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Abstract—In this correspondence, a generalization of rateless codes is
proposed. The proposed codes provide unequal error protection (UEP).
The asymptotic properties of these codes under the iterative decoding are
investigated. Moreover, upper and lower bounds on maximum-likelihood
(ML) decoding error probabilities of finite-length LT and Raptor codes for
both equal and unequal error protection schemes are derived. Further, our
work is verified with simulations. Simulation results indicate that the pro-
posed codes provide desirable UEP. We also note that the UEP property
does not impose a considerable drawback on the overall performance of the
codes. Moreover, we discuss that the proposed codes can provide unequal
recovery time (URT). This means that given a target bit error rate, different
parts of information bits can be decoded after receiving different amounts
of encoded bits. This implies that the information bits can be recovered in
a progressive manner. This URT property may be used for sequential data
recovery in video/audio streaming.

Index Terms—Asymptotic analysis, finite-length analysis, iterative de-
coding, lossy channels, maximum-likelihood decoding, rateless codes, un-
equal error protection.

I. INTRODUCTION

Recently, a new class of error-control codes called rateless (Foun-
tain) codes has been invented. LT codes [1], Raptor codes [2], and On-
line codes [3] are examples of such codes. It has been shown that these
codes have very simple encoding and decoding algorithms. Asymp-
totically good degree distributions for them were also developed [2],
[3]. Rateless codes on lossy channels do not assume any knowledge
of the channel. Therefore, rateless codes are very suitable candidates
for applications such as transmitting data on lossy multicast channels,
nonuniform channels, and time-varying channels. In some of these ap-
plications, we may not have an estimate of the channel erasure proba-
bility at all times. In some others, different users may receive data that
is passed through different channels. Traditional codes cannot be op-
timal for such cases because of the unknown or varying characteristics
of the channels. In particular, rateless codes can fit well for the Internet
application in which channels are modeled as binary erasure channels
(BEC) with unknown and time-varying erasure probabilities. Rateless
erasure codes have the potential of replacing transmission control pro-
tocol (TCP), which is based on the automatic repeat request (ARQ) [4].

In all previous studies on rateless codes, equal error protection (EEP)
of all data was considered. The EEP property would be sufficient for
applications such as multicasting bulk data (e.g., a software file) [5].
However, in several applications, a portion of data may need more pro-
tection than the rest of data. For example, in an MPEG stream [6],
I-frames need more protection than P-frames. In some other applica-
tions, a portion of data may need to be recovered prior to the other parts.
An example would be video-on-demand systems, in which the stream
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should be reconstructed in sequence [4], [7]. Such applications raise a
need for having codes with unequal error protection (UEP) or unequal
recovery time (URT).

UEP codes were first studied in [8]. Since then, there has been con-
siderable work in this area, e.g., [9], [10]. Recently, different UEP codes
have been designed with LDPC codes, e.g., [11]–[13]. For the applica-
tions similar to the ones we described above, designing rateless codes
with unequal error protection property (UEP-rateless codes) is of great
interest. In this work, we develop, for the first time, rateless codes that
can provide UEP. This implies that some portion of data would be pro-
tected more than the other parts. Theoretical and simulation results il-
lustrate that a strong UEP can be achieved by the proposed rateless
codes. These codes can also be employed in applications for which
URT is desirable, i.e., the number of received symbols for recovering
more important parts is less than that number for recovering less im-
portant parts. In our design and analysis, we consider both asymptotic
and finite-length cases. Preliminary results were initially introduced in
[14], [15].

The paper is organized as follows. In Section II, a review of LT
codes is given. Section III studies design and asymptotic analysis of
UEP-rateless codes under the iterative decoding. Section IV investi-
gates design and analysis of finite-length UEP-rateless codes when the
maximum-likelihood (ML) decoding is considered. Finally, we con-
clude the paper in Section V.

Throughout the paper, we assume the following terminologies. In a
graph G(V;E), where V is the set of vertices (nodes) and E is the set
of edges, two vertices u and v are adjacent or neighbor if there is an
edge e = (u; v) 2 E with ends u and v. Two edges e1 and e2 are
adjacent if they share an end. A vertex v and edge e are incident if v is
an end of e. The degree of a vertex v is defined as the number of edges
of G incident to v. We call G0(V 0; E0) is a subgraph of G if V 0 � V

and E0 � E. Moreover, G0 is a subgraph of G induced by V 0 if G0

contains all the edges (u; v) 2 E with u; v 2 V 0.

II. REVIEW OF LT CODES

In this section, we briefly review LT codes introduced by Luby [1].
Suppose we want to transmit a message comprising of n input symbols.
Let 
1; . . . ;
n be a probability distribution on f1; . . . ; ng such that

i denotes the probability that the value i is chosen. We may also de-
note this distribution by its generator polynomial 
(x) = n

i=1

ix

i.
An encoding (output) symbol is formed as follows:

• randomly choose a degree d according to the distribution

1; . . . ;
n;

• choose uniformly at random d input symbols;
• perform bitwise XOR operations on the selected d input symbols

to form the output symbol.
The output symbol is then transmitted. We repeat this process until a
sufficient number of output symbols is obtained at the receiver. In gen-
eral, the number of output symbols required to give a high probability
of decoding n input symbols can be expressed as 
n for a fraction

 1 (
 is called the rateless overhead). The process of decoding LT
codes relies on finding an output symbol such that the value of all but
one of its neighbor input symbols is known. The value of the unknown
input symbol is computed by simple bitwise XOR operations. This step
is repeated until no more of such output symbols can be found. Obvi-
ously, the degree and the set of neighbors of an output symbol must
be provided to the decoder. There are several methods to accomplish
this. One method is that the encoder and decoder are synchronized and
share a common random generator. The reader may refer to [1] for more
details. Without loss of generality and for simplicity, throughout this
paper we may assume that the symbols are binary symbols. Following
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Fig. 1. An example of an LT code, where n = 7 and 
 = 8=7. The circular
and rectangular nodes correspond to input and output symbols, respectively.

Fig. 2. Nonuniform probability distribution function for selecting a variable
node (an input symbol) by an edge.

[3] and [16] we may view the input and output symbols as vertices of a
bipartite graph G, where the input symbols are the variable nodes and
the output symbols are the check nodes. Fig. 1 depicts a small example
of an LT code, where n = 7 and 
 = 8=7. Circular nodes corre-
spond to the input symbols, and the rectangular nodes correspond to
the output symbols. The values of the output symbols are known at the
receiver, and the goal is to find the values of the input symbols. The
decoding starts by copying the value of c3 to its unique neighbor v2.
Next, since c2 has only one unknown neighbor, it recovers the value
of v1. The next output symbol with only one unknown neighbor is c4
and recovers v6. The decoding continues until no output symbol with
exactly one unknown neighbor exists. In this example, the decoding is
successful since the values of all the input symbols are determined.

Clearly, in the mentioned encoding scheme all the input nodes have
the same probability of being selected in forming each output node.
Consequently, the code provides EEP for all data. In this paper, we in-
vestigate a more general case in which the neighbors of a check node
are selected nonuniformly at random. As we will see later, these gen-
eralized codes have interesting properties. They are specifically useful
when UEP or URT of information symbols is needed. Next, we de-
scribe the proposed codes.

III. ASYMPTOTIC ANALYSIS OF UEP-RATELESS CODES

Let 
(x) = n

i=1

ix

i be the generator polynomial corresponding
to the probability distribution of the degrees of check nodes in an
LT code. In our proposed scheme, the neighbors of a check node
are selected nonuniformly at random. Let us partition the n variable
nodes into r sets s1; s2; . . . ; sr of sizes �1n; �2n; . . . ; �rn such that

r

j=1
�j = 1. Let pj(n)1 be the probability that an edge is connected

to a particular variable node in sj , for j = 1; . . . ; r (see Fig. 2).
Clearly, we have r

i=1
pi(n)�in = 1. The proposed ensemble

at the receiver is specified by parameters 
(x); n; 
, and P (x; z), in
which P (x; z) = r

i=1
(�ix

i + piz
i). The average check-node de-

gree is given by � = n

i=1
i
i = 
0(1), where 
0(x) is the deriva-

tive of 
(x) with respect to x. Moreover, it is straightforward to show
that the degree of variable nodes in sj has a binomial distribution, for

1The special case p = . . . = p = , results in the previously studied
EEP-rateless codes.

j = 1; 2; . . . ; r. Specifically, the probability �d;j that a variable node
in sj has a degree d is given by

�d;j =
�
n

d
pdj (1� pj)

�
n�d: (1)

Asymptotically (as n goes to infinity), we can approximate distribution
(1) by a Poisson distribution if the following two conditions are satis-
fied for j = 1; . . . ; r:

C1 : pj(n) = o(1);
C2 : �
npj = �j is a constant.

Satisfying these conditions, �d;j approaches to

e�� (�j)
d

d!
(2)

which is a Poisson distribution with mean �j .
Throughout the paper we assume conditions C1 and C2 are satis-

fied. For example, we can have pj(n) =
k

n
, for some nonnegative

constants kj that satisfy r

j=1
�jkj = 1. Accordingly, C2 reduces to

�
 has to be a constant. This condition can be easily addressed if we
consider both � and 
 as constants. Assuming that � is a constant re-
sults in constants average variable-node and check-node degrees. This
is desirable since the resulting graph will be a tree as n!1 [3], and
the encoding complexity will be linear in n.

To investigate the recovery probability of an input symbol in a gen-
eralized rateless code, we use a technique called And-Or tree analysis
([17] and [3]). Next, we describe this technique and will generalize it
to fit our problem. Then, we will see how And-Or tree analysis and re-
covery probability of input nodes in rateless coding are related.

A. And-Or Tree Analysis Technique

An And-Or tree Tl is defined as following. Let Tl be a tree of depth
2l. The root of the tree is at depth 0, its children are at depth 1, their
children at depth 2, and so forth. Each node at depth 0; 2; 4; . . . ; 2l �
2 is called an OR-node (that evaluates logical OR operation on the
value of its children), and each node at depth 1; 3; 5; . . . ; 2l � 1 is
called an AND-node (that evaluates logical AND operation on the value
of its children). Suppose that each OR-node independently chooses
to have i children with probability �i, where

i
�i = 1. Similarly,

each AND-node chooses to have i children with probability �i, where

i
�i = 1. Each node at depth 2l is assigned a value 0 or 1 indepen-

dently, with y0 being the probability that it is 0. Also OR-nodes with
no children are assumed to have a value 0, whereas AND-nodes with
no children are assumed to have a value 1. We are interested in finding
yl, the probability that the root node evaluates to 0, if we treat the tree
as a Boolean circuit.

The following lemma from [17], which is called the And-Or tree
lemma, formulates yl. The proof is straightforward, considering that
the OR-nodes at depth 2 in Tl are the roots for independent And-Or
trees Tl�1. Therefore, yl can be computed as a function of yl�1, the
probability that the root of an And-Or tree Tl�1 evaluates to 0.

Lemma 1: The probability yl that the root node of an And-Or tree
Tl evaluates to 0 is yl = f(yl�1), where yl�1 is the probability that
the root node of an And-Or tree Tl�1 evaluates to 0, and

f(x) = �(1� �(1� x))

�(x) =
i

�ix
i; and �(x) =

i

�ix
i: (3)

Next, we generalize the And-Or tree construction to the case that
OR-nodes are unlike each other. Specifically, suppose we have r
different types of OR-nodes: Type 1, Type 2,. . ., Type r. Number
of OR-nodes of each type is sufficiently large. Suppose the root of
the generalized And-Or tree GTl;j is an OR-node of Type j, and the
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depth of the tree is 2l. We construct GTl;j similar to Tl except that
each OR-node of Type k chooses to have i children with probability
�i;k , for k = 1; . . . ; r. Each AND-node, as before, chooses to have
i children with probability �i. However, each child of an AND-node
independently will be an OR-node of Type k with probability qk . Each
node of Type k at depth 2l, is assigned a value 0 or 1 independently,
with y0;k being the probability that it is 0. Also, OR-nodes with no
children are assumed to have a value of 0, whereas AND-nodes with
no children are assumed to have a value of 1. We are interested in
finding yl;j , the probability that the root node evaluates to 0, if we
treat the tree as a boolean circuit. Lemma 2 formulates yl;j .

Lemma 2: Let yl;j be the probability that the root of an And-Or tree
GTl;j evaluates to 0. Then

yl;j = �j 1� � 1�

r

k=1

qkyl�1;k (4)

in which �j(x) =
i
�i;jx

i and �(x) =
i
�ix

i. The proof is
straightforward and is similar to the proof of Lemma 1. The relation
between the above analysis and the error probabilities for the general-
ized rateless code is given in the following section.

B. Analysis of the Generalized Rateless Codes

In this section, we examine the generalized rateless codes under iter-
ative decoding. Let G denote the bipartite graph corresponding to the
code at the receiver. Following [2] and [3], we can rephrase the belief
propagation decoding algorithm for our analysis as following. At every
iteration of the algorithm messages (0 or 1) are sent along the edges
from check nodes to variable nodes, and then from variable nodes to
check nodes. A variable node sends 0 to an adjacent check node if and
only if its value is not recovered yet. Similarly, a check node sends
0 to an adjacent variable node if and only if it is not able to recover
the value of the variable node. In other words, a variable node sends 1
to a neighboring check node if and only if it has received at least one
message with value 1 from its other neighboring check nodes. Also,
a check node sends 0 to a neighboring variable node if only if it has
received at least one message with value 0 from its other neighboring
variable nodes. Therefore, we see that variable nodes indeed do the log-
ical OR operation and the check nodes do the logical AND operation.
We can use the results of Lemma 2 on a subgraph Gl of G to find the
probability that a variable node is not recovered after l decoding itera-
tions (its value evaluates to zero). We choose Gl as following. Choose
an edge (v; w) uniformly at random from all edges. Call the variable
node v the root of Gl. Subgraph Gl is the graph induced by v and all
neighbors of v within distance 2l after removing the edge (v;w). We
can see Gl is a tree asymptotically [17]. We can map each check node
to an AND-node and each variable node in sj to an OR-node of Type j.
We only need to compute the probabilities �i; �i;j , and qk . We have �i
is the probability that a randomly chosen edge is connected to a check
node with i children. This is the probability that the edge is connected
to a check node of degree i + 1. Therefore, we have �i =

(i+1)



 (1)

and consequently �(x) = 
 (x)

 (1)

. Similarly, we have �i;j is the proba-
bility that the variable node connected to a randomly selected edge has
degree i+1 given that the variable node belongs to sj . It can be shown
easily that �i;j =

(i+1)�

p �
n
, in which �i+1;j is computed from (2).

After substitution, we have �j(x) = enp �
(x�1). Additionally, we
have qk = pk�kn. We summarize our results in the following lemma.

Lemma 3: Consider a generalized rateless code with parameters

(x); P (x; z); n, and 
. Let yl;j be the probability that a variable node
in sj is not recovered after l decoding iterations. For j = 1; . . . ; r we
have

y0;j = 1

and

yl;j = �j 1� � 1�

r

k=1

pk�knyl�1;k ; l � 1 (5)

in which
�(x) = 
0(x)=
0(1)

and
�j(x) = enp �
(x�1)

with � = 
0(1).
Next, we prove a few lemmas that mostly represent the properties of

the proposed codes.

Lemma 4: yl;j is a decreasing function of the number of iterations l.
Proof: We prove this by induction. We have y1;j = e�np 

 <

y0;j . Now suppose yl;j < yl�1;j for j = 1; . . . ; r. We need to show
yl+1;j < yl;j . This can be shown easily using the fact that �( � ) and
�j( � ) are both increasing functions of their argument.

From Lemma 4, fyl;jgl is a monotone decreasing sequence. More-
over, fyl;jgl is a bounded sequence since we have yl;j 2 [0; 1] for
l � 0. From the monotone convergence theorem [18], we conclude
that fyl;jgl is a convergent sequence that converges to a fixed point in
[0; 1].

The following lemma can be proved similar to Lemma 4.

Lemma 5: yl;j decreases when 
 increases (more check nodes are
collected).

Definition 1: Define Gl;i;j
y

y
. This parameter compares the

recovery probabilities of nodes in si and sj . The larger the value of
Gl;i;j , the higher the recovery probability of the nodes in sj in com-
parison with the nodes in si.

It can be shown that Gl;i;j = e
n(p �p )�
�(1� p � ny ).

Therefore, we have:

Lemma 6: For l � 1; Gl;i;j > 1 if and only if pj > pi.

Lemma 7: Consider two sets si and sj . Suppose that pj > pi. Then,
Gl;i;j is an increasing function of the number of iterations l and the
overhead 
.

Proof: First we need to show that Gl+1;i;j > Gl;i;j . This
can be shown easily using Lemma 4 and the fact that �( � ) is an
increasing function of its argument. The second part is concluded
using Lemma 5.

From Lemmas 6 and 7, we conclude the following. To increase the
recovery probability of nodes in a set, we need to increase the selection
probability of the nodes in that set. Moreover, if two nodes in different
sets have different selection probabilities, the difference between their
recovery probabilities increases by receiving more check nodes or by
increasing the number of iterations in the iterative decoding algorithm.

C. A Special Case: r = 2

In this section, a special case of the generalized rateless codes with
parameters 
(x); P (x; z); n; 
, and r = 2 is investigated.

Assume we have two levels of importance on n information bits.
Assume n1 = �n (0 < � < 1) is the number of more important
bits (MIB), which reside in the first part of the information, and n2 =
(1� �)n is the number of less important bits (LIB). To ensure lower
average BER’s for MIB than LIB, the probability of selecting MIB
has to be more than that of LIB by Lemma 6. We set p1 = k

n
and

p2 = k

n
for some 0 < kL < 1 and kM = 1�(1��)k

�
. Let yl;M and

yl;L denote the error probabilities of MIB and LIB at the lth decoding
iteration, respectively. From Lemma 3, we conclude that

yl;M = e�k �
�(1�(1��)k y ��k y ) (6)
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Fig. 3. Asymptotic analysis of bit error rates versus k for the UEP-rateless code with parameters 
 (x); n, and P (x; z) = 0:1x+ z + 0:9x + z .

and

yl;L = e�k �
�(1�(1��)k y ��k y ) (7)

with �(x) = 
0(x)=
0(1); � = 
0(1), and y0;L = y0;M = 1.
The sequences fyl;Mgl and fyl;Lgl are convergent by Lemma 4.

Let us call the corresponding fixed points as yL and yM , respectively.
It can be shown that @y

@k
jk =1 = �' and @y

@k
jk =1 = ' �

1��
,

where ' = �y ln y > 0. Here, y is the bit error probability when
uniform selection (kM = 1) is done and satisfies y = e�

 (1�y).
These results express the variations of the bit error rates when kM is
slightly greater than one. We note that yM decreases but yL increases.
However, for 0 < � < 1

2
, the decreasing slope of yM is 1��

�
times

greater than the increasing slope of yL.

Example: In this example, we consider the degree distribution pro-
posed in [2]


1(x) = 0:007969x+ 0:493570x2

+ 0:166220x3 + 0:072646x4

+ 0:082558x5 + 0:056058x8 + 0:037229x9

+ 0:055590x19 + 0:025023x64 + 0:003135x66:

Fig. 3 shows yL and yM versus kM for � = 0:1. We considered two
overheads 
 = 1:03 and 
 = 1:05. As an example, consider the case
that 
 = 1:05. Uniform selection (kM = 1) results in the BER of 3:4�
10�3 for all data whereas yM = 5� 10�5 and yL = 9� 10�3 when
kM = 1:9. This shows that the BER of MIB has improved substantially
(about two orders of magnitude) at the cost of a slight performance loss
on the LIB.

Fig. 4 compares the average BER and the BER of MIB with the BER
of the EEP-code for 
 = 1:05. For example, for kM = 2, the average
performance of the UEP code is tripled. However, the performance of
MIB is 87 times better than the case of EEP.

Fig. 5 depicts the BERs of MIB and LIB versus the overhead 
 for
kM = 2. We have also included the BERs for the EEP code. Interest-
ingly, nonuniform selection reduces BERs of both MIB and LIB for

small overheads. For large overheads, the BER of MIB improves sig-
nificantly while in return the performance of LIB slightly degrades.

It should be mentioned that we can also interpret the UEP as the
URT. This means that given a target bit error rate, different parts of
information bits can be decoded after receiving different amounts of
encoded bits. In other words, the BER of MIB reaches a target BER
faster (smaller overhead) than the BER of LIB (see Fig. 5).

D. Simulation Results on Iterative Decoding of A Moderate-Length
UEP-Rateless Code

Here, we give simulation results for the case that the number of in-
formation bits is n = 2000. We considered two cases, an EEP code and
a UEP code with kM = 2 and � = 0:1. We considered 
1(x) in both
cases. Fig. 6 shows the bit error rates after performing LT decoding.
We notice that the performance of MIB improves substantially in the
UEP case. Even LIB has better performance than the case of EEP for
small overheads. We conclude that for small overheads, UEP is pro-
vided while the overall performance of the UEP code is better than that
of the EEP code. Fig. 6 also depicts a large gap between the BER’s of
MIB and LIB. For example, the BER of MIB is about two orders of
magnitude better than that of LIB when 
 = 1:3. This gap increases
monotonically with the overhead.

Next, let us consider the URT problem. In URT, the BER of MIB
reaches a target BER faster (smaller overhead) than the BER of LIB.
For example in Fig. 6, we need to collect 1:16n = 2320 output sym-
bols to have BER = 10�3 for MIB. However, 1:33n = 2660 output
symbols need to be collected to achieve the same BER for LIB. This
implies faster recovery for MIB than LIB.

IV. FINITE-LENGTH ANALYSIS OF UEP-RATELESS CODES

In this section, finite-length analysis of LT and Raptor codes over
the BEC is investigated. First, we derive upper and lower bounds on
the maximum-likelihood (ML) decoding error probabilities of LT and
Raptor codes when they provide EEP. We then study this for UEP-LT
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Fig. 4. The ratios of the average BER and the MIB error rate to the BER of the EEP-code versus k . In this case 
 = 1:05.

Fig. 5. Asymptotic BERs of MIB and LIB versus overhead 
 for k = 2, as well as the BERs of the EEP code (k = 1).

and UEP-Raptor codes. ML decoding is computationally complex spe-
cially for long codes. However, the derivation of bounds on the ML de-
coding is of interest, as it provides an ultimate indication on the system
performance.

A. Upper and Lower Bounds on the Maximum-Likelihood Decoding
Error Probabilities of Finite-Length LT and Raptor Codes Over the
BEC

We investigate the performance of finite-length LT and Raptor codes
under the ML decoding. In our analysis, we consider the nonreplace-
ment selection of the input nodes of LT codes. This means that given
a check-node degree is d, a sequence of d different input nodes is se-
lected uniformly at random from the n input nodes. Thus, a particular
sequence is selected with a probability 1

( )
.

1) ML Decoding of LT Codes Over the BEC: The ML decoding of
LT codes over the BEC is the problem of recovering n information bits
from n
 received check bits. This is equivalent to solving the linear
equation

Hx
T = b; (8)

in whichH = [hij ] is an n
�n adjacency matrix corresponding to the
graph that is formed by the input nodes and the received check nodes.
Here, hij = 1 if the ith received check node and the jth input node are
adjacent, otherwise hij = 0. Moreover, b is an n dimensional column
vector in which bi is the value of the ith received check node. Equation
(8) has at least one solution. It has multiple solutions if and only if H
is not full rank. Moreover, the ith bit does not have a unique solution if
and only if Hi (the ith column of H) is in the column space spanned
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Fig. 6. Iterative decoding performance of the UEP-rateless code with parameters 
 (x); n = 2000; k = 2, and � = 0:1 in comparison with the EEP-rateless
code.

by HnHi. In the following lemma, we derive an upper bound on the
ML decoding bit error probability of LT codes under the ML decoding.

Lemma 8: Given an LT code with parameters
(x); n, and overhead

L, an upper bound on the bit error probability of the LT code under
the ML decoding is

p
ML
b � min 1;

n

w=1

n� 1

w � 1

�
d


d

s=0;2;...;2b c

w

s

n� w

d� s

n

d

n


: (9)

Proof: Let pML
b be the probability that the ith bit cannot be deter-

mined by the ML decoder, for an arbitrary i 2 f1; 2; . . . ; ng. We have

p
ML
b = Prf9x 2 GF(2)n; x(i) = 1 : Hx

T = 0T g

�
x2GF(2) ;x(i)=1

PrfHx
T = 0T g:

Let x 2 GF(2)n; x(i) = 1, and I = fi1; i2; . . . ; iwg be the set of
indices such that j 2 I if and only if x(j) = 1. The rows of H , when
viewed as random binary vectors, are generated from independent trials
of a random variableR, such that for any vector � 2 GF(2)n; P r(R =
�) = 


( )
, where d is the weight of � . Therefore

PrfHx
T = 0T g = (PrfRxT = 0g)n
 :

Suppose that weight(R) = d. Moreover, let R(I) be defined as a
sub-vector of R containing components of R that are specified by the
elements of I , i.e., R(I) = fR(i1);R(i2); . . . ; R(iw)g. We have

PrfRxT = 0g = PrfR(I) contains even number of 10sg

=
s=0;2;...;2b c

w

s

n� w

d� s

n

d

:

Since each row of H has weight d with probability 
d, and there are
n�1
w�1

choices of x with weight w, we conclude the assertion.
A lower bound on the bit error probability of LT codes under ML

decoding can be found by computing the probability that a variable
node is not adjacent to any of the check nodes. This lower bound is
given by [2]

p
ML
b � 1�

�

n

n


(10)

in which � =
d
d
d is the average check-node degree.

Fig. 7 shows the upper and lower bounds on ML decoding error prob-
abilities versus overhead 
L for an LT code with distribution
1(x) and
length 500. The results imply that the bound is almost tight for 
 > 1:3.

2) ML Decoding of Raptor Codes Over the BEC: Raptor codes in-
troduced by Shokrollahi [2] are an extension of LT codes, in which
an outer high-rate traditional pre-code is concatenated to an inner LT
code to get practically better results than the LT code. Let C be a linear
code of length n, rate R = 1 � m

n
, and dimension k = n � m. A

Raptor code with parameters (k; C;
(x)) is an LT code with distribu-
tion 
(x) on n bits that are the codeword bits of the pre-code C. If 
L
denotes the overhead of the LT code, the overhead of the Raptor code
is 
 = 


R
. In this paper, we assume the pre-code is an (n; k) LDPC

code with a parity-check matrixH 0 = [h0ij ] whose entries are indepen-
dent and identically distributed (i.i.d) Bernoulli random variables with
parameter �. We denote such a code by (n; k; �) LDPC code. The fol-
lowing lemmas develop upper and lower bounds on the ML decoding
error probability of Raptor codes.

Lemma 9: Let C be an (n; k; �) LDPC code. Given a (k; C;
(x))
Raptor code with overhead 
, an upper bound on the ML decoding bit
error probability is obtained as

p
ML
b �

n

e=0

n

e
�
e
U (1� �U )

n�e e

n

�min 1;

e

w=1

e� 1

w � 1
(A(w; �))m
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Fig. 7. Upper and lower bounds on the ML decoding bit error rates versus overhead 
 for an LT code with distribution 
 (x) and length n = 500.

where

A(w; �) :=
1 + (1� 2�)w

2
: (11)

Here, m = n � k. Also, �U is the upper bound on the ML decoding
bit error rate of the LT code with parameters 
(x); n, and overhead

L = k

n

 that was found by Lemma 8.

Proof: Let us assume that H 0 is the parity-check matrix corre-
sponding to the pre-code C. Moreover, let H 0

e be an m�e matrix com-
posed of the columns of H 0 that correspond to the variable nodes that
have not been recovered after the LT-decoding process. Note that ele-
ments of H 0

e are independently one with probability �. We want to ob-
tain the probability that the ith bit cannot be determined either by the LT
decoder or by the pre-code decoder, for an arbitrary i 2 f1; 2; . . . ; ng.
Let the jth column in H 0

e correspond to the ith input bit of the LT code.
We have

PrfThe pre-code fails to determine the ith bitg

= Prf9x 2 GF(2)e; x(j) = 1 : H 0

ex
T = 0T g

�
x2GF(2) ; x(j)=1

PrfH 0

ex
T = 0T g:

Let x 2 GF(2)e; x(j) = 1, and weight of x is w. Let Rl denote the
lth row of H 0

e. We have

PrfH 0

ex
T = 0T g =

m

l=1

PrfRlx
T = 0g:

Note that the events Rlx
T = 0 for l = 1; . . . ;m are equiprobable

and independent. Let A(w; �) be the probability that even number of
1’s occurs in a stream of independent 0’s and 1’s of length w when
probability of 1 is �. We have

PrfRlx
T = 0g = A(w; �) (12)

=
1 + (1� 2�)w

2
: (13)

Assuming that � is the bit error probability of the LT code, we conclude

p
ML
b �

n

e=0

n

e
�
e(1� �)n�e

e

n

�min 1;

e

w=1

e� 1

w � 1
A
m(w; �) : (14)

However, instead of the exact value of �, we have bounds on it. As-
suming �U is an upper bound on � and using Lemma 1 in Appendix A
we can easily conclude the assertion.

Lemma 10: Let C be an (n; k; �) LDPC code. Given a (k; C;
(x))
Raptor code with overhead 
, a lower bound on the ML decoding bit
error probability is given by

p
ML
b � max 0;

n

e=0

n

e
�
e
L(1� �L)

n�e e

n

�min 1;

e

w=1

e� 1

w � 1
A
m(w; �)

�
1

2

n

e=0

n

e
�
e
U (1� �U )

n�e e

n

�min 1;

e�1

w =1

e�w

w =0

e�w �w

w =0

1(w1 + w2)

�
e� 1

w0 � 1

e� w0

w1

e� w0 � w1

w2

� D
m(w0; w1; w2; �; �; �)

where

D(w0; w1; w2; �; �; �) := A(w0; �)A(w1; �)A(w2; �)

+ �A(w0; �) �A(w1; �) �A(w2; �)
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Fig. 8. Upper and lower bounds on the ML decoding bit error probabilities of LT and Raptor codes versus overhead 
 for transmitting 500 information bits over
an erasure channel.

1(x) :=
0; if x = 0

1; otherwise

A( � ) = 1 � A( � ), and m = n � k. Also, A( � ) is defined as (11).
Moreover, �L(�U ) is the lower bound (upper bound) on the ML de-
coding bit error rate of the LT code with parameters 
(x); n, and over-
head 
L = k

n

 found by (10) and (9).

Proof: Consider H 0

e as was defined before. Let the jth column in
H 0

e correspond to the ith bit. We have

PrfThe precode fails to determine the ith bitg

=Prf9x2GF(2)e; x(j)=1 : H 0

ex
T =0T g

�
x2GF(2) ;x(j)=1

PrfH 0
ex

T =0T g

�
1

2
x;y2GF(2) ; x(j)=1; y(j)=1; x 6=y

PrfH 0
ex

T =0T; H 0
ey

T=0T g

in which the inequality results in from the Bonferroni inequality [19].
The first term can be calculated using Lemma 9. Let x; y 2 GF(2)e

such that x(j) = 1; y(j) = 1, and x 6= y. We define three binary
vectors z0; z1, and z2 2 GF(2)e such that for t = 1; . . . ; e; z0(t) = 1
if and only if x(t) = 1 and y(t) = 1; z1(t) = 1 if and only if x(t) = 1
and y(t) = 0, and z2(t) = 1 if and only if x(t) = 0 and y(t) = 1. Let
w0; w1, and w2 be the weights of vectors z0; z1, and z2, respectively.
We have

PrfH 0
ex

T = 0T ; H 0
ey

T = 0T g (15)

=

m

l=1

PrfRlz
T
0 = Rlz

T
1 = Rlz

T
2 g; (16)

= (A(w0; �)A(w1; �)A(w2; �) + �A(w0; �) �A(w1; �) �A(w2; �))
m

(17)

in which Rl denotes the lth row of H 0
e, (16) is resulted from the in-

dependency of the elements of H 0
e, and (17) is obtained easily by the

definition of A(:) as (11) and A( � ) := 1 � A( � ). Summing over all
possible values for e; w0; w1, andw2 and noting thatw1 andw2 cannot
be zero simultaneously (since x 6= y), we conclude the assertion.

Fig. 8 depicts the upper and lower bounds on the ML decoding bit
error probabilities versus overhead 
 for the fixed degree distribution

1(x). We considered an LT code with n = 500 and a Raptor code
with k = 500 and a precode C as an (510;500; 0:4) LDPC code with
R � 0:98. Note that in each case we assumed the decoder starts the
decoding after receiving 500
 check bits. As we can see, the bounds are
tight for small error rates. Moreover, as we expected and it was shown
in [2], Raptor codes can achieve lower error rates than LT codes.

B. Upper and Lower Bounds on the Maximum-Likelihood Decoding
Error Probabilities of Finite-Length UEP-LT and UEP-Raptor Codes
Over the BEC

In this section, we consider the problem of finite-length UEP-rate-
less codes. Suppose we want to transmit n bits with two different levels
of importance over a BEC. Assume n1 = �n (0 < � < 1) is
the number of MIB and n2 = (1 � �)n is the number of LIB. A
UEP-LT code is constructed similar to a traditional LT code except
that the check nodes select their adjacent variable nodes nonuniformly
at random. This means that a check node with degree d, selects d1 =
min([�dkM ]; n1) ([x] means the nearest integer to x) variable nodes
from MIB (for some kM > 1) and d2 = d � d1 variable nodes
from LIB as shown in Fig. 9. Note that here the nonreplacement selec-
tion is considered. This means that any sequence of d1(d2) different
variable nodes in MIB (LIB) is selected uniformly with probability
1

( )
1

( )
. By cascading a UEP-LT code and a traditional precode
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Fig. 9. Nonuniform selection of variable nodes (input symbols) in UEP-LT
codes.

C, we can form a UEP-Raptor code.2 This implies that the codeword
bits of C are the input bits of the UEP-LT code. Let C be a linear code
of length n, rate R = 1� m

n
and dimension k = n�m. Let alsoH 0 be

the parity-check matrix that corresponds to C. Here the number of in-
formation bits is k. We may design the precode C such that all the first
n1 bits of the codeword bits correspond to the more important informa-
tion bits. This is possible if and only if the submatrix of H 0 containing
the last n2 columns has full rank. In this case, the ratio of the number
of more important information bits to the total number of information
bits is �R = �

R
. As before, let us assume the pre-code C is an (n; k; �)

LDPC code. Next, we derive upper and lower bounds on the ML de-
coding error probabilities of the UEP-LT and UEP-Raptor codes.

1) ML Decoding of UEP-LT Codes: In this section, we examine
the performance of UEP-LT codes under the ML decoding. In the fol-
lowing lemma, upper bounds on the ML decoding error probabilities
of the proposed ensemble are derived.

Lemma 11: Consider a UEP-LT code with parameters

(x); n; �; kM , and overhead 
L. The upper bounds on the bit
error probabilities of MIB and LIB under the ML decoding are
given in (18) and (19) at the bottom of the page, respectively. Here,
w2 = w � w1; n1 = �n; n2 = (1 � �)n; d1 = min([�dkM ]; n1),
and d2 = d � d1.

Proof: Let H = [hcv] be the adjacency matrix corresponding
to the graph that is formed by the input nodes and the received check
nodes. This means that hcv = 1 if and only if the cth received
check node is adjacent to vth variable node. Let pML

b;i be the bit

2An alternative way to form a UEP-Raptor code is by cascading a traditional
LT code and a UEP pre-code. Although we do not consider this case in this
correspondence, the analysis will be similar.

error probability of the ith bit under ML decoding. For an arbitrary
i 2 f1; 2; . . . ; ng we have

p
ML
b;i = Prf9x 2 GF(2)n; x(i) = 1 : Hx

T = 0T g

�
x2GF(2) ;x(i)=1

PrfHx
T = 0T g: (20)

Let x 2 GF(2)n; x(i) = 1, and I = fi1; i2; . . . ; iw g be the set of
indices such that j 2 I if and only if x(j) = 1 and j 2 f1; . . . ; n1g.
Similarly, J = fj1; j2; . . . ; jw g is the set of indices such that j 2 J

if and only if x(j) = 1 and j 2 fn1 + 1; . . . ; ng. As in the proof of
Lemma 8

PrfHx
T = 0T g = (PrfRxT = 0g)n
 ;

where R is any row of H . Suppose that weight(R) = d. We have (21)
at the bottom of the page. For i 2 MIB, there are n �1

w �1
n

w
possible

different x’s, and for i 2 LIB, this value is n

w

n �1
w �1

. This completes
the proof.

Lower bounds on the bit error probabilities of MIB and LIB under
the ML decoding are given by

p
ML
b;MIB � 1�

d


d

d1

n1

n


(22)

and

p
ML
b;LIB � 1�

d


d

d2

n2

n


(23)

respectively. These are the probabilities that a node in MIB or LIB is
not a neighbor of any of the check nodes.

Fig. 10 shows the upper bound (UB) and lower bound (LB) on the
ML decoding BER’s of MIB and LIB versus overhead 
L for a UEP-LT
code with parameters n = 500;
1(x); kM = 2, and � = 0:1. We also
included the bounds on the ML decoding performance of an EEP-LT
code with n = 500 and 
1(x). As an example, for 
 = 1:8 where the
bounds are tight, we note that BER of LIB is increased less than one
order of magnitude in comparison with the EEP code. However, BER
of MIB is decreased by about four orders of magnitude.

2) ML Decoding of UEP-Raptor Codes: Let us consider the case
that we cascade a UEP-LT code by a pre-code C to form a UEP-Raptor
code. Similar to Lemma 9, we can show the following.

Lemma 12: Let C be an (n; k; �) LDPC code. Consider a UEP-
Raptor code that has a UEP-LT code with parameters 
(x); n; 
L; �,

p
ML
b;MIB � min 1;

n

w=1

w

w =1

n1 � 1

w1 � 1

n2

w2
�

d


d

1
t=0

2
r=1 s=t;2+t;...;2b c�t

wr

s

nr � wr

dr � s

n1

d1

n2

d2

n


(18)

and

p
ML
b;LIB � min 1;

n

w=1

w�1

w =0

n1

w1

n2 � 1

w2 � 1
�

d


d

1
t=0

2
r=1 s=t;2+t;...;2b c�t

wr

s

nr � wr

dr � s

n1

d1

n2

d2

n


(19)

PrfRxT = 0g = PrfR(I) contains even number of 1'sg � PrfR(J) contains even number of 1'sg

+PrfR(I) contains odd number of 1'sg � PrfR(J) contains odd number of 1'sg

=

1
t=0

2
r=1 s=t;2+t;...;2b c�t

wr

s

nr � wr

dr � s

n1

d1

n2

d2

: (21)
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Fig. 10. Upper and lower bounds on the ML decoding BER’s of MIB and LIB versus overhead 
 for a UEP-LT code with parameters n = 500;
 (x); k = 2,
and � = 0:1. The bounds on the decoding performance of the EEP-LT code are also depicted.

and kM together with the precode C. Upper bounds on the bit error
probabilities of MIB and LIB under the ML decoding are given by

p
ML
b;MIB�

n

e=1

min(n ;e)

e =max(1;e�n )

n1�1

e1 � 1

n2

e� e1
�
e

U1(1��U1)
n �e

� �
e�e

U2 (1� �U2)
n �e+e min 1;

e

w=1

e�1

w�1
A
m(w; �)

and

p
ML
b;LIB �

n

e=1

min(n ;e�1)

e =max(0;e�n )

n1

e1

n2 � 1

e� e1 � 1

�
e
U1(1� �U1)

n �e
�
e�e
U2 (1� �U2)

n �e+e

�min 1;

e

w=1

e� 1

w � 1
A
m(w; �)

respectively. Here, �U1 and �U2 are the upper bounds on the ML de-
coding BER’s of MIB and LIB in the UEP-LT code, respectively, m =
n�k, and A(:) is defined as in Lemma 9. Likewise, similar to Lemma
10, we can show the following.

Lemma 13: Let C be an (n; k; �) LDPC code. Consider a UEP-
Raptor code that has a UEP-LT code with parameters 
(x); n; 
L; �,

and kM together with the pre-code C. Lower bounds on the bit error
probabilities of MIB and LIB under the ML decoding are given by

p
ML
b;MIB � max 0;

n

e=1

min(n ;e)

e =max(1;e�n )

n1 � 1

e1 � 1

�
n2

e� e1
�
e

L1(1� �L1)
n �e

� �
e�e

L2 (1� �L2)
n �e+e

�min 1;

e

w=1

e� 1

w � 1
A
m(w; �)

�
1

2

n

e=1

min(n ;e)

e =max(1;e�n )

n1 � 1

e1 � 1

�
n2

e� e1
�
e
U1(1� �U1)

n �e

� �
e�e

U2 (1� �U2)
n �e+e

�min 1;

e�1

w =1

e�w

w =0

e�w �w

w =0

1(w1 + w2)

�
e� 1

w0 � 1

e� w0

w1

e� w0 � w1

w2

� D
m(w0; w1; w2; �; �; �)
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Fig. 11. Upper and lower bounds on the ML decoding BER’s of MIB and LIB for the UEP-Raptor code with parameters k = 500;
 (x); k = 2; � = 0:1,
and a (5105000:4) LDPC code as the precode. The bounds on the decoding performance of the EEP-Raptor code are also depicted.

and

p
ML
b;LIB � max 0;

n

e=1

min(n ;e�1)

e =max(0;e�n )

n1

e1

�
n2 � 1

e� e1 � 1
�
e

L1(1� �L1)
n �e

� �
e�e

L2 (1� �L2)
n �e+e

�min 1;

e

w=1

e� 1

w � 1
A
m(w; �)

�
1

2

n

e=1

min(n ;e)

e =max(0;e�n )

n1

e1

�
n2 � 1

e� e1 � 1
�
e

U1(1� �U1)
n �e

� �
e�e

U2 (1� �U2)
n �e+e

�min 1;

e�1

w =1

e�w

w =0

e�w �w

w =0

1(w1 + w2)

�
e� 1

w0 � 1

e� w0

w1

e� w0 � w1

w2

� D
m(w0; w1; w2; �; �; �)

respectively. Here, �L1(�U1) and �L2(�U2) are the lower bounds (upper
bounds) on the ML decoding BER’s of MIB and LIB in the UEP-LT
code, respectively, and m = n� k. Moreover, A( � ); A( � ), and D( � )
are defined as in Lemmas 9 and 10.

Fig. 11 shows the upper and lower bounds on the ML decoding
BER’s of MIB and LIB versus overhead 
 for a UEP-Raptor code with
parameters k = 500;
1(x); kM = 2; � = 0:1, and a pre-code C as
an (510;500;0:4) LDPC code with R � 0:98. We also included the
bounds on the ML decoding performance of an EEP-Raptor code with
k = 500;
1(x), and the same precode. As an example, for 
 = 1:8
where the bounds are tight, the BER of LIB is increased less than one
order of magnitude but the BER of MIB is decreased by about four or-
ders of magnitude. This shows a large gap between the BERs of MIB
and LIB and very low error rates for the MIB.

V. CONCLUSION

In this paper, we proposed a modification in the structure of rateless
codes to provide unequal error protection (UEP) and unequal recovery
time (URT) properties. We analyzed the performance of the proposed
structure asymptotically. It was shown that UEP-rateless codes can pro-
vide very low error rates for more important bits with only a subtle
loss on the performance of less important bits. Next, we focused on fi-
nite-length rateless codes and derived upper and lower bounds on the
maximum-likelihood decoding bit error rates of EEP- and UEP-rate-
less codes. The results show that the bounds are tight for small error
rates. Moreover, the bit error rates of more important bits are signifi-
cantly improved with respect to the bit error rates of less important bits
for finite-length cases. We also discussed that the UEP problem can be
viewed as the URT problem for a fixed bit error rate.

APPENDIX A

Lemma 1: Let us define g(�) = n

e=0
n

e
�e(1� �)n�ef(e). Then,

g(�) is a nondecreasing function of � if f(e) is a nondecreasing function
of e.
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Proof: Let us define h� (e) = n

e
�e1(1� �1)

n�e and h� (e) =
n

e
�e2(1� �2)

n�e. We need to show that if �2 > �1 then
n

e=0

h� (e)f(e) �

n

e=0

h� (e)f(e):

Since �2 > �1 and due to the nature of functions h� (e) and h� (e) it
can be easily shown that there exists an integer e0 such that h� (e) >
h� (e) if and only if e � e0. Therefore

n

e=0

(h� (e)� h� (e))f(e)

=
e:h (e)>h (e)

(h� (e)� h� (e))f(e)

�

e:h (e)�h (e)

(h� (e)� h� (e))f(e)

� f(e0)

n

e=e

(h� (e)� h� (e))� f(e0 � 1)

�

e �1

e=0

(h� (e)� h� (e))

= (f(e0)� f(e0 � 1))

n

e=e

(h� (e)� h� (e)) � 0 (24)

where in (24), we use the fact that
n

e=0

h� (e) =

n

e=0

h� (e) = 1

Therefore

n

e=e

(h� (e)� h� (e)) =

e �1

e=0

(h� (e)� h� (e)) :
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On -Dual Binary Codes

Denis S. Krotov

Abstract—A new generalization of the Gray map is introduced. The
new generalization � : Z ! Z is connected with the known
generalized Gray map ' in the following way: if we take two dual linear
Z -codes and construct binary codes from them using the generalizations
' and � of the Gray map, then the weight enumerators of the binary
codes obtained will satisfy the MacWilliams identity. The classes of
Z -linear Hadamard codes and co-Z -linear extended 1-perfect codes
are described, where co-Z -linearity means that the code can be obtained
from a linear Z -code with the help of the new generalized Gray map.

Index Terms—Gray map, Hadamard codes, MacWilliams identity, per-
fect codes, Z -linearity.

I. INTRODUCTION

As discovered in [1], [2], [20] certain nonlinear binary codes can
be represented as linear codes over Z4. The variant of this represen-
tation founded in [3] uses the mapping � : 0! 00; 1! 01; 2! 11;
3! 10, which is called the Gray map, to construct binary so-called
Z4-linear codes from linear quaternary codes. The main property of �
from this point of view is that it is an isometry between Z4 with the Lee
metric andZ2

2 with the Hamming metric. In [4] (and in [5] in more gen-
eral form) the Gray map is generalized to construct Z2 -linear codes.
The generalized Gray map (say '; see Section II-A for recalling basic
facts on the generalized Gray map) is an isometric imbedding of Z2

with the metric specified by the homogeneous weight [6] into Z2
2

with the Hamming metric.
In this correspondence, we introduce another generalization � of the

Gray map (Section II-B). This generalization turns out to be dual to the
previous in the following sense. If C and C? are dual linear Z2 -codes,
then the binary Z2 -linear code '(C) and the co-Z2 -linear code
�(C?) are formally dual. The formal duality is that the weight
enumerators of these two codes satisfy the MacWilliams identity
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