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Theory and Applications of Categories, Vol. 5, No. 10 252We are indebted to Bill Lawvere for raising the question leading to the present research,and for support and discussions; and to Peter Johnstone for pointing out to us that theenrichment we constructed may be upgraded to an indexing, using a method of Bob Par�e.Also, Peter Johnstone supplied us with the `comparison' between the indexing, on the onehand, and the constructions of Freyd/Yetter/Johnstone of fractional exponents in slicecategories, on the other.2. Grothendieck toposes from atomsWe begin by some auxiliary results on equi�ers.Let F;G : A! B be functors, and let �; : F ! G natural transformations, so thatthe equi�er E(�; ) � A of � and  (= the full subcategory of A given by those X 2 Asuch that �X =  X) makes sense. Then2.1. Proposition. If A has and F preserves a certain class of colimits, then E(�; ) �A is closed under this class of colimits; if A has and G preserves a certain class of limits,then E(�; ) � A is closed under this class of limits. And if G preserves monics, thenE(�; ) � A is closed under subobjects.Proof. For the �rst assertion, we want to see that � and  agree for an object ofform lim!Xi, provided they do so for the Xi's, so we want to prove that two arrowsF (lim!Xi)! G(lim!Xi), are equal. But the domain here is by assumption a colimit ofF (Xi)'s on which � and  agree, and the rest then follows by naturality. The two otherassertions are proved in a similar way.2.2. Theorem. With the notation of the previous Proposition, if A is a Grothendiecktopos, and F is cocontinuous and G left exact, then the equi�er E(�; ) is a Grothen-dieck topos, and the inclusion E(�; ) � A is the inverse image functor of a surjectivegeometric morphism. If G preserves all limits, this geometric functor is even essential.Proof. By the previous Proposition, the equi�er subcategory E is closed in A undercolimits, �nite limits, and subobjects. The two �rst of these properties guarantee that Ehas the same exactness properties (involving these kinds of colimits/limits) asA does; so Esatis�es the exactness properties a), b), c) of the Giraud characterization of Grothendiecktoposes in [2] IV.1.1.2. To prove the last property d) (existence of a small generatingfamily), take a small generating family K in A closed under quotients. Because thefamily is closed under quotients, every object X in A is covered by a family of monicswith domain in K (take the images of the maps from objects of K to X). Since theequi�er subcategory E is closed under subobjects, it follows that every X 2 E is coveredby a family of maps with their domains in the small familyK\E. (This proof of existenceof a small generating subcategory for E was pointed out to us by Ieke Moerdijk.) So Eis a Grothendieck topos. As a cocontinuous functor between Grothendieck toposes, theinclusion has a right adjoint (cf. [2] I.1.5). Also, by the Proposition, the inclusion is leftexact since G is so. So we have a geometric morphism as asserted.



Theory and Applications of Categories, Vol. 5, No. 10 253For the last assertion (existence of left adjoint for the inclusion), we �rst get from theProposition that the inclusion E � A preserves all limits. Also, it is accessible (by beinga left adjoint), So the conclusion follows from the Adjoint Functor Theorem, (in the formof [1] 1.66, say).It is a well known fact in elementary topos theory that the category of coalgebrasfor a left exact comonad on an elementary topos again form an elementary topos, andthat the forgetful functor is the inverse image of a surjective geometric morphism. Thereexists a similar result for Grothendieck toposes, where one needs to assume accessibilityof the functor part of the comonad. We shall need some related results, not for comonads,but rather for mere endofunctors. Recall that if G : E ! E is an endofunctor, thena coalgebra for it is a pair X; � where X 2 E and � : X ! G(X); and a morphism(X; �) ! (X 0; �0) is a map f : X ! X 0 making the obvious square commute. A generalinvestigation of coalgebras for endofunctors has been carried out by [6], and the followingcan also be obtained as a Corollary of their results.2.3. Proposition. Let E be a Grothendieck topos, and G a left exact accessible endo-functor on it. Then the category Coalg(G) of coalgebras for G is a Grothendieck topos;the forgetful functor to E is the inverse image functor of a surjective geometric morphism.Proof. The comma category E # G is a Grothendieck topos, according to SGA 4, [2]IV.9.5 Theorem 4; they call it the topos obtained by glueing (recollement) along G. Theforgetful functor E # G ! E � E is the inverse image functor of a geometric morphismof Grothendieck toposes; this is likewise (implicit) in loc. cit. If we form the (strict)pull-back of categories of this forgetful functor along the diagonal E! E�E, we obtainthe category of G-coalgebras. But the functors in this pull-back diagram are all inverseimage functors of geometric morphisms; this follows from [17], according to which colimitsin the category of Grothendieck toposes and geometric morhisms is formed by forminglimits of the inverse-image functors.2.4. Proposition. Let E be a Grothendieck topos, and G a endofunctor on it whichadmits a left adjoint T . Then the category of coalgebras for G (which is �= to the categoryof T -algebras) is a Grothendieck topos; the forgetful functor to E is the inverse imagefunctor of an essential and surjective geometric morphism.Proof. Any (left or right) adjoint functor between Grothendieck toposes is accessible,see [2] Proposition I.9.5. So by Proposition 2.3, the category of coalgebras for G isa Grothendieck topos, and the forgetful functor has a right adjoint. In particular, it isaccessible. Using thatG preserves limits, it is easy to see that the forgetful functor (createsand) preserves limits. But an accessible limit preserving functor between Grothendiecktoposes has a left adjoint, by the Adjoint Functor Theorem (in the form of [1] 1.66 (p.52), say).We consider now a �xed atom A in a Grothendieck topos E, and denote by (�)1=Athe right adjoint of (�)A. Furthermore, we consider a �xed map � : A ! E. (In the



Theory and Applications of Categories, Vol. 5, No. 10 254application to SDG, A will typically be D, and � will be the inclusion of D into D2.) Forany object X we have the map "restriction along �", XE ! XA. An extension structurefor � on X we de�ne to be a section of this map, i.e. a map �0 : XA ! XE , whichcomposes with the restriction map to the identity map on XA; there is an obvious notionof morphism of extension structures.The composite endofunctor G given byX 7! XE=A(recall that XE=A := (XE)1=A) is then left exact, it even has a left adjoint. So by Propo-sition 2.4, the category of coalgebras for G is a Grothendieck topos, and the forgetfulfunctor to E is the inverse image functor p� of an essential geometric surjection. Notethat for a coalgebra (X; �), � : X ! (XE)1=A;the structure map � corresponds by adjointness to a map�0 : XA ! XE:The category of extension structures is equivalent to the full subcategory consisting ofthose coalgebras (X; �) for which �0 has the property thatX� � �0 = identity map of XA(i.e. �0 restricts to the identity map along �). This subcategory is easily seen to be anequi�er subcategory of the kind dealt with in Theorem 2.2. In fact, consider the functorq = (�)A � p� : Coalg(G) ! E which takes (x; �) to XA. We have two transformationsfrom q to q; the one is the identity transformation, call it �, the other,  is the one whosecomponent at (X; �) 2 Coalg(G) is X� � �0; and the equi�er of these two is clearly thesubcategory in question. Now since q preserves limits as well as colimits (by Proposition2.4), it follows from Theorem 2.2 that the equi�er subcategory inside the category ofcoalgebras is a Grothendieck topos, and that the inclusion to Coalg(G), and hence theforgetful functor to E, is the inverse image of an essential geometric surjection.We therefore have the following consequence:2.5. Theorem. Let � : A ! E be a map in a Grothendieck topos E, and assume thatA is an atom. Then the category G of "extension structures", i.e. the category whoseobjects are pairs (X; �0) with X 2 E and �0 : XA ! XE withXA �0! XE X�! XA = idXA(and evident morphisms), is a Grothendieck topos, and the forgetful functor (X; �0) 7! Xis the inverse image functor of an essential geometric surjection E! G.A combination of these results, which likewise has applications in SDG, is concernedwith the situation where we have a map � : A ! E, as above (with A an atom), and



Theory and Applications of Categories, Vol. 5, No. 10 255where A and E are equipped with an action of a monoid (R; �) such that the map � isequivariant. Then we have induced actions ofR onXA and onXE , and the restriction mapXE ! XA is R-equivariant. One may then consider extension structures � : XA ! XEwhich likewise are R-equivariant. (For the case in SDG where A ! E is the inclusionof D in D2, and R is the number line acting by multipliation, the equivariant extensionstructures are the sprays on X.) We then have2.6. Theorem. Let � : A! E be as in the previous Theorem, and assume it is equivari-ant with respect to an action by a monoid R. Then the category of R-equivariant extensionstructures � : XA ! XE is a Grothendieck topos, and the forgetful functor to E is theinverse image functor of a surjective geometric morphism.Proof. The equivariance of � can be expressed by the equality of two maps (de�ned intems of � and the R-actions) with domain R�XA and codomain XE . Taking exponentialadjoints of these two maps, the equivariance of � can be expressed by equality of twomaps with domain XA and codomain XE�R. Taking, in turn, the adjoints of these twomaps with respect to the adjointness (�)A a (�)1=A, we get that the equivariance can beexpressed in terms of equality of two mapsX ! (XE�R)1=A;both of which are constructed from � and hence clearly are natural in (X; �) 2 G, whereG denotes the topos of the previous Theorem. They are both natural transformationsfrom the forgetful functor G! E given by (X; �) 7! Xto the functor G! E given by (X; �) 7! (XE�R)1=A;and since the former preserves colimits and the latter limits, Theorem 2.2 applies. We thusget that the inclusion from the equi�er of these two transformations to G is the inverseimage of an essential geometric surjection. Composing this inclusion with the forgetfulfunctor G ! E, which is likewise the inverse image functor of an essential geometricsurjection, we get the result for equivariant extension structures, as claimed.In the context of SDG, there arise further variants on this theme, cf. [13], or ourforthcoming [14].3. Enrichment/strength of fractional exponentsWe recall some notions from enriched category theory, cf. [4] or [7]. Recall that a cartesianclosed category E is enriched in itself (i.e. is made into an E-category) by means of Y Xas the object of maps from X to Y . Then an E-enrichment of an endofunctor G : E! Econsists of a family of maps GX;Y : Y X ! G(Y )G(X);



Theory and Applications of Categories, Vol. 5, No. 10 256natural in X and Y , and which satis�es two equational conditions expressing the ideathat G takes identity maps to identity maps, and preserves composition. Fixing one ofthe variables X or Y in the exponential functor Y X gives an endofunctor canonicallyenriched in E.Recall from [9] Theorem 1.3 (or see [5] for a recent account) that an E-enrichment(\strength") of an endofunctor G : E! E may be encoded equivalently in the form of a\tensorial strength", meaning a family of mapstX;Y : X �G(Y )! G(X � Y );natural in X and Y , and satisfying two equational conditions,t1;Y = 1GY : 1�GY ! G(1 � Y ) (1)tU;V�Y � (U � tV;Y ) = tU�V;Y : U � V �GY ! G(U � V � Y ); (2)respectively, for all U; V; Y , (under the evident identi�cations like 1�GY = GY etc.).We also recall that there is a notion for a natural transformation �X : G1(X)! G2(X)between two E-functors to be E-natural, or strongly natural, see [4] 1.10; in terms of thetensorial form of enrichments (for endofunctors G1 and G2 on E), this may be expressedsimply as commutativity of all squares of the formX �G1Y t(1)X;Y- G1(X � Y )X �G2Y1 � �Y ? t(2)X;Y- G2(X � Y )�X�Y? (3)where t(i) denotes the enrichment of Gi (i = 1; 2); cf. [9].We shall use the the words enrichment and strength more or less synonymously, andsimilarly for enriched and strong.Recall that any endofunctor of the form (�)A carries a canonical E-enrichment (itstensorial strength is given below).3.1. Proposition. Let A 2 E be an object, and let �X : XA ! X be natural in X. Thenin order that � be E-natural, it is necessary and su�cient that, for all X, the compositeX �X - XA �X - Xbe the identity map on X, where �X : X ! XA denotes the `diagonal'-map, exponentialadjoint of the projection X �A! X.



Theory and Applications of Categories, Vol. 5, No. 10 257Proof. The commutative square corresponding to (3) reduces to the outer square inX � Y A �X � 1- XA � Y A �= (X � Y )A@@@@@�X � �Y RX � Y1 � �Y ? 1X�Y - X � Y�X�Y?where the upper map is the strength in monoidal form of (�)A. Using the naturality of� with respect to the two projections X � Y ! X and X � Y ! Y , it is easy to see thatunder the identi�cation XA � Y A �= (X � Y )A, �X�Y becomes �X � �Y , and then it isclear that �X ��X = 1X implies commutativity of the square. The converse implicationfollows by taking Y = 1.Remark. If E = Sets, all functors and transformations are E-enriched. But for othertoposes E, there may exist A and natural transformations �X : XA ! X which are notE-natural; even for the case A = 1. Take e.g. E = Z2-Sets, i.e. the topos of sets-with-an-involution, and let �X : X ! X be the involution on X.3.2. Proposition. Let F a G be endofunctors on a cartesian closed category, and as-sume that F preserves �nite products. Given a natural �X : F (X)! X, then the familyof maps �X;Y given byF (X �G(Y )) �= F (X)� F (G(Y )) �X � �Y- X � Y(where � is the counit of the adjunction F a G) gives by transposition along F a G afamily of maps X �G(Y ) tX;Y- G(X � Y )which is an enrichment (in the form of a tensorial strength) of the functor G.Proof. Given Y , the transpose of t1;Y is, by construction, �1 � �Y , which under identi-�cations of type 1� Y = Y is just �Y , the transpose of the identity map on GY , proving(1). Given U; V; Y , then the right hand side in (2) has for its transpose, under identi�-cations of type FX � FY = F (X � Y ), the map �U � �V � �Y , whereas the left handside has transpose U � V � �Y � (�U�V �FGY ). But just by naturality of � with respectto the two projections from U � V , we conclude that �U�V = �U � �V , and the requiredcommutativity is then immediate. The Proposition is proved.



Theory and Applications of Categories, Vol. 5, No. 10 258Remark. We may supplement the Proposition with a statement about natural transfor-mations f : F1 ! F2; if such an f commutes with the \augmentations" �i : Fi(X)! X,then the mate of f , G2 ! G1, becomes a strongly natural transformation, with respect tothe strengths obtained on the Gi's by virtue of the Proposition. In particular, the mateof � itself, X ! G(X), is strongly natural in X.For any atom A, there is a canonical natural transformation �X : X1=A ! X, namelythe composite X1=A �- (X1=A)A �X - X;where � is the counit for the adjunction (�)A a (�)1=A.3.3. Theorem. Let A be an atom in E. There is a bijective correspondence betweenthe set of those E-enrichments of the endofunctor (�)1=A : E ! E, which make thetransformation � : (�)1=A ! idE E-natural, and the set of points 1! A.Proof. Assume given an enrichment, in the form of a tensorial strength, of the endo-functor (�)1=A, X � (Y 1=A) tX;Y- (X � Y )1=A;its transpose under the adjointness (�)A a (�)1=A consists then in mapsXA � (Y 1=A)A �X;Y- X � Y;natural in X and Y . Using this naturality with respect to the maps X ! 1 and Y ! 1,it is easy to see that �X;Y must be of form �X �  Y with �X : XA ! X natural in Xand  Y : (Y 1=A)A ! Y natural in Y . From (1) it follows that  Y must in fact be thecounit �Y for the adjointness (�)A a (�)1=A. On the other hand, for any natural family�X : XA ! X, the transposes tX;Y of the maps �X;Y := �X � �Y will in fact provide anenrichment for (�)1=A, without any assumptions on � except naturality; this follows bytaking F = (�)A, G = (�)1=A in Proposition 3.2.From the analysis made it follows that there is a bijective correspondence betweenstrengths tX;Y : X � (Y 1=A)! (X � Y )1=A of the endofunctor (�)1=A, and natural trans-formations �X : XA ! X.Now compatibility of the strength t with � is easily seen, by transposition, to beequivalent to the normalization condition �X ��X = idX.But by Proposition 3.1, this condition is equivalent to E-naturality of �X : XA ! X.Finally, we invoke the enriched Yoneda Lemma, in the form of [7] 1.9 (therein called theweak Yoneda, since after all it talks about a bijection between two sets!). According toit, the set of E-natural transformations (�)A ! (�)B is in bijective correspondence withthe set of maps B ! A. Now take B = 1. The Theorem is proved.



Theory and Applications of Categories, Vol. 5, No. 10 259Remark. On a cartesian closed category, any endofunctor ��A is the functor part of acomonad, with counit and comultiplication being �� (A! 1) and ���A, respectively.It follows by mating that (�)A carries a canonical structure of monad. If A is an atom,then, again by mating, (�)1=A carries a canonical structure of comonad. The counit ofthis comonad structure is the � considered in Theorem 3.3. So if (�)1=A is supplied with astrength, by virtue of a point of A, as in the Theorem, � is strongly natural. One may askwhether also the comultiplication of the comonad is strongly natural, (so that the comonadbecomes a strong one). The answer is yes. This follows in essence by the Remark afterProposition 3.2; for, a point o of A induces an augmentation of ((�)A)A (just evaluatetwice at o), with which the multiplication of the monad (�)A is compatible. (Note thatthe monad (�)A carries a canonical strength, but that strength does not transfer to astrength on (�)1=A, since the adjointness (�)A a (�)1=A is not strong, unless A = 1.)The categories which we constructed in Section 2 always can be enriched in the basetopos E. In fact, we construct the categories as full subcategories of the category of G-coalgebras, and this category is equivalent to the category of T -algebras, where T a G.Now a strength of either G or T will by quite standard procedure (to be recalled for theG-case) lead to an enrichment of T � Alg ' G � Coalg. Now, in the case at hand, Tcarries a standard enrichment; we shall also construct a non-standard enrichment on G,and these two enrichments do not correspond to each other under the adjointness T a G.This leads to two distinct enrichments of T � Alg ' G � Coalg (in fact two distinctindexings).The non-standard enrichment which we shall construct on G depends on the atom Aused for its construction being a pointed object. (This will be the case for the di�erentialequations case, where A = D which carries the point 0.)We �rst describe how a strength on an endofunctor gives rise to an enrichment on itscategory of coalgebras.For this purpose, it is better to have the E-enrichment of G encoded not in tensorialform X �GY ! G(X � Y ), but rather in the classical form, as a family of maps GX;Y :[X;Y ]! [GX;GY ] (where square brackets denote hom-objects, as in [7]). We shall writest (for \strength of G") rather than GX;Y , to save subscripts. Also, when the bifunctor[X;Y ] is applied to a map �, say, we sometimes write [�; 1] as �� and [1; �] as ��; this isalso standard mathematical usage for the contravariant, respectively covariant, aspect ofhom-functors.3.4. Proposition. Let G : E ! E be a V-functor, where V is a symmetric monoidalclosed category with equalizers. Then the category Coalg(G) of G-coalgebras carries acanonical V-enrichment.Proof. We are interested only in the case where E = V, and V is a topos, hence carte-sian closed, and accordingly, we shall write � rather than 
 for the monoidal structure.But we shall write [X;Y ] rather than Y X, for typographic convenience.The construction is straightforward, in the spirit of [3] or [10] (in fact, we couldprobably read o� the desired conclusion from either, | say from the proof of (2.5) in



Theory and Applications of Categories, Vol. 5, No. 10 260[10], by suitable dualization and exponential adjoints). But we shall be more explicit: toconstruct the V-valued hom [[X;Y ]] for two G-coalgebras X = (X; �) and Y = (Y; �)(where � : X ! GX, � : Y ! GY ), we take the equalizer object in the equalizer diagram[[X;Y ]] iX;Y- [X;Y ] �� � stX;Y-�� - [X;GY ]:(It is clear that [[X;Y ]] by hom(1;�) goes to the set of coalgebra morphisms from X; �to Y; �.) If (Z; �) is a third G-coalgebra, we would like to prove that the composition map[Y;Z]� [X;Y ] MXY Z- [X;Z]restricts to a map [[Y;Z]]� [[X;Y ]] - [[X;Z]]:Now consider the following two maps [Y;Z]� [X;Y ]! [X;GZ]; the �rst is[Y;Z]� [X;Y ] 1� ��- [Y;Z]� [X;GY ] st� 1- [GY;GZ]� [X;GY ] M- [X;GZ]; (4)the second is[Y;Z]� [X;Y ] st� 1- [GY;GZ]� [X;Y ] �� � 1- [Y;GZ]� [X;Y ] M- [X;GZ]: (5)It is a consequence of the extraordinary naturality [7] of M with respect to � that thesetwo maps are equal.Now the strategy is to eliminate � in (4) in favour of �, using iX;Y , and to eliminate �from (5) in favour of �, using iY;Z. For the �rst elimination, consider the map[Y;Z]� [X;Y ] M- [X;Z] st- [GX;GZ] ��- [X;GZ]: (6)We claim that the restrictions of (4) and (6) along 1� iX;Y are equal. In (6), use st�M =M � (st� st), which is a general property of enrichments st of functors G (\G commuteswith composition"). Also, naturality of M w.r.to � gives the �rst equality sign in�� �M � (st� st) =M � (1� ��) � (st� st)=M � st� 1 � (1 � ��) � (1� st)(the second equality sign by bifunctorality of �). When restricted along 1 � iX;Y , thefactor (1 � ��) � (1 � st) may be replaced by 1 � ��, so that the total expression getsreplaced by (4).For the second elimination, consider the map[Y;Z]� [X;Y ] M- [X;Z] ��- [X;GZ]; (7)



Theory and Applications of Categories, Vol. 5, No. 10 261or, equivalently by naturality of M w.r.to �,[Y;Z]� [X;Y ] �� � 1- [Y;GZ]� [X;Y ] M- [X;GZ]: (8)When restricted along iY;Z�1, the composite (8) yields the same as does (5). We concludethat (7) and (6) have the same restriction along iY;Z � iX;Y . In formula�� �M � i� i = �� � st �M � i� i;which is precisely the condition for m � i� i to factor across the equalizer iX;Z of �� and�� � st.Remark. It follows that for instance the category G of extension structures, as inTheorem 2.5, with A a pointed atom, carries two E-enrichments. Also, G is a topos,hence Cartesian closed, hence enriched in itself. Since the forgetful functor G ! Epreserves products (it has, in fact, adjoints on both sides, by the Theorem), it is a closedfunctor, in the sense of [4], hence transforms G enrichment into E-enrichment. The E-enriched category thus arising does not, so far we can see, have G for its underlying\ordinary" category, so cannot be compared with the enrichment of G we have describedin the present section.We shall postpone the comparison of our \non-standard" enrichment of G�Coalg withthe standard enrichment of the equivalent category T � Alg until the following section,where it will be discussed in terms of indexed categories and functors.4. IndexingRecall (cf. e.g. [18]) that an indexing of an endofunctor G : E! E (where E is a topos,say), consists in a family of functors GI : E=I ! E=I, one for each object I of E,commuting up to coherent isomorphisms with the pullback functors f� : E=J ! E=Iinduced by the morphisms f : I ! J of E (with G itself being identi�ed with G1). Anindexing on G implies in a canonical way a strength on G. Conversely if the endofunctorG is supplied with a strength and preserves pull-backs, there is canonically an indexingon it. This latter statement is an unpublished result due to Par�e, which was dug outfrom oblivion by Johnstone [5]. Johnstone pointed out to us that the Par�e Theoremimmediately upgrades our result on strength to a result on indexing; we shall be expliciton this version for the case of an endofunctor G of the form (�)1=A, (A an atom) wherethe strength on G comes about from a point 1! A of the atom, by our recipe in Theorem3.3.For the case where G preserves all �nite limits, (which surely is the case for (�)1=A),the description of GI of Par�e-Johnstone may be presented as follows (cf. [5] Proposition3.3). The strength supplies the endofunctor with a point, i.e. with a natural family ofmaps tI : I ! G(I), namely the compositeI �= I �G(1)! G(I � 1) �= G(I);



Theory and Applications of Categories, Vol. 5, No. 10 262(the middle map being the tensorial strength), and if � : X ! I is an object of E=I,GI(�) is the left hand edge in the pull-back diagramP - G(X)I? tI - G(I):G(�)?For the case where G = (�)1=A and the strength of G is derived from a point of0 : 1! A, tI is just the transpose of \evaluation at 0":IA ! I.Combining our result on strength with the Par�e-Johnstone construction, we thus get:4.1. Theorem. Let 0 : 1 ! A be a pointed atom in a Cartesian closed category withpullbacks. Then the endofunctor G = (�)1=A carries a canonical indexing, with GI (or((�)1=A)I) being the compositeE=I (�)1=A- E=(I1=A) t�I - E=I;(with tI : I ! I1=A being the transpose of evaluation at 0, IA ! I).Recall that IA=A denotes (IA)1=A, so that there is the unit of adjunction I ! IA=A,here denoted u. One may give an alternative description of GI (for G = (�)1=A), namelyas the threefold composite inE=I (ev0)�- E=IA (�)1=A- E=IA=A u� - E=I;for, tI may be described as the compositeI u - IA=A (ev0)1=A- I1=A:So the pulling back along tI may be carried out in two stages, and utilizing that (�)1=Apreserves pull-backs, one gets that equivalence (up to canonical isomorphism) of the twodescriptions of GI .One early category theoretic investigation of the extra right adjoint functors arisingfrom atoms was undertaken by Freyd and Yetter, [19]; a main result in [19] (attributedto Freyd) is that if A is an atom in an elementary topos E, then AI (i.e. the projectionA� I ! I) is an atom in the slice topos E=I. The construction of the right adjoints inE=I of Freyd-Yetter utilizes the subobject classi�er of E; a simpler construction, whichonly depends on E being a locally cartesian closed category, was given by Johnstone,and quoted in Yetter's [20]; it will be recalled below. Let us denote the right adjoint of(�)AI : E=I ! E=I by (�)1=AI . Yetter observed ([19] Theorem 2.4) that the family ofthese functors (as I ranges over E) only in trivial cases provide an indexing of (�)1=A, (in



Theory and Applications of Categories, Vol. 5, No. 10 263fact, more precisely, the square whose commutativity expresses compatibility of (�)1=Awith (�)1=AI (i.e. the square for index change along I ! 1) commutes (with the canonical2-cell) precisely when I is A-discrete in the sense that the canonical � : I ! IA is anisomorphism.) In particular, the right adjoint (�)1=AI does not in general agree with ourindexed GI from the Theorem above. The following more precise comparison of these twofunctors was indicated to us by Peter Johnstone. He kindly consented to let us include ithere. Consider the diagramE=I ev�0-��- E=(IA) (�)1=A- E=(IA=A) u� - E=IThen the bottom composite is, according to Yetter, [20] the (Johnstone-) description ofthe right adjoint witnessing atomicity of AI in E=I. (Here, �� denotes the right adjoint ofpulling back along the canonical � : I ! IA.) The top composite is one of the equivalentdescriptions of GI which we gave above, i.e. expresses the indexed nature of the functor(�)1=A.There is a comparison 2-cell in the diagram, from the top composite to the bottom; infact, there is a 2-cell ev�0 ) ��: just precompose the adjointness unit idE=IA ) �� ���with ev�0 : E=I ! E=IA and use that � � ev0 is the identity map on I.Now the way in which the indexed functor GI gives rise to an indexed category ofcoalgebras is simply that the �bre over I 2 E is the category of objects in E=I equippedwith a coalgebra structure for the endofunctor GI . For �xed I, the comparison 2-cell justdescribed gives rise to a functor from the category of GI -coalgebras to the category ofcoalgebras for the fractional exponent (�)1=AI . This latter is equivalent to the categoryof algebras for its left adjoint, i.e. to the category of algebras for the \�brewise exponent"functor (�)AI . So an object in this category is simply an object x : X ! I inE=I, togetherwith a structure of the following kind (expressed in \synthetic" or \set theoretic" terms):to each i 2 I, a map (Xi)A ! Xi. So the structure only accepts as inputs maps A! Xwhich are \�brewise" or \vertical with respect to x : X ! I".This is to be contrasted with what a GI structure on X means: it is a map in E=I, � :X ! GI(X). Consider the pull-back diagram which de�nes GI in the case of G = (�)1=A,GI (X) - X1=AI? tI - I1=A;x1=A?and recall that tI corresponds to ev0 : IA ! I under the adjointness (�)A a (�)1=A.Then we see that such a GI -structure � is equivalent to a map �0 : X ! X1=A makingan evident square with codomain I1=A commute; passing to the transpose under theadjointness (�)A a (�)1=A, such datum �0 is in turn equivalent to a map �00 : XA ! X
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