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Preventing Brain Injury in Newborns With Congenital
Heart Disease

Brain Imaging and Innovative Trial Designs

Rebecca L. Sherlock, MD; Patrick S. McQuillen, MD; Steven P. Miller, MDCM, MAS;
on behalf of aCCENT

Background and Purpose—Newborns with congenital heart disease are at high risk for brain injury and adverse
neurodevelopmental outcomes. MRI enables the objective determination of the severity of brain injury in critically ill
newborns with congenital heart disease. We will rationalize the use of MRI as a surrogate for neurodevelopmental
outcome and describe novel randomization techniques that can be used in trials in this population.

Methods—This article describes the evidence for the use of MRI and the link with neurodevelopmental outcome
established in newborns. We also discuss the use of adaptive randomization techniques for future clinical trials in
newborns with congenital heart disease. These strategies will be highlighted using an example.

Results—Brain injuries occur with high frequency in newborns with congenital heart disease. It is not until school age that
the full extent of neurological sequelae becomes apparent and the rapid pace of innovation in neonatal cardiac surgery
prevents timely evaluation of changes in care. MRI provides a timely, safe, and reliable outcome measure and has been
extensively studied in newborns with other conditions in which the link between brain injury and neurodevelopmental
outcome has been established. Clinical trials using MRI as an outcome measure as well as adaptive randomization can
improve the efficiency of such trials.

Conclusions—Clinical trials of brain protection are urgently needed in newborns with congenital heart disease given the
unacceptable frequency of brain injury in this population; MRI provides an early surrogate marker of long-term
neurodevelopmental outcome and adaptive randomization can be used to improve the efficiency of these clinical trials.
(Stroke. 2009;40:327-332.)
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Experts have called for large clinical trials in the preven-
tion of pediatric strokes based on the example set by

pediatric oncology groups; oncology clinical trials have
vastly improved the survival and outcomes of pediatric
oncology survivors.1 The incidence of stroke in the newborn
is 20 per 100 000 live births and leads to a high risk of
significant long-term neurological impairments for survi-
vors,2 including cerebral palsy,3 cognitive deficits, visual
disturbances, and epilepsy.4 MRI is increasingly being used
to detect stroke in the newborn. A number of imaging features
of stroke are now recognized as predictors of adverse neuro-
developmental outcome.3,5

Newborns with congenital heart disease (CHD) are at
increased risk for brain injury and adverse neurodevelopmen-
tal outcomes. High-resolution MRI and diffusion tensor
imaging enable us to objectively determine the severity of
brain injury in these newborns. Periventricular leukomalacia

and neonatal strokes have both been reported to be the most
significant lesions in terms of severity and incidence in
infants that undergo CHD repair6,7; modifiable risk factors
have been identified for both giving the hope that preventive
strategies may be proposed. To illustrate advances in clinical
trial design, this review focuses on the prevention of neonatal
stroke. With the recent application of pre- and post-operative
MRI in newborns with CHD, a number of preventable
mechanisms for strokes in these high-risk newborns have
been identified.8 Given that the timing and mechanism of
brain injury in newborns with CHD can now be identified,
these infants can be studied to evaluate emerging strategies of
brain protection.

Because the full extent of neuropsychological challenges
do not become apparent until well into school age, today, it is
necessary to wait 8 years or more to fully assess which
newborns have the sequelae of acquired brain injury early in
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life.9 As such, the pace of innovation in neonatal cardiac
surgery outstrips the ability to evaluate the impact of new
therapies on the brain. The quantification of brain injury
overcomes this limitation and lays a unique and unprece-
dented foundation for testing new strategies for preventing or
treating brain injury. Specifically, the availability of brain
MRI as an early, predictive, and quantifiable outcome mea-
sure now opens a window for the implementation of new
clinical trial methodology such as adaptive randomization;
this technique requires a rapid ascertainment of the outcome.

This review addresses (1) the burden of neurodevelopmen-
tal impairments in children who had cardiac surgery as
neonates; (2) how imaging studies provide a powerful prog-
nostic tool for neurodevelopmental outcomes in high-risk
newborns; and (3) novel clinical trial methods such as
adaptive randomization can now be implemented with MRI
as early measures of brain injury in newborns with CHD.
Ultimately, the application of brain imaging and new meth-
odologies for the evaluation of brain protection in these
newborns will provide important lessons applicable to de-
creasing the burden of stroke in childhood.

Congenital Heart Disease Is Common
and Associated With Adverse Outcomes
CHD refers to a variety of cardiac malformations present at
birth and includes both cyanotic and acyanotic heart lesions.
CHD occurs in 6 to 8 per 1000 live births and is a common
cause of childhood morbidity. Up to 50% of these children
require open heart surgery to correct their defect.10,11 In
Canada, 3518 newborns were affected with CHD in 1999 and
the birth prevalence of CHD has increased steadily over the
previous decade.12 The economic cost associated with CHD
in Canada exceeds $216 million annually and accounts for
almost half of the economic burden of all birth defects.13 A
relatively homogenous type of cyanotic CHD that is amena-
ble to early surgical correction is transposition of the great
arteries (TGA). A recent study of 2 forms of cardiopulmonary
bypass for the correction of TGA noted a neurological
abnormality in up to 37% of the patients enrolled.14,15 The
deficits identified in this cohort of newborns with TGA
persisted throughout childhood with significant detriment to
school performance. By 8 years of age, children with surgical
correction of TGA in the neonatal period had significantly
lower scores than population means for fine motor skills,
visual–spatial skills, and cognition, including memory, atten-
tion, and higher-order language skills.16 In other cohorts,
children with TGA were more likely to have abnormal
neurological examination findings, learning disabilities, and
behavioral disorders compared with population norms.9,17–19

Adverse neurodevelopmental outcomes are not restricted
to newborns with TGA; motor and global developmental
delays have been reported in children with multiple types of
CHD.14 For example, the incidence of major disabilities in
survivors with hypoplastic left heart syndrome exceeds
60%.20,21 The neurological basis for the high incidence of
these developmental deficits in children with CHD is begin-
ning to be understood with insight from neuroimaging.
Together, these neurodevelopmental impairments result in
significant detriment to the child, family, and society.

Opportunities for Intervention: Etiology of
Neurodevelopmental Impairments
The timing of and mechanisms underlying neurodevelopmen-
tal deficits in children with CHD is multifactorial. Hypothe-
sized etiologies include disturbances in brain metabolic func-
tion, brain injury, and abnormal brain development in
addition to associated genetic conditions.22 Given the degree
of cyanosis and instability most CHD lesions present to the
infant, it is not possible to delay definitive surgical correction
to a time when the brain is less vulnerable. Initial studies of
acquired brain injury focused on the operative period and
cardiopulmonary bypass technique. Early surgical techniques
for the correction of complex heart lesions during the neona-
tal period required a bloodless field and total circulatory
arrest. Prolonged circulatory arrest time is identified as a
major risk factor for subsequent neurodevelopmental impair-
ments9,14 in some reports, although not in others.23 Long-term
neurodevelopmental deficits in newborns with TGA are seen
even after attempts to normalize cerebral blood flow during
surgical correction of the heart lesion. In children repaired
with full-flow cardiopulmonary bypass during the neonatal
period, survivors at 9 years were more likely than best-friend
controls to have lower full scale IQ scores, higher motor
impairment scores, and lower social–behavioral competence
scores.24 Cardiopulmonary bypass itself may result in brain
injury due to embolism, inflammation, and ischemia resulting
in impaired delivery of energy substrates (oxygen and glu-
cose).25–31 Moreover, newborns have a pronounced decrease
of mitochondrial oxygenation during induction of hypother-
mia and a delay in the recovery of the same after circulatory
arrest.28,29 Regional cerebral perfusion has been investigated
as an alternative to deep hypothermic circulatory arrest. Some
authors report no statistically significant differences in neu-
rodevelopmental outcomes with this technique32–34; however,
a high incidence of stroke has been reported.35

Other factors that have been associated with adverse
neurodevelopmental outcomes include low gestational age,
low birth weight, presence of a genetic syndrome, and high
pre- and post-operative lactate.23,36,37 Surprisingly, the com-
plexity of the underlying cardiac lesion and the duration of
cardiopulmonary bypass and deep hypothermic cardiac arrest
were not associated with developmental outcomes.21 Re-
cently, it has been recognized that more than half of newborns
with CHD have clinical evidence of neurological abnormal-
ities on examination before surgery and that these abnormal-
ities are a significant risk factor for later neurodevelopmental
impairment.18,36,38

Role of Brain Imaging in Identifying Mechanism
of Brain Injury
MRI studies of newborns with CHD have shown that up to
40% have preoperative brain injuries.35,39 Postoperative MRI
showed that an additional third of those studied acquired new
injuries such that, overall, more than half of those studied had
acquired brain lesions.7,35,39 Stroke predominates as the brain
lesion detected preoperatively, particularly in newborns with
TGA.8,35 The most common pattern of brain injury on
postoperative MRI is white matter injury, particularly in
neonates with single ventricle physiology and aortic arch
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obstruction.35,39 White matter injury is found in up to 55% of
neonates who undergo cardiac surgery,39 is found early in the
postoperative course (6 to 14 days after surgery), and is more
frequent in newborns with low cardiac output states
postoperatively.35,39

Investigators are questioning the appropriateness of long-
term follow-up as the only outcome to consider, because it is
remote from the therapies under investigation. The pace of
change with respect to surgical intervention is rapid, preclud-
ing long-term follow-up of patients enrolled in large random-
ized, controlled trials. Indeed, the perioperative management
of patients with cardiac disease has changed dramatically in
the past decade concurrent with a number of important
changes in clinical management strategies: flow (circulatory
arrest, low flow, full flow), cannulation (regional cerebral
perfusion), pH management (alpha stat, pH stat), hemodilu-
tion/hematocrit, temperature (deep or moderate hypothermia,
normal temperature), and ultrafiltration after cardiopulmo-
nary bypass.

In 1990, Ferry et al40 reported an incidence of overt
postoperative neurological dysfunction of 25% in cardiac
surgery survivors; by 2002, this incidence was reported as
2.3%.41 Given the common occurrence of acquired brain
injury detected by MRI in contemporary cohorts of newborns
with CHD, we suspect that overt neurological dysfunction in
the immediate postoperative period is not a reliable indicator
of brain injury or future neurodevelopmental impairment.
Despite this, the widespread acceptance of new practices or
interventions by the clinical community often precedes the
availability of long-term outcomes.16,42–44

There is speculation that neuroimaging may be a more
useful tool to provide early prognostic information related to
longer-term outcomes. In addition, there needs to be efforts to
improve the efficiency of trials related to CHD and neurode-
velopmental outcomes. Two aspects of trial design arise from
these thoughts: Can MRI be a proxy measure for long-term
outcomes? Can we determine therapeutic benefits faster than
a regular randomized, controlled trial without losing power?

MRI as an Early Outcome Measure
Because changes on MRI correspond closely to histopatho-
logic changes found on postmortem examination,45–49 MRI
can be applied in vivo to better anticipate the neurodevelop-
mental outcome after neonatal brain injury. A number of
investigators have found that the severity and pattern of brain
injury in the term newborns after a hypoxic–ischemic insult
are strongly predictive of neurodevelopmental outcomes.49–51

In the premature newborn, moderate to severe white matter
injuries are highly predictive of cognitive and motor delays,
cerebral palsy, and neurosensory impairments after adjust-
ment for other measures of neonatal illness, including cranial
ultrasound abnormalities.49,52 Studies are ongoing in several
centers to further link MRI appearance and neurodevelop-
mental outcome.

Historically, cranial ultrasound was used to diagnose
strokes in newborns; however, Cowan et al53 showed that
these studies failed to diagnose up to 32% of neonatal strokes
and were highly imprecise with respect to laterality and the
site of lesion. Ultrasound correctly identified laterality and

site in only 53% of cases when compared with MRI.
Investigators have shown that the appearance of strokes on
MRI is well correlated with neurological outcome.5,54–57 In
addition, the advent of MRI-compatible incubators, monitors,
and ventilators makes MRI increasingly safe and feasible to
obtain early in life in critically ill newborns. From these
studies, it seems clear that MRI can provide objective,
accessible, and early information on brain injuries such as
global hypoxia–ischemia, stroke, and white matter injury,
which can be used to inform neurodevelopmental prognosis
in neonates who undergo cardiac surgery.

Future Directions: Adaptive Randomization
Determining “cause-and-effect” relationships can be difficult
outside of the confines of a randomized, controlled trial.
randomized, controlled trials can be time-consuming and
expensive and conventional randomization may expose a
large number of patients to less effective therapies. There are
alternate methods of randomization, adaptive randomization,
that can potentially reduce this and study duration. Because
postoperative MRI provides immediate outcome data, we can
use these randomization methods. Adaptive randomization
allows probabilities to evolve in the course of a trial to favor
the more successful therapy, thus decreasing the exposure of
subjects to suboptimal therapy. Perhaps the best known of
these strategies are “play-the-winner” rules such as that
applied in the extracorporeal membrane oxygenation trial
published by Bartlett et al,58 which implied an “urn” model as
follows.

Preceding randomization, balls labeled according to each
of the 2 arms are placed in an urn. Randomization assign-
ments were determined for each subject by drawing a ball at
random from the urn and then replacing it. Each time, a final
outcome was determined for a subject, if the outcome was a
treatment success, a ball corresponding to the treatment given
was added if the urn; otherwise, a ball corresponding to the
other treatment is added. Thus, the number of balls (and thus
the balance of probability) grows for the “winning” therapy.

Corresponding to the randomization, sequential decision
rules are applied. In the extracorporeal membrane oxygena-
tion trial,58 the rule was to end randomization when 10
subjects had received extracorporeal membrane oxygenation
or when 10 control subjects had died. The net result of the
trial was that 10 subjects received extracorporeal membrane
oxygenation therapy and lived with one only one subject
assigned to control, who died. Unfortunately, the author’s
conclusion of efficacy for extracorporeal membrane oxygen-
ation was greeted with much skepticism due to having only
one control subject.

Another adaptive rule, “drop-the-loser,” is aimed at avoid-
ing such profound treatment imbalances. One version of this
approach starts with one ball for each treatment type in the
urn together with a “type 0” ball. As previously described,
treatments are determined by drawing from the urn, but the
ball is only returned to the urn once the subject’s outcome is
known to be a success. If a draw produces a “type 0” ball, that
ball is replaced and one ball of each treatment type is added
to the urn and the draw is repeated.
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These techniques are less intuitive than conventional ran-
domization and the analysis more challenging. Some authors
have questioned the power of these techniques,59,60 whereas
others have provided power calculations and methods for
sample size calculation.61 In adaptive randomization, the
observations are not independent of one another and standard
regression approaches cannot be used. Inferences can be
drawn based on a simple difference in outcome between the
2 groups (ie, treatment A versus treatment B) or by generating
an odds ratio.

A final method of adaptive randomization is the use of
Bayesian methods. Bayesian adaptive randomization marries
the scientific ideal of conventional randomization and per-
sonal preferences for one treatment over another that may be
incorrect. In clinical medicine, physicians have opinions
regarding the most appropriate therapy based on numerous
factors. Bayesian statistics allows for the incorporation of this
information, in the form of prior probabilities, which are then
modified by combining these probabilities with observed data
to compute a posterior probability that is used to make
statistical inferences.62 Bayes’ Law can be applied repeatedly
using the posterior probability obtained after a given stage as
the prior for the next stage, providing a framework for
making decisions based on accumulating data during a
clinical trial. Practically speaking, this can be implemented
with a randomization program linked to a database such that
the probabilities can be constantly updated. In this way,
patients enrolled later in a trial benefit from the results of
previous patients in the trial as the probability increases that
they receive the more effective treatment.63 It is extremely
important, however, that the prior probabilities are carefully
generated based on appropriate data and information. In
addition, a “run-in” period of parallel randomization can be
incorporated before Bayesian methods are used allowing for
more accurate prior probabilities to be generated.

By way of example, we propose a trial that would use these
methods. We want to determine whether the use of hepa-
rinization during balloon atrial septostomy for infants with
TGA reduces the incidence of stroke as seen on MRI
compared with placebo. MRI could be performed both pre-
and postoperative balloon atrial septostomy. If conventional
randomization were to be used for a trial of this nature,
assuming a reduction in stroke of 50% with heparin use, 100
patients would need to be randomized; this would require
many years of recruitment at multiple sites. Comparatively,
with Bayesian methods, the sample size varies depending on
the “success” rate of heparin, ie, the reduction in stroke as
diagnosed by MRI allowing for the efficient recruitment of
patients and limiting the study duration (Figure). Of note, the
sample size never exceeds that required by conventional
randomization (n�100). In addition, a trial such as this could
also be used to further explore the correlation of MRI and
longer-term developmental outcomes by including a
follow-up component.

One concerning feature of these techniques is how the
results can be used in the clinical arena to change practice.
These trials inform the “probability” that the experimental
intervention is effective. None of these methods allow for the
calculation of a probability value. Although “probabilities”

are much more intuitive than probability values in the clinical
realm of decision-making, clinicians who are uncertain or
skeptical of these techniques may question the validity of the
results and be hesitant to incorporate changes into their
practice. A concerted effort to make these techniques robust
and appropriately used would have to be made to ensure
effective and efficient knowledge translation of the findings.

From an ethical perspective, particularly in light of the high
incidence of brain injury in newborns with CHD receiving
standard care, adaptive randomization is appealing to clini-
cians caring for these newborns. They can feel that they are
offering the best care for the infant while continuing to
contribute to the scientific evidence.

Conclusions
Clinical trials of brain protection are urgently needed in
newborns with CHD given the unacceptable frequency of
brain injury in this population. Newborns with CHD account
for a large proportion of potentially preventable pediatric
strokes with the concomitant burden of disease. MRI of the
brain and adaptive randomization are useful tools in trials that
examine therapies related to CHD and the subsequent neuro-
developmental effects by optimally testing brain injury pre-
vention strategies. With a concerted effort to apply adaptive
randomization techniques appropriately using MRI as an
early outcome of brain injury, effective and efficient knowl-
edge translation of the findings from trials of brain protection
in newborns with CHD should be possible avoiding the need
to implement changes in care without vigorous evaluation.
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