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Abstract

Lack of infrastructure, central controlling authority and the properties of wireless links make Mobile
Ad hoc Networks (MANET s) vulnerable to attacks. Several protocols have been proposed to make
the routing protocols handle attacks in MANET s. These protocols detect the misbehaving nodes and
re-route the data packets around them, mostly along the shortest such path. However, no single protocol
handles all the attacks. A variant of the problem for routing around misbehaving nodes in ad hoc net-
works can be stated as: given a set of nodes under the danger of attack, one wishes to determine the path
which is farthest from the endangered nodes. The problem does not address the problem of handling at-
tack directly but tries to minimize the impact of attack. The problem also finds its applications in sensor
networks. In this paper, we present a simple and efficient algorithm to solve the problem.The algorithm
converges in O(d2) time where d is the diameter of the network.

1 Introduction

Ad-hoc networks [1] have been proposed to support scenarios where no wired infrastructure exists. They
can be set up quickly where the existing infrastructure does not meet application requirements for reasons
such as security, cost, or quality. Examples of applications for ad hoc networks range from military opera-
tions, emergency disaster relief to community networking and interaction between attendees at a meeting or
students during a lecture.

Attacks in MANET s [2] are threat for basic network functions like packet forwarding and routing.
Achieving MANET s free from attacks is challenging due to the lack of infrastructure, dynamically chang-
ing topologies, wireless links vulnerable to attacks like eavesdropping and spoofing. The dynamic nature of
the network emphasizes the need for solutions to be dynamic.

Routing of packets is one of the basic functions performed in any network. Nodes of an ad hoc network
rely on each other to forward the packets due to the limited range of the nodes. As a result, embedding
solutions in routing protocols to handle attacks poses a challenge to the researchers. The major threats to the
routing in ad hoc networks are due to attacks by malicious nodes [3] and selfish nodes [4] . Malicious nodes
attack the network by performing some harmful operations at the cost of their battery life whereas selfish
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nodes do not cooperate in the normal functioning of the network to save their battery life for their own
communication. Malicious nodes can cripple the network by inserting erroneous routing updates, replaying
old routing information, changing routing updates, or advertising incorrect routing information so that the
network is not able to provide service properly. Attacks like reducing the amount of routing information
available to other nodes, failing to advertise certain routes or discarding routing packets or parts of routing
packets are due to selfish behavior of a node.

Two main approaches are used to make routing protocols handle attacks in ad hoc networks. The first
approach aims at detecting the malicious nodes while computing the route in the network and re-routing
the packets around it, mostly along the shortest path among them. Most of these protocols [5, 6, 7, 8, 9,
10, 11, 12, 13] are based on existing ad hoc routing protocols like AODV [14], DSDV [15] and DSR [16],
redesigned to handle attacks. The second approach [17, 18, 19] separates the detection of malicious nodes
from routing.

Farago in [20] has posed a variant of the problem for routing in ad hoc networks. Given a subset of
nodes that are in danger of attack or jamming, find a path which is farthest from these nodes, i.e., the
smallest occurring hop distance between a path node and an endangered node is maximum. This path can
be viewed as minimally exposed path to the attack or jamming (MEPA). He has posed this problem as a
challenging algorithmic problem for ad hoc networks. Since most of the existing protocols do not handle all
the attacks, it is imperative to find a solution that would reduce the impact of attacks on routing. A solution
to the problem posed by Farago aims at achieving this goal.

The problem also finds its application in sensor networks. The solution can be used to place and organize
the sensors such that the probability that an intruder can avoid detection is minimized. The related problem
in the context of sensor networks is called maximal breach path problem. Maximal breach path is defined
as the path which is as far away as possible from the sensors i.e the minimum distance from sensors is
maximized on this path.

In this paper, we present a simple and efficient solution to the Farago’s problem. It consists of a bootstrap
phase where all the nodes compute their distances from the endangered nodes. Once the initial distances are
computed, MEPA routes are discovered in a manner similar to that in AODV . The algorithm is simple to
implement and converges in O(d2) time where d is the diameter of the network. Hence our algorithm solves
the problem posed by Farago efficiently.

1.1 Related Work

Several secure routing protocols [5, 6, 7, 8, 9, 10, 11, 12, 13] exist to handle the attacks in MANET s.
For example, Secure Routing Protocol proposed in [5] based on DSR assures that a node initiating route
discovery is able to identify and discard replies providing false routing information but it fails when two or
more malicious nodes cooperate resulting in wormhole attack. ARIADNE [6] and Security-aware Ad-hoc
Routing (SAR) [12] protocol handle attacks such as spoofing, changing routing updates with the help of keys
and certification of messages. However, they do not handle the attack by selfish nodes. Selfish nodes do not
intend to cripple the network but do not cooperate in the normal functioning of the basic services like packet
forwarding in order to save energy. In [9] Buttyan and Hubaux have suggested a solution based on virtual
currency called Nuglet to locate the selfish nodes in the network. It handles attacks due to selfish nodes
but not the attacks due to malicious nodes. CONFIDANT(Cooperation Of Nodes: Fairness In Dynamic
Ad-hoc NeTworks) by Buchegger and Boudec [10], CORE (COllaborative REputation) by Michiardi and
Molva [11] and RAODV by Khurana et al. in [13] detect the malicious or selfish nodes , isolate them and
route the packets around them. However they are vulnerable to spoofing attacks.

Besides finding minimally exposed path from endangered nodes in MANET s, the problem also finds
its application in sensor networks. In [21] Meguerdichian et al. have addressed the problem of computing
a Maximal Breach Path in a sensor network. Maximal Breach Path is a path with the property that for
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any point p on the path, the distance from p to the closest sensor is maximized. The path finds the area
of low observability from the sensor nodes. A solution to maximal breach path problem can be used to
compare two given configurations of sensors in a battlefield or, to add new sensors to a network to increase
the observability or the coverage area.

The algorithm presented in [21] uses Voronoi diagram and takes O(n2 log n) time where n is the number
of sensor nodes. Dinesh et al. [22] and Lie et al. [23] have improved the running time to O(n log n). In [22],
after a preprocessing step, they compute the maximal breach path P in optimal O(|P |) time, where |P |
denotes the number of edges on the optimal path. The preprocessing takes O(n log n) time.

In [24] Hai Huang et al. have addressed the problem of maintaining the distance of the maximal breach
path in a dynamic scenario. The maximal breach path changes if the topology of ad hoc sensor network
changes. For example, a sensor node may be down due to its low battery power or a new sensor node may be
inserted to improve the coverage of the sensor network. The network designer may be interested in knowing
how the topology change affects the coverage of the network or in other words, how the distance of the
maximal breach path (from the nearest sensor) changes. They have given an algorithm that approximates the
distance of maximal breach path within an approximation factor of (

√
2+ε), for any ε > 0 in polylogarthmic

time. If required, the maximal breach path can be computed in O(n log n) time.

2 Algorithm to compute the MEPA route

The problem we address in this paper is due to Farago [20]. It is defined as follows: “given a subset of
nodes that are in danger of attack or jamming, find a path which is farthest from these nodes, i.e. the
smallest occurring hop distance between a path node and an endangered node is maximum”. This path can
be viewed as minimally exposed path to the attack or jamming.

We assume the existence of a mechanism that enables the participating nodes to detect the nodes under
attack. In [17, 18, 19] Lee etal have used intrusion detection techniques to detect the presence of an intruder
in wireless ad hoc networks.

Our algorithm works in two phases. Phase-I is a bootstrap phase in which all the nodes compute their
distances from the endangered nodes. Once the distances from the endangered nodes have been computed,
in Phase-II, nodes can set up MEPA routes. Due to the highly mobile nature of the nodes, the distances
may have to be updated dynamically as the nodes move. For the sake of simplicity and better understanding
we have presented the algorithm in two steps. In actual implementation they occur simultaneously and the
convergence is guaranteed in time polynomial in the diameter of the network.

2.1 Phase-I of the algorithm : The Bootstrap phase

e1 u1 u4 u5

u7

u6u3e3

e2 u2

Figure 1: E = {e1, e2, e3} and Nb(E) = {u1, u2, u3}.
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Let E be the known subset of nodes that are in danger of attack or jamming. Let Nb(E) be the set
of nodes in the neighborhood of E i.e. Nb(E) is the set of nodes, which are at one hop distance from
at least one node in E. For example, in Figure 1, Let E = {e1, e2, e3}, then Nb(E) = {u1, u2, u3}.
For a node u ∈ Nb(E), let in nbhd(u) be a flag that denotes whether u is in the neighborhood of E or
not. For any node u in the network, let δ(u) denote the minimum distance of node u from the set E i.e.
δ(u) = mine∈E{distance(u, e)}. In the figure, δ(u1) = 1, δ(u2) = 1, δ(u3) = 1, δ(u4) = 2, δ(u5) =
3, δ(u6) = 2, δ(u7) = 2 For a node u /∈ Nb(u), let pr(u) denote the node, in the neighborhood of u, through
which the distance of u from E is minimum. In the figure, pr(u4) = u1, pr(u5) = u4, pr(u6) = u3 and
pr(u7) = u2.

In the bootstrap phase, initially the flag in nbhd(u) is off and the value of δ(u) is infinity for all the
nodes u in the network. Nodes compute their distances from E as follows:

1. Any node u ∈ Nb(E) knows that it is in Nb(E) either when it receives some packet from an en-
dangered node or it senses so in case of sensor networks. It sets its in nbhd flag to 1, δ(u) to 1 and
broadcasts its distance to all its neighbors.

2. Let u be a node not in Nb(E). When u receives δ(v) from its neighbor v it updates its δ(u) as follows:
if the distance of u from E is shorter through v than its current value (that is, if δ(v)+ 1 < δ(u)) then
it updates δ(u) to δ(v) + 1 and sets pr(u) to v.

Whenever a node updates its distance from E, it broadcasts it to all its neighbors except to the one
through which the new distance was computed. Assuming that packets arrive from the shortest path first, no
updation is done in the bootstrap phase. We will see in the next section that, as the nodes move, distances
are updated in the maintenance phase.

2.2 Maintenance of distances

As the nodes in an ad hoc network are highly mobile, distances must be updated as the nodes move and the
links break or new links established. Our algorithm updates the distances as described below.

Consider a case when a node moves out of the range of another node:

1. Let u ∈ Nb(E). As long as, it is in the range of at lease one endangered node, it does nothing. As
soon as it stops hearing from all the endangered nodes (for example, when an endangered node has
moved or u has moved), it switches off its in nbhd flag. Now, distances of all those nodes v (including
u), whose minimum distance from E was through u, need to be updated. This is done as follows:

u broadcasts a request for “distance from E” to its neighbors, which in turn pass on the request to
their neighbors. The process continues till the request is received by neighbors of E. Now, consider
a node v. It may receive the request from its pr(v) or from a node which is not pr(v). That is, it
may receive it from a node through which v had shortest path to E or it may not be from such a node.
(For example, in Figure 2, the node u7 may receive the request from pr(u7) i.e. u2 when both the
nodes e1 and e3 have moved out of the range of u2 or from u6 when e7 has moved out of the range
of u3.) In the former case, δ(v) needs to be recomputed. So it resets δ(v) to infinity on seeing the
request from pr(v) and, broadcasts the request to its neighbors. In the latter case, it broadcasts the
request without resetting δ(v). When other neighbors of E receive the request they do not broadcast it
further, and reply to the request by broadcasting their “distances from E”. Distances of all the nodes
are re-computed as explained earlier.

2. Let u be a node not in Nb(E) and pr(u) moves out of the range of u. In this case u will broadcast the
request for “distance from E” to its neighbors and the procedure explained above is repeated.
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Next, consider a scenario in which a node u has moved into the range of another node v. If u is an endangered
node, then v switches its in nbhd flag on, sets δ(v) to 1 and broadcasts its distance to its neighbours. The
distances of all other nodes not in Nb(E) are updated as explained earlier. If u is not an endangered node,
it is possible that for a node v, the distance of v from E, through u, is less than its previous distance. Hence,
δ(v) needs to be recomputed. u will broadcast the request for “distance from E” to its neighbors and the
procedure explained above is repeated.

2.3 Phase-II of the algorithm : Establish the MEPA routes
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Figure 2: Each node u is labeled with the triplet (δ(u),DEN(s, u), p(s, u)) and edge (u, v) is labeled with
DEN(s, u).

Once the distances of all the nodes from the endangered nodes have been setup initially, nodes can
communicate with each other. As the nodes move, updation of distances takes place simultaneously.

Let “Minimum Exposed Path to the Attack” from a node u to another node v be denoted by MEPA(u, v)
and its Distance from Endangered Nodes by DEN(u, v). Suppose a node s wants to establish a MEPA
route to another node d. For a node v, let N(v) be the set of neighbors of v. Then clearly, DEN(s, v) =
min{maxvi∈N(v){DEN(s, vi)}, δ(v)}. Let p(s, v) = vi for which DEN(s, vi) is largest. Then, p(s, v)
denote the next hop for v on the reverse route of MEPA. In Figure 2, each node u is labeled with the triplet
(δ(u), DEN(s, u), p(s, u)) and edge (u, v) is labeled by DEN(s, u). Consider node u5. Three routes
from s to u5 have “distance from E” as 1, 2 and 5, maximum being 5. DEN(s, u5) = min{5, δ(u5)} =
min{5, 4} = 4. Since distance 5 was received from the node u4, p(s, u5) = u4. As can be seen from the
figure that this indeed is the next hop on the reverse MEPA route from u5 to s.

Initially a node u computes approximate MEPA(s, u) and its distance DEN(s, u), which may be
updated as more and more information is received from its neighbors. For example, in Figure 2, node u4
may receive DEN(s, u0) = 2, and set its DEN(s, u4) = 2 and p(s, u4) = u0. Later when it receives
DEN(s, u3) = 6, it updates its DEN(s, u4) to 5 and p(s, u4) = u3. After every update u broadcasts its
DEN(s, u) to its neighbors, which in turn update their DENs if required. Suppose we are at a node u.
Let N∗(u) denote the neighbors of u such that approximate MEPA(s, vi) and approximate DEN(s, vi)
have been computed ∀vi ∈ N∗(u). We never consider a node u for which N∗(u) is empty. Thus, we first
consider the nodes which are neighbors of s (because for such nodes u, N∗(u) is not empty), then their
neighbors and so on. Suppose a node u receives DEN(s, v) from v ∈ N∗(u) then u updates DEN(s, u)
and p(s, u) as follows:

If DEN(s, v) ≤ DEN(s, u) there are no updations else there are three cases:

1. DEN(s, u) > δ(u) is not possible by definition of DEN .

5



2. DEN(s, u) = δ(u) and DEN(s, v) > DEN(s, p(s, u)) then there will be no updation in DEN(s, u)
but p(s, u) will be equal to v. For example, in Figure 2, suppose node u6 receives DEN(s, u7) first.
It sets DEN(s, u6) = min{3, 2} = 2 and p(s, u6) = u7. Next, it receives DEN(s, u5) which
is greater than DEN(s, u6) and DEN(s, u7). So, DEN(s, u6) does not change but p(s, u6) is
updated to u5.

3. DEN(s, u) < δ(u) then DEN(s, u) will be updated as min(DEN(s, v),D(u)) and p(s, u) will be
equal to v. This case is exhibited in Figure 2 at node u4 and at u5 as explained above.

Whenever a node u updates DEN(s, u) it broadcasts it to all its neighbors, which in turn update their
DENs if required. We will show that for every node u MEPA(s, u) and DEN(s, u) are not updated more
than d times, where d is the diameter of the network. Let δ(u) = k. Then clearly DEN(s, u) is not updated
more than k times because in the worst case DEN(s, u) assumes values in the sequence 1, 2, 3, . . . , k. Once
DEN(s, u) = k it is no longer updated by the path discovered in the future. Since k ≤ d, the total number
of times DEN is updated is no more than d. However, the length of the MEPA route could be as big as d.
Hence, the total time for the entire algorithm to converge is O(d2). This is a theoretical bound. In practice,
the updations are done less frequently and the length of the MEPA route is much less than d.

3 Conclusion and Future Work

Handling attacks in MANET s is important for the normal functioning of the basic functions like rout-
ing. At the same time, because of the lack of infrastructure and any central managing authority, achieving
MANET s free from attack is a challenging task. Highly mobile nature of the nodes and the properties
of the wireless links further make the task of handling attacks more difficult. Most of the existing secure
routing protocols handle the attacks by malicious nodes and selfish nodes. However, no single algorithm
handles all the attacks. In this paper, we have presented an algorithm that does not handle the attacks but
reduces the impact of (any type of) attacks. Given a set of nodes in the danger of attack, we compute a path
that is exposed minimally to the set of endangered nodes. The problem was posed by Farago as a challeng-
ing algorithmic problem for ad hoc networks. Our algorithm is simple and fast. It computes the secure path
in O(d2) time, where d is the diameter of the network.

With a slight modification,the algorithm can be used to find the shortest MEPA route. We may include
the hopcount field in the MEPA REQ. When a MEPA REQ with DEN equal to the current DEN
arrives at a node, it compares the hopcounts of the two paths keeping the one with smaller hopcount and dis-
carding the one with the larger hopcount. In the context of sensor networks, the algorithm can be adapted to
compute the maximal breach path in the same bounds as the previously known algorithms i.e. in O(n log n)
time where n is number of sensor nodes.
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