Macaulay dual spaces for components of multiplicity greater than one.

For a curve C ⊂ Pn, six invariants of interest are the Castelnuovo-Mumford regularity, index
of regularity, arithmetic genus, geometric genus, Hilbert polynomial, and Hilbert series. The
geometric genus can be computed using [5] from a witness set for C. The following uses the
ability to compute HFC(t) via Algorithm 1 given HFW and ρW , both of which can be computed
via [13], to compute the other five invariants.

Castelnuovo-Mumford regularity The Castelnuovo-Mumford regularity regC is derived
from (4) by using Algorithm 1 to compute enough terms of HFC .

Hilbert polynomial, arithmetic genus, and index of regularity If regC > ρW + 1,
then (4) also yields ρC = regC − 1. Thus, HFC(ρC) = HPC(ρC) so that (3) yields

gC = degC · ρC −HFC(ρC) + 1 = HPW (ρW ) · ρC −HFC(ρC) + 1 (9)

HPC(t) = degC · t+ (1− gC) = HPW (ρW ) · t+ (HFC(ρC)−HPW (ρW ) · ρC). (10)

If regC ≤ ρW + 1, then (4) yields ρC ≤ ρW . Since HFC(ρW ) = HPC(ρW ), (3) yields

gC = degC · ρW −HFC(ρW ) + 1 = HPW (ρW ) · ρW −HFC(ρW ) + 1 (11)

HPC(t) = degC · t+ (1− gC) = HPW (ρW ) · t+ (HFC(ρW )−HPW (ρW ) · ρW ). (12)

In this case, ρC = min{−1 ≤ t ≤ ρW | HFC(t) = HPC(t)}.

Hilbert series By adapting [24, p. 28] to this situation, we have

HSC(t) =

∑ρC+1
j=0 ∆2HFC(j) · tj

(1− t)2
. (13)

Example 3.1 Consider the degree 8 curve in P3 derived from [10, Ex. 1.7]:

C = {(s8, s7t, st7, t8) | (s, t) ∈ P1}.

It is easy to verify that the corresponding ideal is

I(C) = 〈xw−yz, x6z−y7, x5z2−y6w, x4z3−y5w2, x3z4−y4w3, x2z5−y3w4, xz6−y2w5, z7−yw6〉.

Let H be a general hyperplane and W = C ∩H. Using [13], we find that

HFW = 1, 3, 5, 7, 8, 8 and ρW = 4.

Using Algorithm 1, we find that

HFC = 1, 4, 9, 16, 25, 36, 49, 57, ∆HFC = 1, 3, 5, 7, 9, 11, 13, 8, ∆2HFC = 1, 2, 2, 2, 2, 2, 2,−5.

10



Hence, regC = 7 and ρC = regC − 1 = 6. Additionally, (9), (10), and (13) yield

gC = 8 · 6− 49 + 1 = 0, HPC(t) = 8t+ 1, HSC(t) =
1 + 2t+ 2t2 + 2t3 + 2t4 + 2t5 + 2t6 − 5t7

(1− t)2
.

The geometric genus of a curve is the arithmetic genus of the desingularization of the curve.
Since the curve in Ex. 3.1 is smooth, its geometric genus is equal to its arithmetic genus,
namely 0. Section 5.1 compares these genera on a nonsmooth curve.

3.2 Testing arithmetically Cohen-Macaulayness of a curve

The following tests the arithmetically Cohen-Macaulayness of a curve.

Theorem 3.2 Let C ⊂ Pn be a curve, H ⊂ Pn be a general hyperplane, and W = C∩H. Then,
C is aCM if and only if ∆HFC(t) = HFW (t) for all t ≥ 0.

Proof. Since C is a curve, C is aCM if and only if H1
∗ (IC) = 0. By [24, Prop. 1.3.4], this is

equivalent to J = I(C)+〈`〉 being a saturated ideal in R := C[x0, . . . , xn] where H = V(`). That
is, C is aCM if and only if J = I(W ). Since J ⊂ I(W ), this is equivalent to HFR/J(t) = HFW (t)
for all t ≥ 0. The result now follows since HFR/J(t) = ∆HFC(t) because C is a curve. 2

The following is a so-called effective version of Theorem 3.2.

Corollary 3.3 Let C ⊂ Pn be a curve, H ⊂ Pn be a general hyperplane, and W = C ∩ H.
Then, C is aCM if and only if ∆HFC(t) = HFW (t) for all 1 ≤ t ≤ ρW + 1.

Proof. Clearly, ∆HFC(0) = HFW (0) = 1 and HFW (ρW ) = HFW (ρW + t) for all t ≥ 0. If
∆HFC(ρW + 1) = HFW (ρW + 1) = HFW (ρW ), then ρC + 1 ≤ ρW + 1 so that ρC ≤ ρW . Hence,
HPC(ρW + t) = HFC(ρW + t) for all t ≥ 0 which yields

∆HFC(ρW + t) = HFW (ρW + t) = HFW (ρW ) for all t ≥ 1.

In particular, we have shown that ∆HFC(t) = HFW (t) for 1 ≤ t ≤ ρW + 1 is equivalent to
∆HFC(t) = HFW (t) for all t ≥ 0. Therefore, the statement holds by Theorem 3.2. 2

Section 5.3 provides an example that is not aCM such that ∆HFC(t) = HFW (t) for all
1 ≤ t ≤ ρW . Hence, the effective upper bound ρW + 1 provided in Corollary 3.3 is sharp.

Corollary 3.3 immediately yields an algorithm for determining the arithmetically Cohen-
Macaulayness of a curve C. As discussed in Section 2.5, [13] can be used to compute both
HFW and ρW , where W is a general hyperplane section of C, upon fixing a general affine patch.
Additionally, Algorithm 1 can be used to compute HFC(1), . . . ,HFC(ρW +1) with HFC(0) = 1.
Thus, C is aCM if and only if HFC(t)−HFC(t− 1) = HFW (t) for t = 1, . . . , ρW + 1.

Example 3.4 Recall the curves C and Q in P3 introduced in Ex. 2.1. Let H be a general
hyperplane, WC = C ∩H, and WQ = Q ∩H. For the twisted cubic curve C, we compute

HFWC
= 1, 3, 3, ρWC

= 1, HFC = 1, 4, 7, ∆HFC = 1, 3, 3.

Since ∆HFC(t) = HFWC
(t) for 1 ≤ t ≤ ρWC

+ 1 = 2, Corollary 3.3 shows C is aCM.
Similarly, for the quartic curve Q, we compute

HFWQ
= 1, 3, 4, 4, ρWQ

= 2, HFQ = 1, 4, 9, 13, ∆HFQ = 1, 3, 5, 4.

Since ∆HFQ(2) = 5 6= 4 = HFWQ
(2), Corollary 3.3 shows Q is not aCM.
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4 Higher-dimensional cases

4.1 Testing arithmetically Cohen-Macaulayness

The key to testing the arithmetically Cohen-Macaulayness of a scheme of dimension at least 2
is to test the arithmetically Cohen-Macaulayness of a general curve section.

Theorem 4.1 Let X ⊂ Pn be a pure-dimensional scheme of dimension d > 1 and L ⊂ Pn be a
general linear space of codimension d−1. Then, X is aCM if and only if the curve X∩L is aCM.

Proof. If X is aCM, then [24, Thm. 1.3.3] yields that X ∩ L is also aCM. Conversely, if the
projective curve X ∩ L is aCM, then [21, Prop. 2.1] provides that X must also be aCM. 2

The combination of Theorem 4.1 and Corollary 3.3 yields a test for deciding the arithmetically
Cohen-Macaulayness of a pure-dimensional scheme of dimension at least 2 by determining the
arithmetically Cohen-Macaulayness of a general curve section. Additional information about
this general curve section can be computed via Section 3.1, such as its arithmetic genus.

Example 4.2 Let X ⊂ P4 be the degree 4 surface defined by the ideal

I = 〈x0x1 − x22, x0x3 − x24〉 ⊂ C[x0, x1, x2, x3, x4].

Let L and H be general hyperplanes with C = X ∩ L and W = C ∩H. Since

HFW = 1, 3, 4, 4, ρW = 2, HFC = 1, 4, 8, 12, ∆HFC = 1, 3, 4, 4,

Corollary 3.3 yields that C is aCM so that X is aCM by Theorem 4.1.

If X ⊂ Pn is aCM of dimension d > 1 and W ⊂ Pn is a general linear section of compli-
mentary dimension, the index of regularity of X and Castelnuovo-Mumford regularity of X can
be computed directly from the index of regularity of W via Prop. 2.3. The remainder of this
section describes how to compute the Hilbert function, Hilbert series, and Hilbert polynomial
of X given the Hilbert function and index of regularity of W .

Hilbert function Using [24, Cor. 1.3.8(d)] applied d times, we have

∆dHFX(t) = HFW (t) for all t ≥ 0.

In particular, unrolling this formula provides

HFX(t) =

t∑
j1=0

j1∑
j2=0

· · ·
jd−1∑
jd=0

HFW (jd). (14)

Hilbert series By adapting [24, p. 28] to this situation, we have

HSX(t) =

∑ρW
j=0 ∆d+1HFX(j) · tj

(1− t)d+1
=

∑ρW
j=0 ∆HFW (j) · tj

(1− t)d+1
. (15)
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Hilbert polynomial Since HPX(t) is a polynomial of degree d with rational coefficients and
HPX(ρX + j) = HFX(ρX + j) for all j ≥ 0, standard polynomial interpolation computes HPX .

Example 4.3 Let X ⊂ P4 be the surface from Ex. 4.2, which is aCM. From Prop. 2.3 and (5),

ρC = 1, ρX = 0, regX = 3.

Following (14) and (15) with data from Ex. 4.2, we have

HFX(t) = 1, 5, 13, 25, 41, 61, . . . and HFS(t) =
1 + 2t+ t2

(1− t)3
.

Since ρX = 0, one can easily verify that HPX(t) = 2t2+2t+1 with HPX(t) = HFX(t) for t ≥ 0.

4.2 Minimal generators

Let I ⊂ C[x0, . . . , xn] be a homogeneous ideal. For each j ≥ 0, there exists dj(I) ≥ 0 such
that every minimal generating set consisting of homogeneous polynomials for I consists of ex-
actly dj(I) polynomials of degree j. For a scheme X ⊂ Pn, dj(X) is defined as dj(I) where I is
the corresponding homogeneous ideal. In fact, dj(X) = 0 for j > regX.

When intersecting with linear spaces, say Z = X ∩ L, one can consider Z ⊂ X ⊂ Pn or
Z ⊂ L where L may be viewed as a projective space. In the following, when we write Z ⊂ L,
we mean that dj(Z) is taken with respect to L.

For arithmetically Cohen-Macaulay X, the following provides an approach to compute dj(X).

Proposition 4.4 Let X ⊂ Pn be an arithmetically Cohen-Macaulay scheme of dimension d > 0,
L ⊂ Pn be a general linear space of codimension 0 < ` ≤ d, and Z = X ∩ L ⊂ L. Then,
dj(X) = dj(Z) for all j. In particular, the initial degree of X is the initial degree of Z.

Proof. By treating Z as a subscheme of L, the result now follows from [24, Thm. 1.3.6]. 2

Example 4.5 Let X ⊂ P4 be the aCM surface introduced in Ex. 4.2. By looking at the
generating set of the ideal, one sees d2(X) = 2 with dj(X) = 0 for all other j. Thus, by
Prop. 4.4, we have d2(W ) = 2 with dj(W ) = 0 for all other j. This can be verified directly by
performing computations on W as follows. Clearly, d0(W ) = 0 and, since regW = 3, dj(W ) = 0
for j ≥ 4. Since HFW (1) =

(
2+1
1

)
and HFW (2) =

(
2+2
2

)
−2, we know d1(W ) = 0 and d2(W ) = 2.

Using linear algebra, it is easy to verify this two dimensional space of quadratic polynomials
generates a six dimensional space of cubic polynomials. Since HFW (3) =

(
2+3
3

)
− 6, d3(W ) = 0.

5 Examples

Code for easily reproducing the following examples using Bertini [2, 3] and MATLAB is available
at www.nd.edu/~jhauenst/aCM.

5.1 The coupler curve of a planar four-bar linkage

Since the curve in Ex. 3.1 was smooth, the arithmetic genus and geometric genus are equal.
Here, we investigate a nonsmooth curve arising in kinematics. In particular, the coupler curve
of a planar four-bar linkage describes the motion allowed by a mechanism consisting of four

13

www.nd.edu/~jhauenst/aCM


hinged bars arranged as a quadrilateral in the plane. The arrangement of the mechanism is
described by ten parameters (p, p, q, q, s, s, t, t, r, R) ∈ C10. If

a1 = s(z − p), a1 = s(z − p), α1 = (z − p)(z − p) + ss− r,
a2 = t(z − q), a2 = t(z − q), α2 = (z − q)(z − q) + tt−R,

the coupler curve is the set of points (z, z) ∈ C2 satisfying∣∣∣∣a1 α1

a2 α2

∣∣∣∣ · ∣∣∣∣a1 α1

a2 α2

∣∣∣∣+

∣∣∣∣a1 a1
a2 a2

∣∣∣∣2 = 0. (16)

By fixing random values for the parameters and homogenizing (16), we will treat a general
coupler curve C as a projective scheme on P2. The degree of C is 6, and the numerical algebraic
geometry approach of [5] verified that the geometric genus is 1.

Let W = C ∩H where H ⊂ P2 is a random hyperplane. Then,

HFW = 1, 2, 3, 4, 5, 6, 6, HFC = 1, 3, 6, 10, 15, 21, 27, ∆HFC = 1, 2, 3, 4, 5, 6, 6

shows that C is aCM by Corollary 3.3. In particular, (11) yields the arithmetic genus is gC = 10.

5.2 A secant variety example

Consider the fourth secant variety of the Segre product for P2 × P2 × P3, namely

X = σ4(P2 × P2 × P3) ⊂ P35.

In [4], numerical computations showed that X was set-theoretically defined by 10 polynomials of
degree 6 and 20 polynomials of degree 9. This result was shown without the use of a computer
in [9]. Here, we show that X is aCM and use this to show that I(X) is minimally generated by
10 polynomials of degree 6 and 20 polynomials of degree 9.

Rather than start with known polynomials vanishing on X, we derive our results from a
parameterization of X. In particular, consider the map π : C3×4×C3×4×C4×4 → C36 defined by

(S, T, U) 7→
4∑
`=1

Si`Tj`Uk` for 1 ≤ i, j ≤ 3 and 1 ≤ k ≤ 4.

For Y = π(C3×4 × C3×4 × C4×4) ⊂ C36, X is the projectivization of Y , namelyX = P(Y ) ⊂ P35.
Using π, it is easy to verify that X is non-defective with dimX = 31. After selecting a random
linear space L ⊂ P35 of codimension 30 and random hyperplane H ⊂ P35, consider the curve
C = X ∩ L and witness point set W = C ∩ H. We used Bertini to compute W and a pseu-
dowitness set [18] for C = X ∩L. This computation, in particular, verified that degX = 345 as
reported in [4]. Algorithm 1 and [13] produced

HFW = 1, 5, 15, 35, 70, 126, 200, 280, 345, 345

HFC = 1, 6, 21, 56, 126, 252, 452, 732, 1077, 1422

∆HFC = 1, 5, 15, 35, 70, 126, 200, 280, 345, 345

which, by Corollary 3.3 and Theorem 4.1, shows that both C and X are aCM. Since ρW = 8, we
know regX = regC = regW = 9, ρC = 7, and ρX = −23. In particular, (11) yields gC = 1684
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and the strategy outlined in Section 4 provides

HFX = 1, 36, 666, 8436, 82251, 658008, 4496378, 26977968, 145001853, 708846128, . . .

HSX(t) = (1 + 4t+ 10t2 + 20t3 + 35t4 + 56t5 + 74t6 + 80t7 + 65t8)/(1− t)32

HPX(t) = 345/31! · t31 + · · ·+ 299405047890287/72201776446800 · t+ 1.

In fact, since ρX = −23, HPX(j) = 0 for −23 ≤ j ≤ −1 so that HPX(t) can be written as

HPX(t) =
G(t)

31!

23∏
j=1

(t+ j) where

G(t) = 345 · t8 + 13032 · t7 + 484578 · t6 + 11904840 · t5 + 218110185 · t4

+ 2831500368 · t3 + 24772341372 · t2 + 131202341280 · t+ 318073392000.

We now turn to describing a minimal generating set for I(X) using Prop. 4.4. Since
regX = 9, we know that I(X) is minimally generated by polynomials of degree at most 9,
that is, dj(W ) = dj(X) = 0 for j ≥ 10. Moreover, dj(W ) = dj(X) = 0 for 0 ≤ j ≤ 5 since
HFW (t) =

(
4+t
t

)
for 0 ≤ t ≤ 5. Also, HFW (6) =

(
4+6
6

)
− 10 yields that d6(W ) = d6(X) = 10

with the initial degree of X being 6. Using linear algebra, we verified that this 10 dimensional
space of sextic polynomials vanishing on W generates a 50 dimensional space of septic poly-
nomials, a 150 dimensional space of octic polynomials, and a 350 dimensional space of nonic
polynomials. Since HFW (7) =

(
4+7
7

)
− 50, HFW (8) =

(
4+8
8

)
− 150, and HFW (9) =

(
4+9
9

)
− 370,

we know dW (7) = dX(7) = dW (8) = dX(8) = 0 and dW (9) = dX(9) = 20. Therefore, I(X) is
minimally generated by 10 sextic polynomials and 20 nonic polynomials.

5.3 A non-aCM example

Consider the map π : C2×2 × C2×2 × C2×2 × C2×2 → C16 defined by

(S, T, U, V ) 7→ Sk`Tij + UikVj` for i, j, k, ` = 1, 2.

Let Y = π(C2×2 × C2×2 × C2×2 × C2×2) ⊂ C16. Our object of interest is the projectivization
of Y , which we will denote by X = P(Y ) ⊂ P15. Using π, it is easy to compute that dimX = 13.
After selecting a random linear space L ⊂ P15 of codimension 12 and random hyperplane
H ⊂ P15, consider the curve C = X ∩ L and witness point set W = C ∩ H. We used Bertini

to compute W and a pseudowitness set [18] for C which yields that degX = 28. Algorithm 1
and [13] produced

HFW = 1, 3, 6, 10, 15, 21, 28, 28

HFC = 1, 4, 10, 20, 35, 56, 84, 120

∆HFC = 1, 3, 6, 10, 15, 21, 28, 36.

In particular, ρW = 6 with ∆HFC(7) = 36 6= 28 = HFW (7) yielding that C is not aCM.
Therefore, by Theorem 4.1, X is not aCM.

For this non-aCM example, the terms of HFC computed while testing C for arithmetically
Cohen-Macaulayness are not enough to determine ρC . Since regC > ρW + 1, we use (4) to
compute regC with ρC = regC − 1. The additional terms of HFC needed are

HFC = 1, 4, 10, 20, 35, 56, 84, 120, 165, 196, 224, ∆HFC = 1, 3, 6, 10, 15, 21, 28, 36, 45, 31, 28

15



showing that regC = 10 with ρC = 9. Using (9), the arithmetic genus of C is gC = 57 with

HPC(t) = 28t− 56

HSC(t) = (1 + 2t+ 3t2 + 4t3 + 5t4 + 6t5 + 7t6 + 8t7 + 9t8 − 14t9 − 3t10)/(1− t)2.

For comparison, consider [17, Alg. 2.4] for numerically testing the arithmetically Cohen-
Macaulayness of C. This test requires an a priori bound on regC. One could use (4) to compute
regC exactly. However, this computation provides enough data needed to use Corollary 3.3 to
decide the arithmetically Cohen-Macaulayness of C. Alternatively, one could bound regC, for
example, by using [14] to conclude that regC ≤ 28 + 2 − 3 = 27. In any event, if r ≥ regC is
the selected bound, [17, Alg. 2.4] requires computing HFC(r − 1). Additionally, [17, Alg. 2.4]
also requires computing HFC∩F (r−1) where F is a general form of degree at most r−1. Using
r = 27 from [14], one at least needs to compute HFC(26) and HFC∩F (26) where F is a general
form of degree 26, that is, C ∩ F is a zero-dimensional scheme of degree 28 · 26 = 728. Two
advantages of using Corollary 3.3 is that the zero-dimensional scheme under consideration arises
as a general hyperplane section of C rather than a general hypersurface section of C of possibly
high degree and that HFC(t) is only needed up to ρW + 1 with ρW + 1 ≤ regC ≤ r.

5.4 An application from physics

A question arising in theoretical physics is the nature of the vacuum space in the Minimal
Supersymmetric Standard Model. This gives rise to a family of problems that can be written
as polynomial images of algebraic sets [11]. The following considers one such problem.

Let F : C16 → C16 and π : C16 → C25 be the polynomial systems defined in Appendix A.1.
Consider the algebraic set A = π(V(F )) ⊂ C25. Using the approach presented in [16] and
Bertini, A has 11 irreducible components, namely Y1, . . . , Y8 each of dimension 5 and degree 6,
and 3 three-dimensional linear spaces. We take Y1, . . . , Y4 as the self-conjugate ones whereas Y6
and Y8 are conjugate to Y5 and Y7, respectively. For j = 1, . . . , 8, let Xj ⊂ P25 be the closure of
the image of Yj under the map C25 ↪→ P25 defined by x→ (1, x).

We first investigate the arithmetically Cohen-Macaulayness of each Xj . After selecting a
random linear space L ⊂ P25 of codimension 4 and random hyperplane H ⊂ P25, we computed
the following for each Cj = Xj ∩ L and Wj = Cj ∩H:

HFWj
= 1, 5, 6, 6, HFCj = 1, 6, 12, 18, ∆HFCj = 1, 5, 6, 6.

Thus, Corollary 3.3 and Theorem 4.1 yield Cj and Xj are aCM for each j = 1, . . . , 8. In
particular, regXj = regCj = regWj = 3, ρCj = 1, ρXj = −3, and (11) yields gCj = 1.

Using Prop. 4.4, we can describe the minimal generators of Xj via Wj . For k > regXj = 3,
we know dk(Xj) = 0. By treating Wj ⊂ L ∩ H, HFWj

(1) =
(
20+1

1

)
− 5 = 16 implies that

d1(Xj) = d1(Wj) = 16. By additionally restricting to this 16 dimensional linear space, we
know d2(Xj) = d2(Wj) = 9 since HFWj (2) =

(
4+2
2

)
− 9 = 6. Moreover, since these quadratics

generate a 29 dimensional space of cubics with HFWj
(3) =

(
4+3
3

)
−29 = 6, d3(Xj) = d3(Wj) = 0.

Therefore, each Xj is minimally generated over C by 16 linear and 9 quadratic polynomials with

HPCj (t) = 6t HSCj (t) = (1 + 4t+ t2)/(1− t)2
HFXj = 1, 10, 46, 146, 371, . . . HSXj (t) = (1 + 4t+ t2)/(1− t)6

HPXj (t) = 1/20 · t5 + 1/2 · t4 + 23/12 · t3 + 7/2 · t2 + 91/30 · t+ 1 = 3·t2+12·t+10
60

∏3
j=1(t+ j).

Next, we investigate the R-irreducible components X5 ∪X6 and X7 ∪X8. Since

HFWj∪Wj+1
= 1, 9, 12, 12, HFCj∪Cj+1

= 1, 10, 24, 36, ∆HFCj∪Cj+1
= 1, 9, 14, 12
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for j = 5 and j = 7, X5 ∪X6 and X7 ∪X8 are not aCM.
Finally, we consider the arithmetically Cohen-Macaulayness of X = X1 ∪ · · · ∪ X8 using

C = C1∪· · ·∪C8 and W = W1∪· · ·∪W8. Since HFW (1) = 11 6= 13 = ∆HFC(1), X is not aCM.

5.5 A nonreduced scheme

In this example, we demonstrate computations on a scheme with components of multiplicity 2.
Let F : C17 → C17 be the polynomial system defined in Appendix A.2, which arises from
the same physics application mentioned in Section 5.4. We investigate both the algebraic set
V = V(F ) and the scheme S defined by F .

Following the approach presented in [16] and using Bertini, we find that V has irreducible
decomposition consisting of 3 components of dimension 8 with multiplicity 2 and 1 component
of dimension 3 with multiplicity 1. The multiplicity 2 components have degrees 8, 8, and 26.
Let V1 and V2 denote the components of degree 8, and let V3 = V1 ∪ V2. For j = 1, 2, 3, let
Xj ⊂ P17 be the closure of the image of Vj under the map C17 ↪→ P17 defined by x→ (1, x).

After selecting a random linear space L ⊂ P17 of codimension 7 and random hyperplane
H ⊂ P17, we consider Cj = Xj ∩ L and Wj = Cj ∩H for each j. We compute:

HFW1 = 1, 5, 8, 8, HFC1 = 1, 6, 14, 22, ∆HFC1 = 1, 5, 8, 8,
HFW2

= 1, 5, 8, 8, HFC2
= 1, 6, 14, 22, ∆HFC2

= 1, 5, 8, 8,
HFW3

= 1, 5, 11, 15, 16, 16, HFC3
= 1, 6, 17, 32, 48, 64, ∆HFC3

= 1, 5, 11, 15, 16, 16.

Thus, Corollary 3.3 and Theorem 4.1 yield that Cj and Xj are aCM for j = 1, 2, 3. We
compute regX1 = regX2 = 3, ρX1

= ρX2
= −6, gC1

= gC2
= 3, regX3 = 5, ρX3

= −4, and
gC3 = 17. The strategy outlined in Section 4 provides

HFX1
(t) = 1, 13, 84, 372, . . . , HSX1

(t) = (1 + 4t+ 3t2)/(1− t)9,
HFX2

(t) = 1, 13, 84, 372, . . . , HSX2
(t) = (1 + 4t+ 3t2)/(1− t)9,

HFX3
(t) = 1, 13, 87, 403, 1462, 4446, . . . , HSX3

(t) = (1 + 4t+ 6t2 + 4t3 + t4)/(1− t)9,
HPX1

(t) = 1/5040 · t8 + · · ·+ 443/140 · t+ 1 = t2+5·t+7
5040

∏6
j=1(t+ j),

HPX2
(t) = 1/5040 · t8 + · · ·+ 443/140 · t+ 1 = t2+5·t+7

5040

∏6
j=1(t+ j),

HPX3(t) = 1/2520 · t8 + · · ·+ 263/84 · t+ 1 = (t2+5·t+7)·(t2+5·t+15)
2520

∏4
j=1(t+ j).

Next, we consider the scheme S. For the setsXj , curve sections Cj , and witness point setsWj ,

we denote the corresponding projective schemes by X̂j , Ĉj , and Ŵj . Using Algorithm 1, we have:

HFŴ1
= 1, 6, 13, 16, 16, HFĈ1

= 1, 7, 20, 36, 52, ∆HFĈ1
= 1, 6, 13, 16, 16,

HFŴ2
= 1, 6, 13, 16, 16, HFĈ2

= 1, 7, 20, 36, 52, ∆HFĈ2
= 1, 6, 13, 16, 16,

HFŴ3
= 1, 6, 16, 26, 31, 32, 32, HFĈ3

= 1, 7, 23, 49, 80, 112, 144, ∆HFĈ3
= 1, 6, 16, 26, 31, 32, 32.

In particular, X̂1, X̂2, and X̂3 are aCM schemes with reg X̂1 = reg X̂2 = 4, ρX̂1
= ρX̂2

= −5,

gĈ1
= gĈ2

= 13, reg X̂3 = 6, ρX̂3
= −3, and gĈ3

= 49. Following Section 4, we have

HFX̂1
(t) = 1, 14, 97, 456, 1662, . . . , HSX̂1

(t) = (1 + 5t+ 7t2 + 3t3)/(1− t)9,
HFX̂2

(t) = 1, 14, 97, 456, 1662, . . . , HSX̂2
(t) = (1 + 5t+ 7t2 + 3t3)/(1− t)9,

HFX̂3
(t) = 1, 14, 100, 490, 1865, 5908, 16272, . . . , HSX̂3

(t) = 1+5t+10t2+10t3+5t4+t5

(1−t)9 ,

HPX̂1
(t) = 1/2520 · t8 + · · ·+ 453/140 · t+ 1 = t3+7·t2+20·t+21

2520

∏5
j=1(t+ j),

HPX̂2
(t) = 1/2520 · t8 + · · ·+ 453/140 · t+ 1 = t3+7·t2+20·t+21

2520

∏5
j=1(t+ j),

HPX̂3
(t) = 1/1260 · t8 + · · ·+ 337/105 · t+ 1 = (t+2)·(t4+8·t3+39·t2+92·t+105

1260

∏3
j=1(t+ j).
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6 Conclusion

A fundamental goal of computational algebraic geometry is to compute information about a
scheme, even when the ideal precisely defining the scheme is unknown. We developed an effec-
tive test, which can be performed using numerical algebraic geometric techniques for deciding
the arithmetically Cohen-Macaulayness of a scheme. If the scheme is aCM, additional informa-
tion such as the Castelnuovo-Mumford regularity, index of regularity, Hilbert series, and Hilbert
polynomial can be computed directly from a (pseudo)witness point set. Also, a numerical alge-
braic geometric approach for computing the arithmetic genus of any curve is presented (see [5]
for a numerical approach to compute the geometric genus). The effectiveness of our methods is
demonstrated by performing computations related to schemes arising in various applications.
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A Physics systems

A.1 First problem

The polynomial systems F : C16 → C16 and π : C16 → C25 used in Section 5.4 are defined by

F1 = 6x11x4 + 2x13x4 − 6x10x5 − 2x12x5 − 4x5x8 + 4x4x9

F2 = 6x10x3 + 2x12x3 − 3x14x6 − x15x6 − 4x16x6 + 4x3x8 + 3x2x10 + 3x2x12 + 8x2x8 + 2x1x10 + 5x1x12 + 10x1x8

F3 = 10x1x5 + 8x2x5 + 4x3x5

F4 = 6x11x3 + 2x13x3 − 3x14x7 − x15x7 − 4x16x7 + 2x1x11 + 5x1x13 + 10x1x9 + 3x2x11 + 3x2x13 + 8x2x9 + 4x3x9

F5 = 10x1x4 + 8x2x4 + 4x3x4

F6 = 2x1x5 + 3x2x5 + 6x3x5

F7 = 2x1x4 + 3x2x4 + 6x3x4

F8 = 5x1x5 + 3x2x5 + 2x3x5

F9 = 5x1x4 + 3x2x4 + 2x3x4

F10 = 2x5x10 + 5x5x12 + 10x5x8 − 2x4x11 − 5x4x13 − 10x4x9

F11 = 3x5x10 + 3x5x12 + 8x5x8 − 3x4x11 − 3x4x13 − 8x4x9

F12 = 3x14x5 + x15x5 + 4x16x5

F13 = 2x14 + 6x
2
14 + 3x15 + 4x14x15 + 8x

2
15 + 10x16 + 16x14x16 + x15x16 + 3x

2
16 − 3x5x6 + 3x4x7

F14 = 3x14x4 + x15x4 + 4x16x4

F15 = 3x14 + 2x
2
14 + 6x15 + 16x14x15 + 3x

2
15 + 2x16 + x14x16 + 4x15x16 + 4x

2
16 − x5x6 + x4x7

F16 = 10x14 + 8x
2
14 + 2x15 + x14x15 + 2x

2
15 + 4x16 + 6x14x16 + 8x15x16 + 27x

2
16 − 4x5x6 + 4x4x7

π1 = x14 π14 = x1x11x12 − x1x10x13
π2 = x15 π15 = x2x11x12 − x2x10x13
π3 = x16 π16 = x3x11x12 − x3x10x13
π4 = x7x8 − x6x9 π17 = x1x5x8 − x1x4x9
π5 = x7x10 − x6x11 π18 = x2x5x8 − x2x4x9
π6 = x7x12 − x6x13 π19 = x3x5x8 − x3x4x9
π7 = x5x6 − x4x7 π20 = x1x5x10 − x1x4x11
π8 = x1x9x10 − x1x8x11 π21 = x2x5x10 − x2x4x11
π9 = x2x9x10 − x2x8x11 π22 = x3x5x10 − x3x4x11
π10 = x3x9x10 − x3x8x11 π23 = x1x5x12 − x1x4x13
π11 = x1x9x12 − x1x8x13 π24 = x2x5x12 − x2x4x13
π12 = x2x9x12 − x2x8x13 π25 = x3x5x12 − x3x4x13
π13 = x3x9x12 − x3x8x13
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A.2 Second problem

The polynomial system F : C17 → C17 used in Section 5.5 is defined by

F1 = x10x14 + 9x12x14 + 9x10x15 + 4x12x15 + 9x10x16 + 8x12x16 + 9x4 + 10x17x4 + 9x14x8 + 9x15x8 + 5x16x8

F2 = 3x1x5 + 2x2x5 + 8x3x5 + 9x14x7 + 9x15x7 + 5x16x7

F3 = −x11x6 − 9x13x6 + x10x7 + 9x12x7 + 9x7x8 − 9x6x9

F4 = x11x14 + 9x13x14 + 9x11x15 + 4x13x15 + 9x11x16 + 8x13x16 + 9x5 + 10x17x5 + 9x14x9 + 9x15x9 + 5x16x9

F5 = 3x1x4 + 2x2x4 + 8x3x4 + 9x14x6 + 9x15x6 + 5x16x6

F6 = 9x1x5 + 8x2x5 + 8x3x5 + x14x7 + 9x15x7 + 9x16x7

F7 = 9x1x4 + 8x2x4 + 8x3x4 + x14x6 + 9x15x6 + 9x16x6

F8 = 4x1x5 + 4x2x5 + 9x3x5 + 9x14x7 + 4x15x7 + 8x16x7

F9 = 4x1x4 + 4x2x4 + 9x3x4 + 9x14x6 + 4x15x6 + 8x16x6

F10 = −9x11x6 − 4x13x6 + 9x10x7 + 4x12x7 + 9x7x8 − 9x6x9

F11 = −9x11x6 − 8x13x6 + 9x10x7 + 8x12x7 + 5x7x8 − 5x6x9

F12 = 30x
2
17 − 10x5x6 + 10x4x7

F13 = 8x10x2 + 4x12x2 + 8x10x3 + 9x12x3 − 9x6 + 10x17x6 + 2x2x8 + 8x3x8 + 9x1x10 + 4x1x12 + 3x1x8

F14 = 8x5x10 + 4x5x12 + 2x5x8 − 8x4x11 − 4x4x13 − 2x4x9

F15 = 8x5x10 + 9x5x12 + 8x5x8 − 8x4x11 − 9x4x13 − 8x4x9

F16 = 9x5x10 + 4x5x12 + 3x5x8 − 9x4x11 − 4x4x13 − 3x4x9

F17 = −8x11x2 − 4x13x2 − 8x11x3 − 9x13x3 + 9x7 + 10x7x17 − 2x2x9 − 8x3x9 − 9x1x11 − 4x1x13 − 3x1x9
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