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Abstract. Population growth and the massive production of automotive ve-
hicles have lead to the increase of traffic congestion problems. Traffic conges-

tion today is not limited to large metropolitan areas, but is observed even in

medium-sized cities and highways. Traffic engineering can contribute to lessen
these problems. One possibility, explored in this paper, is to assign tolls to

streets and roads, with the objective of inducing drivers to take alternative

routes, and thus better distribute traffic across the road network. This assign-
ment problem is often referred to as the tollbooth problem and it is NP-hard.

In this paper, we propose mathematical formulations for two versions of the

tollbooth problem that use piecewise-linear functions to approximate conges-
tion cost. We also apply a previously proposed biased random-key genetic

algorithm on a set of real-world instances, analyzing two ways of evaluating
shortest paths. Experimental results show that the proposed piecewise-linear

functions approximate the original convex function quite well and that the

biased random-key genetic algorithm produces high-quality solutions.

1. Introduction

Transportation systems play an important role in modern life. Due to popu-
lation growth and the massive production of vehicles, traffic congestion problems
in metropolitan areas have become a common daily occurrence. To a commuter
or traveler, congestion means loss of time, potentially missed business opportuni-
ties, and increased stress and frustration. To an employer, congestion means lost
worker productivity, reduced trade opportunities, delivery delays, and increased
costs (Wen, 2008). For example, a significant aspect is the value of wasted fuel and
loss of productivity. In 2010, traffic congestion cost about US$115 billion in the
439 urban areas of the United States alone (Schrank et al., 2011).

Minimizing driving time directly impacts quality of life. One way to reduce travel
time is by lowering congestion through the redistribution of traffic throughout the
network. Improvements in transportation systems require a careful analysis of
several factors. Different alternatives are evaluated using models that attempt
to capture the nature of transportation systems and thus allow the estimation of
the effect of future changes in system performance. Performance measures include
efficiency in time and cost, security, and social and environmental impact, among
others.
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2 TOLLBOOTH OPTIMIZATION

Several strategies have been proposed to reduce traffic congestion. Among them,
the deployment of tolls on certain roads can induce drivers to choose alternative
routes, thus reducing congestion as the result of better traffic flow distribution.
Naturally, tolls can increase the cost of a trip, but this can be compensated with less
travel time, reduced fuel cost, and lower amounts of stress. In the 1950s, Beckmann
et al. (1956) proposed the use of tolls with this objective. This idea has made
its way into modern transportation networks. In 1975, Singapore implemented a
program called Electronic Road Pricing or ERP. Several cities in Europe and the
United States, such as in London and San Diego, have begun to charge toll on their
transportation networks (Bai et al., 2010). Tolls are also applied in some small
European towns, like Peruggia (Italy), to reduce the number of people driving in
downtown areas.

Determining the location of tollbooths1 and their corresponding tariffs is a com-
binatorial optimization problem. This problem has aroused interest in the scientific
community not only because of its intrinsic difficulty, but also because of the social
importance and impact of its solution.

The optimization of transportation network performance has been widely dis-
cussed in the literature. The minimum tollbooth problem (MINTB), first intro-
duced by Hearn and Ramana (1998), aims at minimizing the number of toll loca-
tions to achieve system optimality (MINSYS). Yang and Zhang (2003) formulate
second-best link-based pricing as a bi-level program and solve it with a genetic
algorithm. In Bai et al. (2010) it is shown that the problem is NP-hard and a
local search heuristic was proposed. Another similar problem is to minimize total
revenue (MINREV). MINREV is similar to MINSYS, but in this class of problems
tolls can be negative as well as positive, while MINSYS does not accept negative
tolls (Hearn and Ramana, 1998; Dial, 1999b;a; Hearn and Yildrim, 2002; Bai et al.,
2004). For a complete review of the design and evaluation of road network pricing
schemes we refer the reader to the survey by Tsekeris and Voß (2009).

Road and telecommunication routing problems have some similarities. They are
both modeled as a directed weighted graph, where each link has capacity and delay
(or link travel time), and a demand matrix defines the amount of flow required be-
tween each pair of nodes. In contrast to road networks, whose flows depend on the
routes taken by the users, in telecommunication networks the flow is sent accord-
ing to a protocol. One of the most commonly used protocols within autonomous
systems is the Open Shortest Path First (OSPF) protocol that sends flow between
origin and destination on a shortest path, splitting traffic evenly among alternative
paths. A classical NP-hard optimization problem in this context is the weight set-
ting problem (WSP) introduced by Fortz and Thorup (2004). The WSP assigns
an integer weight to each link in a telecommunication network such that when flow
is sent on a least-weight path, network congestion is minimized. Heuristics were
successfully applied to solve the WSP (Fortz and Thorup, 2004; Ericsson et al.,
2002; Buriol et al., 2005).

In this paper, we approach the tollbooth problem by routing on shortest paths as
first studied in Buriol et al. (2010). The objective is to determine the location of a
fixed number K of tollbooths and set their corresponding tariffs so that users travel
on shortest paths between origin and destination, reducing network congestion. We

1We use the term tollbooth to refer to both traditional tollbooths as well as to sensors that
read radio-frequency identification (RFID) tags from vehicles.
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measure shortest paths in two ways. In the first way, we compute least cost paths
based only on the tariffs of the tolled arcs. In the second, we calculate them based
on toll tariffs and arc free flow times, where free flow time of an arc is defined to
be the congestion-free time to traverse the arc. We also present a mathematical
model for the minimum average link travel time and the tollbooth problem. We
further propose two piecewise-linear functions that approximate an adapted con-
vex travel cost function of the Bureau of Public Roads (1964) for measuring link
congestion. Finally, we extend the work in Buriol et al. (2010) presenting a larger
set of experiments.

This paper is organized as follows. In Section 2 we present mathematical models
for the minimum average link travel time, the tollbooth problem, and two approx-
imate piecewise-linear functions for travel cost. The biased randon-key genetic
algorithm with local search proposed in Buriol et al. (2010) is presented in Sec-
tion 3. Computational results are reported in Section 4. Finally, conclusions are
drawn in Section 5.

2. Problem formulation

A road network can be represented as a directed graph G = (V,A) where V
represents the set of nodes (street or road intersections or points of interest), and
A the set of arcs (street or road segments). Each arc a ∈ A has an associated
capacity ca, and a time ta, called the free flow time, necessary to transverse the
unloaded arc a. To calculate the congestion on each link, a potential function Φa is
computed as a function of the load or flow `a on arc a, along with pa and βa, two
real-valued arc-tuning parameters. In addition, let

K = {(o(1), d(1)), (o(2), d(2)), . . . , (o(|K|), d(|K|)} ⊆ V × V

denote the set of commodities or origin-destination (OD) pairs, where o(k) and d(k)
represent, respectively, the origination and destination nodes for k = 1, . . . , |K|.
Each commodity k = 1, . . . , |K| has an associated demand of traffic flow dk =
do(k),d(k), i.e., for each OD pair (o(k), d(k)), there is an associated flow dk that
emanates from node o(k) and terminates in node d(k). In this paper we address
the problem in which all the demand is routed on the network, such that traffic
congestion is minimized. To encourage traffic to take on particular routes, we resort
to charging tolls on selected street or road segments.

Before we describe our mathematical models, some notation is introduced. We
denote by IN (v) the set of incoming arcs to node v ∈ V , by OUT (v) the set of
outgoing arcs from node v ∈ V , by a = (at, ah) ∈ A a directed arc of the network,
where at ∈ V and ah ∈ V are, respectively, the tail and head nodes of arc a, by

S =
∑|K|

k=1 dk the total sum of demands, and by Q ⊆ V the set of destination nodes.
Moreover, we denote by Φa the traffic congestion of arc a ∈ A, and by K the number
of tollbooths to deploy (tolls are levied on users of the network at tollbooths). The
values of ϕu

a and ϕl
a are approximations of traffic congestion cost on arc a ∈ A given

by piecewise-linear functions. We note that throughout the paper we refer to flow
and load interchangeably, as we do for commodity and demand.

In the next subsection we present a mathematical model of a relaxation of the
tollbooth problem that does not take into account shortest paths. In Subsection 2.2
a complete model for the tollbooth problem is presented and in Subsection 2.3 we
propose two piecewise-linear functions that approximate the convex cost function.
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2.1. Model for minimization of average user travel time (MM1). The eval-
uation costs of a route can be defined in different ways according to specific goals.
In this paper we use the potential function

Φ =
∑

a∈A Φa, where Φa = `ata
[
1 + βa( `a

ca
)pa
]
, for all a ∈ A.

The average travel time is computed by simply normalizing Φa by S. Function Φa

is convex and nonlinear and is a strictly increasing function of la. A mathematical
programming model of average user travel time is given in (1)–(5). Its goal is to
determine flows on each arc such that network congestion is minimized. In this
model, decision variables xqa ∈ R+ represent the total flow to destination q ∈ Q on
arc a ∈ A, and variables `a ∈ R+ represent the total flow on arc a ∈ A.

min Φ =
∑
a∈A

`ata
[
1 + βa(`a/ca)pa

]
/S(1)

subject to:

`a =
∑
q∈Q

xqa, ∀a ∈ A,(2)

∑
a∈OUT(v)

xqa −
∑

a∈IN (v)

xqa = dv,q, ∀v ∈ V \{q}, ∀q ∈ Q,(3)

xqa ≥ 0,∀a ∈ A, ∀q ∈ Q,(4)

`a ≥ 0, ∀a ∈ A.(5)

Objective function (1) minimizes average user travel time. Constraints (2) define
total flow on each arc a ∈ A taking into consideration the contribution of all
commodities. Constraints (3) guarantee flow conservation and (4)–(5) define the
domains of the variables.

2.2. Model for the tollbooth assignment problem (MM2). A mathematical
model for the tollbooth problem is given in (6)–(21). This model seeks to levy tolls
on K arcs of the transportation network such that the average user travel time is
minimized if traffic is routed on least-cost paths. Here, the cost of a path is defined
to be the sum of the tolls levied on the arcs of the path. Note that MM2 differs
from MM1 in that traffic in MM2 is routed on least-cost paths.

The decision variables for this model determine whether an arc will host a
tollbooth and the amount of toll levied at each deployed tollbooth. Denote by
wa ∈ {0, Pl, Pl + 1, . . . , Pu} as the toll tariff levied on arc a ∈ A, where Pl ∈ N∗ and
Pu ∈ N+ are the minimum and maximum values of tariffs, respectively. If no toll
is levied on arc a, then wa = 0. The binary decision variable pa = 1 if and only if
a tollbooth is deployed on arc a ∈ A. The auxiliary binary variable yqa = 1 if and
only if arc a ∈ A is part of a shortest path to destination node q ∈ Q. Finally,
auxiliary variable δqv is the shortest-path distance from node v ∈ V to destination
node q ∈ Q.
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min Φ =
∑
a∈A

`ata
[
1 + βa(`a/ca)pa

]
/S(6)

Subject to:

`a =
∑
q∈Q

xqa, ∀a ∈ A,(7)

∑
a∈OUT(v)

xqa −
∑

a∈IN (v)

xqa = dv,q, ∀v ∈ V \{q}, ∀q ∈ Q,(8)

Ca + wa + δqah
− δqat

≥ 0, ∀a ∈ A, ∀q ∈ Q ,(9)

δqq = 0, ∀q ∈ Q,(10)

Ca + wa + δqah
− δqat

≥ (1− yqa)/M1, ∀a ∈ A, ∀q ∈ Q,(11)

Ca + wa + δqah
− δqat

≤ (1− yqa)M2, ∀a ∈ A, ∀q ∈ Q,(12)

yqa ≥ xqa, ∀a ∈ A, ∀q ∈ Q,(13)

M3y
q
a +M3y

q
b ≤ 2M3 − xqa + xqb , ∀a, b ∈ A2

OUT(v),∀v ∈ V, ∀q ∈ Q,(14)

Plpa ≤ wa ≤ Pupa, ∀a ∈ A,(15) ∑
a∈A

pa = K, ∀a ∈ A,(16)

xqa ≥ 0, ∀a ∈ A, ∀q ∈ Q,(17)

`a ≥ 0, ∀a ∈ A,(18)

wa ≥ 0, ∀a ∈ A,(19)

δqv ≥ 0, ∀q ∈ Q, ∀v ∈ V,(20)

pa ∈ {0, 1}, ∀a ∈ A.(21)

Objective function (6) minimizes average user travel time. Constraints (7) define
the total flow on each arc a ∈ A while constraints (8) impose flow conservation.
Constraints (9) define the shortest path distance for each node v ∈ V and each
destination q ∈ Q. For consistency, constraints (10) require, for all q ∈ Q, that
the shortest distance from q to itself be zero. Constraints (11) and (12) together
with (9) and (10) determine whether arc a ∈ A belongs to the shortest path and
thus determine the values of yqa, for q ∈ Q. Constraints (11) require that an arc
that does not belong to the shortest path has reduced cost Ca +wa + δqah

− δqat
> 0,

where Ca = ε > 0 is an sufficiently small term added to the arc cost so that when
there are one or more zero-cost paths in the network, the flow is sent along those
with least hop count. This also prevents flow from traversing zero-cost cycles.
Constraints (12) assure that if the reduced cost of arc a ∈ A and destination q ∈ Q
is equal to zero, then arc a belongs to the shortest path to destination q, i.e. yqa = 1.
Constraints (13) assure that flow is sent only on arcs belonging to a shortest path.
Constraints (14) guarantee that flow is split evenly among all shortest paths. In
these constraints, A2

OUT(v) is the set of all ordered groups of two distinct elements

of OUT (v). We later discuss these constraints in more detail. Constraints (15)
limit the minimum and maximum tariff for a deployed tollbooth. Constraints (16)
require that exactly K tolls be deployed. The remaining constraints define the
domains of the variables.
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Constraints (14) come in pairs for each node v ∈ V . For every pair of outgoing
links a ∈ OUT (v) and b ∈ OUT (v): {a, b} ∈ A2

OUT(v) and {b, a} ∈ A2
OUT(v), there

are two corresponding constraints. They model load balancing by assuring that
if the flow from node v ∈ V to destination q ∈ Q is routed on both arcs a ∈ A
and b ∈ A, i.e. yqa = yqb = 1, then the flow on these arcs must be evenly split, i.e.
xqa = xqb . To see this, suppose yqa = yqb = 1. The constraint for pair {a, b} ∈ A2

OUT(v)

implies that xqa ≤ x
q
b . By symmetry the constraint for pair {b, a} ∈ A2

OUT(v) implies

that xqa ≥ x
q
b . Consequently, xqa = xqb . Note that taking M3 ≥ maxq∈Q

(∑
v∈V dv,q

)
we assure that the right-hand-side of constraint (14) is bounded from below by M3,
making these constraints redundant for pairs of links with at most one of either yka
or ykb equal to one.

A model for OSPF routing, which also models shortest paths and even flow
splitting, was previously proposed in Broström and Holmberg (2006). In their
model a shortest path graph is built for each OD pair, while we opted for building
a shortest path graph from all nodes to each node q ∈ Q. This modification reduces
the number of variables and constraints of the model.

We evaluate shortest paths in two ways. In the first approach, called SPT
(Shortest Path Toll), we define the weight of an arc a ∈ A to be the tariff wa levied
on that arc. In this case, we set Ca = ε, an sufficiently small value. This way, when
there are one or more zero-cost paths, the flow is always sent along paths having
smallest hop count. In the second approach, called SPTF (Shortest Path Toll+Free
flow time), we define the weight of an arc a ∈ A to be the tariff wa levied on the arc
plus the free flow time ta of the arc, i.e. parameter Ca = ta + ε. The value ε > 0 is
added to the cost with the same goal as in the case of SPT since it is possible that
ta = 0 for one or more arcs a ∈ A.

2.3. Piecewise-linear functions for the models. The performance of commer-
cial mixed integer linear programming solvers has improved considerably over the
last few years. The two mathematical programming models presented so far have
a nonlinear objective function Φ. To apply these solvers, one must first linearize Φ.
In this subsection, we propose two piecewise-linear approximations of the function
Φ =

∑
a∈A Φa.

The first linearization ϕu, is an overestimation, and under certain conditions
is an upper bound of Φ. The second linearization ϕl is an underestimation and
provides a lower bound of Φ. It is possible to apply these linearizations to any
model with this type of non-linear function. We apply them to models MM1 and
MM2.

Let Ω be the set of constraints (2)–(5) or (7)–(21) of the previously described
mathematical models. On the one hand, for the case where Ω represents the con-
straints of the MM1 model, the approximation is called LMM1. On the other hand,
when Ω represents the constraints of the MM2 model, we call the approximation
LMM2.

In approximation ϕu, the cost function of each arc a ∈ A is composed of a series
of line segments sequentially connecting coordinates

(X0,Φa(X0)), (X1,Φa(X1)), . . . , (Xn,Φa(Xn)),

where values X0, X1, . . . , Xn are given such that X0 = 0, and for i = 1, . . . , n,
Xi ∈ R and Xi > Xi−1.
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If we denote the cost on arc a ∈ A by ϕu
a , then the resulting mathematical

programming model of the overestimation ϕu is given in (22)–(25).

min
∑
a∈A

ϕu
a(22)

subject to:

Constraints Ω are satisfied,(23)

(mi
a/ca)`a + bia ≤ ϕu

a , ∀a ∈ A, ∀i = 1, . . . , n,(24)

ϕu
a ≥ 0, ∀a ∈ A,(25)

where

mi
a = (Φa(Xi)− Φa(Xi−1))/(Xi −Xi−1),

bia = Φa(Xi)−Xim
i
a,

where

Φa(Xi) = Xicata(1 + βa(Xi)
pa)/S

for X0 = 0 < X1 < · · · < Xn. Objective function (22) minimizes the approximation
of average user travel time. Constraints (24) evaluate the partial cost on each arc by
determining the approximate value ϕu

a for Φa according to load la. Constraints (25)
define the domain of the variables.

The linearization requires the definition of the termsX0, X1, . . . , Xn whose values
are computed as a function of `a/ca. The number of these terms can be arbitrarily
defined according to the accuracy required for the linearization of the cost function,
or according to characteristics of the set of instances. This linearization requires a
balance between the accuracy of the computed solution and the time to compute
the linearization. With a large number n, the linearization tends to provide a
better approximation of the original value, while a small value of n can reduce
computational times since each element entails |A| additional constraints in the
model.

A second linearization, which we denote by ϕl
a, is an underestimation and gives

us a lower bound on Φa. The mathematical model of this linearization is very
similar to that of the overestimation. However, to estimate ϕl

a, we first compute
the slope ma(x) of Φa at x = (Xi−1 +Xi)/2, for i = 1, . . . , n, as

ma(x) =
∂Φa

∂x
=
ta
S

+
(pa + 1)taβax

pa

cpa
a S

.

Given x and ma(x), the independent term can be easily computed.
The linearizations ϕl

a and ϕu
a produce, respectively, an underestimation and an

overestimation of Φa, as Proposition 1 states.

Proposition 1. Let ϕu =
∑

a∈A ϕ
u
a, ϕl =

∑
a∈A ϕ

l
a, and as before Φ =

∑
a∈A Φa.

Let X0, X1, . . . , Xn be the values for which the appoximation is computed. If `a/ca ≤
Xn,∀a ∈ A, then ϕl ≤ Φ ≤ ϕu.

Proof. By construction ϕl
a ≤ Φa, then Φ =

∑
a∈A Φa ≥

∑
a∈A ϕ

l
a = ϕl. Thus

Φ ≥ ϕl. Furthermore, if `a/ca ≤ Xn, then by construction ϕu
a ≥ Φa, which implies

that ϕu =
∑

a∈A ϕ
u
a ≥

∑
a∈A Φa = Φ. Thus ϕu ≥ Φ. Therefore ϕl ≤ Φ ≤ ϕu. �
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Note that for Propostion 1 to hold we do not make the assumption that the
underestimation ϕl be a lower bound of Φ, while the overestimation ϕu requires
that `a/ca ≤ Xn,∀a ∈ A be true for the propostion to hold.

A representation of the functions ϕu
a , ϕl

a, and Φ is depicted in Figure 1. It shows
the cost function Φ (solid line) as well as the linear piecewise-linear cost functions
ϕu and ϕl for an arc a ∈ A with ta = 5, ca = 200, pa = 4, βa = 0.15, and S = 1000
using with {X0, X1, . . . , X6} = {0, 0.65, 1, 1.25, 1.7, 2.7, 5}. Observe that there is a
higher concentration of points X in the range la

ca
= [0.65; 1.25]. This is so because

the flow on a large number of arcs is concentrated around the capacity of the arc.
Thus to get a good approximation requires that many X values be situated around
la
ca

= 1. Note that a value of la
ca
> 1 indicates that the arc is overloaded.
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Figure 1. Comparison of the cost function with the linear
piecewise-linear cost function.

3. A biased random-key genetic algorithm

In this section we describe the biased random-key genetic algorithm (BRKGA)
for the tollbooth problem, proposed in Buriol et al. (2010).

A random-key genetic algorithm (RKGA) is a metaheuristic, originally proposed
by Bean (1994), for finding optimal or near-optimal solutions to optimization prob-
lems. RKGAs encode solutions as vectors of random keys, i.e. randomly generated
real numbers in the interval (0, 1]. A RKGA starts with a set (or population) of p
random vectors of size n. Parameter n depends on the encoding while parameter
p is user-defined. Starting from the initial population, the algorithm generates a
series of populations. Each iteration of the algorithm is called a generation. The al-
gorithm evolves the population over the generations by combining pairs of solutions
from one generation to produce offspring solutions of the following generation.

RKGAs rely on decoders to translate a vector of random keys into a solution
of the optimization problem being solved. A decoder is deterministic algorithm
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that takes as input a vector of random keys and returns a feasible solution of the
optimization problem as well as its cost (or fitness).

At the k-th generation, the decoder is applied to all newly created random keys
and the population is partitioned into a smaller set of pe elite solutions, i.e., the
best fittest pe solutions in the population and another larger set of p − pe > pe
non-elite solutions. Population k + 1 is generated as follows. All pe elite solutions
of population k are copied without change to population k+1. This elitist strategy
maintains the best solution on hand. In biology, as well as in genetic algorithms,
evolution only occurs if mutation is present. As opposed to most genetic algorithms,
RKGAs do not use a mutation operator, where each component of the solutions is
modified with small probability. Instead pm mutants are added to population k+1.
A mutant is simply a vector of random keys, generated in the same way a solution
of the initial population is generated.

With pe + pm solutions accounted for in population k+ 1, p− pe− pm additional
solutions must be generated to complete the p solutions that make up population
k + 1. This is done through mating or crossover. In the RKGA of Bean (1994),
two solutions are selected at random from the entire population. One is parent-A
while the other is parent-B. A child C is produced by combining the parents using
parameterized uniform crossover (Spears and DeJong, 1991). Let ρA > 1/2 be the
probability that the offspring solution inherits the key of parent-A and ρB = 1−ρA
be the probability that it inherits the key of parent-B, i.e.

ci =

{
ai with probability ρA,

bi with probability ρB = 1− ρA,

where ai and bi are, respectively, the i-th key of parent-A and parent-B, for i =
1, . . . , n. This crossover always produces a feasible solution since c is also a vector
of random keys and by definition the decoder takes as input any vector of random
keys and outputs a feasible solution.

Biased random-key genetic algorithms (Gonçalves and Resende, 2011) differ from
Bean’s algorithm in the way parents are selected. In a BRKGA parent-A is always
selected at random from the set of pe elite solutions while parent-B is selected at
random from the set of p − pe non-elite solutions. The selection process is biased
since an elite solution s has probability Pr(s) = 1/pe of being selected for mat-
ing while a non-elite solution s̄ is selected with probability Pr(s̄) = 1/(p − pe).
Since p − pe > pe, then Pr(s) > Pr(s̄). In addition, elite solutions have a higher
probability of passing on their random keys since probability ρA > 1/2. Though
the difference between RKGAs and BRKGAs is small, the resulting heuristics be-
have quite differently. Experimental results in Gonçalves et al. (2012) show that
BRKGAs are almost always faster and more effective than RKGAs.

To describe a BRKGA, one need only show how solutions are encoded and de-
coded, what choice of parameters p, pe, pm, and ρA were made, and how the
algorithm stops. We describe encoding and decoding next and give values for pa-
rameters as well as the stopping criterion in Section 4.

Solutions are encoded as a 2 × |A| vector X of random keys, where |A| is the
cardinality of the set A of arcs in the network. The first |A| keys correspond to toll
tariffs while the last |A| keys are used to locate the K tolls.

The decoder has two phases. In the first phase tolls are selected and arc tariffs
are set directly from the random keys. In the second phase, a local improvement
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procedure attempts to change the tariffs with the goal of reducing the value of the
objective function. Each tolled arc a has a tariff in the interval [1, wmax], where wmax

is an input parameter. The tariff for arc a is simply decoded as dXa×wmaxe if it is
tolled or zero otherwise. To determine the K tolled arcs we simply select as tolled
the arcs corresponding to the K largest keys among X|A|+1,X|A|+2, . . . ,X2×|A|. Let
a′1, a

′
2, . . . , a

′
K be the K tolled arcs, then

Xa′1
≥ Xa′2

≥ · · · ≥ Xa′K
≥ Xaj

, for all aj 6∈ {a′1, a′2, . . . , a′K}.

Ties are broken by the arc index.
Demands are routed forward to their destinations on shortest weight paths. For

SPT, tolled links have weights equal to their tariffs and untolled links are assumed
to have weight zero. For SPFT, we add to the tariff the free flow time to define
the weight of all tolled arcs, while each untolled arc has weight equal to its free
flow time. Depending on the number of tolls and the network, there can be several
shortest paths of cost zero (especially in the case SPT). In this case, we use the
path with the least number of hops. Traffic at intermediate nodes is split equally
among all outgoing links on shortest paths to the destination. After the flow is
defined, the fitness of the solution is computed by evaluating the objective function
Φ.

The second phase of the decoder is local improvement. Local search is applied
to the solution produced in the first phase of the decoder. In short, it works as
follows. Let A∗ ⊆ A be the q = min{|A|, 5} arcs having the largest congestion
costs Φa, i.e. |A∗| = q and Φa∗ ≥ Φa, for all pairs {a∗, a} such that a∗ ∈ A∗ and
a ∈ A \A∗. For each arc a∗ ∈ A∗, in case it is tolled, its weight is increased by one
unit at a time, to induce a reduction of its load. The unit-increase is repeated until
either the weight reaches wmax or Φ no longer improves. If no improvement in the
objective function is achieved, the weight is reset to its initial value. In case the
arc is not currently tolled, a new toll is installed on the arc with initial weight one,
and a toll is removed from some other link tested in circular order. If no reduction
in the objective function is achieved, the solution is reversed to its original state.
Every time a reduction in Φ is achieved, a new set A∗ is computed and the local
search restarts. The procedure stops at a local minimum when there is no improved
solution changing the weights of the candidate arcs in set A∗.

4. Computational results

In this section we present computational experiments with the models and al-
gorithms introduced in the previous sections of this paper. Initially, we describe
the dataset used in the experiments. Then, we detail three sets of experiments.
The first set evaluates the mathematical models MM1 and LMM1. The second
set of experiments evaluates the full model with piecewise linear function MM2,
which considers the shortest paths constraints with even split of loads. The last
set of experiments evaluates the biased random-key genetic algorithm presented in
Section 3.

The experiments were done on a computer with an Intel Core i7 930 pro-
cessor running at 2.80 GHz, with 12 GB of DDR3 RAM of main memory, and
Ubuntu 10.04 Linux operating system. The biased random-key genetic algorithms
(BRKGA) were implemented in C and compiled with the gcc compiler, version
4.4.3, with optimization flag -03. The experiments with the BRKGA were done
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Table 1. Attributes for the instances are given in each row. For
each instance, its row lists the set identification (S1 or S2 ), in-
stance name, number of vertices, links, origin-destination pairs,
number of vertices in which traffic originates (Source nodes), and
number of nodes in which traffic terminates (Sink nodes).

OD Source Sink

Set Instance Vertices Links pairs nodes nodes

SiouxFalls 08 8 16 48 8 8
SiouxFalls 09 9 26 68 9 9

SiouxFalls 10 10 36 84 10 10

S1 SiouxFalls 12 12 38 126 12 12
SiouxFalls 14 14 36 172 14 14

SiouxFalls 16 16 50 218 16 16

SiouxFalls 24 76 528 24 24

Friedrichshain Center 223 514 506 23 23
Prenzlauerberg Center 350 717 1406 38 38

Tiergarten Center 361 749 644 26 26

Mitte Center 398 857 1260 36 36
S2 Anaheim 416 914 1406 38 38

MPF Center 974 2153 9505 98 98

Barcelona 1020 2522 7922 97 108
Winnipeg 1052 2836 4345 135 138

ChicagoSketch 933 2950 9351 386 386

with a population size p = 50, an elite set of size pe = .25p, a mutant set of size
pm = .05p, and an elite key inheritance probability of ρA = .7. The commercial
solver CPLEX 12.32 was used to solve the proposed linearizations of the mathe-
matical linear models, while MOSEK3 was used to solve the mathematical model
MM1 (with convex objective function).

Table 1 details six synthetic instances (S1 ) and eleven real-world instances (S2 )
considered in our experiments and made available by Bar-Gera (2012).

To test model LMM2, we created the instances in set S1 from instance SiouxFalls
of S2 by removing from SiouxFalls some of its nodes and their adjacent links as
well as all origin-destination pairs where these nodes are either origin or destination
nodes. Let n < |V | be the new number of nodes. We choose to remove nodes

v ∈ V : v =
⌊
k |V |
|V |−n + 1

⌋
with k = 0, . . . , |V | − n− 1.

Let v, a, b ∈ V be nodes such that a ∈ OUT (v) and b ∈ IN (v). Furthermore, let at
(bt) and ah (bh) be, respectively, the tail and head nodes of links a (b). We create
a link a′ from at to bt if there does not already exist a link between ah and bt and
furthermore |OUT (bt)| < 4 or |IN (ah)| < 4. Link a′ has the same characteristics
(free flow time, capacity, etc.) of link a. After all extensions, we remove from the
network all arcs a ∈ OUT (v) ∪ IN (v) as well as node v.

4.1. Results for models MM1 and LMM1. The first set of experiments eval-
uates the models when solved with commercial solvers. Table 2 presents, for each
instance, the objective functions Φ, and the lower and upper bounds ϕl and ϕu,
respectively.

2www-01.ibm.com/software/integration/optimization/cplex-optimizer
3www.mosek.com
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In the first two columns after the instance names, we present the objective func-
tion value Φ and the computational time for model MM1 obtained with the nonlin-
ear solver MOSEK 6.0 using the modeling system GAMS4. A few non-linear solvers
are part of the GAMS system and we evaluated the performance of all of them.
Some of them are general non-linear solvers, and have no specific routines for con-
vex functions. Most were not able to solve the larger instances. MOSEK presented
the best performance in terms of running time and for this reason we report only
the results obtained with MOSEK. The next columns present results for CPLEX
12.3 with the proposed piecewise linear functions ϕl and ϕu, respectively the lower
and upper estimations of function Φ. In each case, we show the objective function
values in columns ϕl and ϕu, as well as Φ{ϕl} and Φ{ϕu}, the values of Φ consid-
ering the arc loads obtained by the different approximations. The computational
times are reported in seconds.

From the results in Table 2, three main observations that can be made. First,
there are small gaps between ϕl and Φ{ϕl}, as well as between ϕu and Φ{ϕu},
i.e. both piecewise linear functions have values slightly close to the corresponding
evaluation Φ. In a small number of cases the gap is significant and we observe
that, as expected, this occurs in instances with higher average or higher maximum
utilization (`a/ca), like Barcelona and Winnipeg. Second, we compare the results
for models MM1 and LMM1. The gaps between ϕl and Φ, and between ϕu and Φ,
are also small, which means that the piecewise functions have similar values to the
original convex function Φ. However, for most of the instances, the computational
time spent by MOSEK on the convex function is 2-to-4 orders of magnitude greater
than the time spent by CPLEX on the piecewise linear functions. The only case
where solving the model with a piecewise linear function (case of ϕu with CPLEX)
took longer than solving the model with the convex function Φ (using MOSEK) was
for instance ChicagoSketch. However, CPLEX found good solutions quickly, and
spent most of the time certifying optimality. For example, CPLEX found solutions
with a gap of 3% with respect to the optimal solution in about 650 seconds, while
MOSEK needed more than 1600 seconds to reach this gap.

The last important observation is that the MM1 model is a relaxation of MM2.
Moreover, the shortest paths and even-load constraints of model MM2 add a con-
siderable number of variables and constraints to the model. Thus, evaluating MM2
with a convex function became impracticable in terms of computational time, and
for this reason no corresponding results are reported. In the next experiment we
evaluate both approximations models for the full model (MM2).

4.2. Results for the Tollbooth Problem with linear piecewise cost (LMM2).
This set of experiments tests the performance of CPLEX on MM2, the model that
includes shortest paths and even-split constraints, with the two piecewise linear
functions introduced in Section 2.3. Using both schemes to evaluate shortest path
(SPT and SPTF), we run the model with both piecewise linear functions.

Tables 3 and 4 present results for model LMM2 when the shortest path is cal-
culated considering only the toll tariffs (SPT), and for tariffs plus the free flow
time (SPTF), respectively. For each instance, we tested several scenarios of K. For
each scenario we present the objective function values of approximations ϕl and ϕu

obtained by CPLEX, the corresponding Φ{ϕl} and Φ{ϕu} values (as described in

4www.gams.com
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the previous subsection), the gap returned by the solver for a time limit of 1800
seconds, and finally the running times in seconds. The null values (-) indicate that
a feasible solution was not found within the time limit.

Tables 3 and 4 illustrate the difficulty in solving these instances with CPLEX.
For most of the instances no optimal solution was found within 30 minutes, and
for many of them even a feasible solution was not found in this time limit. A
small increase in the instance size implies in a large increase in the computational
effort spent to solve it. We observe that for SPT the solver has more difficulty in
finding an initial solution, and the gap returned by the solver is slightly higher in
comparison with the SPTF path calculation. Furthermore, the computational time
is slightly reduced for SPTF, and ϕl was computed slightly faster than was ϕu.

Results for instances SiouxFalls 06 and SiouxFalls 08 were found for ϕl and
ϕu in almost no time, and for this reason they were omitted from the table. On
the other hand, results were omitted for SiouxFalls 16, for both piecewise linear
functions and SPT and SPTF path calculations since the solver was not able to
find any feasible solution within the time limit.

In summary, Table 2 shows that solving the simplified model MM1, that is
MM2 without the shortest paths computation and even-load constraints, takes a
considerable time, while their linearized versions ϕl and ϕu are calculated very
quickly in almost all cases. Tables 3 and 4, on the other hand, show that the
linearizations ϕl and ϕu of the full model MM2 takes a long time even for small
instances. Thus, these results motivated us to propose an heuristic solution to solve
the tollbooth problem, and the results of the proposed biased random-key genetic
algorithm are presented in the next subsection.

4.3. Results for the biased random-key genetic algorithm. This section
presents results for the biased random-key genetic algorithm on the ten instances
of class S2. We extend the experimental study performed by Buriol et al. (2010)
which presents results for three of these instances (the other seven were only made
available recently). Moreover, we provide an analysis of the best solution for each
combination of instance and K.

In the first experiment we compare the results obtained between the genetic
algorithm with the simple decoder (BRKGA) and the genetic algorithm with the
decoder with local search (BRKGA+LS). First, we run the BRKGA+LS with time
limit of 3600 seconds, (except for large instance ChicagoSketch for which we ran
with a time limit of 7200 seconds). We allow a maximum number of generations to
be 2000, and the maximum number of generations without improvement to be 100
(5% of maximum number of generations). Later, we ran the BRKGA procedure
with the same running times obtained in the previous experiment without other
stopping criteria.

Table 5 shows the results obtained, averaged over five runs with different random
seeds and over seven different values of K (the number of tollbooths used in this
experiment are the same as shown in Table 8). In this table we present the average
number of generations (Gens) and the objective value(Φ) for each instance and
how the shortest path was evaluated. Finally, the last column presents the average
running times in seconds of both algorithms.

This table shows that BRKGA+LS requires more computational effort per gen-
eration than BRKGA. However, it produces better results if the same amount of
time is given. Columns Φ of the algorithms show that BRKGA found a better
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Table 5. Comparison of BRKGA and BRKGA+LS algorithms.

BRKGA BRKGA+LS
Type Instance Gens Φ Gens Φ Time(s)

SiouxFalls 1,837.37 51.04 343.00 30.71 18.20
Friedrichshain Center 2,232.63 49.66 769.80 47.32 231.08
Prenzlauerberg Center 2,441.14 69.06 997.86 67.91 607.86
Tiergarten Center 2,301.60 56.59 810.29 55.84 415.44

SPT Mitte Center 2,845.14 70.39 981.83 69.60 815.14
Anaheim 4,175.57 14.12 1,447.03 13.82 1,369.21
MPF Center 1,599.06 80.65 484.14 81.20 3,345.36
Barcelona 1,391.54 16.47 419.03 11.21 3,361.03
Winnipeg 1,055.29 35.02 326.71 24.21 3,457.38
ChicagoSketch 862.06 194.27 254.34 56.10 7,209.72

SiouxFalls 1,345.80 26.96 326.37 22.83 13.93
Friedrichshain Center 759.89 45.57 352.57 45.26 82.17
Prenzlauerberg Center 881.71 67.17 452.60 66.22 228.80
Tiergarten Center 719.89 53.30 357.03 53.56 136.14

SPTF Mitte Center 916.83 66.24 460.06 65.65 275.19
Anaheim 1,593.29 13.15 714.77 13.10 556.12
MPF Center 1,060.06 69.19 551.60 69.66 2,338.86
Barcelona 1,222.00 9.30 510.86 9.31 3,109.35
Winnipeg 947.46 22.41 432.03 19.67 3,309.19
ChicagoSketch 844.34 21.97 335.97 18.63 7,208.79

average objective value only in 3 of 20 cases, demonstrating that the local search
procedure is able to improve solution quality.

Another interesting observation is that BRKGA and BRKGA+LS spend less
computational time when shortest paths are being calculated as SPTF, in compari-
son with SPT. This occurs because the number of alternative paths increases when
we consider only tolls in the computation of the shortest paths, thus resulting in
more time to compute and update shortest paths and route demands. This increase
in the number of alternative shortest paths is expected since in the SPT case there
are many arcs with zero cost (with no toll installed). Furthermore, arc weights
having small integer values make it more likely that alternative paths occur.

Since BRKGA+LS was shown to outperform BRKGA, the remaining analysis
in this subsection is limited to BRKGA+LS. Table 8 shows averages over five runs
of BRKGA+LS and a comparison between SPT and SPTF. For each K (number
of installed tolls), we show the number of generations (Gens), best solution value
(Best Φ) over the five runs, average fitness values (Avg Φ), standard deviation (SD),
and average running times in seconds.

The first observation is that when K increases the Φ values tend to decrease and
present a smaller variance. Moreover, in most cases, the best solution values were
not found with larger K, which is close to |E| (the number of arcs), but rather for

K ≈ |E|2 , or slightly larger values. With small K the tolled arcs tend do not have
flow, which impairs network traffic. On the other hand, with a large K the search
space increases considerable, making the problem harder to solve. Also, we can see
that the standard deviation is small in most cases showing that the algorithm is
robust. Another implication of having a small K is that the values of Φ tend to be
better than for SPTF for the same aforementioned reason.
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We next explore the main characteristics of the solutions returned by BRKGA+LS.
For the best solution found among the five runs, we present in Table 11 the average
number of paths for each OD pair (#Path), the average number of hops among all
OD shortest paths (#Hop), the average number of tolled arcs among the shortest
paths (#Toll), the average sum of the tariffs among the shortest paths (Tariff), and
the number of different arcs used in each OD pair (#Arcs).

The column #Path presents the average number of shortest paths used by each
OD pair. When we increase K, we observe a reduction in the number of shortest
paths, especially with a small K. In this case, considering SPT, there are alternative
shortest paths without tolls, and thus only the hop count is used to calculate the
shortest path, increasing the possibility of paths with the same cost. On the other
hand, for SPTF, adding the free flow time to the arc weight avoids this occurrence
and we observe a reduction in the number of shortest paths.

In computer networking, hop count refers to intermediate devices through which
a piece of data must pass between source and destination. We extend this concept
to road networks where the intermediate devices are vertices which represent in-
tersecting roads or waypoints. Thus, we show in column #Hops the average hop
count for all shortest paths between OD pairs. When compared with the situation
without tolls (K = 0) we observe that as the number of installed tolls increases,
the number of hop counts decreases in SPTF. For the SPT, this number starts
increasing, but then decreases after some value of K. For large K, #Hops values
are similar for both for both SPT and SPTF.

The column #Tolls shows the average number of tolls installed on OD shortest
paths. Clearly, this value increases with K. In the column Tariff we show the
average value of tariff in each path. In this problem our objective is to install K
tolls such that congestion costs are minimized. Since minimizing the tariff is not
part of the objective function, that results in more variability in this column. In
SPT, the impact of a unit of tariff is higher than in SPTF. As can be seen in the
last column, we conclude that an increase in K influences the average number of
arcs of the shortest path of OD pairs slightly.

5. Conclusions

In this paper we presented an extensive study of the tollbooth problem. Two
mathematical formulations for different versions of the tollbooth problem were pre-
sented, as well as linearizations that give lower and upper bounds for their objective
functions. Computational tests were conducted taking into account the original and
the linearized models, applied on two sets of synthetic and real-world instances.
Moreover, a previously proposed biased random-key genetic algorithm was run for
this same set of instances. A set of experiments were performed for the sake of
results comparison.

When analyzing the results for the mathematical models, we concluded that the
model MM2, which includes shortest paths and even split constraints, has a large
number of variables and constraints, making it difficult to be solved with general-
purpose solvers, even when we limit ourselves to small instances. On the other
hand, if shortest paths and even split constraints are removed from the model,
giving rise to a simplified version of the problem, the linearized versions of the
problem can be solved efficiently by CPLEX. However, results obtained with the
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biased random-key genetic algorithm for the complete model point to it as having
the best tradeoff between computation time and solution quality on this problem.

Finally, considering that users naturally take the least costly path, toll setting
can be used to better distribute the flow in the network and consequently reduce
traffic congestion.
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