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ABSTRACT

Fractal image compression is a promising new technology but is not without problems. Most

critically, fast encoding is required for it to find wide use in multimedia applications. This is now

within reach: recent methods are five orders of magnitude faster than early attempts. Beginning with

the basic ideas and problems, this paper explains how to accelerate fractal image compression.
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1. INTRODUCTION

The integration of video into the computing environment involves many concerns, including communications

hardware and software protocols, storage systems, user interface design, authoring tools, and methods to index and

browse vast information resources [29]. Important though they are, it is video compression that resides at the

center of this chain. The concerns of video compression are likewise diverse and include: image quality, bandwidth

adaptation, playback performance, memory consumption, coding symmetry, size and frame rate scalability,

interaction delay, and platform portability [42]. It is a complex task which, as the MPEG standard attests, requires

considerable effort to realize.

This paper avoids such complexities by assuming a narrower focus ___ namely, the potential of fractal image

compression for multimedia applications. These include integration of still pictures into on-line documents, and

PC-to-PC video communications. Unfortunately, the highly asymmetrical nature of fractal encoding has tended to

make the first application unattractive, and the second impossible. Even with dedicated hardware assist, the

compression stage is known to be prohibitively slow. (Decompression is sufficiently rapid for real-time operation.)

As a consequence, improving the time complexity has attracted considerable research attention. Significant

progress has been made since the early days of this field.

Because a general multimedia audience is being assumed, this paper is a hybrid. It is part tutorial, part survey, and

part presentation of new material. Beginning with a brief history of the field, Section 2 explains the basic ideas and

problems of fractal image compression. Various attempts towards speed improvement are surveyed in Section 3.

Section 4 introduces the Fast Fractal Image Compression algorithm, a new approach to breaking the speed

problem. For still images, experiments show that at comparable quality levels the FFIC algorithm is 25 to 400

times faster than the current state of the art. Such an improvement brings real-time video applications within the

reach of fractal mathematics. The prospects for software-only video codecs are briefly addressed in Section 5.

Compared to other methods, fractal compression is relatively immature, and thus some areas requiring further

research are outlined in the concluding section, Section 6.
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2. BACKGROUND

2.1  Brief Synopsis
Before delving into details, these are some highlights of Fractal Image Compression.

1. It is a promising technology, though still relatively immature.
2. The fractals are Iterated Function Systems (IFSs).
3. It is a block-based, lossy compression method.
4. Fractal image interpolation may prove useful in multimedia applications.
5. Decompression is fast.
6. Compression has traditionally been slow.
7. Two patents have been granted on the technology. More are expected.

2.2  Brief History
The birth of fractal geometry is usually traced to IBM mathematician Benoit B. Mandelbrot and the 1977

publication of his seminal book The Fractal Geometry of Nature [35]. The book put forth a powerful thesis:

traditional geometry with its straight lines and smooth surfaces does not resemble the geometry of trees and clouds

and mountains. Fractal geometry, with its convoluted coastlines and detail ad infinitum, does. This insight opened

vast possibilities. Computer scientists, for one, found a mathematics capable of generating artificial and yet

realistic looking forms. 

Figure 1. A simple fractal tree. 

Shortly after Mandelbrot’s work, mathematicians searched for a framework underlying fractal geometry. As John

Hutchinson demonstrated in 1981, it is the branch of mathematics known as Iterated Function Theory [24]. Later

in the decade Michael Barnsley authored Fractals Everywhere, another keystone work [6]. The book presents the

mathematics of Iterated Functions Systems (IFSs), and develops a result known as the Collage Theorem. The

Collage Theorem states what conditions an Iterated Function System must satisfy in order to represent an image.

The tree-like image in Figure 1 was generated from a two dimensional Iterated Function System.

This presented an intriguing possibility. If, in the forward direction, fractal mathematics is good for generating

natural looking images, then, in the reverse direction, could it not serve to compress images? Going from a given

image to an Iterated Function System that can generate the original (or at least closely resemble it), is known as the

inverse problem. In its general form, the inverse problem remains unsolved [46].
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According to the testimony in [39] Barnsley’s colleague Alan Sloan was the first to see the potential of IFS theory

for image compression. Together they applied for (and were later granted) a software patent for the purpose of

commercializing technology based upon their work [8]. At that time, however, fractal compression software

required excessive human intervention and the method described in the first patent failed to become viable.

In search of something practical, Arnaud Jacquin, one of Barnsley’s students, arrived at a modified scheme for

representing images using Partitioned Iterated Function Systems (PIFSs). In his PhD thesis [26], Jacquin

developed the necessary mathematical foundations and implemented the new approach in software, a description of

which appears in his landmark 1992 paper “Image Coding Based on a Fractal Theory of Iterated Contractive

Image Transformations” [27]. The algorithm was not sophisticated, and was computationally expensive, but it was

fully automatic. All contemporary fractal image compression programs are based upon Jacquin’s breakthrough. 

Fractal compression can therefore be divided into two eras: that defined by the ‘classical’ approach of Barnsley,

and that by the ‘contemporary’ approach of Jacquin. (Barnsley and Sloan hold a second patent on this later work

[9].) The tutorial that follows explains how the contemporary emerged from the classical.

2.3  Classical Approach
An elegant way of introducing the notion of Iterated Functions Systems is by the metaphor of a Multiple Reduction

Copying Machine [40]. A MRCM is imagined to be a regular copying machine except that:

1. There are multiple lens arrangements to create multiple overlapping copies of the original.
2. Each lens arrangement reduces the size of the original.
3. The copier operates in a feedback loop, with the output of one stage the input to the next. The initial

input may be any image.

Figure 2. Schematic diagram of a Multiple Reduction Copying Machine.

Copy Machine
Seed Image 1st copy

2nd copy
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Figure 3. Sierenpinski’s Triangle. This image represents
the limit of the process depicted in Figure 2.

Figure 2 depicts this process for Sierpinski’s Triangle ___ one of the simplest (and most well known) Iterated

Function Systems. It is comprised of three component functions (“lenses”), each of which shrinks the input image

by one half and translates it to a new position. This contractive property is crucial, for it guarantees convergence of

the iterative process. Because all initial images are “drawn towards” the same final result, it is variously referred to

as the attractor of the IFS, or the fixed point image.

Mathematically, each reducing lens is represented as a contractive affine transformation, wi , that acts to scale,

rotate, shear, and translate a copy of the input image, i.e.

         (1)

so that a point in the initial image (x,y) will transform to new coordinates (x', y').

         (2)

The symbols a ... f denote the transform coefficients. The three transforms that produce the Sierpinski Triangle of

Figure 2 are:

         (3)

Here, the first four coefficients (a ... d) are identical but this need not be the case in general. Just so long as the

determinant of each transform is strictly less than one,

         (4)

then the IFS as a whole, W, will converge to the attractor image Iww from any initial image Io. 
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       (5a)

       (5b)

       (5c)

As Figure 2 indicates, and equation (5) implies, each application of W produces detail at progressively finer levels

as the limit is approached. Indeed, the image possess geometric self-similarity between different scales. This is why

IFSs are said to generate fractal images. The promise of employing fractals for image compression, then, rests on

four suppositions.

1. Many natural scenes possess this detail-within-detail structure.
2. Iterated Function Systems can generate fractal images that resemble natural scenes.
3. The corresponding IFS can be represented compactly.
4. The IFS can be reverse-engineered from the original image.

The truth of supposition 1 is what the fractal revolution begun by Mandelbrot is all about. The tree-like form in

Figure 1 lends credence to supposition 2. The IFS that generates this tree is only slightly more complex than that of

Sierpinski’s Triangle: it consists of four transforms, listed in Table 1. Without any special effort devoted to

efficient representation, the file that describes the generating IFS is 176 bytes in size, as compared to 264,000 bytes

for a traditional pixel array representation. A compression ratio of 1,500 is certainly extreme ___ thus supposition

number 3.

Transform a b c d e f

w1 0.53 -0.08 0.08 0.53 -0.88 33.44

w2 -0.31 -0.42 -0.44 0.33 -15.19 19.43

w3 -0.25 -0.05 -0.07 0.29 1.48 11.73

w4 0.29 0.54 -0.04 0.29 18.74 9.87

Table 1. The four affine transforms responsible for generating the tree in Figure 1.

A word of caution regarding compression ratios is required. Because an IFS generates detail down to the

infinitesimal, one can claim “infinite” compression. From a certain perspective this is true. The components of an

IFS are mathematical equations operating in R2, and just as with the equation of an ellipse, there are no bounds on

precision. However, the legitimate use of “compression ratio” applies in the reverse direction ___ in beginning with

a digitized image and seeking an alternate representation that requires less information. It is here that the classical

approach to fractal image compression encounters difficulty.

In a classical IFS, the component transforms establish self-similarity from the image as a whole to smaller portions

within. But for images that find use in human endeavor, this property is seldom present. A photograph of a

landscape, for instance, may contain trees, grass, hills, and sky. Finding self-similarity between the image in whole

and all the component parts (i.e. satisfying the Collage Theorem), is a daunting task, made even more problematic

with people and buildings present. 

I 1 = W(I o)

I∞ = lim
m→∞

Wm(I o)

W=
i=i

n

wi
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A second shortcoming is that equation (2) omits the properties of color and intensity. Early attempts associated the

intensity of a pixel with the density of points in the attractor, in analogy to grains of silver on a photographic plate

[7]. This can produce interesting images, but is insufficiently flexible. Embedding the IFS in R3 but is a more direct

approach, but exacerbates the problem.

Finally, classical Iterated Function Systems have the propensity for leaving “gaps” in the emergent image. The

gaps between leaves in a tree may be left as sky, perhaps, but otherwise this is a serious shortcoming. When

starting from a digitized photograph, all the pixels must be captured by the IFS. 

In sum, the mathematics of Iterated Function Systems provides a powerful tool for generating computer graphics,

but is, in its original form, deficient for representing existing images. Yet, with a few modifications, fractal-based

compression becomes practical.

2.4  Contemporary Approach
The nature of the Partitioned Iterated Function System is illustrated in Figure 4. The basic idea is this: if finding

self-similarity between an image in the whole and its parts is unrealistic, then seek self-similarity between larger

parts and smaller parts. This is accomplished, as the name suggests, by partitioning the original image at different

scales. Since images usually take the form of a rectangular array of pixels, partitioning the original image into

blocks is a natural choice. Using Jacquin’s notation, the large partitions are called domain blocks, and the small

partitions are range blocks. 

   Figure 4. In a Partitioned Iterated Function System, self-similarity is sought between larger
portions of the image (domain blocks) and smaller portions (range blocks). These
are separated above for clarity. The bottom pair shows similarity at three scales.
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Some mappings from domain blocks to range blocks are shown in Figure 4. Both type of blocks derive from the

same image, but are separated in the illustration for clarity. The range blocks evenly partition the image so that

every pixel is included. The larger domain blocks may overlap, and need not contain every pixel. The goal of the

compression process is to find a closely matching domain block for every range block. The set of domain blocks

considered in this operation is called the domain pool.

2.4.1  Grayscale Extension
In a Partitioned IFS, the intensity value of a pixel, z,  is treated as a third spatial dimension. That is, the blocks in

Figure 4 are actually cuboids, although the original terminology remains. To achieve convergence the intensity

value of a pixel must also be scaled and offset, i.e.

         (6)

so that the affine transformation of (2) becomes three dimensional.

         (7)

The parameter si scales the pixel luminance and its effect is like the contrast knob on a television. When si is 0 the

domain block maps to black, when equal to 1 it remains unchanged; between 0 and 1 the block loses contrast, and

above 1 it gains contrast. The parameter oi introduces an offset to the pixel luminance and is like the brightness

knob on a television. Positive values of oi brighten the block and negative values darken it. With contract and

brightness control available, the extended affine transformation can accurately map grayscale domain blocks to
grayscale range blocks. Three examples shown in the lower half of Figure 4.

To make the compression process tractable, Jacquin restricted equation (7) so that domain blocks are always square

(not rectangles or parallelograms), and always twice the size of range blocks. If the range blocks are, say, 8x8

pixels in size, then the domain blocks are always 16x16. Doing so greatly reduces the size of the domain pool. This

is favorable since it shortens the search time, but reconstruction quality suffers as optimal pairings may be

excluded from consideration. 

Eight symmetry operations

1. rotation by 0°

2. rotation by 90°

3. rotation by 180°

4. rotation by 270°

5. flip about horizontal median

6. flip about vertical median

7. flip about forward diagonal

8. flip about reverse diagonal

   Figure 5. A domain block may undergo a symmetry operation before being 

mapped onto a range block. This increases the size of the domain pool.
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One simple and effective way of improving coding quality is by allowing domain blocks to undergo an isometric

symmetry operation prior to being transformed. The benefit of such an operation is illustrated in Figure 5, where

block 1 is first rotated clockwise by 270° to improve the similarity between it and the range block. If the eight

symmetry operations are not allowed, then a less optimal pairing, transformation w2, must be used instead. 

Taken together, equation (7) becomes, in the Jacquin approach:

        (8)

The entries [-1,0,1] are a short form indicating that the element may be one, zero, or negative one. The subscript

“8” indicates that only the eight symmetry operations (out of 81 possible forms) are considered. If we let mi denote
the symmetry operation applied, then the code for the PIFS representation of an image consists of a sequence of

tuples, one per range block.

wi = ( ei , fi , mi , oi , si )          (9)

The first two coefficients locate the domain block, the third applies a symmetry operation, and the last two

introduce an offset and scaling factor. Because the numbers associated with these coefficients implicitly define a set

of affine transformations, a fractal encoded image is sometimes described as being “composed of mathematical

equations.” Of itself, this is not new ___ all computer graphics are described by mathematical equations. What is

new is the application to photorealistic images. And because the equations are evaluated by iteration, the

decompression process is unique.

2.4.2  Decompression Process
The decompression process usually begins by setting the computer’s image buffer to a uniform mid-gray value.

This is used as the seed image. During one iteration, the pixels of each range block in the transform list are

evaluated. The result is used as the input for the second stage of iteration, as per Figure 2. After just two iterations

the original image is recognizable, and after four the process will usually have converged (when eight bit precision

is used per pixel). In the original description of [9] two alternating image buffers are used, one for the current

iteration (containing the destination range blocks) and one for the previous iteration (containing the source domain

blocks), but this is not necessary. One image buffer can be used for both.

Figure 6 illustrates the decompression process for two fractal encoded grayscale images ___ “Bird” and

“Cameraman.” Each is 256x256 pixels in size, eight bits deep. All range blocks are 8x8; therefore, the

corresponding PIFS is comprised of 1024 component affine transformations. To emphasize the significance of
equation (5) ___ that the IFS describes an attractor and that the process converges regardless of the starting point ___

Cameraman is used as the seed image for Bird, and Bird is used as the seed image for Cameraman.
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(a) left: seed image for Bird 

(b) right: seed image for Cameraman

(c)  2 iterations of Bird IFS.

(d)  2 iterations of Cameraman IFS

Note: the defects result from starting

with the ‘wrong’ image. They are

seldom present when starting with an

even mid-gray background.

(e) 4 iterations of Bird IFS.

(f) 4 iterations of Cameraman IFS.

(g) 6 iterations of Bird IFS.

(h) 6 iterations of Cameraman IFS.

  Figure 6. Decompression of Bird and Cameraman PIFSs. Each is partitioned into 8x8 range blocks. 

B9



Although the choice of seed image does not affect the outcome, it can affect how quickly the decompression

process converges. One could instead begin with an all-black seed image, or an all-white one, but usually mid-gray

is preferable. A successful way of increasing decompression speed, as first described by Beaumont in [5], is to

begin with a low resolution version of the original. This is accomplished by modifying equation (6) so that oi

describes the mean value of a range block, rather than the relative offset from the corresponding domain block. The

improvement afforded by this modification is show in Figure 7. 

Figure 7. Convergence of the Bird image from different seed images. They are,
from top to bottom: all white, all black, all mid-grey, and a low
resolution version derived from the transform offset values.

2.4.3  Partitioning Extensions
The fractal images in Figure 6 have a compression ratio of about 16:1. This is derived by using the following bit

allocations:

ei 8 bits — 256 horizontal positions

fi 8 bits — 256 vertical positions

mi 3 bits — 8 symmetry operations

si 5 bits — sufficient from empirical tests

oi 6 bits — sufficient from empirical tests

wi 32 bits x 1024 transforms = 4096 bytes

This is a respectable degree of compression, but is not outstanding for the level of quality achieved. Numerous

refinements can be made towards improvement. The most significant involves modifying the range block
partitioning. Notice that for both the Bird and Cameraman images, there are large portions of smoothly varying

background. These can be adequately represented by larger range blocks, perhaps 32x32 pixels in size. Moreover,

in areas of high contrast and active detail, 8x8 blocks are insufficiently accurate; in these locations 4x4 range

blocks are appropriate. Consequently, current fractal compression programs do not use a regular grid partitioning

as indicated in Figure 4, but a hierarchical partitioning. Employing such a technique provides a good tradeoff

between compression and quality. 
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Convergence of Bird Image
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The simplest, and most commonly used hierarchical partitioning is the quadtree. In a two-level quadtree structure,

one might begin with a regular partitioning of 8x8 blocks. For each range block, the domain pool is searched for

the best match. If the accuracy of the match falls within a certain tolerance, it is accepted. If not, the range block is

subdivided, and a search is initiated for each sub-block. The partitioning scheme used determines the method of

subdivision. Several possibilities are illustrated in Figure 8. Blue areas indicate where the original range-domain

pairing is adequate, and yellow areas indicate regions where new pairings are required.

In schemes that employ full quadtree partitioning, a range block is either left un-split (top row), or split into four

quadrants (rightmost entry in fourth row). In partial quadtree partitioning, one may use any of the sixteen

possibilities for splitting a range block. In practice, only twelve are used, since if three quadrants need refinement,

refining the forth quadrant will improve the image quality without increasing the total number of transforms. The

refined quadrants may themselves be refined, creating deeper quadtree structures. Two and four-level structures are

most commonly used, with the smallest blocks being 4x4 pixels in size.

An alternative method investigated by Fisher is HV (horizontal-vertical) partitioning, where a range block may be

split into two rectangular pieces [15]. Others have attempted Delaunay triangulation, although it does not appear

more successful than simpler schemes [12]. Figure 9 shows a full quadtree and a partial quadtree partitioning of

the Bird image.

  Figure 8. Possible ways of subdividing a range block. Yellow indicates areas where refinements is sought. 
The number of transformations required to represent a block is listed beside each row. The
squares above the dotted line indicate possible quadtree partitioning; those below the dotted
line are possibilities for HV partitioning.
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Figure 9. Full quadtree (left) and partial quadtree (right) partitioning of Bird.

2.4.4. Compression Process
The rapid convergence of the bottom curve in Figure 7 argues in favor of employing a low resolution version of the

original. This is convenient because the offset parameters of (9) can be quickly computed as range block averages.

Still, two crucial issues remain: how to determine the scaling parameters for the best range-domain pairing; and

what is meant by the “best” match. In the original algorithm of Jacquin, the goal is to minimize the Haussdorff

distance (i.e. greatest pixel-to-pixel difference) between a specific range block and a candidate domain block. To do

so, a small set of scale values {0.45, 0.60, 0.80, 0.97} are tested in sequence, and the one that produces the

smallest Haussdorff distance is retained. 

If, instead, the mean square error measure is used, the optimal scaling parameter can be determined algebraically.

First, assume that the domain block Dxy has been reduced to the size of the range block Rxy (by averaging 2x2 pixel

cells), and that they have been adjusted to a zero-mean intensity level. Then, the mean square error between the

blocks is

       (10)

By setting the derivative to zero, 

       (11)

we have the desired result.

       (12)

In other words, the optimal scaling factor between a range block and a domain block is their inner product divided

by the domain block sum-of-squares. This value is calculated for all candidate domain blocks, under all eight

symmetry operations, in search of the smallest error.
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To ensure convergence of the decompression process it is common practice to force all component transforms to be

contractive, that is, to restrict |si| < 1.0. This is not strictly necessary. In fact, releasing this constraint has been

shown to improve image quality in some cases [15]. A minority of scale factors may well be expansive ___ just so

long as the contractive transforms dominate, the overall process will converge [33].

With the ability to determine the optimal scaling factor between a pair of range and domain blocks, the last major

issue is finding the best pairing. It is this realm of search strategies where fractal image compression programs

diverge most dramatically in their approach. Before covering this topic in Section 3, it is worthwhile to examine

the quality characteristic of fractal compression in some detail.

2.5. Quality Characteristics
The main source of interest in fractal compression is probably its ability to achieve very high compression ratios

while still maintaining reasonable image quality [31]. Unlike the JPEG international standard [47], which

undergoes sharp degradation after a certain critical point, fractal compressed images degrade more gradually. This

is illustrated in Figure 10. Typically, JPEG introduces smaller errors at low compression ratios and, visually,

exhibits a sharper preservation of fine details. Fractal compression has a propensity for blurring fine textures (e.g.

the fur on a mammal’s body) with a “flattened-out” effect. This effect can be quite subtle, however, and at higher

compression ratios the relative superiority is apparent. The location of the crossover point in rate-distortion curves

varies, but is usually between 10:1 and 30:1 on photorealistic grayscale images.

Figure 11 compares JPEG to fractal image compression for the Bird image. Samples are presented at 0.4 bits per

pixel (20:1) and 0.2 bits per pixel (40:1), along with enhanced error images.

        Figure 10. A comparison of rate-distortion curves for the Bird and Cameraman images.
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(a) left: JPEG compression at 20:1.

(b) right: fractal compression at 20:1.

(c) JPEG error image at 20:1,

 rms error = 3.93

(d) fractal error image at 20:1,

 rms error = 4.26

(e) JPEG compression at 40:1

(f) fractal compression at 40:1

(g) JPEG error image at 40:1,

 rms error = 8.52

(h) fractal error image at 40:1,

 rms error = 6.36

 Figure 11. Comparison of JPEG and fractal compression of Bird image.

B14



 

   Image Category Low Compression High Compression
   text and line art poor poor
   computer graphics poor to good poor to fair
   photorealistic images good very good
Table 2. Qualitative rating of fractal compression for different image categories.

    
Figure 12. Examples where fractal image compression performs poorly. The text

sample on the left is seriously blurred; the diagonal lines on the right
are also blurred, with a discernible blockiness. In both situations the
compression program could not adequately find regions of self-similarity.

Figure 13. Example of a computer graphic that causes difficulty for fractal image
compression. The image on the left is the result of applying the Jacquin
algorithm. Only when the algorithm is modified to account for even slopes, 
right, can an it render an image that closely resembles the original. The 
compression ratio for both is approximately 40:1.
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With the understanding that fractal image compression offers some unique strengths, it also possesses some

weaknesses. These are not well publicized, but can significantly affect the success of an application. Briefly, fractal

compression is poorly adapted to content not derived from “natural scenes.” Most significantly, text and line art are

seldom well preserved, as the images in Figure 12 show. This is particularly true for narrow lines that run diagonal

to the grid partitioning. 

Computer generated graphics with characteristically smooth gradients, such as that in Figure 13, may also not be

well preserved. The defective left image of Figure 13 was generated using the process described in subsection 2.4.4.

To properly treat smooth gradients, the position of a pixel within a range block must be considered. In a

modification introduced by Monro [36], equation (6) becomes:

       (13)

Thus, by employing a position-dependent affine transform [17], each range block is approximated by a bilinear

patch, rather than just an average value. The improvement afforded by this modification is apparent in the right

image of Figure 13. However, two extra parameters are required for each transform and the rate-distortion curve of

a specific image may or may not be improved. In addition, deriving these parameters increases the encoding time.

2.6. Fractal Interpolation
Since a Partitioned IFS, like a normal IFS, is comprised of a set of contractive affine transforms, detail is created at

progressively finer scales with each iteration. In practice, the limited resolution of a display monitor (or other

output device) makes it unnecessary to proceed beyond a few stages. Still, this does not restrict the output image to

be the same size of the original: it can be larger or smaller, provided that the aspect ratio remains unchanged. This
is a useful property for multimedia applications. When, for instance, a library of images are available for browsing,

it is worthwhile to present a palette of thumbnail versions. In the other direction, displaying an enlarged version

may be necessary ___ electronic documentation containing embedded pictures is one likely circumstance. What is

desirable, is that when the picture is enlarged, it does not suffer from pixelation artifacts. Fractal images are largely

immune from pixelation problems. 

The ability to expand a fractal encoded image without introducing artificial blocking is sometimes referred to as

“resolution enhancement.” This is an inappropriate term. Self-similar detail may be generated at a higher

resolution, but it has not been retained from the original. If one expanded the Cameraman image, for instance, the

grassy field will still maintain its characteristic texture, but at no stage will individual blades appear. What the

method does offer is a sophisticated form of interpolation. As such, the proper comparison is not with pixel

replication, but with other intelligent approaches. These include bilinear interpolation, cubic spline interpolation,

and statistical methods based on a Bayesian approach [44].

It is worth mentioning that fractal interpolation can be applied to an image that has not been previously encoded.

The procedure begins by constructing an accurate PIFS (high compression is unnecessary), and then using it to

expand the original, before discarding the list of affine transforms. In other words, fractal compression is the

means to an end, rather than the end itself.

z = [sxx+ syy+ sz z+ o] i
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3. SEARCH STRATEGIES

As already explained, the domain pool is the set of candidate domain blocks considered for pairing with range

blocks. The compression stage then amounts, in essence, to a search for optimal pairings. The surest way is to take

a brute force approach ___ by exhaustively examining the entire domain pool for each range block. The drawback is

that such a search is O(n2) and becomes impractical as the size of the source image grows. For good reason, then,
reducing the computational demands has attracted the bulk of research to date [16,28]. 

Two avenues are open to attack: 1. lowering the computational complexity, and 2. decreasing the constant

coefficient of performance. Some previous attempts at this task will be surveyed next, beginning with a closer look

at brute force methods.

3.1  Heavy Brute Force
The fractal images shown in Figure 6 are based on a uniform 8x8 range block partitioning. Since the original is

256x256 pixel in size, 1024 pairings need to be established. If the domain blocks are restricted to twice the size of

range blocks, the domain pool contains 8x(256-16+1)2 = 464,648 elements (recall that eight the eight symmetry

operations are allowed). In total, 464,648 x 1024 = 475,799,552 possible pairings require testing. 

As is more typically the case, the images shown in Figure 11 employ a four level quadtree structure, with range

blocks {4, 8, 16, 32} pixels wide. Although the number of comparisons increases as blocks become smaller, the

total number of operations is mostly unchanged. This is because the inner product term of equation (12)

       (14)

resides in the innermost loop of a fractal compression program. If we let 

       (15)

then the number of blocks in an image will be,

       (16)

and the number of multiply/accumulate operations required per comparison, according to (14), is . Thus,rbs2 = 22l

in a four level brute force search, a total of 

       (17)

multiply/accumulate operations are necessary. This underestimates the full situation somewhat because it discounts

the computation of the scale factors and the consequent error estimates, as well as numerous load/store/compare

operations, but it is correct to within a factor of two. 

Σ
x=1

rbs

Σ
y=1

rbs

RxyDxy, rbs = rangeblock size

l = log2(rangeblock size) = 2,3,4,5

m= log2(imagewidth)

n = log2(imageheight)

rangeblocks = 2m−l2n−l = 2m+n−2l

domain blocks ≅ 2m+n

Σ
l=2

5

8× (22l2m+n−2l2m+n) = 22+322m+2n = 22(m+n)+5
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Therefore, for 256x256 grayscale images, a brute force algorithm requires about 237 = 128 Gflops (floating point

operations). On a vector supercomputer, such as a Cray YMP-16, the encoding time might approach 10 seconds.

But for workstations and PCs built around a single scalar microprocessor (with a much narrower

memory-to-processor interface), the encoding may take upwards of a day. Still, having a modern supercomputer at

one’s disposal is less than a full solution: a 1024x1024 full color image demands about 100 Teraflops. It will be

some years before Teraflop machines become available, let alone migrate to the desktop.

3.2  Light Brute Force
One way to reduce the search time is by restricting the location of domain blocks. For example, the top left corner

of a domain block may be constrained to even pixel locations. In Figures 11b and 11e, all block positions are

integral multiples of four. Doing so cuts the domain pool by a factor of sixteen and brings the search time within

reasonable bounds. This approach is called a light brute force search, in contrast to the heavy brute force search of

the previous subsection.

Because not every domain block is under consideration, the optimal pairing for a given range block may be

overlooked. Consequently, image quality suffers. This does not imply that the rate-distortion curve will degrade,

however, because fewer bits are required to specify domain block locations. Such trade-off situations are endemic

to fractal image compression. It is difficult to know in advance what particular bit allocation scheme will produce

superior results.

3.3  Restricted Area Search
Figure 4 shows three domain-range pairing for the Bird image, all obtained from a light brute force search.

Consider the largest block pair, the one mapping a 64x64 section of background just left of the Bird’s head to the

32x32 square in the bottom right corner. These are paired because the smooth gradient of the domain block most
closely matches that of the range block. But notice that the area in the bottom right corner is also similar to the

range block. Though it does not offer the best pairing available, a domain block taken from this area will still

provide a good match. 

Therefore, a reasonable way of reducing the encoding time complexity is to restrict the search to nearby areas. For

example, the source image may be sectioned into four quadrants. For a range block in the bottom left quadrant, say,

only domain blocks in that same quadrant are searched. As a result, the search time is reduced by a factor of four

over a brute force search. In general, the time complexity is O(nq), where n is the number of pixels in an image,

and q is the number of pixels per quadrant.

It is important to realize that a restricted area search depends on an image possessing locality of similar form. This

cannot be guaranteed. But it is sufficiently common that it may be exploited to good advantage.

3.4  Local Spiral Search
Taking the idea further, Beaumont suggested an outward spiral search originating from the current range block

position [4], as illustrated in Figure 14. But instead of examining all candidate domain blocks for the best match,

the search halts as soon as a sufficiently good match is found. In many cases the search time is dramatically

reduced, albeit with some loss of image fidelity.
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Figure 14. Local spiral search for a
matching domain block from the current 

range block position.

3.5  Look Same Place
In the extreme, a local spiral search can be halted after examining the first domain block. That is, one looks in the

same place as the range block, and nowhere else. (Blocks along the image boundary require special treatment.) If

maximum speed is required, the eight symmetry operations are additionally ignored. As may be expected, image

quality suffers dramatically. Research by Monro shows that only by adopting the bilinear approximation of (13)

does quality become acceptable [36]. High fidelity may never be possible in this approach, but by being O(n) it does

establish a lower bound on computation.

3.6  Categorized Search
Taking a different approach in [14,25] Fisher, Jacobs and Boss argue that the bulk of computation can be

eliminated by categorizing blocks prior to comparison. If a range block contains a strong edge, for instance,

searching for a good match among the multitude of smoothly varying domain blocks is wasted effort. 

In their approach, each domain block is inserted into one of 72 categories. To do so, a block is first divided into

four quadrants and oriented into “canonical position,” as shown in Figure 15. Once divided into these three major

classes, the quadrants of each square are ordered from highest variance to lowest, for 4! = 24 possibilities within

each class. A range block is also categorized in this manner. When seeking a matching domain block, only the

corresponding category is searched. Because the entries are in canonical orientation, it is not necessary to test the

eight symmetry operations.

A quantitative comparison of categorized search and local spiral search does exist in the primary literature, but it is

believed that these two approaches represent the current state of the art in fractal image compression.

Figure 15. The three canonical orientations

of a range or domain block. A block not in

one of these forms can be so oriented by 

applying one of the eight isometric 

operations. The colors indicate a relative

ranking of mean values of each quadrant.

search path

range block

class 1 class 2 class 3
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4. FAST FRACTAL ALGORITHM

Fractal compression is unusual in that image quality improves with increased processing devoted to the encoding

phase. It is also true that most computation can be averted by an appropriately selective algorithm. The algorithms

outlined in Section 3 are progressive attempts in this direction. It should be apparent, however, that the task does

not easily lend itself to an optimal solution and that all attempts so far are heuristically derived.

This section introduces the Fast Fractal Image Compression algorithm (FFIC), a novel approach to the speed

problem (first presented in [30]). With possible multimedia applications in mind, the goal of this work has been to

approximate the high speed of the Look Same Place algorithm (Section 3.5), while still sustaining acceptable

image quality. Although not an optimal solution, experiments confirm that the FFIC algorithm is a significant

advance. At comparable quality levels, it can be 25 to 400 times faster than the current state of the art. 

4.1  Algorithm
To achieve computational efficiency the Fast Fractal algorithm employs two key techniques:

1. aggressive filtering of domain blocks by pixel variation, and
2. multi-dimensional indexing of the domain pool using the r-tree data structure.

These choices are motivated by the following considerations. First, fractal compression relies on an image

possessing block-wise self-similarity. In some cases it is not present (see Figure 12). But when it does exist,

self-similarity is duplicated throughout the images, e.g. in the background sky and grassy field of Cameraman.

Therefore, if a few representative examples are selected, the bulk of repetitive domain-to-range block comparisons

do not need to be made. 

The second key observations is that, mathematically, a block of pixels compose a single entity. Namely, a position

vector in an abstract position space, where each distinct point represents a different block. The location of a vector

is derived from a scanline ordering of pixels within a block, i.e. Z = ( z1, z2, ..., zn ). When a distance metric is

applied to this space the relative position of two vectors determines their closeness. Viewed this way, the search

strategies of Section 3 are different ways of identifying position vectors in close proximity. The ideal search

pattern, therefore, would directly address the location of a given range block (in this abstract position space), then

select the closest neighbor. Practical implementation of this idea requires a multi-dimensional data structure

capable of storing and indexing position vectors. The r-tree is one such data structure.

To investigate their merit, these ideas have been applied to the Jacquin approach of equation (8), where the offset

parameter represents the mean value of range blocks. As an additional constraint, a four-level full quadtree

partitioning is used in all tests.

4.1.1  Domain Pool Filtering
When using four-level partitioning, domain blocks are restricted to being {8, 16, 32, 64} pixels wide. This

effectively divides the image into four disjoint domain pools, as illustrated in Figure 16. If blocks are selected at

positions that are integral multiples of four, (similar to a light brute force search), each pool may contain the

following number of entries. 

       (18)


ImageWidth−DomainBlockSize

4 − 1
 × 


ImageHeight−DomainBlockSize

4 − 1

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/3721
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Image
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  Figure 16. A four level partitioning structure results in four disjoint domain pools. For the test images used, the
maximum number of domain blocks per pool is shown in the rectangles. A filter applied to the
input streams restricts the total number of entries.

Because there are likely to be redundant entries, each pool can be restricted in number (e.g. to one hundred entries

per pool) without seriously degrading the available variety. One possibility to perform a k-means clustering

algorithm common to vector quantization methods, but the computational costs of doing so can be high [38]. For

the sake of speed, filtering is based on the variance of pixel intensities within a block, 

       (19)

according to the following scheme:

64x64 blocks ___ all extracted from bottom 10% (smooth areas)

32x32 blocks ___ half from top 10% (edges), half from 20-50% range (moderate texture)

16x16 blocks ___  half from top 10% (edges), half from 50-80% range (moderate texture)

8x8 blocks ___  all extracted from top 10% (edges).

This heuristic is grounded on the observation that large blocks can successfully cover smooth areas of an image,

while small blocks are necessary to cover sharp edges. The next step is to convert these selected blocks into

position vectors.

4.1.2  Domain Block Preparation
The purpose populating an abstract position space is to facilitate the pairing of range blocks to domain blocks. But

in a fractal codec they are related under affine transformations. This poses a complication because it is necessary to

first normalize the blocks into standard form. The preparation step has four parts.

1. Domain blocks contain four times as many pixels as range blocks, and must be downsampled (by
averaging 2x2 pixel cells) for a legitimate comparison. For example, 8x8 blocks become 4x4. Otherwise,
domain blocks would reside in 64 dimensional space, and range blocks in 16 dimensional space.

2. A domain block may undergo one of the eight symmetry operations, an action that alters its location in
position space. Therefore, all blocks need to be oriented in canonical form, as described in Section 3.6.

3. In order to compensate for the effect of the offset parameter, oi , all blocks must be normalized to the same
average value.

4. In order to compensate for the effect of the scale parameter, si , all blocks must be normalized to the same
variance level (provided that it is larger than zero). 

variance= 1
n Σ

i=1

n

(zi − z)2, z = 1
n Σ

i=1

n

zi , n = number of pixels in domain block
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By performing these four steps, neighboring vectors in position space represent pixels blocks that are similar in

form, as related by the affine transformation of equation (8). Brute force methods can be used to identify

neighboring position vectors, but the r-tree data structure accelerates the process.

4.1.3  R-Tree Facilitated Search

The r-tree (and its close cousin the r*-tree) is a data structure capable of efficiently indexing a multi-dimensional

data space. The r-tree is not well known but can be considered an extension of the more familiar b-tree. Full

accounts are found in [10,21].

To contrast their operation, consider the task of indexing words from a dictionary. Using a b-tree, words are

arranged in lexicographic order and accessed via a binary search. The binary tree is balanced (hence the name) so

that each branch partitions the list into two nearly equal parts. The b-tree is useful for indexing a one-dimensional

data set. 

When using an r-tree, words are considered n-dimensional vectors, based upon the first n letters. A useful value of

n is sixteen since few words, if any, are identical past sixteen letters. Each location in this 16-dimensional position

space represents a unique arrangement of letters ___ there are 25616 = 2128 possibilities ___ a small percentage of

which are valid words. Since the data space is not one-dimensional it cannot be accessed using a binary search.

Instead, position vectors are organized into a nested set of bounding rectangles (hence the name) with words of

close spelling clustered together. 

Figure 17 illustrates the operation in two dimensions. Ten two-letter vectors are arranged in a two-dimensional

space, as shown in the left graph. These are organized into separate rectangles, with R2 and R3 nested inside R1.

Because, in this example, each rectangle can hold a maximum of five nodes, the addition of vector im cases R3 to

be split in two. It is desirable that rectangles do not overlap, although it can happen. The r-tree and r*-tree differ

primarily in their splitting strategy: minimizing the total volume (area) contained within the bounding rectangles

is the strategy adopted by r-tree algorithms.

          Figure 17. One organization of two-dimensional position vectors into an r-tree data structure. The
first letter of each label corresponds the x-axis, and the second letter to the y-axis.
The splitting of rectangle R3 is caused by the addition of vector im. 
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The application to fractal compression is similar. A 16-dimensional r-tree is associated with each domain pool in

Figure 16. Domain blocks are reduced to 4x4 pixels in size and normalized as described in the preceding

subsection. These are converted to position vectors by sequencing the pixels in scanline order. Instead of the ASCII

letter value denoting the position along an axis, it is the grayscale value of a pixel. Thus, the group of four r-trees

index all the candidate domain blocks. Range blocks are not inserted into the structure, but are used as search keys.

 

Continuing with the current example, the search process is illustrated in Figure 18. The X marks the location of a
particular range block in the corresponding position space, after having been normalized. The circles represent

domain blocks. In finding the nearest domain block the search algorithm narrows in from R1 to R4, tests every
element in R4, and returns jk as the closest match. The average search time is  where n is the number∝ n logm(n)
of domain blocks inserted and m limits the number of elements contained in any one rectangle.

From the standpoint of theory, the root mean square error is the distance metric of choice (as dictated by equation

(11)), but mean absolute error is a viable alternative. And because it can be calculated in sixteen addition

operations (as opposed to sixteen multipy/addition operations for root mean square error), it was employed in the

current implementation. 

Notice that the vector mm in the separate bounding rectangle R3 is an equally good match, but is missed by the

search. Unfortunately, locating the optimal pairing is not guaranteed. But unlike other algorithms that examine

only those domain blocks physically close to a particular range block, the FFIC algorithm examines those that are

structurally close. This allows the image quality to remain reasonably high, while reducing the search time

dramatically.

      Figure 18. The r-tree facilitated search process. The X marks the location of the current range block
and the circles mark candidate domain blocks. The point labeled jk is returned as the 
closest match.
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4.2  Similar Methods
Although the FFIC algorithm of Section 4.1 is new, somewhat similar ideas have recently been reported by other

researchers. In a purely theoretical paper, Saupe considers the one-dimensional case of functions (instead of

images), and proves that if pixel blocks are treated as position vectors, then the search for best pairings can be

performed in log-linear time [43]. Although not mathematically proven, the encoding of one-dimensional functions

carries over readily to images, and the author suggests using k-d trees as an indexing mechanism. It would be

interesting to compare the efficiency of k-d trees to r-trees.

As reported in a recent letter to Electronic Imaging, Fryer et al. may have implemented Saupe’s idea. The letter is

terse, saying only that their approach “applies indexing theory to reduce the number of tests to a small number per

tile.” For one 640x400 pixel grayscale image, they cite compression times of 31.9 to 38.1 seconds on a SPARC II

workstation [20].

Finally, Frigaard et al. introduce a two-dimensional feature space for improving search speed. A domain block is

positioned in this space according to pixel variance (equivalently, standard deviation), and by the number of

dominant gray levels in the block. To determine this latter quantity, a histogram of pixel values is formed for each

domain block. The number of histogram entries above a certain threshold (e.g. 10%) gives the number of dominant

gray levels. The authors do not specify an indexing mechanism, but do present data showing a 250 second

compression time on a SPARC workstation for the 512x480 grayscale version the “Lena” test image [19].

4.3  FFIC Results

When devising a new compression algorithm, numerous and often contradictory goals challenge the researcher.

Four such goals are: high compression ratios, high image quality, low compression times, and near-linear

scalability. Seldom can one be improved without adversely affecting another. The main objective of this work has

been to minimize compression times while attempting to retain the other three goals. 

To evaluate the success of the FFIC, it is compared to four other algorithms. At the extremes they are: Look Same

Place, to establish a lower bound on computation time, and Light Brute Force, to establish an upper bound on

image quality. As a “stress-test,” a commercially available fractal compression program ___ referred to here as IIC41

___ is taken to represent the current state of the art. This program was run at two different settings: one optimized

for speed (at the expense of quality) and one optimized for quality (at the expense of speed). All tests were run on a

486DX2-66 personal computer, with 32 MB main memory. Measurements of the commercial program necessitated

hand timing; other timings are based on a system clock with single millisecond accuracy. Timing is halted when

all range-domain block pairings are identified. Times do not include writing the compressed file to disk.

Figure 19 compares image quality as a function of compression ratio for the 256x256 Bird and Cameraman test

images. As expected, the brute force algorithm produces the most favorable curve. Interestingly, the least favorable
curve is not Look Same Place, but the high speed setting of IIC4. Because it is not necessary to store the domain

block positions in LSP (they are implicitly known), the loss in quality is partly compensated by reduced storage

requirements. 

1 Short for Images Incorporated, version 4.0, one of a family of products available from Iterated Systems Incorporated,
Norcross, GA. For the sake of reproducibility, the setting used were as follows. A) Speed over quality: HiRes DLL, extended
precision, setting of Fair, pool size of 256x256, archive bit off. B) Quality over speed: HiRes DLL, extended precision, setting
of Best, pool size of 512x400, archive bit on.
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  Figure 19. Rate-distortion curves for five different fractal compression algorithms.
LBF: Light Brute Force, domain block positions are integral multiples of four.
FFIC: Fast Fractal Image Compression algorithm.
LSP: Look Same Place algorithm.
IIC4: Images Incorporated, version 4.0: a) set for fastest speed, b) set for best quality.

                    

  Figure 20. Compression times as a function of compression ratio. Note that the time scale is logarithmic.

128x128 256x256 512x512

IIC4b FFIC speedup IIC4b FFIC speedup IIC4b FFIC speedup

  Airplane 45.5 1.34 34.0 340 3.38 100.6 1120 9.53 117.5

  Fox 76.0 1.34 56.7 878 3.49 251.6 4840 11.20 432.2

  Goldhill 52.0 1.32 39.4 367 3.35 109.6 1028 10.32  99.6

  Lena 37.5 1.34 28.0 263 3.43 76.7 1335 9.48 140.8

  Peppers 37.0 1.43 25.9 270 3.52 76.7 1379 10.32 133.6

    Table 3. Effect of image size on compression, and relative speedup of FFIC. 
All times are in seconds. The third columns are defined by speedup = .IIC4b

FFIC
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Judging by the curves in Figure 19, the rate-distortion characteristics of FFIC are comparable to IIC4 when set to

produce the highest quality compression (IIC4b curve). On the Bird image, the root mean square error is lower for

FFIC up to 40:1. On the Cameraman image, the error is somewhat greater up to 20:1; beyond that point the curves

nearly overlap. For a visual comparison, some representative samples are shown in Figures 21-22. These close-ups

are extracted from images compressed at 30:1, a level where coding defects become apparent.

Figure 20 compares encoding times as a function of compression ratio. The Look Same Place requires the least

computation, achieving times in the 2-3 second range. FFIC follows closely behind with times in the 2-4 second

range. Both algorithms employ a four-level full quadtree partitioning. When evaluating range-domain block

pairing, the LSP algorithm tests all eight symmetry operations explicitly. The FFIC algorithm does not do so,

relying instead on the normalization procedure described in Section 4.2.2. Taking much longer to complete, the

Light Brute Force algorithm produces times in excess of an hour.

(Aside: The left end of the time-compression curves can exhibit a sharp downward turn. This occurs when the

error tolerance controlling the partitioning process is set to zero. The corresponding quadtree thus degenerates to

an even partitioning of 4x4 range blocks. Anticipating this, some algorithms proceed directly to this stage.)

The compression times of FFIC and IIC4 are also compared in Table 3. Considering that the quality achieved by

these two algorithms is competitive, the comparison is rather dramatic. The relative speedup ranges from 25:1

(128x128 version of Peppers) to over 400:1 (512x512 version of Fox). This proves that proper characterization and

indexing of pixel blocks can eliminate the bulk of unnecessary computation. Perhaps most impressive, the FFIC

algorithm exhibits a log-linear time complexity with a sub-normal constant coefficient. This requires some

explanation.

Compression times for the Fast Fractal algorithm can be divided into three stages. In the setup stage, candidate

domain blocks are extracted from the input image with useful information (e.g. variance values) calculated in

advance. In the insertion stage, the domain blocks are filtered according to variance values and inserted into the

respective r-tree structures. In the search stage, the r-trees are used to find a matching domain block for each range

block. Representative times are contained in Table 4. The setup stage is precisely linear with image size, as

expected. But due to filtering of the domain pools, the insertion and search times increase by less than a factor of

four as the image size quadruples. 

The net result is this. Using the FFIC algorithm, fractal compression has become a nearly time-symmetric process.

This opens opportunities for multimedia applications.

  Lena  128x18 256x256 512x512

  Setup 0.11 0.43 1.72

  Insertion 0.63 1.24 3.44

  Search 0.60 1.76 4.32

  Total (seconds) 1.34 3.43 9.48

Table 4. Breakdown of FFIC compression times into three stages.
The test image is Lena at three different resolutions. 

B26



Figure 21. Detail of Bird at 30:1.
(a) left: IIC4a, rmse = 10.53.

(b) right: IIC4b, rmse = 7.47.

(c) left: FFIC, rmse = 6.12.

(d) right: LSP, rmse = 6.81.

Figure 22. Detail of Camerman 

at 30:1.
(a) left: IIC4a, rmse = 21.61.

(b) right: IIC4b, rmse = 15.33.

(c) left: FFIC, rmse = 14.45.

(d) right: LSP, rmse = 16.67.
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5. MULTIMEDIA APPLICATIONS

Multimedia is distinguished by the integration of sound, images, and video into the computing environment.

Potential applications include electronic documents, video sequences on CD-ROM, and live PC-to-PC video

communications. Two qualities of fractal compression make it worth investigating. First, the potential for high

quality at low bitrates. And second, the flexibility offered by fractal interpolation. 

It is too early tell whether fractal compression will gain widespread use in multimedia applications, or secure niche

markets, or be rejected entirely in favor of something else. As a guide to the problem area, the following subsection

offers a quick survey of recent work.

5.1 Existing Work
Fractal compression has already been applied to the domain of electronic newspapers and on-line image databases

(e.g. for use in real-estate catalogs) [3]. Typically, a central server controls the image repository and is responsible

for compression and archiving. Decompression/viewing software resides on distributed client machines. However,

user’s of existing programs note that the lengthy compression times are a hindrance [45]. 

In extending fractal techniques from stills to moving pictures, different approaches may be taken. The simplest is

to encode every frame individually. In MPEG parlance, every frame is an intraframe. Unfortunately, the very low

bitrates demanded by video applications cannot usually be met by this approach. A second option is treat time as an

extra spatial dimension. A video sequence is then compressed (and decompressed) in whole, as if it were

volumetric data. This demands huge amounts of memory to serve as a frame store. In addition, the results of early

investigations into volumetric compression are not encouraging, both with regards to image quality and

computational requirements [11]. Beaumont tried to reduce the memory requirements by breaking a video sequence

into “slabs” of twelve frames each [5]. Range blocks were used to tile each frame in 4x4 sections, and, unique to

this attempt, 12x12 domain blocks were aligned along the temporal axis. Unfortunately, the compressed sequences

exhibited annoying flicker effects along moving edges.

Taking a different direction, Ali employs fractal techniques to encoded each line of video separately as

one-dimensional data [1]. The hope is that by drastically reducing the frame store size (each line is treated in
sequence), hardware-based video coders can be inexpensively manufactured. This strategy may not succeed,

however, because experimental results show significant blurring in the scanline direction [2].

The most viable approach is to code frames sequentially, with conditional block replenishment. In other words,

range blocks of the nth frame are matched to domain blocks of the n-1th frame. Only the k blocks with the highest

interframe error are transmitted, where k is bounded by the channel capacity [13,18,23,34,41]. Since the entire

image is not repeatedly refreshed in whole, the output stream does not have a definable frame rate. In most

implementations the decoding can be performed in real time, but the encoding stage is computationally expensive.

One system has been developed into a commercial product [22] but as yet no quantitative analysis is available in

the literature.

In a noteworthy development, Monro and Nicholls report an optimized system that achieves real time playback and

encoding on 486DX-33 PCs [37]. They report encoding times of 250 ms per pixel, and decoding times of 200 ms

per pixel. To achieve such high speed they apply the Look Same Place algorithm to the bilinear fractal transform,

i.e. equation (13). Good voice/image synchronization is reported, but the system suffers dramatic distortions during

abrupt scene changes.
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5.2  Prospects for FFIC-Accelerated Video
The Fast Fractal algorithm has yet to be applied to video sequences. To assess this possibility, a “back of the

envelope” calculation can be made [32]. Suppose that the video frame is 640x480 pixels in size. Fractal

compression permits this to be downsampled to 320x240 at the sending end, and fractal interpolated up at the

receiving end without introducing gross distortions. For the sake of argument, let the range blocks be 8x8 pixels in

size, as is the case with MPEG, so that there are 1200 range blocks per frame. The times presented in Table 3

correspond to about 600 range-domain pairings per second on a 486DX2-66, or 20 per 1/30th of a second. Typical

teleconferencing video, however, requires approximately 60-100 block replenishments per input frame in order to

maintain good fidelity. So as it stands, the current implementation is too slow by a factor of three to five. 

This shortfall is overcome, obviously, on computers with greater processing power. A 100 MHz Pentium should

prove adequate to the task. More significantly, the FFIC timing results are not minimal. Great effort has been

devoted to refining the algorithm, but comparatively little has gone towards optimizing the algorithm’s critical

code. With suitable attention to detail, FFIC may potentially serve as the basis for real time PC-to-PC video

communications.

6. CONCLUSION

Since Jacquin’s breakthrough in fractal compression, the principle goal has been to simultaneously maximum

speed and quality. While still an open challenge, the Fast Fractal Image Compression algorithm is a significant

advance in this direction.

Some aspects are worthy of further investigations. Alternative partitioning structures, especially HV partitioning,

need to be compared to the full quadtree decomposition used in this work. Second, the domain pool filters may be

refined, or based on some other quantity than block variances. Third, there may be merit in designing a hybrid

algorithm by combining FFIC with a Local Spiral Search. And fourth, the extension to bilinear fractal transforms

certainly seems worthwhile.

All of these issues involve uncertain trade-offs between speed and quality and algorithmic complexity. Such is the

nature of the field.
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