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Abstract: Bulk organic d13C and C/N ratios from mid-Holocene salt-marsh deposits with sedimentary

banding reveal subtle but significant differences between coarse- and fine-grained deposits. These are

consistent with findings from seasonally sampled modern silts, and with the interpretation, on physical and

palynological grounds, of the fine-grained and coarse-grained components as warm-season and cold-

season deposits, respectively. The control is considered to be seasonal variations in the character of the

organic matter supplied.
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Introduction

In the Severn Estuary Levels (Figure 1), a distinctive facies of

Holocene salt-marsh silts that display seasonality through the

presence of sedimentary banding is common (Allen, 1990,

2004; Allen and Haslett, 2002, 2006, 2007), and occurs

elsewhere in European Holocene deposits (eg, Tessier, 1998).

So far, the seasonal signal has been demonstrated on indepen-

dent textural and palynological grounds (Allen, 2004; Dark

and Allen, 2005), but not geochemically.

Here we draw attention to the potential of bulk d13C and

C/N ratios for the further independent detection of seasonality

in this facies. Hitherto, in relation to Holocene salt-marsh

deposits, isotopes have been applied to issues of environment

and sea-level change (eg, Wilson et al., 2005a,b). Palaeoenvir-

onmental studies of seasonal changes in source inputs have

been limited, largely because of the apparent scarcity of

seasonally defined sediments. There has, however, been a

rapid expansion of their application to the organic inputs of

modern estuaries (Lamb et al., 2006). Chiefly in connection

with carbon cycling, several workers examined seasonal varia-

tions in the d13C and C/N of organic supplies to contemporary

estuaries (eg, Cifuentes et al., 1988; Ogawa and Ogura, 1997;

Kaldy et al., 2005). Weiguo et al. (2003) showed that the

d13C of fluvial particulate organic matter (POC) is highly

responsive to seasonal changes in the proportions of C3

and C4 catchment vegetation, and this has the potential to

be preserved in sediments.

We describe below the carbon isotopic composition of

plant tissues present in modern sediments from the Severn

Estuary, collected over a year from a salt marsh and mudflat

preparatory to broader and more intensive studies (Dark

and Allen, 2006), and compare it with mid-Holocene banded

silts of salt marsh origin. The Severn Estuary � a large,

complex and energetic system (Dark and Allen, 2005) �
displays seasonal variations in the relative importance of

different sources of plant-related and mineral debris, which

are expected to be registered in the deposited muds. The

input of mineral and variously degraded plant tissues

(exogenous sources) increases from the warm to the cold

season. As well as affording root matter, the plants that

flourish on the marshes during warm months decay to

produce litter in the cold season (endogeneous sources),

some finding its way during storms into tidal waters. The

estuarine water-body is itself a huge reservoir of detritus of

all origins.

That seasonality should be sought in estuarine sediments is

important for several reasons. Sedimentologically, it advances

understanding of the role and pace of sea-level and coastal

change during Holocene sequence-building (Allen and Haslett,

2002, 2006). Environmentally, it is indicative of climate and

climate-variability (Allen and Haslett, 2006). Archaeologically,

it can provide short-range, high-resolution chronologies

and, especially through work on footprints (Allen et al.,*Author for correspondence (e-mail: j.r.l.allen@reading.ac.uk)
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2003), help identify the seasons when wild herbivores and

humans exploited coastal wetlands.

Sites and field sampling

Northwick and Aust Warths
Modern sediment samples and plant material were collected

from the mudflat known as Northwick Oaze and the formerly

grazed salt marsh called Aust Warth, the northeastward

extension of Northwick Warth (Figure 1B, 2). Active marshes

here occur at three, seaward-descending, levels (Allen and Rae,

1987; Strawbridge et al., 2000; Haslett, 2006), indicative at

progressively later dates of inception after a phase of down-

cutting and marsh-edge retreat (Allen, 1989).

The marsh vegetation (Smith, 1979; Dark and Allen, 2006) is

tidally zoned (Figure 2). Uppermost is Elytrigia atherica (sea

couch, Agropyron pungens; 7.7�8.2 m OD), sharply transi-

tional to Festuca rubra (red fescue; c. 7.2�7.7 m OD), in turn

grading rapidly to Puccinellia maritima (common salt-marsh

grass; c. 6.2�7.2 m OD). Spartina anglica (common cord-grass)

gradually increases seaward downward from an altitude of

7.4 m OD, dominating from 4.2�5.9 m OD together with

Salicornia (glasswort). Five plant species (above-ground bio-

mass) were sampled for geochemical analysis.

Silt suspended in the estuarine waters was trapped at three

stations over periods of two days on three occasions in 2004

when sources of plant material were likely to differ (early

January, early May, latest August). Anchored, shallow plastic

trays and large, partly buried plastic beakers were positioned

at two points (stations 2 and 3) on Aust Warth and at a site

(station 1) on Northwick Oaze (Figure 2). The beakers were

not used at stations 2 and 3, however, until May and August.

Tens to hundreds of grams of mud accumulated in a trap on

each occasion, nominally representing four tidal cycles.

Grain-size distributions were measured with a Coulter

LS230 laser-granulometer, following a described protocol

(Allen, 2004) that excludes hydrogen peroxide treatment

(Allen and Thornley, 2003). The sediments proved to be

sandy-clayey silts. In terms of the average arithmetic mean

size, the May and August deposits were 15% and 29% finer-

grained, respectively, than the January ones. As the tray and

beaker samples did not differ significantly, isotope analyses

were limited to the organic fraction present in the former, as

described below.

Gold Cliff
The mid-Holocene deposits exposed on the Welsh coast of the

Severn Estuary (Figure 1) include two, metre-scale, units of

banded estuarine silt of salt-marsh origin traceable laterally for

c. 15 km (Allen and Haslett, 2006). A short monolith from the

lower bed, dated to the middle of the second half of the fifth

millennium BC, was taken just to the east of Gold Cliff and

subsampled in contiguous 5 mm slices followed by laser

analysis (Allen, 2004). Values for the arithmetic mean grain-

size of these sandy-clayey to clayey-sandy silts display through

a sequence of five complete bands a bold pattern of sharp

maxima (subsamples W1�5) and minima (subsamples S1�5)

considered to be seasonally determined (Figure 3). Indepen-

dently, these subsamples proved to have pollen and spore

assemblages that differed subtly but significantly in terms of

season of deposition (Dark and Allen, 2005). Isotope and C/N

analyses were made of the organic fraction extracted from

these subsamples.
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Figure 1 Southwest England (A) with the Severn Estuary Levels
(B) showing the localities and sample stations mentioned in the
text

Figure 2 Transect across Aust Warth showing the three levels of salt marsh, the botanical zonation and the location of marsh and mudflat
sampling stations (after Dark and Allen, 2006). The marsh-edge cliff at Northwick Warth and station 1 on the adjoining mudflat (Northwick
Oaze) are superimposed schematically on the transect. HAT, highest astronomical tide; MHWST, mean high-water of spring tides;
MHWNT, mean high-water of neap tides
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C/N and d13C isotopic methods
Plant specimens from Aust Warth were dried after collection

and freezer-milled to a fine powder. The suspended sediments

(Northwick and Aust Warths) and mid-Holocene silts (Gold

Cliff) were freeze-dried, ground to a fine powder and treated

with 5% HCl overnight to remove inorganic carbon (shell

debris, early-diagenetic carbonate).
13C/12C analyses were performed on plant and sediment

powders by combustion in a Carlo Erba 1500 online to VG

Triple Trap and Optima dual-inlet mass spectrometer with

d13C values calculated to the VPDB scale using a within-run

laboratory standard calibrated against NBS-19 and NBS-22.

Replicate analysis of well-mixed samples indicated a precision

of9/B/0.1� (1s). The weight ratios of organic carbon to total

nitrogen (C/N) are analysed on the same instrument and

calibrated against an acedanalid standard. A precision of

9/0.1 (1s) was indicated by replicate analyses.

C/N and d13C isotope results and interpretation
The application of d13C and C/N ratios to estuarine sediments

rests on the observation that such sediments include organic

material both from indigenous plants and material transported

with the tide or from a river catchment.

Tidal salt marshes typically are densely covered with

vascular plants, whereas mudflats and sandflats found at

lower levels have only a variable coating of algae and tidal-

derived organic material (mostly phytoplankton). As the

latter normally has higher d13C values than freshwater

phytoplankton and indigenous vascular plants, height within

the tidal frame can often be deduced from sediment d13C

values and C/N ratios (eg, Wilson et al., 2005a,b). C3 vascular

plants typically have d13C values of between �/32� and �/

21� (Deines, 1980) and relatively high C/N ratios of �/12

(Prahl et al., 1980), as they consist chiefly of N-poor lignin

and cellulose. In contrast, C4 plants (Deines, 1980) have much

higher d13C ratios of around �/13� (range �/17� to �/

9�). On British salt marshes, C4 plants have only become

widespread since the nineteenth century (eg, Preston et al.,

2002) and their remains will be sparse or absent from pre-

modern deposits. Freshwater algae in C3-dominated environ-

ments tend to have lower d13C values (�/26� to �/30�)

(Schidlowski et al., 1983; Meyers, 1994) than marine algae

(�/16� to �/23�) (Haines, 1976; Tyson, 1995). Again in C3

environments, fluvial d13CPOC values reflect the relative

contributions of freshwater phytoplankton (�/30� to �/

25�) and particulate terrestrial organic matter (�/33� to

�/25�) (eg, Salomons and Mook, 1981; Middelburg and

Nieuwenhuize, 1998; Barth et al., 1998).

Aust Warth and Northwick Oaze
The limited range of plant species available for analysis is

typical of western British marshes (Figure 2, Table 1). Elytrigia

altherica (high marsh) has a d13C value of �/27.1�, whereas

the lower marsh plants yield a mean value of �/26.69/0.3�,

excepting Spartina anglica (�/12.4�). The latter, a C4 plant,

arose c. 1890 as an amphidiploid from S. x townsendii (itself a

hybrid of the native S. maritima and introduced S. alterniflora)

(Goodman et al., 1969). Both S. anglica and S. x townsendii are

invasive and widely planted.

Turning to the suspended silts (Figure 3, Table 1), some

geochemical distinctions are possible between the seasons,

albeit small in terms of d13C. Overall, the January samples are

different from the quite similar muds collected in May and

August. The mean d13C from the three locations is marginally

lower in January (�/24.19/0.3�) than in May and August

(�/23.99/0.1�, �/23.89/0.0�), although the difference is

almost analytical error. C/N ratios are higher in January

(17.29/1.4) compared with May (14.49/1.6) and August

(13.09/0.6). Higher C/N ratios (16�19) suggest an increased

proportion of river-imported detritus (C3 plants), an inter-

pretation supported by the slightly lower d13C values

(�/24.1�) than in summer (�/23.8�). Slightly higher d13C

(�/23.8�) and lower C/N (12�15) suggest proportionately

more algae in the summer months and less organic material

from fluvial/terrestrial sources. British intertidal phytoplank-

ton typically have high d13C ratios (�/16� to �/21�) and low

C/N ratios (4�6), and so summer phytoplankton blooms

would act to increase the contrast with the material imported

by rivers in winter. There seems to be little discernible

difference in d13C and C/N between the mudflat (station 1)

and the marsh (stations 2, 3), suggesting that the patterns we

describe are consistent across the area.
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Figure 3 Summary of textural data (data of Allen, 2004; Dark and Allen, 2005) and geochemical analyses (this paper) for the mid-Holocene
banded silts collected from Gold Cliff. The sedimentary bands B1�B5 are as defined by Dark and Allen (2005)
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Gold Cliff
The mid-Holocene data from Gold Cliff (W1�5, S1�5) exhibit

cyclical patterns (Figures 3 and 4; Table 1) that can be

tentatively linked to the above observations from the modern

environment, though generally the proportions of organic C

and N are very low (B/1%), and thus the C/N values should be

treated with some caution.

Overall, the S subsamples yield lower C/N ratios (c. 10) and

slightly higher d13C values (mean �/25.69/1.0�) than the W

subsamples, suggesting perhaps a higher algal content and

relatively lower fluvial input. A greater river supply is indicated

by the W subsamples, which yield higher C/N ratios (c. 12) and

slightly lower d13C values (mean �/26.19/0.2�), although

again the d13C difference is close to analytical error. The

cyclical pattern is especially clear in the case of bands B2, B3

and B4, but for B1 and B5 is less marked, pointing in their case

to possibly little seasonal difference between the sources of

plant matter. Standing out from all the others is subsample S1,

with its higher organic content, much higher d13C ratio and

lowest C/N value, which may record a particularly fruitful or

prolonged growing season (see below).

Discussion

The January silts from Aust Warth and Northwick Oaze are

significantly coarser grained than the May and August

deposits because, as argued elsewhere (Allen, 1990, 2004),

winter waters are observed to be colder and stormier than in

other seasons, and therefore able to hold coarser sediment.

By the same token, the W and S subsamples from Gold Cliff

are respectively ‘cold-season’ and ‘warm-season’ deposits

(Allen, 2004). These sets of subsamples also differ palynolo-

gically, in a manner consistent with modern patterns of

flowering and sporulation (Dark and Allen, 2005), affording

independent proof of the same seasonality. Geochemically, we

suggest that the modern silts also exhibit seasonal differences

that, used as a model, assign the S and W subsamples from

Table 1 Data for d13C and C/N on organic material from Aust Warth and Northwick Oaze and from Gold Cliff, Severn Estuary Levels

Sample description Environment d13Corganic � C/N

Modern plant species

Elytrigia atherica high marsh �/27.1 110.4

Puccinellia maritima low marsh �/26.3 27.8

Aster tripolium low marsh �/26.7 15.1

Triglochin maritima low marsh �/26.9 23.2

Spartina anglica very low marsh �/12.4 27.6

Mean (9/1s) �/23.99/6.4 40.89/39.3

Modern suspended organic matter (January)

Northwick Oaze mudflat (st. 1) �/23.9 18.7

Aust Warth salt marsh (st. 2) �/24.0 16.0

Aust Warth salt marsh (st. 3) �/24.4 16.8

January mean �/24.19/0.5 17.29/1.4

Modern suspended organic matter (May)

Northwick Oaze mudflat (st. 1) �/23.9 13.3

Aust Warth salt marsh (st. 2) �/24.0 13.8

Aust Warth salt marsh (st. 3) �/23.9 16.3

May mean �/23.99/0.1 14.49/1.6

Modern suspended organic matter (August)

Northwick Oaze mudflat (st. 1) �/23.8 13.7

Aust Warth salt marsh (st. 2) �/23.8 12.5

Aust Warth salt marsh (st. 3) �/23.8 12.9

August mean �/23.89/0.0 13.09/0.6

Mid-Holocene banded silts (Gold Cliff)

S1 salt marsh �/23.9 9.2

S2 salt marsh �/25.8 10.6

S3 salt marsh �/25.6 9.8

S4 salt marsh �/26.2 10.0

S5 salt marsh �/26.4 11.8

Mean �/25.69/1.0 10.39/1.0

W1 salt marsh �/26.2 9.8

W2 salt marsh �/25.9 11.6

W3 salt marsh �/26.0 13.2

W4 salt marsh �/26.5 14.1

W5 salt marsh �/26.0 11.0

Mean �/26.19/0.2 11.99/1.7
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Figure 4 Mean d13C values versus mean C/N ratios for modern
samples collected from Aust Warth and Northwick Oaze in
January, May and August, and the mid-Holocene subsamples
W1 � 5 and S1 � 5 from Gold Cliff. Error bars represent one standard
deviation. See also Table 1
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Gold Cliff as otherwise to warm and cold seasons, respec-

tively (Figure 4, Table 1).

There are nonetheless differences in the ranges of the d13C

and C/N values between the modern and mid-Holocene

sediments, with the modern ones having higher d13C values

(�/24.4� to �/23.8�) and C/N ratios (12.5�18.7) than the

earlier silts (�/26.5� to �/23.9�; 9.2�14.1). Two factors may

explain this.

The presence of Spartina anglica may account for the higher

values in the modern silts. C4 grasses can have C/N ratios of

above 30 and significantly higher d13C ratios than C3 plants

(Meyers, 1994), which would serve to increase the bulk

sediment C/N ratios and d13C values of the modern samples

compared with the probably C4-free older ones. The modern

and older marshes could have differed botanically in other

ways, as suggested by the much higher proportion of Cheno-

podiaceae pollen in the mid Holocene than the modern

samples (Dark and Allen, 2005, 2006).

A second possible factor is the abundant, mining-related,

detrital coal-dust present in the modern sediments of the

Severn Estuary, which can be removed or quantified using

various techniques (Allen, 1987; French, 1993, 1998). However,

as dissolved organic carbon can be adsorbed by detrital coal,

the physical removal of coal from samples could bias the

biogeochemistry of what remained (Hedges and Keil, 1995;

Ransom et al., 1997). Removal was not attempted, but we

analysed steam coal from the region and detrital coal from silts

of mid twentieth-century date (effectively the average coal

in the system). These gave mean values for d13C and C/N of

�/23.39/0.9� and 41.09/0.3, respectively. If the d13C values

and C/N ratios of detrital coal were significantly different from

river-derived organic matter, then this addition may be a

significant contaminant to sedimentary organic material. As

Table 1 shows, however, the two ratios fall squarely in the

ranges for the salt-marsh plants. As increases in the amount of

coal in the silts will correspond to growth in the relative

proportion of river-imported terrestrial plants compared with

halophytes (with higher d13C values and lower C/N ratios), the

effect of detrital coal on d13C and C/N can safely be neglected.

As commonly observed elsewhere (Lamb et al., 2006), the

d13C values for the mid-Holocene silts are lower than the

otherwise similar modern sediments. Diagenetic changes in

bulk sediment organic d13C can be particularly significant, and

take place relatively quickly because of the differing isotopic

compositions of labile and refractory plant compounds (eg,

Ember et al., 1987; Chmura and Aharon, 1995; Mallamud-

Roam and Ingram, 2001). The refractory lignin of vascular

plants, for example, is lower in d13C by 2�6� relative to the

whole organism. Thus d13C values are forced toward those of

lignin by the preferential decay of labile compounds (Ember

et al., 1987; Benner et al., 1987, 1991; Wilson et al., 2005b).

The correspondence of the d13C and C/N values to

independent textural and pollen-based interpretations of the

banded mid-Holocene salt-marsh silts from Gold Cliff suggests

that the geochemical data also record seasonal changes in

organic-matter sources (Figures 3 and 4; Table 1). In the

coarse-grained sediments (W1�5) there are lower total pollen

concentrations, pollen from chiefly autum or early-spring

flowering plants, and relatively high proportions of pollen

and spores likely to have been transported by rivers during the

cold season when discharges are greatest. The fine-grained

parts (S1�5) have higher total pollen concentrations and higher

proportions of late-spring to summer flowering plants, point-

ing to origin in the warmer months. The interpretation of the

isotope and C/N data supports these various observations. For

instance, the degree of fluvial transport, apparently greatest

during the cold months, is reflected in the higher C/N values

(c. 12) and marginally lower d13C values (mean�/26.1�) for

the W silts than the S deposits. Additionally, the larger contrast

in mean particle size between S1 and W1 in band B1 is also

evident in the d13C ratios, with S1 yielding a particularly high

value compared with other warm-season deposits. This could

reflect an unusually strong algal bloom on the marsh that

would also explain the low C/N ratio of 9.2. Similarly, the least

contrast texturally between the seasonal subsamples occurs in

B5, which Dark and Allen (2005) suggest to mean a winter

milder and less stormy than normal, followed by a summar

cooler than usual. Supporting this interpretation, the isotope

data for S5 and W5 also show little contrast. Bands B2�B4

show the strongest cyclical patterns in terms of C/N ratio, with

d13C having less variation.

Our findings, based on a comparatively small number of

samples, are preliminary, and caution should therefore be

excercised in applying them to environmental reconstruction.

Neverthless, because of known variations in the relative

contribution of organic material from different sources to the

Severn Estuary, our results from modern and seasonally

banded estuarine silts suggest that isotope values and C/N

ratios have the potential to (1) distinguish between sediments

deposited at different times of year, and (2) hint at the quality

of seasons and the extent of interannual variability. Future

work will be directed at fully testing the seasonal changes in

d13C and C/N ratios in sediments of salt-marsh origin as the

result of high-frequency sampling over a sequence of years.
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