
Representing and Querying the Evolution of Databases and their Schemas in
XML

Fusheng Wang and Carlo Zaniolo

Department of Computer Science

University of California, Los Angeles

wangfsh@cs.ucla.edu zaniolo@cs.ucla.edu

Abstract

We show that XML views combined with XML query
languages can provide surprisingly effective solutions to
the problem of representing and querying the evolution of
databases—both the evolution of their contents and the evo-
lution of their schemas. Indeed, using XML, the histories of
database relations can be represented naturally by means
of temporally grouped data models. We show that schema
changes and table histories that would be very difficult to
represent in relational databases can be easily represented
using XML, and also queried using XQuery.

1 Introduction

Information systems have yet to address satisfactorily the
problem of how to deal with the evolution in the structure
and content of their underlying databases, and to support
the query and retrieval of past information. This is a seri-
ous shortcoming for the web, where documents frequently
change in structure and content, or disappear all together,
causing serious problems, such as broken links and lack of
accountability for sites of public interest. Database-centric
information systems face similar problems, particularly
since current database management systems (DBMSs) pro-
vide little help in that respect. Indeed DBMSs do not pro-
vide effective means for archiving and supporting historical
queries on their past contents—to the point that, e.g., the
current SQL standards lack the basic temporal extensions
needed to express and support historical queries. Given the
strong application demand and the significant research ef-
forts spent on these problems [1], the lack of current so-
lutions must be attributed, at least in part, to the technical
difficulty of introducing temporal extensions into relational
databases and object-oriented databases. Schema changes
represent a particularly difficult and important problem for
modern information systems, which need to be designed for

evolution [20, 19, 13].
Meanwhile, there is much current interest in publishing

and viewing database-resident data as XML documents. In
fact, such XML views of the database can be easily visual-
ized on web browsers and processed by web languages, in-
cluding powerful query languages such as XQuery [2]. The
definition of the mapping from the database tables to the
XML view is in fact used to translate queries on these views
into equivalent SQL queries on the underlying database
[3, 4].

As the database is updated, its external XML view also
evolves—and many users who are interested in viewing
and querying the current database are also interested in
viewing and querying its past snapshots and evolving his-
tory. In this paper, we show that the history of a relational
database can be viewed naturally as yet another XML doc-
ument. The various benefits of XML-published relational
databases (browsers, web languages and tools, unification
of database and web information, etc.) are now extended
to XML-published relation histories. In fact, we show that
we can define and query XML views that support a tempo-
rally grouped data model, which has long been recognized
as very effective in representing temporal information [5],
but could not be supported well using relational tables and
SQL. Therefore, temporal queries that would be very diffi-
cult to express in SQL can now be easily expressed in stan-
dard XQuery. Furthermore, we show that database schema
changes can also be represented easily in the XML view,
and queries on schema changes can thus be supported.

2 Related Work

Time in XML. Some interesting research work has re-
cently focused on the problem of representing historical in-
formation in XML. In [6] an annotation-based object model
is proposed to manage historical semistructured data, and
a special Chorel language is used to query changes. In [7]
a new<valid > markup tag for XML/HTML documents

1

is proposed to support valid time on the Web, thus tempo-
ral visualization can be implemented on web browsers with
XSL.

In [8, 9], a data model is proposed for temporal XML
documents. However, since a valid interval is represented
as a mixed string, queries have to be supported by extend-
ing DOM APIs or XPath. Similarly, TTXPath[10] is an-
other extension of XPath data model and query language to
support transaction time semantics. (In our approach, we in-
stead support XPath/XQuery without any extension to XML
data models or query languages.)

An archiving technique for scientific data was presented
in [11], based on an extension of the SCCS [12] scheme.
This approach timestamps elements only when they are dif-
ferent from the parent elements, so the structure of the rep-
resentation is not fixed; this makes it difficult to support
queries in XPath/XQuery, which, in fact, is not discussed
in [11]. The scheme we use here to publish the histories of
relational tables present several similarities to that proposed
in [11], but it also provides full support for XML query lan-
guages such as XPath and XQuery.

Temporal Databases and Grouped Representations.
There is a large number of temporal data models proposed
and the design space for the relational data model has been
exhaustively explored [1]. Clifford et al. [5] classified them
as two main categories:temporally ungroupedandtempo-
rally grouped. The second representation is said to have
more expressive power and to be more natural since it is
history-oriented [5]. TSQL2 [13] tries to reconcile the two
approaches [5] within the severe limitations of the relational
tables. Our approach is based on a temporally grouped data
model, since this dovetails perfectly with XML documents’
hierarchical structure.

Object-oriented temporal models are compared in [14],
and a formal temporal object-oriented data model is pro-
posed in [15]. The problem of version management in
object-oriented and CAD databases has receive a significant
amount of attention [16, 17]. However, support for tempo-
ral queries is not discussed, although query issues relating
to time multigranularity were discussed in [18].

Schema Evolution. Besides the change of data, the
schema of the database can evolve over time, e.g., to adapt
to new applications, or merge with other ones. Schema evo-
lution and schema versioning issues in relational database
have been investigated in a number of studies that are dis-
cussed in [19], where schema changes are classified into
schema modification, schema evolution and schema ver-
sioning. Partial schema versioning [19] is a weaker con-
cept compared to schema versioning, where data stored un-
der any historical schema can be viewed through any other
schema, but updates can only be issued through the cur-

rent schema. A model for schema versioning in temporal
database systems is discussed in [20], where an extension to
temporal data models is proposed to support partial schema
versioning. Schema evolution is also a very important is-
sue for object-oriented DBMS and has been implemented
in commercial OODBMSs such as O2 [13].

Publishing Relational Databases in XML. There is
much current interest in publishing relational databases in
XML. One approach is to publish relational data at the ap-
plication level, such as DB2’s XML Extender [21], which
uses user-defined functions and stored procedures to map
between XML data and relational data. Another approach is
a middleware based approach, such as in SilkRoute [22] and
XPERANTO [3, 4], which define XML views on top of re-
lational data for query support. For instance, XPERANTO
can build a default view on the whole relational database,
and new XML views and queries upon XML views can
then be defined using XQuery. XQuery statements are then
translated into SQL and executed on the DB2 engine. This
approach utilizes RDBMS technology and provides users
with a unified general interface.

Several DBMS vendors are jointly working toward new
SQL/XML standards [23]; the objective is to to extend SQL
to support XML, by defining mappings of data, schema, ac-
tions, etc., between SQL and XML. A new XML data type
and a set of SQL XML publishing functions are also de-
fined, and are partly supported in Oracle 9i [24].

3 Publishing Relational Database Histories
as XML Documents

This problem was studied in [25] where alternative pub-
lication schemes were explored. The scheme used next is
the one which was found to be the most effective [25].

Table 1 and Table 2 describe the history of employees
and departments. These transaction-time tables are shown
here for illustration andthey are not stored in the actual
database. Instead, our database contains the evolving snap-
shots of these relations using a temporally-grouped data
model that takes advantage of the richer structure of XML,
and the expressive power of XQuery.

For instance, we represent and preserve the evolving his-
tory of Table 1 and Table 2 by means of the XML docu-
ments shown in Figure 1 and Figure 2. We will call these
H-documents. Each element in an H-document is assigned
the attributeststart andtend , to represent the inclusive
time-interval of the element. The value oftend can be set
to now, to denote the ever-increasing current time. In this
way, the history of each attribute is grouped and represented
by such XML elements. The H-document also has a simple
and well-defined schema that can be derived directly from
the schema of the current data.

2

Table 1. The snapshot history of employees
nameempnosalary title deptno start end
Bob 1001 60000 Engineer d01 1995-01-011995-05-31
Bob 1001 70000 Engineer d01 1995-06-011995-09-30
Bob 1001 70000Sr Engineer d02 1995-10-011996-01-31
Bob 1001 70000TechLeader d02 1996-02-011996-12-31

For updates on a node, when there is adelete , the
value of tend is updated to the current timestamp; when
there is aninsert , a new node is appended withtstart
set to current timestamp and withtend set tonow; and
update can be implemented as a delete followed by an
insert.

Note that there is an intrinsic constraint that the interval
of a parent node always covers that of its child nodes, and
this constraint is always preserved while nodes are updated.
Indeed, when the salary of an employee is updated,tend
of the employee must benow, andtend of the old salary
is set to the current timestamp,tstart of the new salary
element is set to the current timestamp, andtend of the
new salary is set tonow, thus the constraint is preserved.
For the case where an employee is deleted, thetend of the
employee elements and all its children are set to the current
timestamp.

Our H-documents use a temporally grouped data
model [5]. Clifford et al. [5] show that temporally-grouped
models are more natural and powerful than temporarily-
ungrouped ones. Temporal groups are however difficult to
support in the framework of flat relations and SQL. Thus,
many approaches proposed in the past instead timestamp
the tuples of relational tables. These approaches incur into
several problems, including the coalescing problem [13].
TSQL2 [13] attempts to achieve a compromise between
these two [5], using an implicit temporal model, which is
not without serious problems [26]. With our model, the his-
tory of each attribute is at hand thus eliminating the most
common need for coalescing; moreover, while coalescing
is still be needed for certain queries, this can be expressed
in XQuery without any language extension.

An advantage of our approach is that powerful tempo-
ral queries can be expressed in XQuery without requir-
ing the introduction of new constructs in the language. In
later sections we will show how to express temporal pro-
jections, snapshot queries, joins and historical queries on
employees anddepartments . Furthermore, database
schema evolution queries are also supported in our ap-
proach.

3.1 Publishing Each Table as an XML Document
with Columns as Elements

A natural way to publish relational table histories is to
publish the history of each table as a separate XML doc-

Table 2. The snapshot history of departments
deptnamedeptnomgrno start end

QA d01 2501 1994-01-011998-12-31
RD d02 3402 1992-01-011996-12-31
RD d02 1009 1997-01-011998-12-31

Sales d03 4748 1993-01-011997-12-31

ument, where relational columns are mapped into XML
elements [27]. Figure 1 shows the history of the table
employee and Figure 2 shows the history of thedept
table. Thus the history of each relation is published as a
separate H-document.

Several alternative representations for table histories
were studied in [25]. For instance, multiple tables can be
first joined together and then represented by a single XML
document. This approach offers no advantage compared to
the one described above [25]. However IDs can be added
to this representation to make some join queries easier [25].
Yet another approach consists of representing the joined ta-
bles by a hierarchically structured XML document. This ap-
proach simplifies some queries but complicate others [25].
The last approach is to represent the tuples of a relational
table by the attribute values of the XML document. Then,
the XML document reproduces the flat structure of tables
with timestamped tuples, and the well-known problems of
this temporally ungrouped representation [25]. In sum-
mary, publishing each table as a separate XML document
with columns as elements was shown to be the approach of
choice in [25].

3.2 Preserving Schema Changes

The database history not only includes the changes of re-
lational data, but also the changes of the database schema.
A variety of temporal data models have been proposed [1]
and few of them provide support for schema evolution or
schema versioning [20]. The flat structure of relational
database makes it difficult to support changes—particularly
schema changes.

The most basic schema evolutions in RDBMS are at-
tribute evolution and relation evolution. Attribute evolution
includes adding an attribute to the database and removing
an attribute from the database. Relation evolution include
adding a relation, removing a relation, joining two relations
into one, and decomposing a relation into two or more rela-
tions.

By publishing the database history as XML documents
(H-documents), we can also represent the schema history,
with the help of the rich structure of XML.

In Figure 1, the two attributeststart andtend asso-
ciated with the relationemployees (the root node) actu-
ally represent the time of creation and the time of deletion

3

<employees tstart="1995-01-01" tend="1996-12-31">
<employee tstart="1995-01-01" tend="1996-12-31">

<empno tstart="1995-01-01" tend="1996-12-31">1001</empno>
<name tstart="1995-01-01" tend="1996-12-31">Bob</name>
<salary tstart="1995-01-01" tend="1995-05-31">60000</salary>
<salary tstart="1995-06-01" tend="1996-12-31">70000</salary>
<title tstart="1995-01-01" tend="1995-09-30">Engineer</title>
<title tstart="1995-10-01" tend="1996-01-31">Sr Engineer</title>
<title tstart="1996-02-01" tend="1996-12-31">Tech Leader</title>
<deptno tstart="1995-01-01" tend="1995-09-30">d01</deptno>
<deptno tstart="1995-10-01" tend="1996-12-31">d02</deptno>

</employee>
<!-- ... -->

</employees>

Figure 1. The history of the employee table is published as employees.xml

<depts tstart="1991-01-01" tend="1998-12-31">
<dept tstart="1992-01-01" tend="1998-12-31">

<deptno tstart="1992-01-01" tend="1998-12-31">d02</deptno>
<deptname tstart="1992-01-01" tend="1998-12-31">RD</deptname>
<mgrno tstart="1992-01-01" tend="1996-12-31">3402</mgrno>
<mgrno tstart="1997-01-01" tend="1998-12-31">1009</mgrno>

</dept>
<!-- ... -->

</depts>

Figure 2. The history of the dept table is published as depts.xml

of the relation. By searching all the root nodes of the H-
documents, we can have a complete history of all relations
in the database.

Similarly, by coalescing the intervals of allempno, we
get the interval ofempno in the relation. Thus, the change
history of every attribute of the relation is preserved. This
is true under the assumption that there is no empty relation,
and e.g., a relation begins when its first element is inserted.
Indeed, content-free elements can be used to fill empty re-
lations. For example, for thesalary column, we can add
the following element that specifies the period of existence
of the salary attribute, independent of the existence of any
actual salary value.

<salary tstart="2003-01-01" tend="now" />

The case of relations joined or decomposed can be han-
dled by the usual view mechanism. For example, say that
the two tablesemployees(empno, name,salary)
and addresses(empno, address) are joined into
a new table newemployees (empno, name,
salary, address) . Then, we have three H-
documents: an H-document foremployees and an
H-document foraddresses which stop at the joining
time, and an H-document fornewemployees which
starts from the joining time. Thus, to query the history we
can i) query each H-document individually and join the re-
sults, or ii) merge the histories from the three H-documents,
e.g., publish a new H-documentallemployees , that

includes all the histories before and after the join. Therefore
schema changes involving the join or decomposition of
relations can be handled through such H-documents.

4 Historical Queries with XQuery

4.1 Data History Queries

Based on the published documents, we can specify a va-
riety of temporal queries in XQuery on the data history:

Query 1: Temporal projection: retrieve the history of man-
agers in dept ‘QA’:

element mgrs{
for $s in document("depts.xml")/departments

/dept[deptname="QA"]/mgrno
return $s }

Query 2: Snapshot queries: find the count of employees on
1996-01-31:

let $e := document("employees.xml")/employees
/employee[@tstart<="1996-01-31"
and @tend>="1996-01-31"]

return count($e)

Query 3: Interval History: find the depts history from 1995-
05-01 to 1996-04-30:

4

for $d in document("depts.xml")/depts
/dept

let $ol:=overlapinterval(
$d, telement("1995-05-01","1996-4-30"))

where not (empty($ol))
return ($d/deptname, $ol)

Here overlapinterval($a, $b) is a user-
defined function that returns an elementinterval with
overlapped interval as attributes(tstart, tend) .
User-defined functions are functions defined by users with
the syntax of XQuery [2]. If there is no overlap, then no
element is returned which satisfies the XQuery built-in
function empty() . telement() will generate an
element in the form of<interval tstart= "..."
tend="..."/ >. The next query is a join query:

Query 4: Join Queries: Find the manager(s) for employee
‘Bob’:

let $e := document("employees.xml")/employees
/employee[name="Bob"]

for $ed in $e/deptno
let $d := document("depts.xml")/depts/dept

[deptno=$ed]
for $m in $d/mgrno
let $ol:=overlapinterval($m,$ed)
where not (empty($ol))
return($e/name, $m, $ol)

This query will join employees.xml anddepts.xml
by dept , and theoverlapinteral() function will re-
turn only managers that overlap with the employee’s dept.

Query 5: Grouping: Find the history of employees in each
dept:

element depts{
for $d in document("depts.xml")/depts/dept

return
element dept { $d/@*, $d/*,

element employees {
for $e in document("employees.xml")/

employees/employee
where $e/deptno = $d/deptno and

not(empty(overlapinteral($e, $d)))
return($e/name, overlapinterval($e,$d))

}}}

This query will join depts and employees document and
generate a hierarchical XML document grouped by dept.

4.2 Schema History Queries

Since the schema history is incorporated in the H-
documents, with powerful XML query languages such as
XQuery, we can query the schema history directly without
any extensions. We can retrieve all the schema information

along the history, retrieve the schema snapshot at any times-
tamp, and detect when the schema changes. Our scheme can
not only model the schema evolutions, but also query the
changes of the database schema. The following queries on
schema history were tested with Quip [28] (SoftwareAG’s
implementation of XQuery).

Schema Q1: Schema Snapshot: find all the columns of
employees relation on ‘1995-01-01’:

<columns>{
for $e in distinct-values(collection("employees")

/employees/employee/*[@tstart<="1995-01-01"
and @tend>="1995-01-01"]/local-name(.))

return <column>{$e}</column>
}</columns>

Schema Q2: Schema History of Relations: find the history
of the relationemployees .

let $rel := collection("employees")/employees
return <tstart>{$rel/@tstart}</tstart>,

<tend>{$rel/@tend}</tend>

Schema Q3: Schema History in One Relation: find the his-
tory of all attributes in theemployees relation:

<columns>{
for $name in distinct-values(collection("employees")

/employees/employee/*/local-name(.))
let $e := collection("employees")/employees

/employee
for $mergelist in mergeIntervals(

$e/*[local-name(.)=$name])
return <column>{$name,$mergelist/@tstart,

$mergelist/@tend}</column>
}</columns>

where mergeIntervals($list) is a user-defined
function that coalesces a list of history intervals and return
the merged lists. Note that the history of a node has to be
continous unless the schema changes. e.g., if the attribute
salary is added in the table, then dropped, and later added
back, then themergeIntervals function will return a
list of two intervals, with each interval representing an ex-
isting interval of the attribute salary.

Schema Q4: Schema Change Detection: find when the ad-
dress column was first added into the table:

let $a := collection("employees")/employees
/employee/address

let $ts := min($a/@tstart)
return $ts

Schema Q5: Joined Relations: Find the salary
history of employees ‘10000’. Assume that two
tables employees (empno, name,salary) and
addresses (empno, address) are joined into a new
tablenewemployees (empno, name, salary, address).

There are two ways to specify the query, one is based on
a composed H-document that represent the whole history
of employees. And the other one is to specify queries on
different H-document and merge the history in the result as
follows:

5

let $s1:= document("employees")/employees/
employee[empno=’10000’]/salary

let $s2:= document("newemployees")/employees/
employee[empno=’10000’]/salary

return merge($s1, $s2)

In the above query,merge($s1,$s2) is a user-
defined function to coalesce two history lists (only the last
node in the first lista and the first node in the second listb
need to be compared).

5 Conclusion

In this paper, we have shown that XML-based repre-
sentations based on a temporally-grouped data model pro-
vide efficient ways to represent the evolution of the con-
tent of a database, and also the evolution history of its
schema. These representations would be very difficult to
realize in the context of the flat relational data model. We
also showed that, without any extension, the coming stan-
dard XML query language XQuery can express complex
temporal queries, including schema evolution queries, on
such XML representations.

An important issue which was not discussed here is ef-
ficient support for historical queries. This problem was
discussed in [29], where we compared the two approaches
of storing the XML-viewed history of a database using ei-
ther a native XML database or a relational DBMS. The ex-
periments presented in [29] suggest that relational DBMSs
can offer better query performance, while native XML
databases can offer better storage efficiency using data com-
pression techniques. A segment-based archiving scheme
based on the notion of page usefulness was also proposed
in [29] to improve the overall performance on temporal
queries.

Acknowledgments

The authors would like to thank Shy-Yao Chien and Vas-
silis Tsotras for many inspiring discussions and Richard
Luo Chang for helping with the experiments. This research
was supported under grant NSF-IIS 0070135.

References

[1] G. Ozsoyoglu and R.T. Snodgrass. Temporal and real-time
databases: A survey.Knowledge and Data Engineering,
7(4):513–532, 1995.

[2] XQuery 1.0: An XML query language.
http://www.w3.org/TR/xquery/.

[3] M. Carey, J. Kiernan, J. Shanmugasundaram, and et al.
XPERANTO: A middleware for publishing object-relational
data as XML documents. InVLDB, 2000.

[4] J.E. Funderburk, G. Kiernan, J. Shanmugasundaram,
E. Shekita, and C. Wei. XTABLES: Bridging relational tech-
nology and XML. IBM Systems Journal, 41(4), 2002.

[5] J. Clifford, A. Croker, F. Grandi, and A. Tuzhilin. On tem-
poral grouping. InRecent Advances in Temporal Databases,
pages 194–213. Springer Verlag, 1995.

[6] S.S. Chawathe, S. Abiteboul, and J. Widom. Managing his-
torical semistructured data.Theory and Practice of Object
Systems, 24(4):1–20, 1999.

[7] F. Grandi and F. Mandreoli. The valid web: An XML/XSL
infrastructure for temporal management of web documents.
In ADVIS, 2000.

[8] T. Amagasa, M. Yoshikawa, and S. Uemura. A data model
for temporal xml documents. InDEXA, 2000.

[9] T. Amagasa, M. Yoshikawa, and S. Uemura. Realizing tem-
poral xml repositories using temporal relational databases.
In CODAS, pages 63–68, 2001.

[10] C.E. Dyreson. Observing transaction-time semantics with
TTXPath. InWISE (1), 2001.

[11] P. Buneman, S. Khanna, K. Ajima, and W. Tan. Archiving
scientific data. InACM SIGMOD, 2002.

[12] M.J. Rochkind. The source code control system.IEEE
Transactions on Software Engineering, SE-1(4):364–370,
1975.

[13] C. Zaniolo, S. Ceri, C.Faloutsos, R.T. Snodgrass, V.S. Sub-
rahmanian, and R. Zicari.Advanced Database Systems. Mor-
gan Kaufmann Publishers, 1997.

[14] R. Snodgrass. Temporal object-oriented databases: a crit-
ical comparision. Modern Database Systems: The Object
Model, Interoperability and Beyond. Addions-Wesley/ACM
Press, 1985.

[15] E. Bertino, E. Ferrai, and G. Guerrini. A formal temporal
object-oriented data model. InEDBT, 1996.

[16] D. Beech and B. Mahbod. Generalized version control in an
object-oriented database. InICDE, pages 14–22, 1988.

[17] H. Chou and W. Kim. A unifying framework for version con-
trol in a cad environment. InVLDB, pages 336–344, 1986.

[18] G. Guerrini M. Mesiti E. Camossi, E. Bertino. Automatic
evolution of multigranular temporal objects. InTIME02,
2002.

[19] J.F. Roddick. A survey of schema versioning issues for
database systems.Information and Software Technology,
37(7):383–393, 1995.

[20] J.F. Roddick. A model for schema versioning in temporal
database systems. InProc. 19th. ACSC Conf., pages 446–
452, 1996.

[21] DB2 XML Extender. http://www-
3.ibm.com/software/data/db2/extenders/xmlext/.

[22] M. Fernandez, W. Tan, and D. Suciu. Silkroute: Trading
between relations and xml. In8th Intl. WWW Conf., 1999.

[23] SQL/XML. http://www.sqlx.org.

[24] Oracle XML. http://otn.oracle.com/xml/.

[25] Fusheng Wang and Carlo Zaniolo. Preserving and querying
histories of xml-published relational databases. InECDM,
2002.

[26] C. Chen and C. Zaniolo. Universal temporal extensions for
database languages. InICDE, 1999.

[27] J. Shanmugasundaram and et al. Efficiently publishing rela-
tional data as xml documents. InVLDB, 2000.

[28] Quip: Software AG’s XQuery prototype.
http://www.softwareag.com/tamino.

[29] Fusheng Wang and Carlo Zaniolo. Publishing and querying
the histories of archived relational databases in xml. InSub-
mitted for Publication.

6

