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Abstract. The pigeonhole principle asserts that there is no injective
mapping from m pigeons to n holes as long as m > n. It is amazingly
simple, expresses one of the most basic primitives in mathematics and
Theoretical Computer Science (counting) and, for these reasons, is prob-
ably the most extensively studied combinatorial principle. In this survey
we try to summarize what is known about its proof complexity, and what
we would still like to prove. We also mention some applications of the
pigeonhole principle to the study of efficient provability of major open
problems in computational complexity, as well as some of its generaliza-
tions in the form of general matching principles.

1 Introduction

Propositional proof complexity is an area of study that has seen a rapid devel-
opment over a couple of last decades. It plays as important a role in the theory
of feasible proofs as the role played by the complexity of Boolean circuits in
the theory of efficient computations. Propositional proof complexity is in a sense
complementary to the (non-uniform) computational complexity; moreover, there
exist extremely rich and productive relations between the two areas. Besides the
theory of (first-order) feasible proofs and computational complexity, proposi-
tional proof complexity is tightly connected in many ways with other areas like
automated theorem proving and cryptography, and these connections are nu-
merous both at the level of motivations and when it comes to proof techniques.

In my talk at the conference I gave a general overview of some important con-
cepts, ideas and proof techniques behind this fascinating theory. A substantial
portion of that material was already covered in various surveys and monographs
(see e.g. [1-5]). For one particular subject from my lecture, however, the situa-
tion is very different. I am talking about the research on the proof complexity of
specific tautologies that express various forms of the so-called pigeonhole princi-
ple. This principle (asserting that there is no injective mapping from m pigeons
to n holes whenever m > n) is probably the most extensively studied combi-
natorial principle in proof complexity. It is amazingly simple and at the same
time captures one of the most basic primitives in mathematics and Theoretical
Computer Science (counting). It might be for these reasons that the pigeonhole
principle somehow manages to find itself in the center of events, and many other
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important principles studied in the proof complexity are related to it in one or
another way.

Surprisingly, the proof complexity of the pigeonhole principle essentially de-
pends on the number of pigeons m (as the function of the number of holes n) and
on subtle details of its representation as a propositional tautology. This leads
to a rich structural picture, and results making the skeleton of this picture are
amongst the most beautiful and important in the whole theory. Moreover, for a
long time they have been determining its methods, machinery and ideology.

In the last couple of years several more important touches have been added
to this picture, and these results do not seem to have been surveyed in the
literature yet. For this reason, this written contribution is entirely devoted to
the pigeonhole principle. It is organized as follows. In Section 2 we present the
proof systems appearing in our survey. Our pace in this section will be slow, as
it is primarily designed for the beginners; more experienced readers may take
notice of the notation introduced there and skip all the rest. Section 3 contains
formal definitions of the basic pigeonhole principle and its various modifications.
The next section 4 is central: we give a survey of known lower and upper bounds
on the proof complexity of the pigeonhole principle. With the help of some of
these bounds, we show in Section 5 that such proof systems as Resolution and
Polynomial Calculus do not possess efficient proofs of circuit lower bounds. In
Section 6 we survey a few known results about the complexity of more general
matching principles. Finally, we conclude with several open problems in Section
7.

2 Propositional Proof Systems

Let x1,...,x,,... be propositional variables, and C be a certain class of propo-
sitional formulas in these variables. Denote by TAUT¢ the set of all tautologies
in the class C.

Informally speaking, a propositional proof system is any complete and sound
calculus for generating members of TAUT¢. Given such a calculus, we can as-
sociate with it the “theorem-extracting” function P that for every binary string
w encoding a legitimate proof in this calculus extracts the theorem P(w) this
proof proves.! Note that im(P) = TAUT¢ (this is tantamount to saying that our
calculus is complete and sound). Also, it is conceivable that for any reasonable
calculus the function P will be polynomial time computable.

Cook and Reckhow [6] proposed to take these properties of the theorem-
extracting function as a general axiomatic definition of a propositional proof
system.

Definition 1 ([6]). A propositional proof system (often abbreviated as
p.p.s.) for a class C of propositional formulas is any polynomial time computable

L If w is a string that does not make sense, we let P(w) be any fixed tautology from
TAUT,.



function
P:{0,1}* 2% TAUT,.

For a tautology ¢ € TAUTc, any string w such that P(w) = ¢ is called a P-
proof of ¢.

Denote by Sp(¢) the minimal possible bit size |w| of a P-proof w of ¢.2 Then
the basic question of proof complexity can be formulated as simply as that: what
can we say about Sp(¢) for “interesting” proof systems P and “interesting”
tautologies ¢?

Definition 1 paves way for relating propositional proof complexity to the rich
structure developed in computational complexity. For example, let us call a p.p.s.
P p-bounded if Sp(¢) is bounded from above by a polynomial in |¢|. Then we
have

Theorem 1 ([6]). NP = co— NP if and only if there exists a p-bounded propo-
sitional proof system.

This easy result actually indicates that in its full generality Definition 1 is just a
reformulation of the standard characterization of co — NP and has only little to
do with the “real” proof theory. Propositional proof complexity really begins as
a separate subject only when we are interested in the performance of concrete
p-p-s. that are natural and that are of independent interest. Still, even in that case
some standard structural concepts from computational complexity are extremely
useful. As an example, let us introduce the following notion.

Definition 2. A p.p.s. P is p-simulated by another p.p.s QQ for the same
class C if there exists a polynomial time algorithm A that transforms every
P-proof into a Q-proof of the same tautology. That is, we demand that Yw €
{0,1}*(Q(A(w)) = P(w)). This relation is reflexive and transitive. Hence we
say that two p.p.s are p-equivalent if they p-simulate each other.

The notion of p-simulation is used for comparing strength of different proof
systems (clearly, if P is p-simulated by Q then Sg(¢) < Sp(¢)°!)) and arranging
them into a hierarchy.

After this necessary digression into general structural issues, let us take a
closer look at the specific proof systems used in this survey. The most basic exam-
ple of a p.p.s. is the Frege proof system which is essentially the ordinary Hilbert-
style propositional calculus from your favourite textbook in mathematical logic.
Fix any complete language of propositional connectives (say, Lo Lef {=, A, V}),
and let C consist of all propositional formulas in this language. A Frege proof
system is specified by finitely many Frege rules of the form

A, ... A
- B
2 Tt should be noted that although this complexity measure is by far more important,
sometimes researchers are interested in more sophisticated ones. We will see below
one example, degree of algebraic proofs.

(A,..., A, B€C),



called aziom schemes if k = 0. All these rules are required to be (implication-
ally) sound. A Frege proof consists of a sequence of applications of substitutional
instances of Frege rules, defined as the result of substituting arbitrary formulas
for variables. Finally, we demand that there are sufficiently many Frege rules
meaning that the resulting Frege system must be (implicationally) complete.

At the first glance, this definition is rather arbitrary since we have a consid-
erable freedom in choosing the set of Frege rules. It turns out, however, that the
resulting Frege systems are all p-equivalent. More generally, Reckhow [7] proved
the following (highly non-trivial) result.

Theorem 2 ([7]). Let P,Q be two Frege systems considered as proof systems
for tautologies in the language that consists of their common connectives. Then
P and Q are p-equivalent.

Thus, the Frege proof system is uniquely defined up to p-equivalence, and we
jubilantly denote it by F. In fact, its definition is even more robust. Instead of
a Hilbert-style calculus we may consider a Gentzen-style sequent calculus, and
we will still get a proof system p-equivalent to F'.

One more important remark to be made along these lines (robustness) is
this. It is of absolutely no importance in the classical proof theory whether we
represent proofs in a tree-like form or in the sequential (sometimes also called
dag-like) form, when a proof is a sequence of formulas (sometimes called lines)
in which every line is obtained from preceding lines via an inference rule. The
situation is potentially very different in proof complexity: when we expand a
sequential proof into a tree, the bit size may in general grow exponentially as
every formula in the proof will repeat itself many times. It turns out, however,
that this distinction does not matter for the Frege proof system, and its tree-like
and sequential versions are p-equivalent.

All other propositional proof systems considered in this survey will be p-
simulated by F' (in fact, they will be even defined as Frege proofs of a special
form). They will be represented in the form of a Gentzen-style sequent calculus,
and they will be given in the sequential (as opposed to tree-like) form. Also,

the propositional language will be from now on fixed to Ly Lef {=,A,V}. The
connectives A and V will be allowed to have an arbitrary number of arguments.?
The (logical) depth of a propositional formula ¢ and the hierarchy Xg4, ITq of

propositional formulas are defined in the standard way.

Fix any constant d > 1, and let C def Y4. Every formula in C can

be re-written as a sequent Aq,...,Ary — Bi,...,By in which all formulas
Aq,..., A, By,..., By are of depth at most d — 1. The system Fj, by definition,
is the fragment of F' that operates with sequents of this form (that is, in which
every formula is in Xy U IT4_4!) and has all ordinary rules of a Gentzen-style
calculus (structural rules, logical rules and the cut rule). With a slight abuse of

3 The attentive reader might have observed at this point that we did not specify
this parameter while discussing general Frege systems above. The reason should be
already clear by now: the two versions are p-equivalent.



notation, when one is not interested much in the exact value of the depth d, the
term bounded-depth Frege proofs is used.

Remark 1. One of the main ingredients in the proof of Theorem 2 is to show
that every Frege proof of size S can be transformed into another Frege proof
of size S and logical depth O(log S). In particular (with the same abuse of
notation), the systems F' and Fp(iog ) have the same polynomial size proofs.

Remark 2. The p-simulation of sequential Frege proofs by tree-like Frege to a
certain extent can be carried over to the bounded-depth case. Namely, Fy is
p-simulated by tree-like Fy;1o and, in fact, even by the tree-like version of some
“symmetrized” variant of Fy;q in which we also allow IT;4;-formulas (we did
not make a special provision for IT;-formulas in our definition of the sequential
version of Fj; as in that case they can be always w.l.0.g. broken up into a sequence
of ¥4_i-formulas).

Remark 3. Given the convenience of this representation in the Gentzen form,
some authors even define the depth of a proof directly in terms of the sequent
calculus (see e.g. [8]). It is important to remember that our notation (which
reflects the semantical meaning of lines in a proof rather than the way they are
syntactically represented) is off by one, and our F; corresponds to depth (d —1)
sequent calculus proofs in their notation.

The system Fj is called Resolution and denoted by R; this is one of the
most important and frequently studied propositional proof systems. At the first
glance there is something wrong about Fj since it operates with X;-formulas,
and this class does not contain any non-trivial tautologies at all. This is easily
circumvented by the following trick. We in fact prove tautologies in X (i.e., in
the DNF form), but instead of directly proving a tautology ¢, we are refuting
its negation ¢ € Ily. ¢ is of the form C; A Co A ... A Cs, where C; are X
formulas (often called clauses), and the resolution proof system is trying to infer
a contradiction (= the empty clause) from the set of axioms {Ci,Cy,...,Cs}
operating with clauses only. By inspecting the rules of the Gentzen calculus, we
see that the only non-trivial rule left in this situation is the atomic cut rule

CVax DvVvz
CvD

that receives the special name resolution rule.

Let Efi, Hé consist of those formulas in Xy 1, 1541 respectively for which the
number of inputs of any connective at the bottom (closest to the variables) level
is at most ¢. Clearly, ¥y C X% C Y44, and this intermediate class turned out
to be very convenient in circuit complexity e.g. in the proof of Hastad Switching
Lemma [9]. No wonder that it very naturally appears in the proof complexity, too.
With a slight abuse of notation, we define Fjj1¢ 5 as the fragment of Fyy 4 in which
all occurring formulas are in fact in Eg‘)lylog(") (that is, in the corresponding

polylog(n) polylog(n)
Y1 U I, "7 )

sequents all formulas must be in , n the number of

variables.



F 5 is in particular very close to resolution: it operates with sequents in which
every formula is either a clause of polylogarithmic width (defined as the number
of literals in the clause) or its negation (elementary conjunction). More generally,
let R(t) be the similarly defined extension of Resolution in which all formulas are
in Xt (thus, F} 5 = R(polylog)). In this survey we will be particularly interested
in R(2) and R(O(1)).

Our last system is of completely different nature (at least, at the first glance).
Fix any field F, and let us interpret the logical constants TRUE and FALSE as
the elements 0 and 1 in this field, respectively. Then the clause® z§! V...V z§*
is satisfied by a truth assignment if and only if the corresponding 0-1 vector
satisfies the polynomial equation (z;; —€1) ... (z;, — €w) = 0. We already saw
before that proving Xo-formulas (DNF's) is equivalent to showing that a set of
clauses is unsatisfiable, and now we take one step further and replace this task
by the task of proving that the system of polynomial equations constructed from
this set of clauses as described above does not have 0-1 solutions.

Polynomial Calculus (introduced in [10] and sometimes abbreviated as PC)
is specifically designed for this latter task; it operates with polynomial equations
over the field F and has default azioms 22 —x1 = -+ = 22 — x,, = 0 (ensuring
that x;s take on 0-1 values) and two inference rules

=0 g=0 f=0
of T Bg =0 (o, BE€T) =0

The purpose is to infer the contradiction 1 = 0 from a given system of polyno-
mial equations. The complexity of a polynomial calculus proof is traditionally
measured by its degree (defined as the maximal degree of all polynomials occur-
ring in it) rather than by the bit size. Note that the default axioms allow us to
assume w.l.o.g. that all polynomials in the proof are multi-linear; in particular,
there always exists a polynomial calculus proof of degree < n.

3 Pigeonhole Principle(s)

Denote {1,...,t} by [t]. Let m > n and {x;; | i € [m], j € [n]} be propositional
variables that will be called pigeonhole variables. The basic pigeonhole principle
PHP]" is the following DNF*:

paRT=\/ Azyv\/ \ (2 Aww))

i€[m] j€[n] JE€[n] 11 L2€ m]
It will be more convenient (and, as we remarked in the previous section, simply
necessary when working with p.p.s. below F3) to work with its negation that

. . def def _
4 we use here the convenient notation ' = z and 2° = z



consists of the following groups of clauses (“axioms”):

Qi %\ wij (i € [m]); M
Qirving = (Zirj V Tigg) (i1 # iz € [m], j € [n)). 2)

These clauses express that a multi-valued mapping from [m] (“pigeons”) to
[n] (“holes”) is both total (everywhere defined) and injective. Since no such
mapping exists whenever m > n, PHP]" is indeed a tautology.

For the purpose of orientation let us see what will happen when the number
of pigeons m increases. In that case the task of the propositional proof system
becomes easier (unnecessary pigeons ¢ can be just ignored), and the complexity
in general may decrease. In other words, the principle becomes weaker (= easier
to prove). If we are proving upper bounds on its complexity (work along with
the proof system), our task is also easier, and lower bounds, on the contrary, are
harder since we are fighting on the other side.

Many (if not all) results surveyed in the next section can be presented, if
desired, as a smooth function in the two parameters m and n. It is more instruc-
tive, however, to let n tend to infinity and view m as a certain function in n.
Then it turns out that there are several “critical points” at which most of the
qualitative changes in the behaviour of the pigeonhole principle occur, and these
are

m=n+1,2n,n2,oo.

For this reason, our tour in the next section will make a stop only at these
four distinguished points, and we will see how drastically will the landscape be
changing while we are driving from one to another.

The term “weak pigeonhole principle” traditionally refers to the case m > 2n.
In order to distinguish between the three degrees of weakness, we use terms
moderately weak (m = 2n), weak (m = n?) and very weak (m = 00).

As noted above, the “basic” pigeonhole principle expresses the fact that there
is no multi-valued total injective mapping from [m] to [n]. Besides increasing the
number of pigeons, another way of weakening this principle consists in adding
optional axioms dual to either (1) or to (2) or both. Namely, let

Qijr s = (Tigy V ij,) (i € [m], j1 # ja € [n]) (3)

(this group of axioms additionally requires that the assumed mapping is actually
an ordinary single-valued function), and

Q; \_/x (j € ) (4)

(which requires that the mapping is onto). The pigeonhole principle with the
axioms (3) present is called functional, and the axioms (4) supply the prefix



“onto” to the name. Altogether, we have four possible versions: the “basic” ver-
sion PHP", the functional version FPHP", the onto version onto — PHP)"
and the functional onto version onto — FPHP]". All these versions have been
frequently studied in the literature, quite often interchangeably and sometimes
confusingly, so the word “basic” should not be understood as an attempt to dis-
tinguish this particular version out in its family as the most important. Anyway,
the thumb rule is the same as with the dependence of m on n: the longer the
name, the weaker is the principle, the easier are upper bounds, and the harder
are lower bounds.

In many cases the fact that the axioms (1) have large width is rather annoying
(see e.g. Footnote 5 below). One more version of the pigeonhole principle called
extended pigeonhole principle EPH P was introduced in [11] as a convenient
way of circumventing this. In order to avoid ambiguity in the original definition
of EPHP]", we present it here in more invariant framework of [12].

Namely, for every Boolean function f(x1,...,2,) in n variables and every
pigeon ¢ € [m] introduce a new extension variable y; 5, and identify the pigeonhole
variable x;; with y; .. Then EPH P is obtained by replacing the axioms (1)
with new local extension azioms

n
v vz vy | v Vs >\ e (5)
Jj=1

It is easy to see that (1) can be easily inferred from (5) (more generally, local
extension axioms of any width can be easily inferred from the local extension
axioms (5) of width 3). Thus, EPHP!" is weaker than PHP}". [13, Section 5]
observed that FPHP]" is weaker than EPH P]": namely, the substitution

Yig '—>\/{$ij|f(Xj) =c}

(where x; is the n-bit Boolean input with the only one in position j) transforms
proofs of EPHP" into proofs of FPHP]". The same argument shows that the
naturally defined version EFPH P} (obtained by relaxing the condition in (5)
to fi' V£V f3° > Vo @ AN, 44, (Tj: VEj,)) is in fact equivalent to FPH Py

The last subtle point is that our previous observation “m is larger = prin-
ciple is weaker” is mo longer a priori valid in the presence of the onto axioms
(4). The reason is very simple: when we restrict our mapping to fewer pigeons,
as one of the by-side results of this restriction, the axioms (4) can get falsified.

4 Survey of results

In this section we give a survey of at least the most important results about the
complexity of the pigeonhole principle. As we promised in the previous section,
our tour will make four stops, m = n + 1,2n,n2 co. When presenting lower
bounds, we always try our best to identify the weakest version (the strongest for
upper bounds) to which the result is applicable, even if the original paper did
not elaborate on the issue.



4.1 Classical case: m = n 4+ 1 (hard but expected)

It was the pigeonhole principle for which the first resolution lower bounds were
proven in [14]. Haken’s result is viewed by many as the result that really started
the area of propositional proof complexity off.

Theorem 3 ([14]). Sg(onto — FPHP"1) > exp(2(n)).

Buss [15] further confirmed that Frege is a very powerful proof system by
showing that the pigeonhole principle (any version) is easy for it.

Theorem 4 ([15]). Sp(PHP) < n®M),

One natural proper subsystem of Frege in which PHP]" still has polynomial
size proofs was identified in [16]; it is called the cutting planes proof system.

The next major step was to analyze the complexity of the pigeonhole prin-
ciple with respect to bounded-depth Frege proof systems. Ajtai [17] proved a
superpolynomial lower bound using non-standard models of arithmetic, and Bel-
lantoni, Pitassi and Urquhart [18] presented a combinatorial version of his argu-
ment, at the same time extracting from it the following explicit bound:

Theorem 5 ([17,18]). For every fized d > 0, Sg,(onto — FPHP" 1) >
nealoen where €4 is a constant depending only on d.

Finally, Pitassi, Beame, Impagliazzio [19] and, independently, Kraji¢ek, Pud-
lak and Woods [20] improved this lower bound to truly exponential.

Theorem 6 ([19,20]). For every fized d > 0, Sg,(onto — FPHP"1) >
exp(nf), where €4 is a constant depending only on d.

Another proof system for which PH P was the first tautology to be shown to
be hard is Polynomial Calculus.’? The following lower bound proved by Razborov
[21] is applicable to an arbitrarily weak pigeonhole principle.

Theorem 7 ([21]). Every polynomial calculus proof of FPHPS® (over an ar-
bitrary field F) must have degree £2(n).

The proof of Theorem 7 uses a rather specific combinatorial argument called
pigeon dance. The original proof was somewhat simplified in [22], although even
that simpler form essentially depended on the pigeon dance. [23] gave another
proof of the same £2(n) lower bound which almost immediately follows from some
general theory, but it can be applied only to the stronger principle EPH P;" and
only when m = O(n) (cf. Theorem 29 below).

® One has to be a little bit creative when translating the axioms (1) to the algebraic
language since the straightforward translation from Section 2 produces polynomials
of intolerably high degree n. Instead, we transform them into degree 1 equations
> jen) Tis — 1 = 0. An alternative (and equivalent) way is to consider at once the
extended version EF PH P}* mentioned in Section 3.



Looking at the statement of Theorem 7 more closely, we see that unlike all
other negative results in this section, the prefix “onto” is missing there. The
following observation made by Riis [24] shows that there is a very good reason
for this omission.

Theorem 8 ([24]). Assume that the ground field F has characteristic p and
that () # (1) (mod p) for some d > 1. Then onto — PHP}" has degree d

polynomial calculus proof over F.

If m = n+p* then ("}) = (}}) (mod p) for all d < min{n+1,p"} and Theorem
8 is no longer applicable, say, when n and p® are of the same order. Moreover,
there are good reasons to believe (see Question 7 in Section 7) that onto —
PH P]LL‘”’Z is hard for the polynomial calculus in characteristic p. Therefore,
Theorem 8 perfectly illustrates the point made in Section 3: for the onto version,
we no longer can assume that the complexity will be anti-monotone in m; instead,

it may oscillate, at least for algebraic proof systems.

4.2 Moderately Weak PHP*: m = 2n (mystery begins)

Many results in Section 4.1 are hard and deep but all of them were a sort of
expected. It will be just the opposite in this section (I mean of course only the
last part, their hardness and depth are quite competitive).

There is no a priori reason to believe that Theorem 6 can not be generalized
to larger values of m. Nonetheless, it is indeed the case, and in fact this had been
first shown even prior to that theorem. Namely, Paris, Wilkie and Woods proved
in [25] that F'PH P2" does possess short bounded-depth proofs, and Krajicek [26]
calculated the exact value of depth resulting from their proof.

Theorem 9 ([25,26]).

a) Sp,,(FPHP2") < nOlosn);
b) Sp, ,(onto — FPHP2") < nOUogn),

Buss and Turdn [27] showed that the situation with Theorem 3 is exactly
the opposite (at this stop!), and it readily generalizes to the moderately weak
principle.

Theorem 10 ([27]). Sg(onto — FPHP?") > exp(£2(n)).

In another important development, Maciel, Pitassi and Woods [8] were able
to generalize Theorem 9b) (and improve Theorem 9a)) to the case of the basic
principle:

Theorem 11 ([8]). Sp, . (PHP?") < n©Uogn),

Finally, the following recent result by Atserias [28] shows that in this situation
depth can be traded for size.

Theorem 12 ([28]). Sg,(PHP?") < 1 ((ogn)@0/ D)



Theorems 10 and 11 still leave open the gap between R = R(1) and Fy 5 =
R(polylog). All our intuition from complexity theory and mathematical logic
strongly suggests that the distance between 2 and polylog should be much shorter
than between 2 and 1. The last mysterious result (in Section 4.2!) due to Atserias,
Bonet and Esteban [29] indicates that for the pigeonhole principle the situation
is exactly the opposite.

Theorem 13 ([29]). Sg()(onto — FPHP2") > exp(n/(logn)°W).
The case of R(3) is still open.

4.3 Weak PHP™: m = n® (mystery becomes hard labour)

Theorem 12 gets significantly improved in this case. Like Theorem 9, this was
explicitly extracted from the paper [25] by Krajicek [2].

(2(d))

Theorem 14 ([25,2]). Sr, (PHP,?Z) < nllos ") where log'! is the t-wise

composition of log with itself.

The most remarkable thing that happens at this stop, however, is that the
proof method of Theorems 3, 10 also completely breaks down. The question on
determining the resolution proof complexity for the weak PHP has been very
intriguing since it became clear, and it has been solved only very recently. Section
4.3 is entirely devoted to the history of this new result, which can be essentially
viewed as the history of accumulating the necessary techniques.

The first major contribution was made by Buss and Pitassi [30]. Firstly, they
proposed an extremely convenient “normal form” for resolution proofs of the
pigeonhole principle that was used in many subsequent papers on the subject
(proofs in this normal form operate exclusively with monotone, i.e., negation-free
clauses). As a rather surprising corollary of this normal form, they showed that
PHP" and onto — PHP]" behave in the same way with respect to Resolution.

Theorem 15 ([30]).
Sg(onto — PHP™) < Sgp(PHP!) < Sg(onto — PHP™)9(M),

This phenomenon seems to be very unique: Theorem 7 and Theorem 8 in par-
ticular imply that this is certainly not the case for the polynomial calculus.
Secondly, [30] solved the (relatively easy) case of tree-like Resolution.

Theorem 16 ([30]). Every tree-like resolution proof of onto — FPHP™ must
have size at least 2™, for any m > n.

The next contribution was made in the paper by Razborov, Wigderson and
Yao [31]. They identified two subsystems of Resolution and proved the desired
lower bound for each of them (using different methods). We mention here only
one of these systems, rectangular calculus, although we skip its formal definition.
Intuitively, the idea is to concentrate only on those monotone clauses that are
of “rectangular shape” V.,V c ;@i with I C [m], J C [n], and write down
appropriate sound rules for operating with such clauses.



Theorem 17 ([31]). Every rectangular calculus proof of FPHP"™ must have
size exp(£2(n/(logn))).

A resolution proof is called reqular if along every path in this proof every
literal is resolved at most once. Proofs in every one of the two subsystems of
Resolution considered in [31] are in fact regular. The following result by Pitassi
and Raz made a major improvement on [31]:

Theorem 18 ([32]). Every regular resolution proof of FPHP,’[2 must have size
exp(n/ (logn)°1).

Shortly after Raz [33] came up with a complete solution for the basic version
PHP]". By Theorem 15, this immediately extends to the onto version.

Theorem 19 ([33]). Sg(onto — PHP™ ) > exp(n/(logn)°®).

Razborov [13] gave a simpler proof of the same result. In the next paper [34] the
lower bound was extended to the functional case, and, finally, in [35] the weakest
functional onto version was also analyzed.

Theorem 20 ([13, 34, 35]). Sg(onto — FPHP™") > exp(22(n/(logn)?)).

4.4 Very Weak PHP: m = oo (last twinkle of mystery)

The reader who feels uncomfortable with infinitely many pigeons, may think of
m in this section as of a sufficiently large number.

One more surprise still awaits us at this last stop. Namely, it had been conjec-
tured for a while that Sp(PHP}") = exp(£2(n)) for every m whatsoever, even if
we are not smart enough to prove this. The paper [30] already mentioned above
disproved the conjecture, and [31] analyzed their proof to show that it is in fact
carried over in the rectangular calculus.

Theorem 21 ([30]). There exists a rectangular calculus proof of PHPZ® that
has size exp(O((nlogn)/?)).
All lower bounds from Section 4.3 readily extend to the very weak case (in

fact, all of them were originally stated in this form).

Theorem 22 ([31]). Every rectangular calculus proof of FPHPS® must have
size exp(2(n'/?)).

Theorems 21 and 22 determine the rectangular calculus complexity of the very
weak pigeonhole principle up to a logarithmic factor in the exponent.

Theorem 23 ([32]). Every regular resolution proof of FPH P> must have size
exp(n?M).

Theorem 24 ([33]). Sg(onto — PHPX) > exp(n®()).

2()

[33] also estimates the constant assumed in the expression n above as between

1/10 and 1/8.
Theorem 25 ([13, 34, 35]). Sg(onto — FPHPX) > exp(2(n'/3)).



5 Application: circuit lower bounds are hard for weak
proof systems

As we mentioned in Introduction, one of the reasons for the popularity of the
pigeonhole principle consists in its tight connections with many other things.
This and the next sections illustrate the point.

In [36, Appendix] Razborov proposed to study the provability of (first-
order or second-order) principles expressing in a particular way that a given
Boolean function can not be computed by short Boolean circuits. Shortly after,
J. Krajicek observed that this question possesses an adequate re-formulation in
terms of propositional proofs (which is by far more convenient), and it is this
framework that is followed here.

More specifically, let f, be a Boolean function in n variables, and let ¢t < 2™.
Denote by Circuit(f,) any natural CNF of size 20(") encoding the description
of a size-t fan-in 2 Boolean circuit presumably computing f,. Then its negation
is a tautology if and only if the circuit size of f,, is greater than . We demand
that every clause in Clircuit:(fy) is of constant width (5 is enough). Given our
liberal 2°(") bound on the size of Circuit;(f,), it can be easily constructed
simply by introducing a separate propositional variable x4, for the Boolean
value computed at the node v on the input string a € {0,1}"; for a precise
definition see [21,35]. Raz [33] also proposed to consider the variant of this
principle in which unbounded fan-in circuits are allowed; we will denote this
version by Circuit; (f,). It is stronger than Circuit;(f,), and we can no longer
demand that every axiom is of constant width.

One of the main motivations for proposing this framework was that all known
lower bound proofs in circuit complexity can be carried over in it. That is, if we
restrict the class of circuits used in the definition of Circuity(f,) to monotone
circuits, bounded-depth circuits, depth-2 threshold circuits etc. then this prin-
ciple will become provable within polynomial (that is, 20(")) size in the Frege
system or, in the worst case, in its natural extension known as FExtended Frege.
On the other hand, it is known that Circuit,(f,) is hard for every proof sys-
tem possessing Efficient Interpolation Theorem (see e.g. [4] for definitions and
discussion of this theorem), but only provided strong one-way functions exist. In
particular, Resolution and Polynomial Calculus do have Efficient Interpolation,
hence the latter conclusion applies to them.

The only known wunconditional (i.e., without any unproven assumptions)
lower bounds on the complexity of Circuit,(f,) are based on some of the lower
bounds for the pigeonhole principle surveyed in the previous section, and on a

reduction from PHP to Circuit(f,) discovered in [21]. The underlying idea

def —1

of this reduction is simple. Let A = f,,'(1). Then every counterexample to

onto—FPHPt‘A‘ (encoded by the pigeonhole variables {zq; | a € A,j € [t] }) can
be used to construct a short circuits for f,; namely, f, = \/jE[t K;, where K;
is the characteristic function of that input a € A for which z,; = 1. Elaborating



a little bit on this simple idea, we can get rid of the onto axioms (in the case of
PC!) and show

Lemma 1 ([21]). If Circuit,(fn) has polynomial calculus proof of degree d for
some function fy, then FPHPtQ/”Qn also has a PC proof of the same degree d.

Lemma 1 and Theorem 7 immediately imply

Corollary 1 ([21]). Every polynomial calculus proof of Circuit:(f,) (for any
function f,) must have degree £2(t/n).

To extend the reduction from Lemma 1 to the case of Resolution, we appar-
ently must employ the “onto” axioms (4).% Denote |A| by m.

Lemma 2. a) [33] Sg(Circuit} (f,)) > Sr(onto — PHP™,);
b) [35] Sr(Circuite(fn)) = Sr(onto — FPHP], ).

Combining Lemma 2 a) with Theorem 24, we immediately get
Theorem 26 ([33]). Sr(Circuit! (f,)) > exp(t?V).

Combining Lemma 2b) with Theorem 25, we get a similar bound for
Circuity(frn). If we, however, take into account that in Lemma 2 we always
have m < 2", we can do slightly better (cf. Theorem 31 in the next section) and
actually prove

Theorem 27 ([35]). Sr(Circuit,(f,)) > exp(2(t/n?)).

6 Generalization: matching principles

One natural way to interpret FPH P! [onto — FPH P[] is by saying that the
complete bipartite graph on two sets of vertices U and V with |U| =m, |[V|=n
does not contain a matching from U to V' [a perfect matching, respectively]. One
very natural question is what can be said about the complexity of this (perfect)
matching principle for other graphs, not necessarily bipartite, or, perhaps, even
hypergraphs. In this section we will survey what is known along these lines.

Ben-Sasson and Wigderson [11] introduced the principle G — PH P which
says that a given bipartite graph G from U to V does not contain a multi-valued
matching (thus, PH P = K, ,, — PHP), and this definition readily generalizes
to all other versions of the pigeonhole principle. They were able to relate the
complexity of G — FPH P to expansion properties of the graph G.

Theorem 28 ([11]). For every bipartite graph G on (U, V') which is a constant-
rate expander of bounded minimal degree”, Sg(G — FPHP) > exp(2(|U])).

Alekhnovich and Razborov [21] used a general theory developed in that paper
to show that the expansion properties of G also imply hardness with respect to
the polynomial calculus.

® The remark in [13, Section 5] that FPH P." would suffice for the purpose seems to
be erroneous.
7 the minimum is taken over the nodes in U



Theorem 29 ([21]). For every bipartite graph G on (U, V') which is a constant-
rate expander of bounded minimal degree, every polynomial calculus proof of
G — EPHP must have degree £2(|U]).

For an arbitrary (not necessarily bipartite) graph G, let PM (G) be the princi-
ple asserting that G does not contain a perfect matching (thus, onto— FPHP™ =
PM(K,)). As an example, let G be a (2n x 2n) grid with two opposite cor-
ners removed, then PM(G) is called the mutilated chessboard problem. Dantchev
and Riis [37] proved the following tight lower bound for it (independently,
Alekhnovich [38] showed a somewhat weaker bound exp(£2(n'/?))):

Theorem 30 ([37]). Every resolution proof of the mutilated chessboard problem
must have size exp(§2(n)).

Razborov [35] considered the principle PM(G) in full generality. Let §(G)
be the minimal degree of a vertex v € V(G).

Theorem 31 ([35]). Sr(PM(G)) > exp (9 ((lg‘f@%))

This is a far-going generalization of Theorems 20 and 25. Vice versa, it is worth
noting that Theorem 31 is in fact proved by a sort of indirect reduction from
FPHP", followed by applying methods from [34].

Finally, [35] also contains a further generalization of Theorem 31 to hyper-
graphs. We formulate it here only for the special case of complete r-hypergraph
intensively studied in the literature. Namely, let r 1 n and the principle Count?
assert that an n-element set can not be partitioned into r-sets.

Theorem 32 ([35]). Sr(Count®) > exp(2(n/(r?(logn)(r + logn)))).

7 Open problems

1. Theorem 4 and Remark 1 imply that PH P?*! has polynomial size proofs
of logical depth O(logn), whereas Theorem 6 implies that no such proof
exists in bounded depth. That would be nice to further narrow this gap. In
particular, is it true that S, ., ., .., (PHPr) <n0WM?

2. Is it true that for some absolute constant d > 1 and for some m = m(n),
Sk, (onto— FPHP™) < n°M? Quasi-polynomial upper bounds are provided
by Theorems 9, 11, 12, 14, with the latter result particularly close to a
polynomial.

3. Is it true that for some absolute constant ¢ > 1 and for some m = m(n),
Sre(onto — FPHPT) < exp((logn)?™)? This is not true if ¢ < 2 (The-
orem 13), but becomes true if ¢ is allowed to grow polylogarithmically in n
(Theorems 9b), 11).

4. When m > n?, we do not know how to answer the previous question even
for ¢ = 2. Is it true that Sg(9)(onto — FPHP") < exp((log n)°™1))?

. : log, log, Sp(PHP®
5. What is the value of limsup,,_, ., —22 nglogR(n
2

25 we know that it lies in the interval [1/3,1/2].

)? From Theorems 21 and



6.
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In order to make this survey more structured, we stopped only at m =
n+1,2n,n2, 0o to record the changes that had had happened along the road.
The question of identifying the “turning points” more exactly also seems to
be of considerable interest. As an example, consider the case m = n+n'/2. It
is consistent with our current knowledge that Sg,(PH P]LL"’”I/Q) > exp(n®)
for any fixed d, and it is also consistent that Spl_s(PHPﬁ+"1/2) < pOUogn),
Rule out one of these two possibilities.

Is it true that for a fixed prime p and ¢,n — oo, onto— FPHP,’}“JZ does not
possess bounded-degree PC proofs over any field of characteristic p? This is
known for the weaker Nullstellensatz proof system [39].

Let G be a constant-rate bounded-degree expander on the sets of vertices
U, V. Is it true that every polynomial calculus proof of G— F'PH P must have
degree 2(|U])? Theorem 29 answers this question for the stronger version
G — EPHP.
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