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Abstract. Search decisions are often made using heuristic methods as real-world
applications can rarely be tackled without any heuristics. In many cases, multiple
heuristics can potentially be chosen, and it is not clear a priori which would perform
best. In this article, we propose a procedure that learns, during the search process,
how to select promising heuristics. The learning is based on weight adaptation and
can even switch between different heuristics during search. Different variants of the
approach are evaluated within a constraint programming environment.
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1. Introduction

All kinds of search techniques include choice points at which decisions
must be made between various alternatives. For example, in refinement
search, an extension step from a partial solution toward a complete
solution must be chosen. In local search methods, it must be decided
how a complete but suboptimal/infeasible solution is to be changed
toward an optimal/feasible solution.

However, for large and complex real-world problems, decisions can
rarely be made in an optimal way. Especially for local search tech-
niques, this is a very critical issue because they do not normally incor-
porate backtracking mechanisms. Many different meta-heuristic tech-
niques have therefore been developed to handle the complications in-
volved when choosing an alternative.

Figure 1 shows a choice point, representing the current state/solu-
tion of local search, and multiple alternatives, representing the so-called
neighbor states that can be reached within an iteration.

Nearly all local search methods evaluate all neighbor states in a
kind of look-ahead step in order to choose the most beneficial alterna-
tive. However, complex real-world problems — such as action planning
including time, resources and optimization — often have utility func-
tions whose computation requires a great deal of computing power.
Analyzing large neighborhoods is mostly out of the question, and even
smaller neighborhoods are difficult to check. Techniques like simulated
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Figure 1. A decision point in local search

annealing (Kirkpatrick et al., 1983) are highly suitable for these tasks
because only one neighbor is analyzed for a choice decision (though
more neighbors may be analyzed if the current neighbor appears to be
unsuitable).

For the purposes of this paper, we go one step further, not analyzing
any neighbor, but choosing a neighbor according to learned utility val-
ues. In addition, we do not choose a specific neighbor state but a trans-
formation heuristic that will be applied to create the new state. Unlike
other reinforcement learning approaches for learning which heuristics
perform well, our approach allows the search to switch between different
heuristics during search in order to adapt to specific regions of the
search space.

Section 2 introduces the constraint programming environment that
is applied in our experiments, and details the use of heuristics. Weights
and their adaptation are presented in Sec. 3. The scheme is evaluated
in Sec. 4. Conclusions and related work are discussed in Sec. 5.

2. Search Decisions

As an example of local search, we give a brief description of the search
method applied in the DragonBreath engine. The underlying paradigm
is presented in detail in (Nareyek, 2001 (a)).

The problem is specified as a so-called constraint satisfaction prob-

lem (CSP). A CSP consists of

— a set of variables z = {z1,...,z,}
— where each variable is associated with a domain d, ..., d,

— and a set of constraints ¢ = {¢y, ..., ¢, } over these variables.

The domains can be symbols as well as numbers, continuous or
discrete (e.g., “door”, “13”, “6.5”). Constraints are relations between
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variables (e.g., “z, is a friend of x,”, “z, < zp x x.”) that restrict
the possible value assignments. Constraint satisfaction is the search for
a variable assignment that satisfies the given constraints. Constraint
optimization requires an additional function that assigns a quality value
to a solution and tries to find a solution that maximizes this value.

In our local search approach, a specific cost function is specified for
every constraint (so-called global constraints), which returns a value
that represents the constraint’s current inconsistency/optimality with
respect to the connected variables. For example, a simple Sum constraint
with two variables a and b to be added and an s variable for the sum
could specify its costs as Sum.,ss = |a + b — 3.

In addition, a constraint has a number of heuristics to improve its
cost function. For example, a heuristic for the Sum constraint could ran-
domly choose one of the related variables and change it such that there
are no more costs. Another heuristic might resolve the inconsistency by
distributing the necessary change such that all variables are changed
by the same (minimal) amount. The constraint must make the choice
as to which heuristic to apply on its own.

On top of all constraints is a global search control which selects, in
each iteration of local search, one of the constraints which is to perform
a change, i.e., the transition to a neighbor state. Figure 2 shows the

control flow.
Global Search Control
‘ Selection of Constraint ‘

Global Constraint e f Global Constraint
\ Selection of Heuristic \ \ Selection of Heuristic \
» \ » A4
Improvement| | Improvement Improvement| | Improvement
Heuristic Heuristic — variable Heuristic Heuristic
- Update - -

A4 / Linkin A4

|1 9
| Update Functions | <] ™| Update Functions |

Figure 2. Using global constraints for local search

The global search control possesses qualitative and quantitative in-
formation from the constraints’ cost functions to decide which con-
straint to choose (e.g., the constraint with the maximal costs), but
a constraint itself has little guidance as to which of its heuristics to
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choose. This choice point — for choosing one of the constraint’s heuris-
tics — is investigated below.

3. Utility Weight

For a choice point, a utility value w, > 1 is computed/maintained for
every alternative a (an alternative stands for a heuristic here) that
expresses the expected benefit of choosing this alternative.

l Choice point
Acurrent state)
w W, w

v
] ]

Figure 3. A decision point in our approach

(transformation heuristics)

Result
(neighbor states)

4 w 5
\T \ Alternatives
] (]

The utility values are subject to learning schemes, which change
the values based on past experiences with choosing this alternative. In
many cases, an appropriate balance of the utility values will depend
on the area of the search space that the search is currently in. We will
therefore focus on schemes that dynamically adapt during search and
not only after a complete run.

3.1. SELECTION FUNCTION

Selection between possible alternatives is done based on the alterna-
tive’s utility values. Here, we look at two simple ones. The first is
a fair random choice (a so-called softmaz kind of selection rule), re-
ferred to below as M:0, which selects an alternative a from the choice
point’s alternatives A with a choice probability p, in proportion to the
alternative’s utility value wy:

Another possibility is to make a random choice between the alter-
natives with mazimal utility values:
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3.2. WEIGHT ADAPTATION

All utility weights have integer domains and are initially set to 1. If the
choice point is selected, the utility weight of the alternative is changed
that was chosen by the choice point when it was called last time.
The kind of change depends on the relation of the current objective
function value 0,4, to the objective function value when the choice
point was called last time ope fore (i.€., if there is a positive or negative
reinforcement). The update schemes below can be combined to give
many different strategies, e.g., a simple P:1-N:1 strategy.

Onow better-than opcfore: (positive reinforcement)

P:1 (Additive Adaptation): wg < wg +1

P:2 (Escalating Additive Adaptation): w, < wq + Mpromotion

P:3 (Multiplicative Adaptation): wg ¢ wq X 2

P:4 (Escalating Multiplicative Adaptation): wg <= Wa X Mpromotion

We X We : wg>1
2 w,=1

o

:5 (Power Adaptation): wq < {

Onow WoOrse—than-or-equal-to Opefore: (negative reinforcement)
N:1 (Subtractive Adaptation): w, ¢ wg — 1
N:2 (Escalating Subtractive Adaptation): wg 4= wWg — Mdemotion

N:3 (Divisional Adaptation): w, < 5

N:4 (Escalating Divisional Adaptation): wg Ya

Mdemotion

N:5 (Root Adaptation): wg ¢ /W

If a utility value falls below 1, it is reset to 1; if a utility value exceeds
a certain max,, it is reset to max,; if a utility value is assigned a
non-integer value, it is rounded down. In the case of an escalating adap-
tation, each time there is a consecutive improvement /deterioration, the
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Mypromotion/ Mdemotion Value is doubled. Otherwise, it is reset to 1 (for
P:2 and N:2) or 2 (for P:4 and N:4).

3.3. INVALID ALTERNATIVES

For some choice points, more than one alternative must be tested. For
example, an alternative may turn out to be infeasible. An applicabil-
ity flag f with a value of 0 or 1 is introduced for every alternative,
indicating whether the alternative is still a valid option:

Wq < faxwa

By the option of setting an applicability flag to 0, alternatives can often
be ruled out a priori by simple feasibility tests.

However, in some cases, the infeasibility of an alternative will only
become apparent during the state-transformation process of the cho-
sen heuristic, i.e., after the choice has been made. In such a case, all
changes in the current state that were made after the choice point are
reversed, the corresponding applicability flag is set to 0 and the choice
process is repeated. If no alternative remains applicable, the constraint
improvement fails.

If the choice point’s selection is subject to the learning scheme, ap-
plicability flags are not set to 0 if an alternative fails. The failure may be
caused by a bad random decision during the alternative’s computations
and the alternative may not be fully inapplicable. The learning process
can handle this situation more appropriately than in a non-learning
case, skipping the usual update of the utility weights and temporarily
dividing the failed alternative’s utility weight by two (though no weight
may fall below one). If one of the alternatives has been successfully
applied, all adaptations of the utility weights that were done for the
restarts are undone.

4. Empirical Evaluation

Two optimization problems — the Orc Quest problem and the Logistics
Domain — are evaluated with different learning/selection schemes. The
concrete problems and solving heuristics are not explained here because
they are not relevant to the techniques applied. A detailed presenta-
tion of the problems can be found in (Nareyek, 2001 (b)). The Orc
Quest problem’s solving process involves only three constraints with
six heuristics each. For all of these, the learning scheme is applied. The
Logistics Domain’s solving process includes a much greater and varying
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number of constraints. The learning scheme is applied to all constraint
of a particular type!, which includes five alternative heuristics.

4.1. RESuULTS

A strategy is denoted by P-N-M, P € {1..5} indicating the adaptation
scheme that is applied in the case of an improvement, N € {1..5} the
adaptation scheme for non-improvement, and M € {0,1} if the fair
random choice is applied or a maximal value is chosen.

The results for some strategies for the Orc Quest problem are shown
in Fig. 4 as the percentage of test runs (100 % = 100,000 test runs) that
found the optimal solution after a specific number of iterations. The
problem from the Logistics Domain is much harder, so only the best
solution (minimal duration) found after 100,000 iterations is shown in
Fig. 5 (100 % test runs = 1,000 test runs).

100%

90%
80%
70%
60%
50%

Percentage of test runs

40% 151 — ]
5-5-1 oo
30% 4-4-1 oo T
3-3-1 o
20% 1-3-0 ———— ]
2-2-1 --- o
10% [ 1-1-1 .
-
0% | | | |
0 2000 4000 6000 8000 10000

Iterations
Figure 4. Sample strategies for the Orc Quest problem

A more detailed analysis is given in Figs. 6 and 7. For specific
percentages, it is shown after how many iterations this percentage of
test runs found the optimum (for Fig. 6), and the lowest duration that
was found by this percentage of test runs after 100,000 iterations (for
Fig. 7) The strategies are sorted according to which strategy resulted

! For the Logistics Domain, the duration minimization of Problem 6-1a is an-
alyzed, applying the weight adaptation for the STATE RESOURCE CONSTRAINT’S
selection of an improvement heuristic.
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Figure 5. Sample strategies for the Logistics Domain

in the least iterations/duration for a maximal percentage of test runs
(not considering the 100 % rate).

The general trend is that a low (e.g., additive/P: 1) rate of adapta-
tion is good in the case of an improvement, a strong (e.g., root/N:5)
rate of adaptation is good in the case of a deterioration, and a choice
of a maximal weight is often better than a fair random choice. The
explorative feature of the fair random choice may not be that impor-
tant because there are very often cases of negative reinforcement that
quickly change the weight situation.

Because the Orc Quest problem involves only three constraints, we
can easily visualize some further properties of the search process for it.
One interesting property is the ratio of positive to negative reinforce-
ments shown in Fig. 8. However, it is not very surprising that this ratio
deteriorates according to the strategy ordering shown in Fig. 6.

Figure 9 shows how many times a constraint’s highest weight changes,
i.e., how many times a weight is assigned a value above a certain per-
centage of the total values of the choice point’s weights, and the last
time this percentage was reached, it was reached by another weight.
Strategies that perform many changes in the configuration appear to
perform better. This might be an indication of why strategies with a
low rate of adaptation in the case of an improvement and a strong
rate of adaptation in the case of a deterioration are likely to perform
better, because such strategies facilitate a reconfiguration of the weight
situation.
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An exception here are strategies with a very low positive reaction
(P:1). Because of the slow growth of the weights, a smaller number of
clear reconfigurations are performed. However, this simmering situation
would appear to have its advantages as well.

Figure 10 shows how many times the highest weight is re-established,
i.e., how many times a weight is assigned a value above a certain
percentage of the total values of the choice point’s weights, and the
last time this percentage was reached, it was reached by the same
weight. In general, one would expect strategies that re-establish old
configurations to do needless work and thus, possibly perform worse.
However, the figures do not shown many differences here. The reason
for this is probably that the better strategies perform a lot of configu-
ration changes in general, and, are thus also more likely to re-establish
configurations more often. But, of course, the ratio of re-established
configurations to all reconfigurations is much better here.

4.2. EXTENDED EXPERIMENTS

Following the observed trend, we can extend our experiments by more
extreme options in this direction:

P:0 (No Adaptation): wq ¢ wq
To enable negative adaptations for this option, in the case of a
negative change the decrease of w, is distributed as an increase to
all wjz, (starting with high initial weights).

N:6 (Total Loss Adaptation): wg, < 1

Figure 11 shows that these options do not improve performance for
the Orc Quest problem. However, as shown in Fig. 12, strategies with
an N:6 option appear to work well for the early phase of search, i.e.,
for less constrained problems.

4.3. STATIONARY REINFORCEMENT LEARNING

So far, we have looked at different methods to adapt the weights during
search, assuming that different areas of the search space can be han-
dled more efficiently using different search strategies. Although this
assumption seems to be intuitively correct, it remains to be shown to
be true. This section, then, compares adaptive non-stationary learning
with stationary approaches.

Previous approaches adapted learning parameters after a complete
run or when a local minimum was reached. Of these two options, only
an adaptation after a complete run (with an upper bound of a specific

final.tex; 29/11/2001; 14:20; p.13
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Figure 11. Extended weight-adaptation results for the Orc Quest problem; showing

only the 50 best strategies
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Figure 12. Extended weight-adaptation results for the Logistics Domain after 25,000
(left) and 100,000 (right) iterations; showing only the 50 best strategies
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number of iterations) is applicable here because we do not evaluate the
whole neighborhood and cannot therefore tell if we are in a local mini-
mum. The time taken by the learning process to find an optimal station-
ary weight distribution is not measured because the results may be very
different for different learning techniques. Thus, the adaptive learning
strategies are compared with the optimal stationary distribution.

For the Orc Quest problem, we can actually find an optimal static
weight distribution such that all test runs find the optimum in about 35
iterations. With the most simple, non-stationary 1-1-0 strategy, 50 %
of the test runs found the optimum after 1,305 iterations, and after 405
iterations for strategy 1-5-1. Thus, an adaptive strategy would seem
to perform very poorly for the simple Orc Quest problem. This is not
completely true, however, given the time that would be required to learn
the optimal stationary distribution. For example, using a simple static
distribution such that every heuristic is chosen equally often, none
of the 100,000 test runs found the optimum within 100,000 iterations.
We conclude that, if the problem (or very “similar” problems) is solved
very often, a stationary reinforcement learning approach will ultimately
perform much better; but for a short time-frame, the non-stationary
approach is probably much superior.

For the more complex Logistics Domain, our findings are different.
The performance of even the most simple, non-stationary 1-1-0 strat-
egy is similar to that a carefully hand-tailored static weight distribu-
tion, i.e., a static distribution does not work well even disregarding the
learning time (see Fig. 13). Our assumption that it is useful to switch
between different heuristics during search in order to adapt to spe-
cific regions of the search space proves valid for this more complicated
problem.

5. Conclusion

The use of a neighborhood of repair heuristics is a promising way to
implement a local search — especially for complex real-world problems
in which the computation of a state’s objective function value is often
very costly. Using the repair heuristics, domain-dependent knowledge to
guide the search can easily be incorporated into the search process. The
approach used here is based on (Nareyek, 2001 (a)). Similar techniques
were applied in (Rabideau et al., 1999; Smith, 1994; Zweben et al.,
1994).

However, finding an appropriate strategy that guides when to apply
which heuristics is not easy. This article has presented an approach
to learn a selection strategy by modifying weights. Other approaches
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Figure 13. Adaptive vs. static strategies for the Logistics Domain (after 25,000
iterations), disregarding the learning time for the static distribution

that make use of weights for re-structuring the neighborhood include
(Boyan and Moore, 1997; Frank, 1997; Schuurmans and Southey, 2000;
Voudouris and Tsang, 1995). Unlike these approaches, we do not only
change the weights when a local optimum or solution is reached. Search
usually undergoes different phases (i.e., search-space regions) in which
different search heuristics work best. Thus, even during search, the
heuristics’ configuration is constantly updated. For this purpose, a less-
carrot-more-stick strategy seems to be appropriate, allowing for quick
configuration changes and preventing the old configuration from being
re-established too quickly.

In reinforcement learning, non-stationary environments (such as the
search-space region) are only rarely considered. Examples include ap-
proaches based on supervised techniques (Schmidhuber, 1990), evolu-
tionary learning (Littman and Ackley, 1991) and model-based learning
(Michaud and Matari¢, 1998). Unlike these approaches, we have used
a modification of standard action-value methods (Sutton and Barto,
1998), applying functional updates instead of cumulative value ad-
ditions in order to influence the impact of the already learned rein-
forcements. This simple method enables the search to compute weight
updates very quickly — which is very important for a local search en-
vironment because a single iteration should consume only very little
computing power.
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Adaptive weighs are not restricted to local search; they can also
be used for (esp. restart-based) refinement search. Examples include
the pheromone trails in ant colony optimization (Dorigo et al., 1999),
the use of domain-specific prioritizers (Joslin and Clements, 1999) and
action costs in adaptive probing (Ruml, 2001). The results obtained
in this study may be transferred to these areas, and techniques like
pheromone evaporation are worth studying for neighborhoods of heuris-
tics as well.

So far, we have not considered quantitative cost-function effects
of decisions. Improvement or non-improvement was the only criterion
for learning. However, “good” heuristics may not be equally good on
the quantitative level and incorporating mechanisms to exploit the
quantitative differences is a promising idea for future work.

The presented techniques are integrated into the DragonBreath
engine, which is a free optimization engine based on constraint pro-
gramming and local search. It can be obtained via:
http://www.ai-center.com/projects/dragonbreath/
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