
Literature Review for "The Nucleus of a Multiprogramming System"
Luke Levesque

COP 5611

1. Problem Statement
Designers of new software are often stuck with the operating system (OS) that comes with

the computer they are developing for. This can be problematic if the OS does not behave in a
way or offer services that the designer or software developer wants. Examples of this include
modes of scheduling (real time or batch, for instance) and resource allocation. [NMS]

"When the need arises, the user often finds it hopeless to modify an operating system that
has made rigid assumptions in its basic design." Often, OSes are tied to a particular piece of
hardware, so changing platforms might make the problem worse. Likewise, installing a different
OS on the same hardware, if one is even available, would be difficult, costly, and could introduce
compatibility issues with existing software or hardware. [NMS]

2. The Solution
The solution created, the Nucleus, was designed very simply: "Our basic attitude during

the designing was to make no assumptions about the particular strategy needed to optimize a
given type of installation, but to concentrate on the fundamental aspects of the control of an
environment consisting of parallel, cooperating processes." [NMS] In other words, the Nucleus
was designed to support only the most basic parts of an operating system, leaving the rest of it to
be implemented as a program rather than in the kernel. In a way, the Nucleus is a sort of
microkernel.

The Nucleus is described below and partitioned into various aspects of its operation.
Process communication (an important feature of the Nucleus) is described first, followed by the
processes themselves and some details of implementation.

2.1 Process Communication
Semaphores were considered for process communication, but it was decided they were

too insecure. A badly written program could cause deadlocks and other problems using
semaphores. Therefore, the only process communication and synchronization method available
is messaging. [NMS]

"The four primitives of message communication are as follows:
send message (recv, msg, buf)
wait message (sender, msg, buf)
send answer (result, ans, buf)
wait answer (result, ans, buf)" [NMS]

Send Message() takes the "first available message buffer from the pool" and copies the
message into it. The message is then put into the queue of the receiver and the caller may
continue execution. Wait Message() puts the calling process to sleep until a "message arrives in
its queue" (if a message is already in the queue, the process immediately gets it without sleeping).
The calling process, when a message is available, is made active again and gets the name of the
sender and the contents of the buffer. The process can then deal with the message as needed.

Send Answer() will reply to a message sent with Send Message() and reuses the buffer returned
from Wait Message() to conserve resources. An answer cannot be sent unless the process has
received a message previously that has not yet been answered (you cannot send more than one
answer with the same message) and typically every message has an answer. The caller continues
immediately after the answer copied. Wait Answer() puts the calling process to sleep until an
answer is available in the buffer given (this works much like Wait Message()). When the answer
has been processed, its buffer is freed automatically. [NMS]

The Nucleus checks buffers to make sure faulty programs do not overrun or misuse them
and a per-process limit on active messages is set to insure that a single process cannot use up the
entire buffer pool. While messages are put into a queue on the receiving process, the process may
elect to store the buffers in another data structure after it has received them (such as being sorted
by process name or priority). It may then send answers in any order that it wishes. The Nucleus
has procedures to handle situations where processes were removed when messages are pending;
typically a dummy 'answer' is sent back to let the other process know what has occurred or a
message is ignored entirely. [NMS]

An example of using messages instead of semaphores is presented below. The algorithms
are implementing the classic producer-consumer problem using three processes: producer,
buffer, and consumer. Note that significantly more code would be required to add better error
handling or the ability to stop processes when the producer is finished.
PROCEDURE Producer()

LOOP
create item in temporary memory
send message() // Sends item to buffer
wait answer() // Confirms buffer has the item
if error in answer, retry or exit

END LOOP
END PROCEDURE

PROCEDURE Buffer()
LOOP

wait message() // Wait for request from producer or consumer
if message from producer

put item in queue
send answer() // Indicates success / failure of queue insertion

else
get item from queue
send answer() // sends next item to consumer

endif
END LOOP

END PROCEDURE

PROCEDURE Consumer()
LOOP

send message() // To buffer, make request
wait answer() // Has item in message buffer
process item

END LOOP
END PROCEDURE

2.2 Processes
There are actually two types of processes in the system: internal and external. Internal

processes are the typical process found on other operating systems. That is, they are programs in
execution. An external process references a block of data (registers, files, or a TTY, for instance)
on a peripheral device, known as a document. Internal processes can then use this external
process, which has a unique ID, to access whatever document it has opened for them. Processes
communicate via messages to one another and it is the responsibility of the Nucleus to insure
these messages are delivered. [NMS]

2.2.1 Internal Processes
Internal processes may be created, controlled (started or stopped), and removed. These

processes are created by other internal processes (there is a process, S, that is created at system
startup to handle any initial process creations). The internal process that called for the creation of
another internal process is known as the parent. Parents own the resources (such as memory) of
all child processes and therefore are responsible for the allocation or multiplexing of those
resources among their children. Child processes can only use resources owned by their parent.
[NMS]

One of the resources shared is processor time. Though the Nucleus services all active
processors with round robin scheduling [NMS], parents may stop individual child processes so
that other processes will get more CPU time, thus allowing a crude implementation of a priority
system. As an example, if process B has priority over process C in a particular operating system
(parent process) A, then A may choose to let C be active only every third iteration of the round
robin scheduling while B is always active. This would result in B getting more processing time
than C.

Another positive side effect of the parent/child relationship is that parents may do
per-process swapping. This allows parents to have more processes than their memory allocation
would normally allow, providing that not all processes are active at once (because one or more of
them would be swapped out to a backing store). [NMS] Note that this does not allow a process
to have more memory than the parent owns and that per-process swapping is not virtual memory.
This is because the machine (the RC 4000) the Nucleus runs on was designed for real time
applications and therefore there is no hardware support for virtual memory [Supplemental].

2.2.2 External Processes
External processes are used to communicate with the 'outside world', such as printers,

TTYs, disk drives, and the system clock. Each external process executes code (the device driver)
in the Nucleus that allows it to communicate with the device it needs to access. The external
processes are created by the request of internal processes and have a unique name. The internal
processes use the standard messaging system as described in section 2.1 to communicate with
external processes in order to read or write data. [NMS]

Each external process typically handles one document. Documents can be anything from
registers in a device, individual files on a disk or drum, or even a TTY. Internal processes may
request exclusive access to a external process to insure a particular document is not accessed by

anyone else. If more advanced access methods are desired (such as disk scheduling or access
control), an internal process can take the place of an external process by having the same or
similar name. [NMS] Messages (I/O requests) can then be sent to the internal process, where it
will do processing and either handle the I/O itself or send it to the real external process with
which it has exclusive access.

The TTY is the only external process that can send a message to an internal process (the
other external processes can only send answers and receive messages) and is used to start
programs or enter commands by sending messages to specific internal processes. As mentioned
previously, files are also represented as external processes as are other related devices such as
tape drives. Finally, as an example to show how powerful this paradigm is, an internal process
can message the clock external process with a time delay as the contents. The clock will send an
answer back when the time has elapsed, allowing a form of process synchronization. [NMS]

2.2.3 Process Hierarchy
Processes are arranged in a hierarchical (tree) fashion, with parents creating their

children. The most important feature of this hierarchy is that parents retain complete control over
their children. The hierarchy can extend as far down and across as needed, with children being
the parents of other processes. This allows parents to control all resource allocation (such as
memory) and the general process status (start, stop, swap in and out) of all children, including
descendants of children, created. This means that children cannot use resources outside of the
parent's control (I.E.: If the parent has 32KB assigned to it, a child process cannot allocate
48KB). Removing a child releases the resources back to the parent. The hierarchy does not
explicitly control CPU time usage, as that is done with round robin scheduling for all processes.
See section 2.2.1 for a technique to emulate scheduling priorities. Also, messages may be sent to
any process in the tree, regardless of what parent owns it. [NMS]

In order to initialize the hierarchy, the Nucleus auto-starts a process known as S, which is
a very basic operating system and the root of the tree. S can be messaged by a TTY and be told
to start other processes - the real operating systems. This allows new operating systems to be
created as programs and started and stopped as needed without any modification to the Nucleus,
allowing for debugging or upgrades without bringing down the whole system. "Multiple
operating systems can even be active simultaneously." Interestingly enough, this allows for "user
programs to run under different operating systems if they have a common set of interfaces
(messages)." [NMS]

2.3 Implementation
The Nucleus was implemented successfully on the RC 4000 computer, a 24-bit word

system. The system supported a "real-time clock, TTYs, paper tape in/out, printer, tape, and a
backing store." [NMS]

The Nucleus and it's supporting software (external process code, S, etc.) consume about
18.5KB when running, leaving the rest of memory for user programs and external processes. On
average, either of the four messaging primitives take about 0.5 msec to execute. The Nucleus
operations taking the most time are process creation and removal because each word allocated to
a process must have a protection bit set individually. [NMS]

3. Critique of the Solution
While the solution likely helped pave the way for the modern microkernel, it suffers from

several significant problems. A major flaw is messaging security: any process can message any
other process in the hierarchy, which could cause many undesired effects. Another security issue
involves the creation of external processes: any internal process can create an external process,
implying there are no file permissions, etc. It also seems that the round robin scheduling is a little
inflexible. Perhaps more control of process scheduling could be delegated to the direct children
of S (each parent could dole out CPU time between its children rather than each child being given
CPU time directly by the Nucleus) to increase flexibility. A major weakness is that the lack of
virtual memory limits the usefulness of the operating system. The main reason for this is because
the RC 4000 computer is designed for real time applications and thus has no virtual memory
[Supplemental]. It's possible that implementation on a different computer platform would solve
this issue. Finally, another issue is the per-process message limit. If all processes messaged the
same process, one that was not calling Wait Message(), then it is possible the system may run out
of message buffers and be in a sort of deadlock situation. Perhaps the message limit could be for
the receiving queue of each process instead to avoid the deadlock.

4. Conclusion
The Nucleus places only basic operating system services in the kernel, allowing for the

system to be easily extended with one or more 'real' operating systems. Because the processes are
in hierarchy form, parents have complete control over children, thus making the parents operating
systems. This arrangement allows for multiple active operating systems in memory and the
ability to start, stop, and change them without affecting the system globally (no reboots or
modifications to the Nucleus are needed). The process scheduling scheme used is round robin.

The processes described above are known as internal processes. The other type of
process, known as external processes, are different in that they are not part of any hierarchy (flat
structure) and are used to interface with the outside world (files, tape drives, real time clock, etc.).
They can be created by any internal process and are communicated with using messages,
described below.

Processes may only communicate using messages. The Nucleus imposes an active
message limit for each process to avoid excessive resource consumption. The receiver of a
message may have an answer sent back to the initiator if desired, reusing the same buffer to
conserve resources.

5. References

[NMS] Per Brinch Hansen., The Nucleus of a Multiprogramming System.
Communications of the ACM 13(4), April 1970. Pp. 238-241, 250.

[Supplemental] P. Brinch Hansen, The RC 4000 real-time control system at Pulawy.
BIT 7, 4 (1967), 279-288.

