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Abstract—Peer-to-peer and other decentralized, distributed sys-
tems are known to be particularly vulnerable to sybil attacks. In a
sybil attack, a malicious user obtains multiple fake identities and
pretends to be multiple, distinct nodes in the system. By control-
ling a large fraction of the nodes in the system, the malicious user
is able to “out vote” the honest users in collaborative tasks such as
Byzantine failure defenses. This paper presents SybilGuard, a novel
protocol for limiting the corruptive influences of sybil attacks. Our
protocol is based on the “social network” among user identities,
where an edge between two identities indicates a human-estab-
lished trust relationship. Malicious users can create many identi-
ties but few trust relationships. Thus, there is a disproportionately
small “cut” in the graph between the sybil nodes and the honest
nodes. SybilGuard exploits this property to bound the number of
identities a malicious user can create. We show the effectiveness of
SybilGuard both analytically and experimentally.

Index Terms—Social networks, sybil attack, SybilGuard, sybil
identity.

I. INTRODUCTION

AS THE SCALE of a decentralized distributed system in-
creases, the presence of malicious behavior (e.g., Byzan-

tine failures) becomes the norm rather than the exception. Most
designs against such malicious behavior rely on the assumption
that a certain fraction of the nodes in the system are honest. For
example, virtually all protocols for tolerating Byzantine failures
assume that at least 2/3 of the nodes are honest. This makes these
protocols vulnerable to sybil attacks [1], in which a malicious
user takes on multiple identities and pretends to be multiple, dis-
tinct nodes (called sybil nodes or sybil identities) in the system.
With sybil nodes comprising a large fraction (e.g., more than
1/3) of the nodes in the system, the malicious user is able to
“out vote” the honest users, effectively breaking previous de-
fenses against malicious behaviors. Thus, an effective defense
against sybil attacks would remove a primary practical obstacle
to collaborative tasks on peer-to-peer (p2p) and other decentral-
ized systems. Such tasks include not only Byzantine failure de-
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fenses, but also voting schemes in file sharing, DHT routing,
and identifying worm signatures or spam.

Problems With Using a Central Authority. A trusted central
authority that issues and verifies credentials unique to an actual
human being can control sybil attacks easily. For example, if the
system requires users to register with government-issued social
security numbers or driver’s license numbers, then the barrier for
launching a sybil attack becomes much higher. The central au-
thority may also instead require a payment for each identity. Un-
fortunately, there are many scenarios where such designs are not
desirable. For example, it may be difficult to select/establish a
single entity that every user worldwide is willing to trust. Further-
more, the central authority can easily be a single point of failure,
a single target for denial-of-service attacks, and also a bottle-
neck for performance, unless its functionality is itself widely dis-
tributed. Finally, requiring sensitive information or payment in
order to use a system may scare away many potential users.

Challenges in Decentralized Approaches. Defending
against sybil attacks without a trusted central authority is much
harder. Many decentralized systems today try to combat sybil
attacks by binding an identity to an IP address. However,
malicious users can readily harvest (steal) IP addresses. Note
that these IP addresses may have little similarity to each other,
thereby thwarting attempts to filter based on simple character-
izations such as common IP prefix. Spammers, for example,
are known to harvest a wide variety of IP addresses to hide
the source of their messages, by advertising BGP routes for
unused blocks of IP addresses [2]. Beyond just IP harvesting, a
malicious user can co-opt a large number of end-user machines,
creating a botnet of thousands of compromised machines
spread throughout the Internet. Botnets are particularly hard to
defend against because nodes in botnets are indeed distributed
end users’ computers.

The first investigation into sybil attacks [1] proved a series
of negative results, showing that they cannot be prevented un-
less special assumptions are made. The difficulty stems from
the fact that resource-challenge approaches, such as computa-
tion puzzles, require the challenges to be posed/validated simul-
taneously. Moreover, the adversary can potentially have signif-
icantly more resources than a typical user. Even puzzles that
require human efforts, such as CAPTCHAs [3], can be reposted
on the adversary’s web site to be solved by other users seeking
access to the site. Furthermore, these challenges must be per-
formed directly instead of trusting someone else’s challenge re-
sults, because sybil nodes can vouch for each other. A more re-
cent proposal [4] suggests the use of network coordinates [5] to
determine whether multiple identities belong to the same user
(i.e., have similar network coordinates). Despite its elegance, a
malicious user controlling just a moderate number of network
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positions (e.g., tens in practice) can fabricate network coordi-
nates and thus break the defense. Finally, reputation systems
based on historical behaviors of nodes are not sufficient either,
because the sybil nodes can behave initially, and later launch an
attack. Typically, the damage from such an attack can be much
larger than the initial contribution (e.g., the damage caused by
throwing away another user’s backup data is much larger than
the contribution of storing the data). In summary, there has been
only limited progress on how to defend against sybil attacks
without a trusted central authority, and the problem is widely
considered to be quite challenging.

This paper presents SybilGuard, a novel decentralized pro-
tocol that limits the corruptive influence of sybil attacks, in-
cluding sybil attacks exploiting IP harvesting and even some
sybil attacks launched from botnets outside the system. Our
design is based on a unique insight regarding social networks
(Fig. 1), where identities are nodes in the graph and (undirected)
edges are human-established trust relations (e.g., friend rela-
tions). The edges connecting the honest region (i.e., the region
containing all the honest nodes) and the sybil region (i.e., the
region containing all the sybil identities created by malicious
users) are called attack edges. Our protocol ensures that the
number of attack edges is independent of the number of sybil
identities, and is limited by the number of trust relation pairs
between malicious users and honest users.

SybilGuard: A New Defense Against Sybil Attacks. The
basic insight is that if malicious users create too many sybil
identities, the graph becomes “strange” in the sense that it has
a small quotient cut, i.e., a small set of edges (the attack edges)
whose removal disconnects a large number of nodes (all the
sybil identities) from the rest of the graph. On the other hand, we
will show that social networks do not tend to have such cuts. Di-
rectly searching for such cuts is not practical, because we would
need to obtain the global topology and verify each edge with
its two endpoints. Even if we did know the global topology, the
problem of finding cuts with the smallest quotient (the Minimum
Quotient Cut problem) is known to be NP-hard.

Instead, SybilGuard relies on a special kind of verifiable
random walk in the graph and intersections between such
walks. These walks are designed so that the small quotient
cut between the sybil region and the honest region can be
used against the malicious users, to bound the number of sybil
identities that they can create. We will show the effectiveness
of SybilGuard both analytically and experimentally.

Section II more precisely defines our system model and
the sybil attack. Section III presents the SybilGuard design.
Sections IV and V provide further details, including discussing
SybilGuard’s guarantees and how it handles dynamic social
networks. The effectiveness of SybilGuard is shown experi-
mentally in Section VI. Finally, Section VII discusses related
work and Section VIII draws conclusions.

II. MODEL AND PROBLEM FORMULATION

This section formalizes the desirable properties and functions
of a defense system against sybil attacks. We begin by defining
our system model. The system has honest human beings as
honest users, and one or more malicious human beings as ma-
licious users. By definition, a user is distinct. Each honest user

has a single (honest) identity, while each malicious user has one
or more (malicious) identities. To unify terminology, we simply
refer to all the identities created by the malicious users as sybil
identities. Identities are also called nodes, and we will use “iden-
tity” and “node” interchangeably. Honest users obey the defense
system protocol. All malicious users may collude, and we say
that they are all under the control of an adversary. The adver-
sary may eavesdrop on any message sent between users over the
computer network (Internet).

Nodes participate in the system to receive and provide ser-
vice (e.g., file backup service) as peers. Because a node in the
system may be honest or sybil, a defense system against sybil
attacks aims to provide a mechanism for any node (called a
verifier) to decide whether or not to accept or reject another node

(called the suspect). Accepting means that is willing to
receive service from and provide service to .

Desirable Guarantees. Ideally, the defense system should
guarantee that accepts only honest nodes. But because such
an idealized guarantee is challenging to achieve, we aim at
bounding the number of sybil nodes that are accepted. This
weaker guarantee is still sufficiently strong to be useful in most
application scenarios for the following reason. The application
already needs to tolerate malicious users even without sybil
attacks. A sybil attack simply enables the malicious users to
create an unlimited number of sybil nodes to exceed the “toler-
ance” threshold of the application’s defense system (e.g., 1/3 in
byzantine consensus), regardless of how high the “tolerance”
threshold is. Thus bounding the number of sybil nodes will pre-
vent the adversary from doing so, and then the application can
rely on existing techniques to effectively tolerate the malicious
users.

As a concrete example, let us consider maintaining replicas of
file blocks on a DHT-based storage system. DHT-based systems
(such as those based on Chord [8]) place replicas on a random
set of nodes in the system, without knowledge of which nodes
are honest and which are sybil. Our goal here is to ensure that a
majority of the replicas are placed on honest nodes, so that we
can use majority voting to retrieve the correct file block. If the
number of accepted sybil nodes is smaller than the number of
honest nodes , then from Chernoff bounds [9], the probability
of having a majority of the replicas on honest nodes approaches
1.0 exponentially fast with the number of replicas.

Summary of SybilGuard Guarantees. SybilGuard is com-
pletely decentralized and all functions are with respect to a
given node. SybilGuard guarantees that with high probability,
an honest node accepts at most sybil nodes, where is the
number of attack edges in the system and is the length of the
protocol’s random walks. Conceptually, in SybilGuard, there
is an equivalence relation that partitions all accepted nodes
into equivalence classes (called equivalence groups). Nodes
that are rejected do not belong to any equivalence groups. An
equivalence group that includes one or more sybil nodes is
called a sybil group. SybilGuard achieves its guarantee
by (i) bounding the number of sybil groups within , and (ii)
bounding the size of each sybil group within . SybilGuard
bounds the number and the size of sybil groups without nec-
essarily knowing which groups are sybil. Also, the concept of
sybil groups does not need to be visible to the application.
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Fig. 1. The social network with honest nodes and sybil nodes. Note that re-
gardless of which nodes in the social network are sybil nodes, we can always
“pull” these nodes to the right side to form the logical network in the figure.

As a side effect of bounding the number and size of sybil
groups, SybilGuard may (mistakenly) reject some honest nodes.
SybilGuard guarantees that an honest node accepts, and also
is accepted by, most other honest nodes (except a few percent
in our later simulation) with high probability. Thus, an honest
node can successfully obtain service from, and provide service
to, most other honest nodes. Notice that because SybilGuard is
decentralized, the set of accepted nodes by node can be dif-
ferent from those accepted by node . However, the difference
should be small since both and should accept most honest
nodes with high probability.

III. SYBILGUARD DESIGN

In this section, we present our SybilGuard design. We will
assume a static social network where all nodes are online; we
will discuss user and node dynamics in Section V.

A. Social Network and Attack Edges

SybilGuard leverages the existing human-established trust re-
lationships among users to bound both the number and size of
sybil groups. All honest nodes and sybil nodes in the system
form a social network (see Fig. 1). An undirected edge exists
between two nodes if the two corresponding users have strong
social connections (e.g., colleagues or relatives) and trust each
other not to launch a sybil attack. If two nodes are connected by
an edge, we say the two users are friends. Notice that here the
edge indicates strong trust, and the notion of friends is quite dif-
ferent from friends in other systems such as online chat rooms.
An edge may exist between a sybil node and an honest node
if a malicious user (Malory) successfully fools an honest user
(Alice) into trusting her. Such an edge is called an attack edge
and we use to denote the total number of attack edges. The
authentication mechanism in SybilGuard ensures that regard-
less of the number of sybil nodes Malory creates, Alice will
share an edge with at most one of them (as in the real social
network). Thus, the number of attack edges is limited by the
number of trust relation pairs that the adversary can establish
between honest users and malicious users. While the adversary
has only limited influence over the social network, we do as-
sume it may have full knowledge of the social network.

The degree of the nodes in the social network tends to be
much smaller than , so the system would be of little practical
use if nodes only accepted their friends. Instead, SybilGuard
bootstraps from the given social network a protocol that enables
honest nodes to accept a large fraction of the other honest nodes.

Fig. 2. Two routes of length 3. Sharing an edge necessarily means that one
route starts after the other.

It is important to note that SybilGuard does not increase or de-
crease the number of edges in the social network as a result of
its execution.

B. Random Routes

SybilGuard uses a special kind of random walks, called
random routes, in the social network. In a standard random
walk, at each hop, the current node flips a coin on the fly and
selects a (uniformly) random edge to direct the walk. In random
routes, each node uses a pre-computed random permutation
as a one-to-one mapping from incoming edges to outgoing
edges. Specifically, each node uses a randomized routing table
to choose the next hop. A node with neighbors uniformly
randomly chooses a permutation “ ” among all
permutations of . If a random route comes from the
th edge, uses edge as the next hop. It is possible that

for some . The routing table of , once chosen, will
never change (unless ’s degree changes—see Section V).

For random routes in the honest region, these routing tables
give us the following properties. First, once two routes traverse
the same edge along the same direction, they will merge and stay
merged (called the convergence property). Furthermore, an out-
going edge uniquely determines an incoming edge as well; thus
the random routes can be back-traced (called the back-traceable
property). In other words, it is impossible for two routes to enter
the same node along different edges but exit along the same di-
rection.

With these two properties, if we know that a random route
of a certain length traverses a certain edge along a certain
direction in its th hop, the entire route is uniquely determined.
In other words, there can be only one route with length that
traverses along the given direction at its th hop. In addition,
if two random routes ever share an edge in the same direction,
then one of them must start in the middle of the other (Fig. 2).

Of course, these properties can be guaranteed only for the
portions of a route that do not contain sybil nodes. Sybil nodes
may deviate from any aspect of the protocol.

C. Route Intersection as the Basis for Acceptance

In SybilGuard, a node with degree performs random
routes (starting from itself) of a certain length (e.g., is
roughly 2000 for the one-million node network in our later
experiments), one along each of its edges. These random routes
form the basis of SybilGuard whereby an honest node (the
verifier ) decides whether or not to accept another node (the
suspect ). In particular, a verifier route accepts if and only
if at least one route from intersects that route from (see
Fig. 3). accepts if and only if at least a threshold of ’s
routes accept .

Because of the limited number of attack edges, if one chooses
appropriately, most of the verifier’s routes will remain en-

tirely within the honest region with high probability. To intersect
with a verifier’s random route that remains entirely within the
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Fig. 3. The verifier’s random route accepts the suspect because the random
routes intersect. SybilGuard leverages the facts that 1) the average honest node’s
random route is highly likely to stay within the honest region and 2) two random
routes from honest nodes are highly likely to intersect within � steps.

Fig. 4. All random routes traversing the same edge merge.

honest region, a sybil node’s random route must traverse one
of the attack edges (whether or not the sybil nodes follow the
protocol). Suppose there were only a single attack edge (as in
Fig. 4). Based on the convergence property, the random routes
from sybil nodes must merge completely once they traverse the
attack edge. Thus, all of these routes that intersect the verifier’s
route will have the same intersection node; furthermore, they
enter the intersection node along the same edge (edge in the
figure). The verifier thus considers all of these nodes to be in the
same equivalence group, and hence there is only a single sybil
group. In the more general case of attack edges, the number
of sybil groups is bounded by .

SybilGuard further bounds the size of the equivalence groups
(and hence of the sybil groups) to be at most , the length of
the random routes. From the back-traceable property, we know
there can be at most distinct routes that i) intersect with the
verifier’s random route at a given node, and ii) enter the inter-
section node along a given edge (e.g., along edge in Fig. 4).
Specifically, there is one such route that traverses the given edge
in its th hop, for . Thus, the verifier accepts exactly
one node for each of the hop numbers at a given intersection
point and a given edge adjacent to the intersection point. In sum-
mary, there are many equivalence groups, but only are sybil
and each has at most nodes.

For honest nodes, we will show that with appropriate , (i) an
honest node’s random route intersects with the verifier’s route
with high probability, and (ii) such an honest node will never
compete for the same hop number with any other node (in-
cluding sybil nodes). Thus, the average honest node will be ac-
cepted with high probability.

Our SybilGuard design leverages the following three impor-
tant facts to bound the number of sybil nodes: (i) social networks
tend to be fast mixing (defined in Section IV), which necessarily

means that subsets of honest nodes have good connectivity to the
rest of the social network, (ii) too many sybil nodes (compared
to the number of attack edges) disrupts the fast mixing property,
and (iii) the verifier is itself an honest node, which breaks sym-
metry. We will elaborate on these aspects later.

D. Secure and Decentralized Design for Random Routes and
Their Verification

The previous sections explained the basics of random routes.
In the actual SybilGuard protocol, these routes are performed in
a completely decentralized way. The two local data structures
(registry tables and witness tables) described in this section are
the only data structures that each node needs to maintain. Also,
propagating these tables to direct neighbors is the only action
each node needs to take in order to determine random routes.

Edge keys. Each pair of friends in the social network shares a
unique symmetric secret key (e.g., a shared password) called the
edge key. The edge key is used to authenticate messages between
the two friends (e.g., with a Message Authentication Code). Be-
cause only the two friends need to know the edge key, key distri-
bution is easily done out-of-band (e.g., via phone calls). Because
of the nature of the social network and the strong trust associ-
ated with the notion of friends in SybilGuard, we expect node
degrees to be relatively small and will tend not to increase sig-
nificantly as grows. As a result, a user only needs to invoke
out-of-band communication a small number of times. In order
to prevent the adversary from increasing the number of attack
edges dramatically by compromising high-degree honest
nodes, each honest node (before compromised) voluntarily con-
strains its degree within some constant (e.g., 30). Doing so will
not affect the guarantees of SybilGuard as long as the social net-
work remains fast mixing. On the other hand, researchers have
shown that even with rather small constant node degrees, social
networks (or more precisely, small-world topologies) are fast
mixing [10], [11].

A node informs its friends of its IP address whenever its IP
address changes, to allow continued communication via the In-
ternet. This IP address is used only as a hint. It does not result
in a vulnerability even if the IP address is wrong, because au-
thentication based on the edge key will always be performed.
If DNS and DNS names are available, nodes may also provide
DNS names and only update the DNS record when the IP ad-
dress changes.

Registration. In SybilGuard, each node with degree must
perform random routes of hops each and remember these
routes. To prevent from “lying” about its routes, SybilGuard
requires to register with all nodes along each of its routes.
A node along the route permits to register only if is one
of the nodes that are within hops “upstream” (details below).
When the verifier wants to verify , will ask the inter-
section point (between ’s route and ’s route) whether is
indeed registered.

In this registration process, each node needs to use a “token”
that cannot be easily forged by other nodes. Note that the avail-
ability of such tokens does not solve the sybil attack problem by
itself, because a malicious user may have many such tokens. A
node will be accepted based on its token. The token must be
unforgeable to prevent the adversary from stealing the token
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Fig. 5. Maintaining the registry tables. In order to simplify this example, � �

�, each node has exactly two edges, and the routing tables are carefully chosen.
The node names in the registry tables stand for the nodes’ public keys.

of an honest node (unless the node is compromised). If users
have static or slowly changing IP addresses, and there is no IP
spoofing, then a node’s IP address could be used as its token.

To address a more general scenario, including frequently
changing IP addresses and IP spoofing, we can instead use
public key cryptography for the tokens. Each honest node has
a locally generated public/private key pair. Notice that these
public and private keys have no connection with the edge
keys (which are secret symmetric keys). Malicious nodes may
create as many public/private key pairs as they wish. We use
the private key of each node as the unforgeable token, while
the public key is registered along the random routes as a proof
of owning the token. Note that we do not need to solve the
public key distribution problem, because we are not concerned
with associating public keys to, for example, human beings or
computers. The only property SybilGuard relies on is that the
private key is unforgeable and its possession can be verified.
To perform the registration in a secure and completely decen-
tralized manner, SybilGuard uses registry tables and witness
tables, as described next.

Registry tables. Each node maintains a registry table for
each of its edges (Fig. 5). The th entry in the registry table for
edge lists the public key of the node whose random route enters

along at its th hop. For example, consider the registry table
on for edge in Fig. 5. Here, one of ’s random routes is

via edge via edge . In other words, in
the first hop of this random route, enters via edge . Thus
the first entry in the registry table is ’s public key. Similarly,
the second entry is ’s public key. As a result, the registry table
has entries that are the public keys of the “upstream” nodes
along the direction of edge from .

Suppose that according to ’s routing table, is the out-
going direction corresponding to (as in Fig. 5). will for-
ward its registry table for to its neighbor along , via an
authenticated channel established using the edge key for .
then populates its registry table for by shifting the registry
table from downward by one entry and adding ’s public
key as the new first entry.

As shown in Fig. 5, this simple design will ultimately register
each node’s public key with all nodes on its random routes.
The protocol does not have to proceed in synchronous rounds,
and nodes in the system may start with empty registry tables.
The overhead of the protocol is small as well. Even with one
million nodes, if we were to use 2000 (already pessimistic
given our simulation results), then a registry table is roughly
256 KB when using 1024-bit public keys. For a node with ten
neighbors, the total data sent is 2.56 MB. A further optimiza-
tion is to store cryptographically secure hashes of the public
keys in the registry table instead of the actual public keys. With
each hashed key being 160-bit, the total data sent by each node
would be roughly 400 KB. Finally, it is important to notice that
registry table updates are needed only when social trust rela-
tionships change (Section V). Thus, we expect the bandwidth
consumption to be quite acceptable.

Witness tables. Registry tables ensure that each node reg-
isters with the nodes on its random routes. Each node, on the
other hand, also needs to know the set of nodes that are on its
random routes. This is achieved by each node maintaining a wit-
ness table for each of its edges. The th entry in the table con-
tains the public key (or its hash, if we use the above optimiza-
tion) and the IP address of the node encountered at the th hop
of the random route along the edge. The public key will later be
used for intersection and authentication purposes, while the IP
address will be used as a hint to find the node. If the IP address
is stale or wrong, it will have the same effect as the intersection
node being offline. (Offline nodes are addressed in Section V-A.)

The witness table is propagated and updated in a similar
fashion as the registry table, except that it propagates “back-
ward” (using the reverse of the routing table). In this way, a
node will know the “downstream” nodes along the direction
of each of its edges, which is exactly the set of nodes that are
on its random routes. Different from registry tables, witness
tables should be updated when a node’s IP address changes
(even with a static social network). But this updating can be
done lazily, given the optimizations described below in the
verification process.

Verification process. Fig. 6 depicts the process for a node
to verify a node . needs to perform an intersection between
each of its random routes and all of ’s random routes. To do
this, sends all of its witness tables to , together with ’s
public key. The communication overhead in this step can be
reduced using standard optimizations such as Bloom filters [9]
to summarize the nodes in witness tables.

For each of ’s witness tables, performs an intersection
with all of ’s tables, and determines the (hashed) public key
of the first intersection point (if any) on ’s route. then
contacts using the recorded IP address in the witness table as
a hint. authenticates by requiring to sign each message
sent, using its private key. If hashed keys are used, also sends
its public key, which hashes and compares with the stored
hash, before authenticating . If cannot be found using the
recorded IP address, will try to obtain ’s IP address from
nearby nodes in the witness table. They will likely have ’s
more up-to-date IP address because they are near . Because
will always authenticate based on ’s public key, this does
not introduce a vulnerability.
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Fig. 6. Protocol for a node � of degree � to verify a node �.

then checks with whether ’s public key is indeed
present in one of ’s registry tables. The entry number is not
relevant. If it is present, then that route from accepts . If
at least a threshold of ’s routes accept , accepts (i.e.,

’s public key). Although we have set in the figure,
the asymptotic guarantees of the protocol do not depend on
this particular choice for . Finally, when interacting with ,
always authenticates by requiring to sign every message
sent, using its private key.

In all, only a constant number of messages are required for
one node to verify another.

Key revocation. A node can easily revoke its old public/pri-
vate key pair by unilaterally switching to a new public/private
key pair, and then using the new public key in its registry table
and witness table propagation. The old public key in registry and
witness tables will be overwritten by the new public key. As for
edge keys, a node can revoke an edge key unilaterally simply by
discontinuing use of the key and discarding it.

Sybil nodes. We described the protocol for the case where all
nodes behave honestly. A sybil node may not follow the pro-
tocol and may arbitrarily manipulate the registry tables and wit-
ness tables. SybilGuard is still secure against such attacks. To
understand why and obtain intuition, it helps to consider the set
of all registry table entries on all honest nodes in the system. For
simplicity, assume that all honest nodes have the same degree .
Thus, altogether the honest nodes contain registry table
entries.

Consider a malicious node and a single attack edge con-
necting an honest node with . Clearly, can propagate
to an arbitrary registry table, thus polluting the entries in

’s registry table. Suppose next forwards the registry table to
, who shifts the table downward and adds as the first entry.

Thus entries in ’s registry table are polluted. Contin-
uing this argument, we see that a single attack edge enables
to control entries system-wide.
With attack edges and even when approaches , the total
number of polluted entries is still a factor of smaller

than the total number of entries . This provides some
intuition why the number of accepted sybil nodes is properly
bounded even though the adversary may not follow the Sybil-
Guard protocol.

IV. SYBILGUARD GUARANTEES

A. Limiting the Number of Attack Edges

The effectiveness of SybilGuard relies on there being a lim-
ited number of attack edges . There are several ways the ad-
versary might attempt to increase :

• The malicious users establish social trust and convince
more honest users in the system to “be their friends” in
real life. But this is quite difficult to do on a large scale.

• A malicious user (Malory) who managed to convince an
honest user (Alice) to be her friend creates many sybil
nodes, and then Malory forwards to these sybil nodes her
edge key with Alice. Notice, however, that Alice only has
a single edge key corresponding to the edge between Alice
and Malory. As a result, all messages authenticated using
that edge key will be considered by Alice to come from the
same edge. Thus the number of attack edges remains un-
changed.

• The adversary compromises a single honest node with de-
gree , making it a sybil node. Because was already con-
strained (before the node is compromised) within some
constant by the user, can be increased by at most some
constant. On the other hand, the adversary will not be able
to create further attack edges from the node because adding
an edge to another honest user requires out-of-band veri-
fication by that user. When a user drops and then makes
new friends, it is possible for the adversary with access to
the old edge keys to “resurrect” dropped edges and hence
further increase . However, we expect such effect to be
negligible in practice and if necessary, can be prevented by
requiring out-of-band confirmation when deleting edges.

• The adversary compromises a small fraction of the nodes
in the system. This will not likely increase excessively
due to the reasons above.

• The adversary compromises a large fraction of the nodes
in the system. Here the system has already been subverted,
and the adversary does not even need to launch a sybil
attack. SybilGuard will not help here.

• The adversary compromises a large number of computers
(i.e., creates a botnet), only some of which belong to the
system. The increase in is upper bounded by some con-
stant times the number of compromised computers which
already belong to the system. The increase is not affected
by the total size of the botnet. Although acquiring a botnet
with many nodes may be relatively easy (e.g., in the black
market), acquiring a botnet containing many nodes that are
already in the system is more challenging.

In summary, SybilGuard is quite effective in limiting the number
of attack edges, as long as not too many honest users are com-
promised. Relatively speaking, SybilGuard is more effective de-
fending against malicious users than defending against compro-
mised honest users that belong to the system. This is because a
malicious user must make real friends in order to increase the
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number of attack edges, while compromised honest users al-
ready have friends.

B. Designing the Length of Random Routes in Order to
Achieve SybilGuard’s Guarantees

A critical design choice in SybilGuard is , the length of the
random routes. The value of must be sufficiently small to
ensure that (i) a verifier’s random route remains entirely within
the honest region with high probability, and (ii) the size of sybil
groups is not excessively large. On the other hand, must be
sufficiently large to ensure that routes in the honest region will
intersect with high probability.

In the following, we provide some analytical assurance that
having will likely satisfy the above require-
ments simultaneously. Our results are for random walks instead
of the random routes used in SybilGuard—considering random
walks allows us to leverage the well-established theory on such
walks. At the end of this section, we will explain how these re-
sults likely apply to random routes, which will be further con-
firmed in our later experiments.

Guarantees on honest nodes. The first property we would
like to show is that is likely to be sufficiently
large for routes from an honest verifier and an honest suspect
to intersect with high probability. Such a property for random
walks has been proven [12], [13] in several other contexts, and
thus we give only a high-level review. First, we need to pro-
vide some informal background. With a length- random walk,
clearly the distribution of the ending point of the walk depends
on the starting point. However, for connected and non-bipar-
tite graphs, the ending point distribution becomes independent
of the starting point when . This distribution is called
the stationary distribution of the graph. The mixing time of a
graph quantifies how fast the ending point of a random walk ap-
proaches the stationary distribution. In other words, after
steps, the node on the random walk becomes roughly indepen-
dent of the starting point. If , the graph is called
fast mixing.

Many randomly-grown topologies are fast mixing, including
social networks (or more specifically, small-world topologies)
[10], [11]. Thus, a walk of steps contains
independent samples drawn roughly from the stationary distri-
bution. When a verifier’s walk and a suspect’s walk remain in
the honest region (which we show below occurs with high prob-
ability), both walks draw independent samples from
roughly the same distribution. It follows from the generalized
Birthday Paradox [12], [13] that they intersect with probability

. Because this claim holds for each of the verifier’s walks
and each of the suspect’s walks, an honest verifier accepts an
honest suspect with high probability.

Guarantees on the number of Sybil nodes accepted. Re-
call from Section III-C that for a verifier ’s route entirely in
the honest region, SybilGuard limits the number of sybil groups
to and the size of each sybil group to , for a total of
sybil nodes accepted. On the other hand, a verifier ’s route
that enters the sybil region falls under the control of the adver-
sary, and may not be able to bound the number of sybil nodes
intersecting that route. The following theorem bounds the prob-
ability that a random walk starting from a random honest node

enters the sybil region, showing that such problematic routes are
rare (given an upper bound on and our choice for ).

Theorem 1: For any connected social network, the proba-
bility that a length- random walk starting from a uniformly
random honest node will ever traverse any of the attack
edges is upper bounded by . In particular, when

and , this probability is
.

We leave the proof to our full technical report [14]. The ac-
tual likelihood, as shown in our later experiments, is much better
than the above pessimistic theoretical bound of . We
should point out that the above theorem provides only an “av-
erage” guarantee for all honest nodes. Honest nodes that are
closer to attack edges are likely to have a larger probability of
walking into the sybil region. Recall, however, that performs
a random route starting from each of its edges and accepts a
suspect only if at least a threshold of these routes accept .
This serves to mask the misleading effects of routes extending
into the sybil region. The parameter involves the following
trade-off: if is too small, then may have a large probability
of having more than routes entering the sybil region; if is too
large, then may have trouble accepting other honest nodes if
more than routes from enter the sybil region and if the
sybil nodes prevent intersection from happening ( is the degree
of ). In other words, to avoid both of the above two problem-
atic scenarios, the number of routes entering the sybil region
must be smaller than . Thus, obviously, setting to

will maximize the probability of avoiding the two problem-
atic scenarios, and our approach effectively becomes majority
voting. Our later simulation results show that using majority
voting gives most nodes a high probability of success. Thus, an
honest node accepts at most sybil nodes with high proba-
bility.

Random Routes Versus Random Walks. SybilGuard uses
random routes, while the above derivations are for random
walks. If a random route enters a node for the first time, then
the next hop is indeed uniformly randomly chosen from all of

’s neighbors, which is exactly the same as in random walks.
In some sense, we can imagine that simply pre-flipped all
the coins it needed to flip. On the other hand, a random route
differs from a random walk when the random route intersects
with itself.

Consider a random route that previously entered node via
edge and was directed to edge . Imagine that now the route
enters for a second time via edge . We consider the following
two cases and explain the behavior of random routes, as com-
pared to random walks.

If , then we have a repeated edge loop and the random
route will traverse this loop repeatedly, which clearly deviates
significantly from the behavior of a random walk. We now pro-
vide an intuition as to why such loops are rare. Notice that the
first edge in the route must be the first edge that is traversed
twice. In other words, repeated edge loops can only form at the
starting node (Fig. 7). If a loop is formed, the random route must
have come back to the starting point, and the starting point must
have decided to forward the route along the first edge. Also no-
tice that the smallest loop has three hops, otherwise it is impos-
sible for the route to traverse the same edge (in the same di-
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Fig. 7. A loop can form only at the starting point of a route.

rection) twice. More concretely, consider a simplified scenario
where all nodes have the same degree . At the second hop, the
route will return to the starting point with probability . At
the third hop, if a loop is formed, the starting point must have
decided to forward the route along the same edge as the first hop.
Thus, a repeated edge loop is formed at the third hop with prob-
ability . As the route proceeds, the chance of repeating the
first hop edge at the given hop will usually become smaller and
smaller. In fact, in a fast mixing graph, after a small number of
hops a random walk is equally likely to be traversing any edge
in a given hop. This provides an intuition as to why loops are
unlikely. Moreover, routes with loops can still be used, because
they do not compromise security—they simply have fewer than

distinct nodes and hence are less likely to intersect with other
routes.

If , then the random route will not have formed a loop
and will pick as the next hop. Since the routing
table is a permutation, will be a uniformly random edge ex-
cept that it cannot be . In other words, has already elimi-
nated as a choice for the next hop. This introduces some small
correlation between ’s next hop choice for the second time and
for the first time. Thus strictly speaking, a random route is dif-
ferent from a random walk unless the random route does not
intersect itself. Intuitively, however, such correlation is small,
because only is eliminated (out of ’s edges) as a choice for

, and also because a random route does not tend to encounter
the same node many times.

C. Locally Determining the Appropriate Length of Random
Routes

Because SybilGuard is decentralized, each node needs to lo-
cally determine . Directly setting requires
the knowledge of . This is challenging because we must ex-
clude sybil nodes when estimating , which requires running
SybilGuard with an appropriate .

Instead, to locally determine , a node first performs a
short random walk (e.g., 10 hops), ending at some node . Be-
cause the random walk is short, with high probability, it stays in
the honest region and is an honest node. Next and con-
ceptually both perform random routes to determine how long the
two routes need to be to intersect. In practice, and should
have already performed random routes along all directions, thus

simply needs to hand over one of its witness tables to . It
is important here to use a standard random walk (instead of a
random route) to choose , otherwise ’s random route will
always intersect with within a small number of hops. Also,
our later simulation will show that even a walk as short as 3 hops
suffices to obtain good estimates of in a million-node social
network.

The intuition behind the above design is that in fast mixing
graphs, a random walk of short length is sufficient to approach

the stationary distribution. Thus, is just a random node
drawn from the stationary distribution, and the procedure yields
a random sampling of . The sampling, however, is biased
because the stationary distribution is not necessarily a uniform
distribution and is more likely to be a higher-degree node
than a lower-degree node. On the other hand, notice that if we
start a random walk from a uniformly random node , then
after hops ( being the mixing time), the walk will be at
a node roughly drawn from the stationary distribution. Thus,
the needed route length for two routes (starting from and

, respectively) to intersect is at most . Because
and , we can safely ignore

the term of , which will be further confirmed in our later
experiments.

Finally, node obtains multiple such samples using the
above procedure, and calculates the median of the samples
(see Section VI for the number of samples needed). It then sets

, where the constant 2.1 is derived from our analysis
of Birthday Paradox distributions [14]. The analysis proves that
multiplying the median by 2.1 is sufficient to ensure a collision
probability of 95%, regardless of . Note that when is itself
a sybil node or the random route from either or enters
the sybil region, the adversary controls that particular sample.
Thus, using the median sample to estimate is much more
robust than directly using the 95th percentile.

V. SYBILGUARD UNDER DYNAMICS

Our protocol so far assumes that the social network is static.
In decentralized distributed systems, a typical user first down-
loads and installs the software (i.e., the user is created). The
node corresponding to the user may then freely join or leave the
system (i.e., become online and offline) many times. Finally, the
user may decide to uninstall the software and never use it again
(i.e., the user is deleted). Node join/leave tends to be much more
frequent than user creation/deletion. For example, dealing with
frequent node join/leave (or “churn”) is often a critical problem
faced by DHTs.

SybilGuard is designed such that it needs to respond only
to user creation/deletion, and not to node churn (i.e., not to
nodes going offline and coming online in possibly unpredictable
ways). The social network definition in this paper always in-
cludes all users/nodes that have been created and not yet deleted,
regardless of whether they are currently online or offline.

A. Dealing With Offline Nodes

In SybilGuard, a node communicates with other nodes only
when (i) it tries to verify another node, and hence needs to con-
tact the intersection nodes of the random routes, and (ii) it prop-
agates its registry and witness tables to its neighbors.

For the first scenario, because both the verifier and the
suspect perform multiple random routes, there will likely be
multiple intersections. In fact, even a single route from and a
single route from may have multiple intersections. The veri-
fication can be done as long as a majority of ’s routes have at
least one intersection point online.

For propagating registry and witness tables, note that this oc-
curs when a random route changes, due to user creation/deletion
or edge creation/deletion in the social network. Witness table
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Fig. 8. Incremental maintenance of routing tables. The example assumes that
� � � and � � �. Note that after edge �� is added, only routes entering via
edge �� need to be redirected.

propagation may also be needed when IP addresses change, but
such updating can be performed lazily. Previous studies [15]
on p2p systems show that despite high node churn rate, user
creation/deletion occurs only infrequently and the average user
lifetime is roughly a year. Similarly, people make and lose so-
cial trust relations in real life over months-long time horizons.
Thus, the system can afford to take days to completely propa-
gate a new registry or witness table, waiting for nodes to come
online. In the case of a new user, prior to becoming a full partic-
ipant, she can always use the system via a friend as a proxy. As
an optimization, SybilGuard also has a mechanism that allows
a node to bypass offline nodes when propagating registry and
witness tables. We leave the details of such mechanism to [14].

In the process of propagating/updating registry and witness
tables, the social network may change again. Thus, it is helpful
to consider it as a decentralized, background stabilization
process. This means that if the topology were to stop changing,
then the registry and witness tables would eventually stabilize
to a consistent state for this (now static) topology.

B. Incremental Routing Table Maintenance

When users and edges are added or deleted in the social net-
work, the routing tables must be updated as well. Adding a new
node can be considered as first adding a node with no edges and
then successively adding its edges one by one. Deleting a node
can be considered similarly. Thus, we need to discuss only edge
creation and deletion.

We first explain how updates its routing table when a
new edge is added between and . Suppose ’s orig-
inal degree is and its original routing table is the per-
mutation “ ”. A trivial way to update ’s
routing table would be to pick a new random permutation of
“ ” that is unrelated to “ ”. Doing
so, however, would affect/redirect many routes, and incur
unnecessary overhead in updating registry and witness tables.

Instead, SybilGuard uses an incremental maintenance algo-
rithm where only routes entering along a specific edge may be
affected (Fig. 8). This reduces the expected overhead on the net-
work by a factor of almost . In this algorithm, when a new edge
is added to , chooses a uniformly random integer between
1 and , inclusive. If , then ’s new routing table
will be “ ”. If , ’s new routing
table will be “ ”. In
other words, we replace with , and then append to
the end of the permutation. Similarly, for edge deletion, suppose

Fig. 9. A potential attack by � during node dynamics.

’s original routing table is “ ”. Without
loss of generality, assume that we are deleting edge , and
let be such that . If , then ’s new routing
table is trivially “ ”. Otherwise the new routing
table will be “ ”. In other
words, we simply substitute with . For both insertion
and deletion, only routes entering via edge are affected,
and one can prove [14] that the resulting routing table is indeed
a uniformly random permutation.

C. Attacks Exploiting Node Dynamics

This section shows that having a node perform a random route
along each of its edges is necessary for security and provides a
defense against potential attacks under node dynamics. We first
explain the potential attack scenario. Suppose each node were to
perform only a single random route, and consider the example
in Fig. 9, where . Here is malicious and the other nodes
are honest. ’s random route is . Thus,

, , and record ’s public key key1 in their registry tables.
Now another honest node joins, and establishes edges with
and . updates its routing table, and suppose that routes from

now go to instead of . Being malicious, launches
the attack by changing its public key to key2. Now , , and

will record key2 in their registry tables. At this point, key1 is
registered on nodes, while key2 is registered on nodes.
Both of them are likely to be successfully verified with good
probability.

The source of the above vulnerability is that when the routing
table on changes, the system needs to “revoke” the stale
entry of key1 from the registry tables on and , because ’s
random route no longer passes through these nodes. Explicitly
revoking stale entries would introduce considerable complexity
because and may be offline. An alternative design would
be to associate TTLs with table entries, which unavoidably
introduces a trade-off between security and overheads to refresh
expired entries.

SybilGuard prevents the above attack by having all nodes per-
form random routes along all directions. In particular, if (with
key3) has a random route of , then key3
will overwrite ’s key1. It is also possible that ’s route may
not be . However, it is easy to show that
the stale entries will always be overwritten by some node. To
understand why, suppose that an entry in ’s registry table in-
dicates that is the th hop in the random route of . If this
entry is stale, it means that is no longer the th hop in ’s
route. From the back-traceable property of random routes, we
can always backtrace from for hops and reach some node

. One of ’s routes must visit at the th hop and thus ’s
public key will overwrite the stale entry on . In other words,
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the back-traceable property ensures that for any registry table
entry, there is one and exactly one “owner” of the entry. Under
node dynamics, ownership may change and there may be tempo-
rary periods where a malicious user “owns” more entries than
it should. However, after the system stabilizes, all entries will
be “owned” by the right owner. Based on such observations, we
can easily see that other similar attacks under node dynamics
will be prevented by SybilGuard as well.

VI. EVALUATION

This section uses simulation to evaluate the guarantees of
SybilGuard. We choose to use simulation because it enables
us to study large-scale systems. Because social networks tend
to contain private information, there are only a limited number
of publicly available social network datasets. Those that are
publicly available [16], [17] are quite small, which prevents a
thorough evaluation of probabilistic guarantees. Thus we use
the widely accepted Kleinberg’s synthetic social network model
[18] in our evaluation, which generalizes from the Watts–Stro-
gatz model [19]. We use the model to instantiate three different
graphs: a million-node graph with average node degree of 24, a
ten-thousand-node graph with average degree of 24, and a hun-
dred-node graph with average degree of 12.

A. Model for Social Network

Kleinberg’s social network model [18] successfully explains
the principle of “six degrees of separation” in social networks.
The model uses a two-dimensional grid as the base structure.
The grid distance between two nodes is defined to be the min-
imum number of hops needed to go from one node along the
grid edges to the other. The small-world topology constructed
contains all nodes in the two-dimensional grid. The grid edges
may or may not be in the small-world topology depending on
the parameters.

To construct the small-world topology, each node in the
topology establishes (undirected) edges to local friends/nodes
and remote friends/nodes. The local friends are the nodes
(among all nodes) that are the closest to in terms of grid
distance. The remote friends are chosen using independent
random trials. In each trial, a node has a probability of

being chosen. Here is the grid distance between
and , and is a constant normalization factor that makes

the sum of all probabilities equal to 1. The parameter is tun-
able between 0 and . When , the remote friends are
simply chosen uniformly randomly out of all nodes in the graph.
As increases, the remote friends tend closer and closer to .
We have experimented with various , , and values. The fol-
lowing results use . For the million-node and 10000-
node graph, we set . We use for the
100-node graph. Results for other , , and values we experi-
mented with are qualitatively similar.

B. Results With No Malicious Users

We start by studying the basic behavior of SybilGuard when
there are no malicious users. Without malicious users, the only
property we are concerned with is whether an honest verifier

Fig. 10. Probability of having the given number of intersections. The legend
“majority routes” means that each node performs random routes along all di-
rections (and uses majority voting), while “single route” means performing a
single random route. The legend “�� ��” means that we are considering the
probability of having at least � distinct intersections. SybilGuard corresponds
to “majority routes �� ���”.

accepts an honest suspect. This is affected by: (i) whether the
random routes from the two nodes are loops; (ii) whether the
random routes from the two nodes intersect; (iii) whether there
is at least one intersection node online; and (iv) whether the
needed length of random routes is properly estimated.

Probability of random routes being loops. As discussed in
Section IV-B, if a random route becomes a loop, then its effec-
tive length is reduced. Our simulation shows that 99.3% of the
routes in the million-node graph do not form loops in their first
2500 hops (while later we will show that the needed length of
the routes is below 2000). Furthermore, all the nodes in our sim-
ulation have at least one of their routes that is not a loop within
their first 2500 hops. For the ten-thousand-node graph, 99.7%
of the routes do not form loops in their first 200 hops, which
is above the needed route length. For the hundred-node graph,
90% of the routes do not form loops in the first 50 hops, which
is again above the needed route length.

As the results show that loops are quite rare, and also because
they only impact effectiveness rather than security, we will not
investigate them further. In all our results below, we do not dis-
tinguish loops from non-loops, and thus all the results will al-
ready capture the impact of random routes being loops.

Probability of an honest node being successfully accepted.
We move on to study the probability of the verifier ac-

cepting the suspect . For to accept , their routes must in-
tersect and at least one intersection must be online. We do not
directly model nodes being online or offline. Rather, we assume
that as long as there are at least 10 intersections, the verification
succeeds. Note that even when nodes are online only 20% of the
time, the probability that at least one out of 10 intersections is
online is already roughly 90%.

Fig. 10 plots the probability of successfully accepting ,
as a function of (length of the random routes). For better un-
derstanding, we also include in Fig. 10 two other curves for the
cases where each node performs only a single random route, and
seeks either at least 1 or 10 intersections. The results show that in
a million-node social network, even having a as small as 300
yields a 99.96% probability of having at least 10 intersections.
On the other hand, if we do not route along all directions, the
needed length will be much larger. For our ten-thousand-node
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Fig. 11. Probability distribution histogram for the number of hops needed before the first intersection.

graph, yields a 99.29% probability of having at least 10
intersections. For the hundred-node graph, gives us a
probability of 99.97%.

Estimating the needed length of the routes . In Sybil-
Guard, each node infers the needed length of the routes using
the sampling technique described in Section IV-C. Using this
technique, a node first performs a short random walk ending
at some node . Then and both perform random routes to
determine how long the routes need to be in order to intersect.
Such estimation would be entirely accurate if (i) were chosen
uniformly randomly from all nodes in the system; and (ii) the
number of samples were infinite. In practice, however, neither
condition holds.

To gain insight into the impact of not actually being a
uniformly random node, Fig. 11 depicts the distribution of the
number of hops before intersection, comparing the case when

is chosen uniformly at random to the case when is chosen
using a 3-hop random walk from . As the figure shows, the two
distributions are quite similar. This will help to explain later the
small impact of not being uniformly random. Based on the
distribution when is chosen uniformly at random, we obtain
an accurate of 1906 needed for 95% of the pairs to intersect.
This value of 1906 will be used as a comparison with Sybil-
Guard’s estimated .

To understand the error introduced by having only a finite
number of samples, we study how the estimated fluctuates
and approaches 1906 as a node takes more and more samples.
This experiment is repeated from multiple nodes. In all cases,
we observe that the estimated always falls within
after 30 samples. While after 100 samples, the estimated al-
ways falls within . These results show that the esti-
mated is accurate enough even after a small number of sam-
ples. Even with only 30 samples and a worst case estimated

of 1606, Fig. 10 still shows a close-to-100% intersection
probability when using majority routes. On the other hand, be-
cause taking each sample only involves a 3-hop random walk
and the transfer of a witness table, the overhead is quite small.
Finally, because the number of users changes slowly and
changes roughly proportionally to , we do not expect

to change rapidly. Thus a node needs only to re-estimate ,
for example, on a daily basis. For our ten-thousand-node graph,
the accurate is 197, and the estimated falls within
after 35 samples. For the hundred-node graph, the accurate is
24, and the estimated falls within after 40 samples.

C. Results With Sybil Attackers

Next we study the behavior of SybilGuard when there are ma-
licious users. We will use the term “sybil attacker” to refer to any

such user, in order to distinguish the attacker from the poten-
tially unlimited number of malicious nodes he creates. Sybil at-
tackers influence the system by creating attack edges. There are
clearly many possibilities regarding where the attack edges are
in the graph, and we consider two extremes in our experiments.
In , we repeatedly pick uniformly random nodes in the
graph as sybil attackers, until the total number of attack edges
reaches a certain value. In , we start from a random
“seed” node and perform a breadth-first search from the seed.
Nodes encountered are marked as sybil attackers, until the total
number of attack edges reaches a certain value. All our results
below are based on placement, unless explicitly men-
tioned. We have obtained all corresponding results for
as well, which are always slightly better but the difference is
usually negligible. Namely, under the probability of
accepting more than sybil nodes is lower, the probability
of an honest node being accepted is higher, and the estimates of

are more accurate, than under . The reason for these
better results under is that the random routes are more
likely to cross attack edges under .

For our experiments based on the million-node graph, we vary
the number of attack edges from 0 to 2500. When ,
there are roughly 100 nodes marked as sybil attackers. It is cru-
cial to understand that just having 100 sybil attackers in the
system will not necessarily result in 2500 attack edges—on av-
erage, each attacker must be able to convince 25 real human be-
ings to be his friend. The hardness of creating these social links
is what SybilGuard relies on.

In the presence of sybil attackers, we are concerned with sev-
eral measures of “goodness”: (i) the probability that an honest
node accepts more than sybil nodes; (ii) the probability that
an honest node accepts another honest node; and (iii) the impact
of sybil nodes on estimating .

Probability of an honest node accepting more than
sybil nodes. Routes from an honest verifier may enter the
sybil region, and the adversary can then direct the routes to in-
tersect with the routes of many sybil nodes. SybilGuard uses
majority voting over all of ’s routes to limit the influence of
such problematic routes. The curve labeled “majority routes”
in Fig. 12 shows the probability that the majority of an honest
node’s routes remain entirely in the honest region. Here we
use as obtained before (the same is true for all the
following experiments). If a majority of the routes are in the
honest region, then the remaining routes will not constitute a
majority, and the adversary will not be able to fool the node
into accepting more than sybil nodes. As shown in the
figure, the probability is always almost 100% before .
Moreover, it is still 99.8% when . This means that
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Fig. 12. Probability of routes remaining entirely within the honest region.

Fig. 13. Probability of an honest node accepting another honest node (i.e.,
having at least a target number of intersections). The legends are the same as
in Fig. 10, and SybilGuard corresponds to “majority routes �� ���”.

even with 2500 attack edges, only 0.2% of the nodes are not
protected by SybilGuard. These are mostly nodes adjacent to
multiple attack edges. In some sense, these nodes are “paying
the price” for being friends of sybil attackers. For the ten-thou-
sand-node graph and the hundred-node graph, and

will result in 0.4% and 5.1% nodes unprotected, respec-
tively. For better understanding, Fig. 12 also includes a second
curve showing the probability of a single route remaining en-
tirely in the honest region.

Probability of an honest node being successfully accepted.
In the presence of sybil nodes, the probability that an honest

verifier accepts another honest suspect decreases. First, the
routes from may enter the sybil region, and the adversary can
prevent these routes from intersecting with ’s routes. The same
is true for ’s routes. Second, the presence of sybil nodes neces-
sitates the technique of using multiple routes. We use majority
voting: among the routes from , at least routes need to
successfully accept before can accept .

To capture the worst case scenario, here we will assume that
after a route (from or ) enters the sybil region, the rest of
the route can no longer be used for verification/intersection. In
some sense, the presence of sybil nodes “truncates” the routes.
As in Section VI-A, we assume that a (possibly truncated) route
from accepts if it has at least 10 distinct intersections with

’s (possibly truncated) routes. Finally, successfully accepts
if a majority of ’s routes accept . At each trial, we select

a random honest and a random honest .
Fig. 13 presents the probability of accepting , as a func-

tion of the number of attack edges . This probability is still
99.8% with 2500 attack edges, which is quite satisfactory. The
case with a single route is much worse (even if we seek only
a single intersection), demonstrating that exploiting multiple
routes is necessary. For the ten-thousand-node graph and the
hundred-node graph, and give probabilities
of 99.6% and 87.7%, respectively. Notice that a 87.7% proba-
bility does not mean that 12.3% of the nodes will not be accepted
by the system. It only means that (i) given a random verifier,

12.3% of the nodes will not be accepted by that verifier, and
(ii) a random honest node will not be accepted by 12.3% of the
honest nodes (verifiers).

Estimating the needed length of the routes . The final set
of experiments seeks to quantify the impact of sybil nodes on the
estimated . Recall from Section IV-C that to estimate , a node

performs a short (3-hop in our experiments) random walk
ending at some node . and then both perform random
routes to determine when the two routes intersect, which is used
as a sample. The sample taken is bad (i.e., potentially influenced
by the adversary) if any of the two routes or the short random
walk enters the sybil region. Our simulation shows that the prob-
ability of obtaining bad samples increases roughly linearly with
the number of attack edges . Even when reaches 2500, the
fraction of bad samples is still below 20%. Since our estima-
tion uses the median of the samples, these 20% bad samples
will have only limited influence on the estimate for . For the
ten-thousand-node graph and the hundred-node graph, the frac-
tion of bad samples is always below 20% when and

, respectively.

VII. RELATED WORK

The sybil attack [1] is a powerful threat faced by any decen-
tralized distributed system (such as a p2p system) that has no
central, trusted authority to vouch for a one-to-one correspon-
dence between users and identities. As mentioned in Section I,
the first investigation [1] into sybil attacks already proved a se-
ries of negative results.

Bazzi and Konjevod [4] proposed using network coordinates
[5] to foil sybil attacks, and a similar idea has also been explored
for sensor networks [20]. The scheme relies on the assumption
that a malicious user can have only one network position, de-
fined in terms of its minimum latency to a set of beacons. How-
ever, with network coordinates in a -dimensional space, an ad-
versary controlling more than malicious nodes at different
network positions can fabricate an arbitrary number of network
coordinates, and thus break the defense in [4]. This is problem-
atic because is usually a small number (e.g., ) in practice.
Moreover, a solution based on network coordinates fundamen-
tally can only bound the number of sybil groups and not the size
of the sybil groups.

Danezis et al. [21] proposed a scheme for making DHT
lookups more resilient to sybil attacks. The scheme leverages
the bootstrap tree of the DHT, where two nodes share an edge if
one node introduced the other into the DHT. The insight is that
sybil nodes will attach to the rest of the tree only at a limited
number of nodes (or attack edges in our terminology). One can
imagine defining a similar notion of equivalence groups here,
which correspond to subtrees. The scheme can then properly
bound the number of sybil groups. In comparison, SybilGuard
exploits the graph property in social networks instead of the
bootstrap tree. This helps SybilGuard to further bound the size
of sybil groups, which is not possible based on bootstrap trees.
As a result, even with a single attack edge, the effectiveness
of the scheme based on bootstrap tree deteriorates [21] as the
adversary creates more and more sybil nodes. Furthermore,
compromising even a single node in the bootstrap tree will
disconnect the tree, breaking the assumption of the scheme.
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Sybil attacks in sensor networks. Sybil attacks have also
been studied for sensor networks [22]. The solutions there, such
as radio resource testing and random key predistribution, unfor-
tunately do not apply to distributed systems in the wide-area.
A sybil-related attack in sensor networks is the node replication
attack [23], where a single compromised sensor is replicated in-
definitely, by loading the node’s cryptographic information into
multiple generic sensor nodes. All these replicated nodes have
the same ID (e.g., they all have to use the same secret key issued
to the compromised sensor). The solution [23], which is based
on simple random walk intersection, does not extend to sybil at-
tacks because the sybil nodes do not necessarily share a single,
verifiable ID.

Sybil attacks have also been studied for sensor networks [22].
The solutions there, such as radio resource testing and random
key predistribution, unfortunately do not apply to distributed
systems in the wide-area. A sybil-related attack in sensor net-
works is the node replication attack [23], where a single com-
promised sensor is replicated indefinitely, by loading the node’s
cryptographic information into multiple generic sensor nodes.
All these replicated nodes have the same ID (e.g., they all have
to use the same secret key issued to the compromised sensor).
The solution [23], which is based on simple random walk inter-
section, does not extend to sybil attacks because the sybil nodes
do not necessarily share a single, verifiable ID.

Sybil attacks in reputation systems. In a reputation system,
each user has a rating describing how well the user behaves. For
example, eBay ratings are based on users’ previous transactions
with other users. Sybil attacks can create a large number of sybil
nodes that collude to artificially increase a user’s rating. Known
defenses [24]–[26] against such attacks aim at preventing the
sybil nodes from boosting a malicious user’s rating (and at-
tracting buyers, in the case of eBay). All of the sybil nodes are
able to obtain the same rating/reputation as the malicious user.
Unlike SybilGuard, these defenses cannot and do not aim to con-
trol the number of sybil nodes.

In some other reputation systems such as Credence [27], users
cast votes regarding the validity of shared files. The votes are
then combined using a weighted average based on the ratings of
the user. Sybil nodes are able to dramatically influence the av-
erage (even when applying the techniques from [24]), and thus
Credence relies on a central authority to limit sybil nodes [27].

Trust networks. The social network in SybilGuard is one
kind of trust network. Many previous works [24], [25], [27]
use trust networks that are based on past successful transac-
tions or demonstrated shared interest between users. The trust
associated with our social network is much stronger, which is
essential to the effectiveness of SybilGuard. Such a strong-trust
social network is also leveraged by LOCKSS [28], where
the verifier accepts all its direct social friends, as well as a
proportional number of other nodes. The total number of nodes
accepted (proportional to the degree of the verifier) can be
orders of magnitude smaller than the system size. Because a
node can only accept and thus use a limited number of other
nodes in the system, LOCKSS is more suited for specific
application scenarios such as digital library maintenance. Ostra
[29] leverages strong-trust social networks to prevent the ad-
versary from sending excessive unwanted communication. In

comparison, SybilGuard’s functionality is more general: Since
SybilGuard already bounds the number of sybil nodes, it can
readily provide functionality equivalent to Ostra by allocating
each node a communication quota. Furthermore, different from
Ostra, SybilGuard has strong, provable end guarantees and has
a complete design that is decentralized.

Trust propagation or transitive trust is a common technique
for trust networks [24]–[27]. SybilGuard is more related to ex-
ploiting graph properties rather than trust propagation.

VIII. CONCLUSION

This paper presented SybilGuard, a novel decentralized pro-
tocol for limiting the corruptive influences of sybil attacks, by
bounding both the number and size of sybil groups. SybilGuard
relies on properties of the users’ underlying social network,
namely that (i) the honest region of the network is fast mixing,
and (ii) malicious users may create many nodes but relatively
few attack edges. In all our simulation experiments with one
million nodes, SybilGuard ensured that (i) the number and size
of sybil groups are properly bounded for 99.8% of the honest
users, and (ii) an honest node can accept, and be accepted by,
99.8% of all other honest nodes.

The current SybilGuard design relies on the fast mixing prop-
erty of social networks. If the social network is not fast mixing,
SybilGuard will still properly bound the number of accepted
sybil nodes within (with high probability). The main draw-
back of a slower mixing social network is that more honest
nodes will be (mistakenly) rejected. Although this paper al-
ready referred to several independent results confirming the fast
mixing property based on social network models, our follow-on
work [7] provides further assurance through an experimental
study based on real and large-scale social networks. That work
also presents a revised protocol that reduces the number of sybil
nodes accepted per attack edge from to .

Other future work includes deploying SybilGuard in real ap-
plications. Important issues include how to bootstrap the social
network (can we leverage an existing social network, can we
make it easy to join the social network, etc.) and what appli-
cations can best benefit from SybilGuard’s fully decentralized
approach.
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