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Motion Planning for Multitarget Surveillance
With Mobile Sensor Agents
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Abstract—In the surveillance of multiple targets by mobile
sensor agents (MSAs), system performance relies greatly on the
motion-control strategy of the MSAs. This paper investigates the
motion-planning problem for a limited resource of M/ MSAs in
an environment of IV targets (M < N). The kinematics of
the MSA is modeled as a point mass moving at a constant speed
with a bounded turning radius. Based on the fact that the track
information of each target degrades over time, the motion-plan-
ning problem is formulated as an optimization problem whose
objective is to minimize the average time duration between two
consecutive observations of each target. In the case of a single
MSA, the motion-planning problem is further interpreted so
as to find a time-optimal loop path to traverse the targets. A
gradient-approximation algorithm is then proposed to generate a
suboptimal loop path for a mobile agent to traverse a sequence of
target points. For the multi-MSA-multitarget case, a cooperative
online motion-planning approach is developed.

Index Terms—Cooperative motion control, mobile sensor agents
(MSAs), multi-MSA-multitarget (MMMT) tracking, robot motion
planning, sensor management, uninhabited air vehicles (UAVs).

1. INTRODUCTION

HERE has been growing interest in performing target

surveillance with mobile sensor platforms in recent years.
In complex and dynamic environments such as transportation
systems, flow networks, or battlefields, networked mobile
sensor platforms are expected to be capable of adapting them-
selves to changes of the environment as well as target locations.
Different from traditional sensor platforms, modern mobile
sensor agents (MSAs) usually have a smaller field of view
around a local area, and cannot cover the whole domain of
interest all the time. As a result, the motion control of the MSAs
becomes a crucial part of a successful surveillance system,
especially when the resources of MSAs are limited (i.e., the
number of MSAs < the number of targets). Meanwhile, the
possible nonholonomic constraints (e.g., minimum/maximum
speed, minimum turning radius) on the MSAs, which is often
the case in reality, complicates the corresponding solution
strategies.
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This paper studies the cooperative motion-planning problem
for monitoring N targets by M MSAs (M < N). The work
is motivated by the application for uninhabited air vehicles
(UAVs) in both military [1]-[3], [7] and civilian surveillance
systems [5]. The MSA here is modeled as a nonholonomic
point mass moving on a two-dimensional (2-D) plane at a
constant speed with a bounded turning curvature. This model is
also called the Dubins car in the literature [10], [13], [14], [17],
[19], [22], and has been widely used as the kinematic model of
UAV by researchers [3], [4], [21], [39]. Each MSA is assumed
to have an onboard sensor with a limited local field of view
around itself, as illustrated in Fig. 1(a). It is also assumed that
the MSAs move much faster than the targets do, which agrees
with reality in UAV applications.

An example of the multi-MSA-multitarget (MMMT) scenario
is shown in Fig. 1(b). In order to keep the targets in surveillance
with limited MSA resources, the members of the MSA team
have to fly back and forth to update the targets’ status. There-
fore, the motion planning in such an MMMT environment has
to consider not only how each MSA goes from one point to an-
other, but also which target (or target set) each MSA should take
care of. This is essentially a combination of the problems of
sensor resource management and robot motion planning. The
main purpose of this work is to seek a systematic framework for
designing a real-time implementable motion-planning approach
for the MMMT scenario.

A. Related Work

Although both the problems of sensor resource management
and robot motion planning have been intensively studied for
decades, very few available methods can be directly applied to
the MMMT scenario.

Most previous robot motion-planning approaches assume
that a simple, specific origin-to-destination configuration is
given to each agent, so that their main focus is usually on
the optimal path generation between two predefined positions
[10]-[19], [22], [23], [25]-[28]. However, with limited re-
sources of MSAs, the task for each MSA often covers more
than one target, which cannot be interpreted as a simple
end-to-end configuration problem. Meanwhile, distinct from
many traditional motion-planning applications (e.g., target
search [1], [2], [8], [9] and target engagement [3], [24]), the
surveillance job here does not end after each target is visited.
The MSAs have to come back to the targets repetitively to
update their status. The optimal path for a given cycle is not
necessarily optimal in the long run.
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Fig. 1. (a) MSA and its footprint. (b) Example of the MMMT scenario.

On the other hand, the majority of previous work in the area of
sensor resource management treats the sensor-control problem
as (or similar to) a sensor-scheduling problem [29]-[32]. The
cooperation of multiple sensors is often achieved by choosing
different sensors (or sensor modes) for different tasks (targets)
at different times. Motion planning is not involved in most pre-
vious approaches, which may not be a problem, as these ap-
proaches are applied to sensor platforms with large global cov-
erage. As for mobile sensor platforms, however, controlling the
sensors is not merely to assign them tasks or schedules, but to
find them optimal motion plans.

Among the very few approaches in dealing with cooperative
multisensor motion planning, Parker et al. [34] formulated the
motion-planning problem as an optimization problem, whose
objective is to maximize the collective time during which each
target is monitored by at least one sensor agent. An approxi-
mation method based on the ALLIANCE architecture has been
proposed in [34]. The motion control of each agent is achieved
in an implicit way by a force vector. The force vector is essen-
tially a tradeoff among different subgoals to keep the agents
within a certain distance of the targets, as well as away from
each other. Real-world experiments have demonstrated the fea-
sibility of this approach with sufficient sensor resources. Jung et
al., on the other hand, suggest a region-based approach for coop-
erative multitarget tracking in a structured environment in [35],
in which the whole area of interest is assumed to be divided into
topologically simple regions. The objective of individual motion
control is formulated to locate each agent a certain distance from
the center of gravity of targets that it is tracking. However, the
cooperation among the robots within the same region for mul-
titarget tracking is not mentioned. Cortes et al. [36] studied the
multisensor localization problem in a polygonal environment
and developed a gradient-descent algorithm to realize optimal
coverage and sensing policies. Each sensor agent is expected to
converge to its optimal location and stay there. Similar to the
other two methods mentioned previously, no motion constraints
are considered, which makes it very difficult to apply these ap-
proaches directly to nonholonomic sensor agents with a min-

(b)

imum-speed constraint, such as the Dubins car. Walker et al. ad-
dressed the multi-agent-multitarget path-planning problem for
the Dubins car in [39]. In their approach, the coupled target as-
signment and path-planning problems are solved at the same
time by searching over a tree of stepwise feasible flying paths.
The real-time A* algorithm [33] is used to find a suboptimal
path for each agent. By considering the effect of sensor foot-
print, this approach is capable of finding a suboptimal path for
each agent, which is not necessary to pass the targets, as long as
they will be covered by the sensor footprint. Unfortunately, it is
still difficult to fit this method into the multitarget surveillance
problem addressed here due to the following reasons. First, al-
though this method allows the targets to be visited multiple
times, the number of visits on each target has to be predeter-
mined before path planning. Meanwhile, visiting a target mul-
tiple times does not necessarily lead to a good tracking per-
formance. It is how these multiple observations are made in
the time domain that determines the tracking performance. Fur-
thermore, all of the targets are assumed to be strictly static in
Walker’s approach [39]. Thus, the objective of path planning
is to generate the shortest feasible paths for the MSAs to tra-
verse the targets once or multiple times. There is no replanning
scheme in dealing with a dynamic environment with moving
targets. There is some other research work that is related to the
problem or a subproblem of the problem addressed here, such
as [9], [20], and [21].

B. Main Contributions

As pointed out in [34], the general MMMT motion-planning
problem is NP-hard, both in the number of targets and in the
number of sensor agents. Thus, looking for the global optimal
solution is not only computationally prohibitive, but also unsuit-
able for a dynamic environment with moving targets. To find
a practical method that is feasible in real-world applications, a
suboptimal approach with much less computational load is pro-
posed in this paper.

The main contributions of this paper are the following.
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1) Based on the fact that the uncertainty of a target status is
proportional to how frequently the target track is updated,
the motion-planning problem is modeled as an optimiza-
tion problem, whose objective is to minimize the average
time duration (ATD) between two consecutive observa-
tions of each target. This formulation is distinct from pre-
vious approaches [32]-[36], [39], and can be applied to
general surveillance and information-gathering problems
with limited sensor resources, in which one target can be
a building, an intersection, a car under surveillance, or a
military unit.

2) A computationally efficient gradient-based method is
developed to determine a suboptimal loop path for a
single MSA to traverse multiple target points (i.e., the
single-MSA-multitarget (SMMT) case). The path search
is conducted in a reduced search space, in which we have
proved that the global optimal path always lies. This
method can also be applied to the general multitarget-en-
gagement problem.

3) A decentralized online motion-planning algorithm for
multitarget tracking by multi-MSAs is proposed. At
each time instant, we further decouple the MMMT
motion-planning problem into several disjoint SMMT
problems based on heuristic but computationally ef-
ficient rules, which links the traditionally separately
studied sensor resource-management problem and robot
motion-planning problem together. Also, an online
replanning scheme is developed to deal with moving
targets.

The rest of the paper is organized as follows. Section II gives
the problem statement. The existing methods for the simplest
single-MSA-single-target (SMST) case is briefly reviewed in
Section III. Then, a suboptimal path-generation approach for an
MSA of type Dubins to traverse a set of target points in min-
imum time (i.e., the SMMT case) is introduced in Section IV.
After that, a target-based online motion-planning algorithm for
the MMMT case is proposed in Section V, followed by the cov-
erage stability of the approach discussed in Section VI. Simula-
tions and results are shown in Section VII. Finally, conclusions
are given in Section VIIIL.

II. PROBLEM STATEMENT

Consider a team of M homogeneous MSAs, each of which is
modeled as a nonholonomic Dubins car [10]

@ j(t) = Var cos (1)
gj (t) = V]\,[ sin ﬁj(t) (1)
0i(t) = wi(t), s (D] <

Ry
where s;(t) = (z(t),y;(t)) € R? and 9;(t) € [0, 27] denote
the horizontal position and orientation of agent j, j = 1,..., M
at time instant ¢, respectively. V3 is the speed of the MDASs, Ry
is the minimum turning radius, and w;(¢) is the control input.
The task of the MSAs is to monitor a number of ground tar-
gets Q = {¢;}, i = 1,...,N, where ¢; = (gix, ¢iy) denotes
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the expected ground position of target 7. Without further no-
tice, we will use ¢ and 5 as the indexes for the targets and the
MSAs, respectively, in the rest of this paper. Each MSA is as-
sumed to have an onboard sensor with a restricted local field of
view around itself. In this paper, the footprint of MSA 7 at time
instant ¢ is defined as a small circle centered at s,(t), as shown
in Fig. 1(a). However, the general result developed here can be
extended to other footprint shapes. The sensors are assumed to
be reliable, so that a target is observed when it is inside the foot-
print of any one of the MSAs. Here we further assume that when
one MSA is going to check the status of target ¢, it will come
over on top of the estimated position of the target (¢;). In other
words, it will locate the center of its footprint at ¢;. One may
argue that it is not necessary to have the sensor footprint cen-
tered at the target to make the observation, and a better path may
be achieved by considering taking advantage of the effect of the
footprint [33], [39]. As we will show later in this paper (Sec-
tion VI), this approximation not only simplifies the problem, but
also increases the robustness and stability of a motion plan for
the MSA in dealing with the undeterministic motion of moving
targets.

With limited resources of MSAs (i.e., M < N), the targets
may not always be inside the footprints of the MSAs, in general.
Assuming that the speed of the MSA is much faster than that of
the targets, what the MSAs have to do is to cooperatively hover
around the targets to keep them under surveillance.

To mathematically formulate this motion-planning problem,
we start from the simplest single-target case. An important
feature of the target track is that the uncertainty of the track
information increases as the target is off observation until it
is recaptured by the MSAs, which means the tracking perfor-
mance depends on how frequently the target track is updated.
Therefore, the motion-planning problem here can be posed as
an optimization problem whose objective is to minimize the
ATD between two consecutive observations of the target. In the
case of multiple targets, the optimization goal is to minimize
the mean of the ATD between two consecutive observations of
each target, as follows:

1 N
T= Z;ATDi )

where ATD; is the ATD between two consecutive observations
of the ¢th target.

Equation (2) can be regarded as a generic form for the general
information-gathering problem with limited sensor resources, in
which one target can be a building, an intersection, a car under
surveillance, or a military unit. This formulation is distinct from
previous approaches [32], [34]-[36], which conforms to the fact
that with limited MSA resources, the desired motion plan of
the MSAs should appropriately distribute their effort/time not
only in the target domain (or space domain), but also in the time
domain.

In the rest of the paper, we shall address the motion-plan-
ning problem described by (2) step by step, starting from the
simplest SMST case (Section III), to the more complicated
SMMT case (Section IV), and finally to the general MMMT
case (Section V).
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Fig. 2. Example of finding the minimum-time trajectory.

III. TIME-OPTIMAL MOTION PLANNING FOR
SINGLE-TARGET ENGAGEMENT (SMST CASE)

When there is only one MSA and one target, the motion-plan-
ning problem (2) is equivalent to the traditional single-target en-
gagement problem [10]-[19], [22]

ty
Minimize J = / dt subject to (1)

to

with S(to) = qo,ﬁ(to) = 190, S(tf) =q1, ’19(tf) = 1. 3)

Note that in different applications, the initial and final condi-
tions (i.e., o, Yo, q1, and 1) can be either fixed or free. The ear-
lier work of Dubins [10] has proved the existence of a time-op-
timal path for a system of type (1). More recently, Reeds and
Shepp [11] have extended the work to the case that the robot can
move both forward and backward. Meanwhile, Sussmann [16]
and Boissonnat [17] have solved the problem using Pontryagin’s
Maximum Principle, which coincides with the following the-
orem given by Dubins in [10].

Lemma 1: For the time-optimal control problem described
in (3) with any initial and final configurations, there exists a
minimum-time trajectory x* for system (1), which is a com-
bination of arcs from circles (which we shall denote as C')
and straight-line segments (which we shall denote as L). More
specifically, the time-optimal path x* is a subpath of a path of
type circle-line—circle (CLC) or of type circle—circle—circle
(CCC).

Practically, the minimum-time trajectory, as well as the cor-
responding control »*, can be determined by simple geometric
methods, which basically choose the shortest path from a finite
set of extremal trajectories. An example of seeking the optimal
trajectory is shown in Fig. 2. In this example, there are only four
candidate paths that satisfy Lemma 1, which are Cy, LCR (i.e.,
a left-turn arc followed by a straight line and a right-turn arc),
CrLCyr, CrLCy, and Cgr LCR. The minimum-time trajectory
in this case is Cr LCr. More complete discussions on how to
geometrically synthesize the optimal trajectory can be found in
[13]-[16].

Remark 1: The geometric method provides us a conve-
nient way to specify the minimum-time trajectory for an

end-to-end problem. This computationally low-cost feature of
the geometric solution to the SMST problem is very helpful in
developing our algorithm for the multitarget case.

IV. A SUBOPTIMAL MOTION-PLANNING APPROACH
FOR THE SMMT CASE (M =1, N > 1)

In this section, we focus on the case of a single MSA (M = 1)
monitoring multiple targets (N > 1). Given a specific list of
targets, an MSA has to move around and update the status of the
targets one after another. Here, we further assume that the targets
are spread in the field of interest, with considerable distance
between each other. In the case that several targets are very close
to each other, we can replace them by a pseudo target. Thus,
the corresponding motion plan for the MSA is a traverse path.
By traverse, here we mean one MSA visiting each target once
along such a path. Since the surveillance job is not finished after
one cycle, what we are looking for is actually a loop path. To
minimize (2), the MSA has to execute the traverse loop as fast
as possible. Similar to (3), we can rewrite (2) for this case as the
following time-optimal control problem:

N
1
argminJ (Q'|Q" = {¢} € Q) = — T; subject to (1
g min (@@ ={a} €)=« ; j (1)
with s(to) = qf, s(to +T;) = ¢. 4

where ¢y = q(, € is the collection of all permutations of the
target set Q@ = {¢;}, and T; is the flying time between ¢, _; and
¢} due to the controller w.

Although motion planning for the single-target case is quite a
mature area, the extension of the available methods to the multi-
target case is a nontrivial problem. As (4) implies, to find the op-
timal motion plan, one has to search for the best traverse order,
as well as the time-optimal trajectory for it. The number of pos-
sible suboptimal trajectories in the search space increases expo-
nentially as the number of targets increases. For example, a set
of N targets will lead to (IV — 1)! distinct traverse order (rather
than N!, due to the symmetry of a loop), which makes it very
difficult to achieve the optimal path, since the search space is lit-
erally (N — 1)! times bigger. Fortunately, since we are looking
for a loop path in the MSA-target scenario, the desired path is
usually in a circle pattern around the geometric center of the
targets. Based on this heuristic observation, here we develop
the following geometric method with much less computational
complexity (O(N log N)) to determine a suboptimal traverse
order first.

A. Determination of the Traverse Order

The geometric method to determine the traverse order con-
sists of three steps.
1) Calculate the geo-center (7) of the target set QQ = {¢; }.
2) Calculate the orientation («;) of each target point (g;)
with respect to the center g, as shown in Fig. 3.
3) Sort the target points by {«; }, and the result is chosen as
the traverse order.
After determining the traverse order, the motion-planning
problem for the SMMT case further reduces to a preordered
multitarget-engagement problem.
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Fig. 3. Example of determining the traverse order.

B. Motion Planning for the SMMT Case With a Given Traverse
Order by Approximated Gradient Decent

Definition 1: Given a target set Q = {q; }i=o,... N—1, an im-
pact angle configuration © is the set of impact angles © =
{0:}i=0,... n—1, where §; denotes the orientation of the MSA
as it passes target .

Definition 2: A motion plan x(Q,0) = {x:(Q,©)} is an
admissible motion trajectory for the MSA to traverse a pre-
ordered target sequence ) = {¢; }i=o0.... n—1, Where x;(Q, O)
denotes the subpath of x(Q) from ¢; to ¢;4+1. Note that in the
case of a loop path, gx = qo.

The time for the MSA to execute a motion plan x is then
denoted as J(x).

Definition 3: A motion plan x(Q, ©) is a Dubins path if each
subpath x;(Q, ©) of x(Q, ©) is the time-optimal path between
¢; and ¢4 that satisfies (3).

Lemma 2: Given a target set () and its impact angle configu-
ration O, there exists a motion plan that is a Dubins path, which
is denoted as x(Q, ©).

Lemma 2 is a direct result from Lemma 1, which also leads to
the following corollary and proposition.

Corollary 1: Given two impact angle configurations (0, ©')
and the corresponding Dubins paths x(Q, ©) and x(Q,©®'), if
6; = 0, foralli = 0,...,N — 1, except for i = *, then we
have ¥,;(Q,0) = ¥:(Q,0) foralli = 0,..., N — 1, except for
1 =1¢* —1and*.

Proposition 1: Define T'(QQ) as the collection of Du-
bins paths for all possible impact angle configurations:
I'Q) = Usix(Q,0)}, where x(Q,©) denotes the Dubins
path that traverses () with impact angle configuration ©. If a
motion plan x* is the global minimum-time plan, it follows
that x* € I'(Q).

Remark 2: Proposition 1 tells us that given any impact angle
configuration ©, the only candidate for the global time-optimal
path is the Dubins path x(Q, ©).

Therefore, in order to obtain the time-optimal path, we can
minimize J(x(Q,©®)) by searching in the reduced path space
I'(Q). An intuitive way to realize that is to use the gradient
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Fig. 4. Example for the SMMT case (N = 5). (a) Suboptimal path without
flipping. (b) Suboptimal path with flipping. (c) Length comparison.

method. However, the nature of the Dubins path is space-de-
pendent, which cannot be formulated in a simple explicit way,
andsois J(x (@, ©)). Meanwhile, the cost function J (x(Q, ©))
may not even be differentiable, as some subpaths of )y change
their types. To deal with this problem, we use the following gra-
dient approximation method.

Consider two different impact angle
0 = {907917~-~79i7-~-79N—1} and © = 2
Ot Let x = x(Q,0) and X' = x(Q,0")) be the
corresponding Dubins paths. According to Corollary 1, we
have

TO0) = J(X) = J(xi—1) + T(xi) = T (Xic1) = T () - 5)
Based on (5), we can approximate the gradient function
Jo.(x) as
9J(x) T =J(x7)
a0; = 2A0
_ J(XELA)"‘J(X;L)_J (X;71)_J(Xi_) (6)
B 270
where xT = %(Q,{0o,...,0; + A0,0;11,...,0n_1}) and
X = X(Ql {907 ey 61 - AH 0i+17 LR 01\771})'

Remark 3: One important feature of (6) is that the change of
the impact angle of one target point ¢; only affects two subpaths
of x: xi—1 (from ¢;_1 to ¢;) and x; (from ¢; to ¢;+1). Thus,
the computational complexity of calculating the approximated
gradients V.Je is just O(N), which is equivalent to that of the
traditional gradient method, rather than O(N?).

With the help of (6), we can search for a suboptimal path in
a recursive way, as the traditional gradient method does. The
corresponding update equation for © is

O(k+1) = 0(k) —nVJe (7)

where 7 controls the convergence speed of the algorithm.

Fig. 4(a) shows an example of suboptimal path obtained by
the approximated-gradient method introduced above. The initial
condition O(#g) is randomly chosen. Although the global op-
timal path is always contained in the reduced search space I'(Q@),
and the approximated-gradient method provides us a fast way
to find a local optimum, the convergence of this method toward

configurations
{6o,01,...,0;
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Fig. 5. Tllustration of the check-and-flip procedure. (a) Before flipping.
(b) After flipping.

the global optimum is not guaranteed. Unlike the single-target
case, there are many local minima for the multitarget-traverse
problem. Actually, the global minimum-time path in this ex-
ample is shown in Fig. 4(b). In [21], a set of empirical initial
angular configurations is chosen to preserve a good search per-
formance. In this approach, we revise the optimization proce-
dure above by adding a check-and-flip procedure, as follows.

C. Revised Algorithm

By carefully investigating the subpaths that pass each target
(as shown in Fig. 5), it is noticed that most of the local min-
imal paths have at least one such subpath that is an arc larger
than 7 [Fig. 5(a)]. For example, the suboptimal path shown in
Fig. 4(a) has two large arcs as it passes the upper-left target and
the bottom-right one. For each of these subpaths [e.g., Fig. 4(a)],
a better configuration often comes from a totally opposite im-
pact angle [e.g., Fig. 5(b)]. Based on this observation, here we
revise the approximated-gradient method by adding an extra
step to check the characteristics of a “suboptimal” path when
it converges to a local minimum.

According to Lemma 1, the subpaths that come into and go
out from one target point ¢; are two arcs (AB and AC in Fig. 5).
Denote the radians of the two arcs as 3 and 59", as shown in
Fig. 5. We revise the search algorithm as follows.

1) Search the optimal path by the approximated-gradient

method until it converges to a local minimum.

2) Calculate the radians of the arcs passing each target point:

pli) = |G + ).

3) i* = argmax;{p(i)}, where ci*, ¢

clockwise, and —1, otherwise.

4) If p(i*) < 7 or k > Tk, quit, where k is the counter of

the number of flips.

5) Flip the impact angle of target ¢* over: 0« «— 0« + m,

k =k + 1, and go back to step 1).

The additional steps 2)-5) in the algorithm above is called the
procedure of check-and-flip, which reverses the impact angle on
a target if the subpath that passes it includes an arc larger than
7. As the example illustrated in Fig. 4 shows, the revised algo-
rithm evolves exactly the same way as the approximated-gra-
dient method does until a local minimum is found. Without the
check-and-flip procedure, the search will stop and a suboptimal
path is obtained [Fig. 4(a)]. Because of the flipping, this revised
algorithm is capable of escaping from this local optimum and
another one following that [Fig. 4(c)], which helps the search

out

24t = 1 if the arc is

converge to a shorter path (the global optimum in this case), as
shown in Fig. 4(b).

Remark 4: The check-and-flip procedure here reduces the
possibility of local minima, but still does not guarantee the
convergence to the global optimum. Especially when two target
points are close to each other, the minimum-time path between
them often results in an arc larger than 7, which will always
cause the flipping. Therefore, in practice, we also limit the
number of check-and-flip procedures within a certain threshold
T}, as indicated in step 4). The shortest path among the multiple
local minima that are caused by the check-and-flip procedures
is then selected as the search result.

Remark 5: The path-generation algorithm introduced here
can be extended to the general multitarget-engagement scenario
with a given order, which is not necessarily a loop (i.e., gy #
qo)- The geometric method to determine the traverse order in-
troduced earlier, however, is not suitable for the general multi-
target-engagement problems without a predetermined order.

V. DECENTRALIZED COOPERATIVE MOTION-PLANNING
APPROACH FOR THE MMMT CASE

The general MMMT motion-planning problem is NP-hard,
both in the number of sensor agents (M) and the number of
targets (V) [34]. It is computationally prohibitive to find the
optimal solution for motion planning. Furthermore, due to the
nondeterministic motion of the targets, it is even more difficult
to make an optimal long-term motion plan for the MSAs. In
this section, we propose a suboptimal online motion-planning
approach with a lower computational load, as follows.

In this scenario, the MSAs are the only sensor sources avail-
able. Without any prior knowledge, the motion of the targets is
unpredictable. Here, we use the most previous positional mea-
surement of each target as its estimated position until it is re-
newed by the MSAs. Since we assume the MSA moves much
faster than the targets, the possible movements of the targets are
then regarded as system perturbations, which are adapted by ad-
justing the motion plans through online replanning.

At each time, the motion planning consists of two steps: fask
decomposition and individual path generation.

In task decomposition, the whole task of tracking IV targets
is divided into M disjoint task assignments. Then, given a task
assignment, each MSA makes its own motion plan, which can
be achieved by the approach introduced in the previous section.

A. Task Decomposition

Given a set of IV elements, the total number of ways to par-
tition these elements into M nonempty subsets is called the
Stirling set number S(N, M). We shall use this notion with the
elements representing targets. The Stirling set number can be
obtained by the following equation [41]:

| M- '
S(N.M) = o5 > (~1)ICML )M =Y (®)
7=0

where C'(M, j) is a binomial coefficient.

Equation (8) indicates that S(N, M) increases exponentially
as NV or M increases, which makes the task decomposition an
NP-hard problem by itself. Since the desired motion plan for
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each MSA is a traverse loop, and the ultimate goal is to have the
MSAs execute their loop paths in the shortest time, it is more
likely that the optimal partitioning divides the targets into clus-
ters. Based on this consideration, we use the K-means clustering
method here to realize the task decomposition in a recursive
way. The details of the K-means clustering method can be found
in [45].

After the task decomposition, we still have to distribute the
M tasks (i.e., target groups) among the M MSAs. An optimal
assignment is defined as the one that requires the shortest total
time for the MSAs to catch up their tasks. To achieve such an
optimal M -to-M assignment, we use Murty’s k-best algorithm
[42].

Remark 6: Although the M-to-M assignment still yields a
considerable computational load, it only happens once in the ini-
tialization stage of the MMMT motion-planning problem. With
the assumption that the MSAs move much faster than the targets,
the majority of the new target assignments generated by online
replanning (see Section V-B) will be consistent with the pre-
vious ones. Most MSAs will stay with their current target groups
after replanning, except that some targets may be switched to
other groups. In implementation, the cluster center ¢; from the
previous planning cycle can be used as the default initial cluster
center for MSA j’s new motion plan. No M-to-M assignment
is needed in the replanning. Therefore, as far as the long-term
performance is concerned, the cost of assignment initialization
can be neglected. There are also several approaches suggesting
an efficient way to implement the k-best assignment algorithm
[43], [44].

B. Online Motion Planning

The motion plan for each MSA is essentially a function of
the expected positions of the targets (Q). In reality, a target may
move away from its previous spot. It is necessary to have a cor-
responding replanning scheme as the target information is up-
dated. In this approach, the motion replanning is achieved in a
decentralized way. '

Define Q;(k) = {q/(k)}, i = 1,...,n;, as the task assign-
ment for MSA j at time #;. Since the status of one target ¢/ (k)
can only be updated when it is observed by MSA j, it is rea-
sonable for the MSA to renew its traverse plan once the status
of each target in its task assignment is updated (from Q; (k) to
Q;(k+1)). As one MSA reconsiders its motion plan, it may de-
cide to change its task assignment, which means the MSA may
request some targets from or pass some targets to other MSAs.
The exchange of target assignment here is called a procedure of
target handoff. In summary, a replanning process is activated on
one MSA by either one of the following events.

* Event 1: An MSA finishes its current traverse loop.

In this case, the MSA will reconsider its task assign-
ment by regrouping the targets, based on its own target
information and the most recent information it obtained
from other MSAs. Here we assume that the target infor-
mation is shared by the whole MSA team. Note that to
guarantee such a communication capability, the communi-
cation channel among the MSAs has to have a bandwidth
no less than O(MN) [34].
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If there is no change in the task assignment (i.e., Q; (k+
1) = Q;(k)), the MSA only has to adjust its own traverse
loop path. Otherwise, a target handoff is triggered.

* Event 2: An MSA is requested for a target handoff.

In this case, the MSA will renew its target list (Q; (k +
1)), and then replan the optimal path for the new task. Note
that there will be no negotiation between the MSAs in this
approach. An MSA involved in a target handoff will un-
conditionally accept the change request of its task assign-
ment. There are several advantages of this nonnegotiation
scheme. First of all, there will be no deadlock in the deci-
sion making among MSAs. Second, the task partitioning
is always complete, since no target will be abandoned ac-
cidently during the target handoff.

Remark 7: It is worth noting that for Event 1, one MSA
will go through the whole motion-planning procedure, including
task redecomposition (based on its own global information) and
its own path regeneration. As for the result of Event 2, however,
one MSA only has to update its own path. In summary, the on-
line replanning is achieved asynchronously by the MSAs. One
MSA reconsiders its motion plan only when either of the two
events above happens.

Once a replanning process is activated, the MSA will renew
its traverse path according to the new task assignment and catch
itup from its current configuration, which is briefly summarized
as follows.

1) Renew the traverse order from Q;(k) to Q;(k + 1).

In case of Event 1, keep ¢} (k) as the start point g))(k +
1) — (k).

In case of Event 2, choose the next unvisited target
point in the previous plan as ¢} (k + 1).

2) Renew the traverse path x(Q;(k + 1),0,(k + 1)).

3) Obtain the minimum-time path from the current configu-
ration of the MSA {s(t1),9(tx)} to the start point of the
new traverse loop {¢}(k + 1),63(k + 1)}.

4) Execute the new traverse path x(Q;(k + 1),0;(k + 1))
from gy(k + 1) to ¢;._;(k + 1) until a new event
is triggered.

VI. COVERAGE STABILITY ANALYSIS

Stability and robustness is very important to a motion plan,
and show how reliable the motion plan is in response to system
perturbations. Some perturbations are caused by numerical er-
rors when we generate the desired trajectory coordinates from
the motion plan or by process noises, as we realize the trajec-
tory in physical maneuvering. A good analysis on the stability
and robustness of the time-optimal trajectory generation for a
Dubins car can be found in [19]. To deal with the high sensitivity
to modeling and measurement noises that a time-optimal path
inherits, Turnau et al. proposed a near time-optimal planning
method in [38]. Our aim in this section, however, is to investi-
gate the stability in the sense of coverage, which is motivated
by the question of whether the motion plan is able to maintain
the target-tracking job as the targets are moving.

Without any prior knowledge, the motion of each target is
unpredictable when it is outside the footprints of the MSAs.
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When one MSA traverses the estimated target positions (the pre-
vious positional measurements in this case), the hope is that each
target is not far away, and is still covered by the footprint of the
MSA. Obviously, this coverage is not unconditionally guaran-
teed by any motion plan. The more frequently the MSA comes
back to renew the target track, the more likely the target is close
to the estimated position. If the target is not inside the sensor
footprint, the MSA has to search around for the target, rather
than just take a single look, as planned. As result, it will take
more time to finish a traverse cycle for the MSA and lead to
more possibility of missing the target in the future, which means
that the motion plan is unstable in this sense.

Consider a target observed at ¢ = (g.,qy). Assuming that
the motion plan is to recheck the status of this target after 7', it
obviously that the coverage is guaranteed if p(q,T") can still be
covered by the sensor footprint, in which p(g, T) is the collec-
tion of all the possible positions of the target after 7.

Proposition 2: The coverage of a motion plan is stable if

TD; <

— 7
Umax

forallofthes =1,..., N &)

where 1'D; is the time duration between two consecutive obser-
vations of target ¢. U, i the maximum speed of a target, and
D is the minimal diameter of the footprint of the MSA.

The proof of Proposition 3 is fairly straightforward. As long
as (9) holds, p(g¢;, T;) will be a circle of radius v, T}, centered
at its previous position g;. Thus, the MSAs just have to pass by
the previous position of each target. No matter how the targets
move, they will always be covered by the MSAs.

Obviously, the coverage stability is not preserved in an
open field as long as N > M, in which the targets can
move in opposite directions to break the coverage. Neverthe-
less, Proposition 2 gives us a clue to evaluate the feasibility
of a motion plan, which can be applied to other important
sensor-management issues beyond the scope of this paper, such
as task assessment and high-level sensor resource management.

VII. EXPERIMENTS AND RESULTS
A. Path Generation for the SMMT Case

Two simulations for the SMMT case and their results are
shown in Figs. 6 and 7. In simulation 1 (Fig. 6), four targets are
generated. Three of them (targets 1-3) are modeled as random
walks, while the other one (target 4) is a maneuvering target.
As Fig. 6 shows, the MSA is able to smoothly adjust its motion
plan as the targets are moving around. Note that at some point,
the MSA changes the traverse order from 1-3-4-2 to 1-4-3-2 to
achieve a shorter traverse loop. Fig. 7 shows another example, in
which there is a convoy of three moving targets. As the convoy
moves, a smooth trajectory is generated for the MSA to follow
up the convoy and keep updating the status of the targets.

The performance of the suboptimal method has been exam-
ined by Monte Carlo simulations. Fig. 8 shows the results of
one experiment, in which we chose N = 6 and conducted 500
Monte Carlo simulations. The histogram of approximation er-
rors is shown in Fig. 8. The actual minimum-time path for each
simulation is achieved by exhaustively searching over all of the
permutations of the target points. In this experiment, most of the
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Fig. 7. Simulation 2: One MSA and a moving convoy of three targets.
suboptimal paths are no more than 10% longer than the actual
one. The average error is only 2.44%, which is quite satisfactory.

B. Cooperative Online Motion Planning for the MMMT Case

In this experiment (Fig. 9), four MSAs, 16 randomly walking
targets, and two maneuvering targets are generated. The pa-
rameters are chosen as Ry; = 72 m, V)y = 96 mph, and
Umax = (1/20)V)s. The MSAs all start from the center of the
field for simplicity, whose footprint is defined as a circle with
a 200-yd diameter (i.e., D = 200 yd). As Fig. 9 shows, two
target handoff events are triggered as the two maneuvering tar-
gets move across the field. Note that as a decentralized algo-
rithm, each MSA will asynchronously update its own motion
plan if there is no target handoff. When a target handoff hap-
pens, it only affects the motion plans of the MSAs that are in-
volved in this handoff.

The ATD between two consecutive observations of each
target is shown in Fig. 10. Note that because the targets are
moving, each T'D; is time-variant. The result shows that each
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TD; is less than D /2vy,, = 35.5 s, which satisfies Proposi-
tion 2. The average ATD is 23.4 s. We also compare this result
with a pseudostationary sensor platform, whose field of view is
equal to the summation of the footprints of the MSAs. Assume
that the sensor is scanning the whole field (2000 yd x 2000 yd
in this simulation) with the same speed of the MSA. It will take
the pseudosensor 2000 x 2000/(MDVy) = 75.8 s to scan
the whole field once. In other words, the pseudosensor needs
at least 75.8 s to update the track information of each target,
which is much longer than the result of the proposed approach
with multiple MSAs (which is 23.4 s).

The performance of the task partitioning method has also
been evaluated by Monte Carlo simulations. Fig. 11 shows
the results of one experiment, in which (N, M) = (12,3)
and 500 Monte Carlo simulations are conducted. The results
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(N =12, M = 3, 100 Monte Carlo simulations).

of the suboptimal method based on K-means clustering is
compared with those of the actual optimal partitions. The
optimal partition is also achieved by an exhaustive search. In
this experiment, most of the suboptimal paths are no more than
15% longer than the actual one. The average error is 11.21%.

VIII. CONCLUSION

This paper addresses the motion-planning problem for mul-
tiple target surveillance with limited resources of MSAs. The
kinematics of the MSA is modeled as a nonholonomic UAV of
type Dubins. Based on the fact that the track information of each
target degrades over time until it is renewed by the MSAs, the
motion-planning problem here is formulated as an optimization
problem, whose objective is to minimize the average time period
between two consecutive observations of each target. Since the
general optimal motion-planning problem for the MMMT case
is NP-hard, a computationally efficient suboptimal approach is
proposed in this paper.
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The motion planning consists of two stages: task decomposi-
tion and individual path generation. In task decomposition, the
whole task of tracking N targets is divided into M disjoint task
assignments, which is achieved by a heuristic method based on
K-mean clustering. Then, given a task assignment, each MSA
makes its own motion plan, which is an SMMT motion-planning
problem. The desired motion plan in the SMMT case is formu-
lated as a time-optimal loop path to traverse the targets. To find
such a loop path, a particular family of trajectories is selected
to compose a reduced search space, in which we have proved
that the optimal trajectory is always contained. Based on that,
a gradient-based suboptimal path-generation algorithm is pro-
posed for a mobile agent of type Dubins to traverse a sequence
of target points. Meanwhile, a check-and-flip procedure is intro-
duced to reduce the possibility of local minima. Furthermore, a
decentralized online replanning approach is also developed to
deal with the situation where the targets are moving.

Experiments and simulations have demonstrated the effec-
tiveness and efficiency of the proposed methods. The adoption
of the proposed motion-planning method to a real-world test bed
consisting of UAVs and ground robots that are under develop-
ment is part of our ongoing research work.

The major results of this paper are not limited to this applica-
tion only. The target-based motion-planning scheme can be ex-
tended to the cooperative control of multiple MSAs in the gen-
eral information-gathering scenario, in which one target can be
a building, an intersection, a car under surveillance, or a mil-
itary unit. Meanwhile, the motion-planning algorithm for the
SMMT case can be applied to the general multitarget-engage-
ment problem.

On the other hand, the extension of the proposed approach to
more complicated situations with heterogeneous sensor agents
and heterogeneous targets is open for further research. The dis-
cussions on coverage stability in this paper can also be extended
to related topics, such as task assessment and high-level sensor
resource management.
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