
Choosing Search Heuristics by Non-StationaryReinforcement LearningAlexander NareyekGMD FIRST, Kekul�estr. 7, D - 12489 Berlin, GermanyNovember 29, 2001Abstract. Search decisions are often made using heuristic methods as real-worldapplications can rarely be tackled without any heuristics. In many cases, multipleheuristics can potentially be chosen, and it is not clear a priori which would performbest. In this article, we propose a procedure that learns, during the search process,how to select promising heuristics. The learning is based on weight adaptation andcan even switch between di�erent heuristics during search. Di�erent variants of theapproach are evaluated within a constraint programming environment.Keywords: Non-Stationary Reinforcement Learning, Optimization, Local Search,Constraint Programming 1. IntroductionAll kinds of search techniques include choice points at which decisionsmust be made between various alternatives. For example, in re�nementsearch, an extension step from a partial solution toward a completesolution must be chosen. In local search methods, it must be decidedhow a complete but suboptimal/infeasible solution is to be changedtoward an optimal/feasible solution.However, for large and complex real-world problems, decisions canrarely be made in an optimal way. Especially for local search tech-niques, this is a very critical issue because they do not normally incor-porate backtracking mechanisms. Many di�erent meta-heuristic tech-niques have therefore been developed to handle the complications in-volved when choosing an alternative.Figure 1 shows a choice point, representing the current state/solu-tion of local search, and multiple alternatives, representing the so-calledneighbor states that can be reached within an iteration.Nearly all local search methods evaluate all neighbor states in akind of look-ahead step in order to choose the most bene�cial alterna-tive. However, complex real-world problems { such as action planningincluding time, resources and optimization { often have utility func-tions whose computation requires a great deal of computing power.Analyzing large neighborhoods is mostly out of the question, and evensmaller neighborhoods are di�cult to check. Techniques like simulatedc 2001 Kluwer Academic Publishers. Printed in the Netherlands.
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Figure 1. A decision point in local searchannealing (Kirkpatrick et al., 1983) are highly suitable for these tasksbecause only one neighbor is analyzed for a choice decision (thoughmore neighbors may be analyzed if the current neighbor appears to beunsuitable).For the purposes of this paper, we go one step further, not analyzingany neighbor, but choosing a neighbor according to learned utility val-ues. In addition, we do not choose a speci�c neighbor state but a trans-formation heuristic that will be applied to create the new state. Unlikeother reinforcement learning approaches for learning which heuristicsperform well, our approach allows the search to switch between di�erentheuristics during search in order to adapt to speci�c regions of thesearch space.Section 2 introduces the constraint programming environment thatis applied in our experiments, and details the use of heuristics. Weightsand their adaptation are presented in Sec. 3. The scheme is evaluatedin Sec. 4. Conclusions and related work are discussed in Sec. 5.2. Search DecisionsAs an example of local search, we give a brief description of the searchmethod applied in theDragonBreath engine. The underlying paradigmis presented in detail in (Nareyek, 2001 (a)).The problem is speci�ed as a so-called constraint satisfaction prob-lem (CSP). A CSP consists of� a set of variables x = fx1; : : : ; xng� where each variable is associated with a domain d1; :::; dn� and a set of constraints c = fc1; :::; cmg over these variables.The domains can be symbols as well as numbers, continuous ordiscrete (e.g., \door", \13", \6.5"). Constraints are relations between
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Choosing Search Heuristics by Non-Stationary Reinforcement Learning 3variables (e.g., \xa is a friend of xb", \xa < xb � xc") that restrictthe possible value assignments. Constraint satisfaction is the search fora variable assignment that satis�es the given constraints. Constraintoptimization requires an additional function that assigns a quality valueto a solution and tries to �nd a solution that maximizes this value.In our local search approach, a speci�c cost function is speci�ed forevery constraint (so-called global constraints), which returns a valuethat represents the constraint's current inconsistency/optimality withrespect to the connected variables. For example, a simple Sum constraintwith two variables a and b to be added and an s variable for the sumcould specify its costs as Sumcosts = ja+ b� sj.In addition, a constraint has a number of heuristics to improve itscost function. For example, a heuristic for the Sum constraint could ran-domly choose one of the related variables and change it such that thereare no more costs. Another heuristic might resolve the inconsistency bydistributing the necessary change such that all variables are changedby the same (minimal) amount. The constraint must make the choiceas to which heuristic to apply on its own.On top of all constraints is a global search control which selects, ineach iteration of local search, one of the constraints which is to performa change, i.e., the transition to a neighbor state. Figure 2 shows thecontrol ow.
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Figure 2. Using global constraints for local searchThe global search control possesses qualitative and quantitative in-formation from the constraints' cost functions to decide which con-straint to choose (e.g., the constraint with the maximal costs), buta constraint itself has little guidance as to which of its heuristics to
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4 Alexander Nareyekchoose. This choice point | for choosing one of the constraint's heuris-tics | is investigated below.3. Utility WeightFor a choice point, a utility value !a � 1 is computed/maintained forevery alternative a (an alternative stands for a heuristic here) thatexpresses the expected bene�t of choosing this alternative.
! !!! !
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(neighbor states)Figure 3. A decision point in our approachThe utility values are subject to learning schemes, which changethe values based on past experiences with choosing this alternative. Inmany cases, an appropriate balance of the utility values will dependon the area of the search space that the search is currently in. We willtherefore focus on schemes that dynamically adapt during search andnot only after a complete run.3.1. Selection FunctionSelection between possible alternatives is done based on the alterna-tive's utility values. Here, we look at two simple ones. The �rst isa fair random choice (a so-called softmax kind of selection rule), re-ferred to below as M:0, which selects an alternative a from the choicepoint's alternatives A with a choice probability pa in proportion to thealternative's utility value !a:M:0 : pa = !aPi2A!iAnother possibility is to make a random choice between the alter-natives with maximal utility values:
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Choosing Search Heuristics by Non-Stationary Reinforcement Learning 5M:1 : pa = ( 0 : 9i 2 A : !a < !i1 : 8i 2 A : !a � !iPi2A j8j2A :!i�!j 13.2. Weight AdaptationAll utility weights have integer domains and are initially set to 1. If thechoice point is selected, the utility weight of the alternative is changedthat was chosen by the choice point when it was called last time.The kind of change depends on the relation of the current objectivefunction value onow to the objective function value when the choicepoint was called last time obefore (i.e., if there is a positive or negativereinforcement). The update schemes below can be combined to givemany di�erent strategies, e.g., a simple P:1-N:1 strategy.onow better-than obefore: (positive reinforcement)P:1 (Additive Adaptation): !a  !a + 1P:2 (Escalating Additive Adaptation): !a  !a +mpromotionP:3 (Multiplicative Adaptation): !a  !a � 2P:4 (Escalating Multiplicative Adaptation): !a  !a �mpromotionP:5 (Power Adaptation): !a  � !a � !a : !a > 12 : !a = 1onow worse-than-or-equal-to obefore: (negative reinforcement)N:1 (Subtractive Adaptation): !a  !a � 1N:2 (Escalating Subtractive Adaptation): !a  !a �mdemotionN:3 (Divisional Adaptation): !a  !a2N:4 (Escalating Divisional Adaptation): !a  !amdemotionN:5 (Root Adaptation): !a  p!aIf a utility value falls below 1, it is reset to 1; if a utility value exceedsa certain max!, it is reset to max!; if a utility value is assigned anon-integer value, it is rounded down. In the case of an escalating adap-tation, each time there is a consecutive improvement/deterioration, the
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6 Alexander Nareyekmpromotion/mdemotion value is doubled. Otherwise, it is reset to 1 (forP:2 and N:2) or 2 (for P:4 and N:4).3.3. Invalid AlternativesFor some choice points, more than one alternative must be tested. Forexample, an alternative may turn out to be infeasible. An applicabil-ity ag f with a value of 0 or 1 is introduced for every alternative,indicating whether the alternative is still a valid option:!a  fa � !aBy the option of setting an applicability ag to 0, alternatives can oftenbe ruled out a priori by simple feasibility tests.However, in some cases, the infeasibility of an alternative will onlybecome apparent during the state-transformation process of the cho-sen heuristic, i.e., after the choice has been made. In such a case, allchanges in the current state that were made after the choice point arereversed, the corresponding applicability ag is set to 0 and the choiceprocess is repeated. If no alternative remains applicable, the constraintimprovement fails.If the choice point's selection is subject to the learning scheme, ap-plicability ags are not set to 0 if an alternative fails. The failure may becaused by a bad random decision during the alternative's computationsand the alternative may not be fully inapplicable. The learning processcan handle this situation more appropriately than in a non-learningcase, skipping the usual update of the utility weights and temporarilydividing the failed alternative's utility weight by two (though no weightmay fall below one). If one of the alternatives has been successfullyapplied, all adaptations of the utility weights that were done for therestarts are undone. 4. Empirical EvaluationTwo optimization problems| the Orc Quest problem and the LogisticsDomain | are evaluated with di�erent learning/selection schemes. Theconcrete problems and solving heuristics are not explained here becausethey are not relevant to the techniques applied. A detailed presenta-tion of the problems can be found in (Nareyek, 2001 (b)). The OrcQuest problem's solving process involves only three constraints withsix heuristics each. For all of these, the learning scheme is applied. TheLogistics Domain's solving process includes a much greater and varying
final.tex; 29/11/2001; 14:20; p.6



Choosing Search Heuristics by Non-Stationary Reinforcement Learning 7number of constraints. The learning scheme is applied to all constraintof a particular type1, which includes �ve alternative heuristics.4.1. ResultsA strategy is denoted by P-N-M, P 2 f1::5g indicating the adaptationscheme that is applied in the case of an improvement, N 2 f1::5g theadaptation scheme for non-improvement, and M 2 f0; 1g if the fairrandom choice is applied or a maximal value is chosen.The results for some strategies for the Orc Quest problem are shownin Fig. 4 as the percentage of test runs (100% = 100,000 test runs) thatfound the optimal solution after a speci�c number of iterations. Theproblem from the Logistics Domain is much harder, so only the bestsolution (minimal duration) found after 100,000 iterations is shown inFig. 5 (100% test runs = 1,000 test runs).

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 2000 4000 6000 8000 10000

P
er

ce
nt

ag
e 

of
 te

st
 r

un
s

Iterations

1-5-1
5-5-1
4-4-1
3-3-1
1-3-0
2-2-1
1-1-1
5-1-0Figure 4. Sample strategies for the Orc Quest problemA more detailed analysis is given in Figs. 6 and 7. For speci�cpercentages, it is shown after how many iterations this percentage oftest runs found the optimum (for Fig. 6), and the lowest duration thatwas found by this percentage of test runs after 100,000 iterations (forFig. 7) The strategies are sorted according to which strategy resulted1 For the Logistics Domain, the duration minimization of Problem 6-1a is an-alyzed, applying the weight adaptation for the State Resource Constraint'sselection of an improvement heuristic.

final.tex; 29/11/2001; 14:20; p.7



8 Alexander Nareyek
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5-2-1Figure 5. Sample strategies for the Logistics Domainin the least iterations/duration for a maximal percentage of test runs(not considering the 100% rate).The general trend is that a low (e.g., additive/P:1) rate of adapta-tion is good in the case of an improvement, a strong (e.g., root/N:5)rate of adaptation is good in the case of a deterioration, and a choiceof a maximal weight is often better than a fair random choice. Theexplorative feature of the fair random choice may not be that impor-tant because there are very often cases of negative reinforcement thatquickly change the weight situation.Because the Orc Quest problem involves only three constraints, wecan easily visualize some further properties of the search process for it.One interesting property is the ratio of positive to negative reinforce-ments shown in Fig. 8. However, it is not very surprising that this ratiodeteriorates according to the strategy ordering shown in Fig. 6.Figure 9 shows how many times a constraint's highest weight changes,i.e., how many times a weight is assigned a value above a certain per-centage of the total values of the choice point's weights, and the lasttime this percentage was reached, it was reached by another weight.Strategies that perform many changes in the con�guration appear toperform better. This might be an indication of why strategies with alow rate of adaptation in the case of an improvement and a strongrate of adaptation in the case of a deterioration are likely to performbetter, because such strategies facilitate a recon�guration of the weightsituation.
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Choosing Search Heuristics by Non-Stationary Reinforcement Learning 13An exception here are strategies with a very low positive reaction(P:1). Because of the slow growth of the weights, a smaller number ofclear recon�gurations are performed. However, this simmering situationwould appear to have its advantages as well.Figure 10 shows how many times the highest weight is re-established,i.e., how many times a weight is assigned a value above a certainpercentage of the total values of the choice point's weights, and thelast time this percentage was reached, it was reached by the sameweight. In general, one would expect strategies that re-establish oldcon�gurations to do needless work and thus, possibly perform worse.However, the �gures do not shown many di�erences here. The reasonfor this is probably that the better strategies perform a lot of con�gu-ration changes in general, and, are thus also more likely to re-establishcon�gurations more often. But, of course, the ratio of re-establishedcon�gurations to all recon�gurations is much better here.4.2. Extended ExperimentsFollowing the observed trend, we can extend our experiments by moreextreme options in this direction:P:0 (No Adaptation): !a  !aTo enable negative adaptations for this option, in the case of anegative change the decrease of !a is distributed as an increase toall !i6=a (starting with high initial weights).N:6 (Total Loss Adaptation): !a  1Figure 11 shows that these options do not improve performance forthe Orc Quest problem. However, as shown in Fig. 12, strategies withan N:6 option appear to work well for the early phase of search, i.e.,for less constrained problems.4.3. Stationary Reinforcement LearningSo far, we have looked at di�erent methods to adapt the weights duringsearch, assuming that di�erent areas of the search space can be han-dled more e�ciently using di�erent search strategies. Although thisassumption seems to be intuitively correct, it remains to be shown tobe true. This section, then, compares adaptive non-stationary learningwith stationary approaches.Previous approaches adapted learning parameters after a completerun or when a local minimum was reached. Of these two options, onlyan adaptation after a complete run (with an upper bound of a speci�c
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Choosing Search Heuristics by Non-Stationary Reinforcement Learning 17number of iterations) is applicable here because we do not evaluate thewhole neighborhood and cannot therefore tell if we are in a local mini-mum. The time taken by the learning process to �nd an optimal station-ary weight distribution is not measured because the results may be verydi�erent for di�erent learning techniques. Thus, the adaptive learningstrategies are compared with the optimal stationary distribution.For the Orc Quest problem, we can actually �nd an optimal staticweight distribution such that all test runs �nd the optimum in about 35iterations. With the most simple, non-stationary 1-1-0 strategy, 50%of the test runs found the optimum after 1,305 iterations, and after 405iterations for strategy 1-5-1. Thus, an adaptive strategy would seemto perform very poorly for the simple Orc Quest problem. This is notcompletely true, however, given the time that would be required to learnthe optimal stationary distribution. For example, using a simple staticdistribution such that every heuristic is chosen equally often, noneof the 100,000 test runs found the optimum within 100,000 iterations.We conclude that, if the problem (or very \similar" problems) is solvedvery often, a stationary reinforcement learning approach will ultimatelyperform much better; but for a short time-frame, the non-stationaryapproach is probably much superior.For the more complex Logistics Domain, our �ndings are di�erent.The performance of even the most simple, non-stationary 1-1-0 strat-egy is similar to that a carefully hand-tailored static weight distribu-tion, i.e., a static distribution does not work well even disregarding thelearning time (see Fig. 13). Our assumption that it is useful to switchbetween di�erent heuristics during search in order to adapt to spe-ci�c regions of the search space proves valid for this more complicatedproblem. 5. ConclusionThe use of a neighborhood of repair heuristics is a promising way toimplement a local search | especially for complex real-world problemsin which the computation of a state's objective function value is oftenvery costly. Using the repair heuristics, domain-dependent knowledge toguide the search can easily be incorporated into the search process. Theapproach used here is based on (Nareyek, 2001 (a)). Similar techniqueswere applied in (Rabideau et al., 1999; Smith, 1994; Zweben et al.,1994).However, �nding an appropriate strategy that guides when to applywhich heuristics is not easy. This article has presented an approachto learn a selection strategy by modifying weights. Other approaches
final.tex; 29/11/2001; 14:20; p.17



18 Alexander Nareyek

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1100 1200 1300 1400 1500 1600 1700 1800 1900 2000

P
er

ce
nt

ag
e 

of
 te

st
 r

un
s

Duration

adaptive 1-5-1
adaptive 1-1-0

static 0%:0%:53%:13%:7%:27%
static 17%:17%:17%:17%:17%:17%Figure 13. Adaptive vs. static strategies for the Logistics Domain (after 25,000iterations), disregarding the learning time for the static distributionthat make use of weights for re-structuring the neighborhood include(Boyan and Moore, 1997; Frank, 1997; Schuurmans and Southey, 2000;Voudouris and Tsang, 1995). Unlike these approaches, we do not onlychange the weights when a local optimum or solution is reached. Searchusually undergoes di�erent phases (i.e., search-space regions) in whichdi�erent search heuristics work best. Thus, even during search, theheuristics' con�guration is constantly updated. For this purpose, a less-carrot-more-stick strategy seems to be appropriate, allowing for quickcon�guration changes and preventing the old con�guration from beingre-established too quickly.In reinforcement learning, non-stationary environments (such as thesearch-space region) are only rarely considered. Examples include ap-proaches based on supervised techniques (Schmidhuber, 1990), evolu-tionary learning (Littman and Ackley, 1991) and model-based learning(Michaud and Matari�c, 1998). Unlike these approaches, we have useda modi�cation of standard action-value methods (Sutton and Barto,1998), applying functional updates instead of cumulative value ad-ditions in order to inuence the impact of the already learned rein-forcements. This simple method enables the search to compute weightupdates very quickly { which is very important for a local search en-vironment because a single iteration should consume only very littlecomputing power.
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Choosing Search Heuristics by Non-Stationary Reinforcement Learning 19Adaptive weighs are not restricted to local search; they can alsobe used for (esp. restart-based) re�nement search. Examples includethe pheromone trails in ant colony optimization (Dorigo et al., 1999),the use of domain-speci�c prioritizers (Joslin and Clements, 1999) andaction costs in adaptive probing (Ruml, 2001). The results obtainedin this study may be transferred to these areas, and techniques likepheromone evaporation are worth studying for neighborhoods of heuris-tics as well.So far, we have not considered quantitative cost-function e�ectsof decisions. Improvement or non-improvement was the only criterionfor learning. However, \good" heuristics may not be equally good onthe quantitative level and incorporating mechanisms to exploit thequantitative di�erences is a promising idea for future work.The presented techniques are integrated into the DragonBreathengine, which is a free optimization engine based on constraint pro-gramming and local search. It can be obtained via:http://www.ai-center.com/projects/dragonbreath/AcknowledgementsThanks to Michael Littman for his feedback.ReferencesBoyan, J. A., and Moore, A. W. Using Prediction to Improve Combinatorial Opti-mization Search. In Proceedings of the Sixth International Workshop on Arti�cialIntelligence and Statistics (AISTATS-97), 1997.Dorigo, M.; Di Caro, G.; and Gambardella, L. M. Ant Algorithms for DiscreteOptimization. Arti�cial Life 5(3): 137{172, 1999.Frank, J. Learning Short-Term Weights for GSAT. In Proceedings of the FifteenthInternational Joint Conference on Arti�cial Intelligence (IJCAI-97), 384{391,1997.Joslin, D. E., and Clements, D. P. SqueakyWheel Optimization. Journal of Arti�cialIntelligence Research 10: 353{373, 1999.Kirkpatrick, S.; Gelatt, C. D.; and Vecchi, M. P. Optimization by SimulatedAnnealing. Science 220(4598): 671{680, 1983.Littman, M. L., and Ackley, D. H. Adaptation in constant utility non-stationaryenvironments. In Proceedings of the Fourth International Conference on GeneticAlgorithms, 136{142, 1991.Michaud, F., and Matari�c, M. J. Learning from History for Behavior-Based MobileRobots in Non-Stationary Environments. Machine Learning 31, Joint SpecialIssue on Learning in Autonomous Robots, 141{167, 1998.Nareyek, A. (a) Using Global Constraints for Local Search. In Freuder, E. C.,and Wallace, R. J. (eds.), Constraint Programming and Large Scale Discrete
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