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Abstract

Recent work in sentence processing has highlighted the distinction between
serial and parallel application of linguistic constraintsin real time. Inlooking at
context effects in syntactic ambiguity resolution, some studies have reported an
immediate influence of semantic and discourse information on syntactic parsing
(e.g., McRae, Spivey-Knowlton, & Tanenhaus, 1998; Spivey & Tanenhaus,
1998). However, in looking at the effects of various constraints on
grammaticality judgments, some studies have reported a temporal precedence of
structural information over semantic information (e.g., McElree & Giriffith,
1995, 1998). This chapter pointsto some computational demonstrations of how
an apparent temporal dissociation between structural and non-structural
information can in fact arise from the dynamics of the processing system, rather
than from its architecture, coupledwith the specific parameters of the individual
stimuli. A prediction of parallel competitive processing systems is then
empirically tested with a new methodology: speeded sentence completions.
Results are consistent with a parallel account of the application of linguistic
constraints and a competitive account of ambiguity resolution.

Introduction

For more than a couple of decades now many psycholinguists havebeen
investing agreat deal of effort into elucidating the "sequence of stages' involved
in the comprehension of language. Emphasis has been placed on the question:
When do different information sources (syntax, semantics, etc.) get extracted
from the linguistic input? One answer to this question that has been very
influential is that the computation of syntax precedes the computation of
semantics and pragmatics (e.g., Frazier & Fodor, 1978; Ferreira & Clifton,
1986; McElree & Griffith, 1995, 1998). One opposing answer that is gaining
support isthat there are no architecturally imposed delays of information during
sentenceprocessing, that all relevant information sources are extracted and used
the moment they are received as input (MacDonald, Pearlmutter, & Seidenberg,
1994; Spivey-Knowlton & Sedivy, 1995; Trueswell & Tanenhaus, 1994).
Recently, however, some disillusionment has been expressed concerning the
question itself:



"Given the wide range of results that have been reported, it
seems most appropriate at the moment to determine the
situations in which context does and does not have an
influence on parsing, rather than continue the debate of when
context has its impact." (Clifton, Frazier, & Rayner, 1994,
p.10, italics theirs).

Perhaps one way to redirect the "when" question to better understandthe
mixed resultsin the literature would be to turn it into a "how" question. Could
the manner in which various information sources combine during sentence
processing wind up explaining why context sometimes has an early influence
and sometimes a late influence? It seems clear that a treatment of this kind of
question will require some theoretical constructs and experimental methodol ogies
that are new to sentence processing, as well as some careful attention to
lexically-specific variation in stimulusitems. The purpose of this chapter is to
describe some of these new approaches and the implications that they have for
claims about the time course of information integration in sentence processing.

Nonlinear Dynamics

Over the past fifteen years, a number of researchers have designed
dynamical models of sentence processing (Cottrell & Small, 1983; Elman,
1991; McClelland & Kawamoto, 1986; McRae, Spivey-Knowlton &
Tanenhaus, 1998; Selman & Hirst, 1985; Spivey & Tanenhaus, 1998; St. John
& McClelland, 1990; Tabor & Hutchins, 2000; Tabor, Juliano, & Tanenhaus,
1997; Waltz & Pollack, 1985; Wiles & Elman, 1995; see also Henderson, 1994,
and Stevenson, 1993, for hybrid models that combine rule-based systems with
some fine-grain temporal dynamics). A dynamical model is a formal model that
can be described in terms of how it changes. Typicaly, such models take the
form of adifferential equation,

ok/ck =" (x) (Ea. 1)

with aninitial condition, X = xQ. Here x isavector of several dimensions and t
is time. The equation says that the change in x can be computed from the
current value of x. The behavior of such systems is often organized around
attractors, or stable states (} (x)=0) that the system goes toward from nearby
positions. Nearby attractors will tend to have a strong "gravitational pull”, and
more distant attractors will have aweaker pull. The most common strategy isto
assume that initial conditions are determined by the current context (e.g., astring
of words like "Alison ran the coffee-grinder") and that attractors correspond to
interpretations of that context (e.g. Alison is the agent of a machine-operation
event where the machine is a coffee-grinder). The model, (Eg. 1), is called



nonlinear if | is a nonlinear function. Nonlinearity is a necessary consequence
of having more than one attractor. Since languages contain many sentences with
different interpretations (and many partial sentences with different partial
interpretations), dynamical models of sentence processing are usually highly
nonlinear. The potential for feedback in Equation (1) -- the current value of a
particular dimension of x can depend on its past value -- is also important. It
can cause the system to vacillate in a complex manner before settling into an
attractor.

Many dynamical sentence processing models are implemented in
connectionist models (i.e., artificial neural networks). The "neural” activation
values correspond to the dimensions of the vector x and the activation update
rules correspond (implicitly) to the function, . In some such cases (eg.,
Elman, 1991; St. John & McClelland, 1990; Wiles & Elman, 1995), Equation
(1) isreplaced by an iterated mapping (Eg. 2):

Xt+1 = (Xt) (Eq.2)

which makes large discrete, rather than continuous, or approximately
continuous, changes in the activation values. Typically, such discrete models
are designed so that words are presented to the model one at atime and activation
flows in a feedforward manner upon presentation of a single word. This
architecture makes no use of the feedback potential of Equation (1), so the
dynamics of single word-presentations are trivial; but over the course of several
word presentations, activation can flow in circuits around the network, and
feedback (aswell asinput) can contribute significantly to the complexity of the
trajectories (Wiles & Elman, 1995). Other proposals alow feedback to cycle
after every input presentation. Some such proposals present al the words in a
sentence at once (Selman & Hirst, 1985), while others use serial word
presentation and allow cycling after each word (Cottrell & Small, 1983; McRae
et a., 1998; Spivey & Tanenhaus, 1998; Tabor & Hutchins, 2000; Tabor et al.,
1997; Waltz & Pollack, 1985; Wiles & Elman, 1995).

Models which alow feedback to cycle after each input make fine-grained
predictions about the time course of information integration in sentence
processing. In fact, several existing dynamical models of sentence processing
exhibit at least simple forms of vacillation. For example, when presented with
the string, "Bob threw up dinner”, Cottrell and Small (1983)'s model shows a
node corresponding to the purposely propel sense of "throw" first gaining and
then losing activation (see also Kawamoto, 1993). Tabor et al. (1997) define a
dynamical systemin which isolated stable states correspond to partial parses of
partia strings. At the word "the" in the partial sentence, "A woman insisted
the...", for example, they observe a trajectory which curves first toward and then
away from an attractor corresponding to the (grammatically impossible)



hypothesis that "the" is the determiner of a direct object of "insisted", before
reaching an (grammatically appropriate) attractor corresponding to the hypothesis
that "the" is the determiner of the subject of an embedded clause. Syntax-first
models of sentence processing (Frazier & Fodor, 1978; Frazier, 1987; McElree
& Giriffith, 1998) are typically designed to restrict vacillation to a very simple
form: first one constraint system (syntax) chooses a parse instantaneously and
then another one (e.g., semantics) revisesit if necessary.

In lexical ambiguity resolution, there is evidence for another simple
form of vacillation. Tanenhaus, Leiman, and Seidenberg (1979, see adso
Swinney, 1979, and Kawamoto, 1993), found that ambiguous words exhibit
temporary (approx. 200 ms) priming of both meanings (e.g. "rose" as flower and
"rose" as moved up) even in a context where only one meaning is appropriate
(e.g. "She held the rose"). Soon thereafter, the contextually inappropriate
meaning ceases to exhibit priming. Recent constraint-based models of parsing
predict effects in syntactic ambiguity resolution that significantly resemble the
effects in lexical ambiguity resolution (MacDonald et al., 1994; Spivey &
Tanenhaus, 1998; Trueswell & Tanenhaus, 1994). In contrast, typical syntax-
first models of sentence processing posit syntactic parsing strategies that
immediately select asingle structural alternative (Frazier & Fodor, 1978; Frazier,
1987). To test these two types of models, what we need are experimental
methodologies that provide access to the moment-by-moment representations
computed during syntactic parsing. Do we see early vacillation between
syntactic alternatives, asis seen between lexical alternatives? In this chapter, we
will discuss two experimental methodologies that show promise for revealing
the temporal dynamics of syntax-related information during sentence processing:
speeded grammaticality judgments (McElree & Griffith, 1995, 1998), and
gpeeded sentence completions.  Results from these methodologies are simulated
by a nonlinear competition algorithm called Normalized Recurrence (Filip,
Tanenhaus, Carlson, Allopenna, & Blatt, this volume; McRae et al., 1998;
Spivey & Tanenhaus, 1998; Tanenhaus, Spivey-Knowlton, & Hanna, 2000).

Normalized Recurrence is a relatively simple dynamical system in
which the alternative interpretations that a given stimulus might map onto are
treated as localist units in the network. The multiple information sources that
might give evidence for these different interpretations are then given localist
units representing their support for the various stimulus-interpretation
mappings. See Figure 1. First, each of the information sources has their
previous activations normalized to a sum of 1.0:

Sc,at)=Sc,At-1) / S S¢ At-1) (Eg. 3)
a



whereSc (t) is the activation of the cth information source supporting the ah
aternative at timet. Next, the information sources combine in a weighted sum
at the interpretation units:

lat)= S [we" Sc,&(t)] (Eq. 4)
Cc

wherel(t) isthe activation of the ath alternative interpretation at time t, and the
weights, wg -- one for each information source -- sum to 1.0. When an
interpretation unit reaches a criterion activation, some appropriate output is
stochastically triggered, such that the activation function across the different
interpretation units is treated as a probability density function describing the
likelihood of each interpretation triggering its preferred action (e.g., looking at
the object corresponding to that interpretation, Spivey-Knowlton & Allopenna,
1997). Thefinal computation that completes a cycle of competition is feedback
from the integration units to the information sources, where an information
source's weighted activations are scaled by the resulting interpretation node's
activation and sent as cumulative feedback to the information source (Eg. 5).
This feedback is how the model gradually approaches a stable state, coercing not
only the interpretation units to settle on one alternative, but also coercing the
information sources to conform.
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Figure 1. A schematic of the Normalized Recurrence competition algorithm
with three information sources competing over two alternatives.



Activation

Sc,at*+1) = Sc A1) + lat)*we* Sc,ot) (Eg. 5)

It should be noted that, unlike many connectionist models, this network
does not "learn” its weights. Instead, they are each set to 1/n(where n is the
number of information sources, Spivey & Tanenhaus, 1998), or the entire
weight space is sampled and the weights with the best fit to the data are used.
For example, McRae et al. (1998) designed a Normalized Recurrence network to
simulate sentence completion data and self-paced reading data on the Reduced
Relative/Main Clause ambiguity. Initially combining three information sources
(agenera main-clause bias, thematic fit information, and verb tense frequency),
and sampling the entire range of weights, it was found that the best weights for
fitting that data set were the following: main-clause bias =.5094, thematic fit
=.3684, and verb tense frequency =.1222. However, with different stimulus sets
and different presentation circumstances that emphasize their information sources
differently, the weights for these constraints are likely to vary somewhat.

Highly simplified in comparison to attractor networks that use
distributed representations (e.g., Tabor et a., 1997), Normalized Recurrence
thereby allows an easily interpreted "peek” into the system's state at any point in
time. Panels A and B of Figure 2 show some generic examples of the activation
of two aternative interpretations competing over time. Nonlinear trajectories
through the state-space on the way toward settling on one alternative canproduce
complex behavior in the model. In fact, when several information sources
compete over three or more interpretations, an aternative whose initial
activation starts out in "second place" can sometimes wind up usurping the most
active alternative and eventually become the final interpretation (Figure 2C).
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Figure 2. Example results from Normalized Recurrence. Panels A and B are
from a network with an architecture like that in Figure 1. Panel Cisfrom a
network with four information sources competing over six alternatives.
Note that the alternative that starts out with the highest activation (dashed
line) ends up losing.



Measur es of the Activation of Linguistic Representations

While modeling allows a kind of "x-ray vision" into the interna
working parts of a system that might be functioning in a fashion similar to that
of the mind, psycholinguists are typically more interested in getting that kind of
"x-ray vision" for the actual mind -- not an idealized set of formulas intended to
simulate the mind. To this end, a number of experimental methodologies have
been used over the past couple of decades to tap into the salience of certain
linguistic representations during real-timelanguageprocessing. Most of them
have been using differences in reaction times to infer relative activations of
linguistic representations. It is assumed that a faster reaction time implies a
representation with some unspecified amount of greater activation. Although
this assumption seems fair enough, determining the mapping from latencies to
activations has been largely ignored. What would be preferable would be to see
experimental data reflecting the activation of alinguistic representation changing
over time, much like those in Figure 2.

One recent example of this kind of "window" into the moment-by-
moment activation of different linguistic representations is research with
headband-mounted eyetracking (e.g., Allopenna, Magnuson, & Tanenhaus, 1998;
Tanenhaus, Spivey-Knowlton, Eberhard, & Sedivy, 1995). In experiments
looking at spoken word recognition, it was observed that when participants were
instructed to "pick up the candy" they tended to briefly fixate a candle before
finally fixating and grasping the candy. In fact, plotting the probability of
fixating the various objects across time produced curves that were surprisingly
close to the lexical activation functions from the TRACE model of speech
perception (McClelland & Elman, 1986) -- not unlike those in Figure 2C.

Another recent example that shows similar time-slices in the temporal
dynamics of linguistic representations is McElree and Griffith's (1995, 1998) use
of the speed-accuracy trade-off (SAT) procedure with speeded grammaticality
judgments. When the last word in a sentence makes it grammatical or
ungrammatical, arushed decision on this grammaticality is likely to be based on
only partially complete representations. By applying signal detection theory to
these rushed decisions over various time intervals, McElree and Griffith show a
smooth, gradual increase in the detectability of the grammaticality over time --
as measured by d-prime, which provides an index of a subject’s sensitivity to a
stimulus irrespective of hisher response criteria. In the following sections of
this chapter, we will review some of McElree and Griffith's findings and
conclusions, test the Normalized Recurrence competition algorithm on their
results, as well as introduce some results from a new speeded response
methodology: speeded sentence completions. We wish to illustrate how, with
the recurrent interplay between experimental dataand model simulations, we can
iteratively refine a sound theory of thetime course of information integration in
sentence processing.



Serial Stagesin Sentence Processing

The first question that arises in understanding how a serial system
might work is the size of the unit of computation. In this kind of treatment, a
particular processing stage does not send output to the next stage until it has
received (and performed its operations on) an entire unit of computation. In the
case of sentence processing, a number of proposals have been forwarded for the
size of such units. The temporally-extended unit of serial computation has been
suggested to be as large as entire clauses (Fodor, Bever & Garret, 1974) or as
small as individual words (Frazier & Fodor, 1978). Alternatively, the seria
system could be smoothly cascading, but have akind of "raw transmission time"
between modules (McClelland, 1979). For example, McElree and Griffith
(1995) have postulated a ~100 ms delay between the initial computation of
subcategory information and the initial computation of thematic role
information. More recent work has suggested a 200-400ms delay between
syntactic information and lexical information (McElree & Griffith, 1998).

McElree and Griffith's SAT analysis of speeded grammaticality
judgments is particularly exciting in that it provides a glimpse into the
activation of certain linguistic representational formats (syntax, thematic roles,
subcategory constraints, etc.) in real time. In this task, subjects are presented
grammatical and ungrammatical sentences, and instructed to, as quickly as
possible, judge their grammaticality. As our interest is in when various
information sources begin to affect the grammaticality judgment, our primary
focus will be on the ungrammatical sentences. According to McElree and
Griffith, sentences like (1a) become ungrammatical at the final word due to a
subcategorization violation, because theverb agreed is intransitive. In contrast,
sentences like (2a) become ungrammatical at the final word due to a thematic
role violation, because the Agent of the verb loved must be animate (and books
areinanimate). In order to compute d-primes via signal detection theory (Green
& Swets, 1966) for the SAT task, the ungrammatical sentences (la & 2a)
provided the signa+noise trials and the grammatical sentences (1b & 1b)
provided the noisetrials. (Thus, the SAT analysis actually treats the task as one
of "ungrammaticality detection", rather than grammaticality judgment.)

(1) a Some people were agreed by books.  (Subcategory Violation Sentence)
b. Some people were agreed with rarely.  (Subcategory Control Sentence)

(2) a. Some people were loved by books. (Thematic Violation Sentence)
b. Some books were loved by people. (Thematic Control Sentence)

In the SAT version of this speeded grammaticality judgment task, the
target sentences were presented to subjects one word at atime in the center of the
screen in a noncumulative fashion. Immediately, or shortly, after presentation of



the last word in the sentence, atone would signal to the subject that she/lhe must
respond as to the grammaticality of the sentence within 300 ms. The temporal
interval between the onset of the last word and the presentation of the tone was
either, 14, 157, 300, 557, 800, 1500, or 3000 ms. (After a couple hours of
practice, subjects eventually became skilled at forcing themselves to respond
within 300 ms of the tone, even though their processing of the sentence, at the
very short intervals, wasincomplete.) Asseenin Figure 3, mean d-prime values
(across six subjects) at the shortest intervals were at or near chance performance.
However, at the intermediate and later intervals, performance clearly improved in
a smooth, graded fashion. Interestingly, detection of ungrammatical sentences
was dlightly better for subcategory violations (filled circles) than for thematic
role violations (open circles).

One possible interpretation of the data in Figure 5 is that they come
from two different exponential functions, each with its own x-intercept. For
example, if one extended the left hand portions of the two curves in the simple
downward direction implied by the data points at those first few intervals, they
would reach a d-prime of zero at dlightly different places along the horizontal
time axis. If one assumes a dual-process serial processing system, one could
infer from these different x-intercepts (aslong asthe variability in processing

4

9

w
1

—@— Subcategory Violations
—O—  Thematic Violaions

Accumacy ")
N

=
1

0 T T T T T T
0 5 1 15 2 25 3 35

Processing Time (Interval + Mean Latency) in seconds

Figure 3. Accuracy of grammaticality detection for subcategory and
thematic violations. (Adapted from McElree & Griffith, 1995.)



time is equa across conditions) that subcategorization information "becomes
operative", and informs the detection of ungrammaticality, about 100 ms before
thematic role information does. In fact, using an exponentia equation (Eq. 6) to
fit the data points, McElree and Griffith (1995) suggest exactly that.

d(t) = | (1-e’b(t-d)), fort>d, else0 (Eq. 6)

In Equation 6, accuracy (d) at each fraction of a second t is determined
by three free parameters: | , b, and d. As the scalar of the entire equation, |
determines the asymptote of the curve, where improvement in accuracy over time
tapers off and total accuracy "maxes out". As the scalar in the exponent of e b
determinesthe rate of rise in d-prime over time, or the slope of the curve as it
departs from zero. Finally, asthetimerelative (becauseit is subtracted from t)
portion of the exponent of e d determines the x-intercept of the curve, or the
point in time immediately before accuracy climbs above chance. Thus, at the
point in time where the curve is to reach zero, t and d will be equal to one
another, andt-d will equal zero, making the entire equation egqual zero.
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Figure 4. Accuracy of grammaticality detection and approximated fits
from McElree and Griffith's (1995) dual-process serial processing account:
Equation 6. The fit to the data accounts for 98% of the variance.
(Adapted from McElree & Griffith, 1995.)



As negative d-primes would imply a perverse pattern in the data, the
last part of the equation insures that for values of t that would produce negative
d-primes, d-primeisinstead rectified to zero. To fit these parameters to the data
curves, McElree and Griffith apply Chandler's (1967) Stepit algorithm that
searches the parameter space to find the best-fitting parameter values -- somewhat
similar to that carried out by McRae et a. (1998) in setting the weights for the
Normalized Recurrence competition algorithm. Figure 4 shows an example of
the data being fit by the equation, using different d values (and different | values)
for subcategory violations and thematic violations.

Importantly, this equation provides a standardized method of estimating
where the d-prime curves over time would reach zero if they had been sampled
from an exponentia function that actually had an x-intercept. However, it is
certainly possible, in principle, that the data points in Figure 3 do not come
from a function with a real x-intercept, but instead come from a function that
never actually touches the x-axis, such as the logistic in Figure 5. With no
actual x-intercepts (instead, each curve's y-intercept signifies a nonzero d' at
timestep 1 -- and isrectified to zero at timestep zero, similar to the rectification
done in McElree and Griffith's equation), it would be impossible to make any
claims about separate processes "becoming operative" at different discrete points
intime.
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Figure 5. Accuracy of grammaticality detection and approximated fits from
alogistic function. Thefit to the data accounts for 97% of the variance.



Parallel Integration in Sentence Processing

McElree and Griffith (1995) anticipated that, far from requiring a serial-
stage account of sentence processing, their results might in fact be
accommodated by certain parallel models of information processing. As the
sigmoidal function in Figure 5 is a natural result of competition in Normalized
Recurrence, we decided to test Normalized Recurrence on McElree and Griffith's
results. To apply the Normalized Recurrence competition algorithm to this
grammaticality judgment task, the two information sources (subcategorization
and thematic roles) were each condensed into two values: one for the probability
of the sentence being grammatical, and one for the probability of the sentence
being ungrammatical, based on that information source's strength of constraint.
Thus, rather than becoming operative a an earlier point in time,
subcategorization information may simply provide a probabilistically stronger
constraint on grammaticality than thematic role information does. That is, it
may be the case that thematic fit is more violable in our typical language
experience (e.g., "This computer hates me.") than subcategorization constraints
(eg., "l dept the day away."). Figure 6 shows a schematic diagram of the
Normalized Recurrence model, with bidirectional connections between the
information sources and the integration layer (where grammaticality judgment
takes place) allowing converging/conflicting biases to be passed back and forth.

As in other Normalized Recurrence simulations, competition between
mutually exclusive representations ("grammatical” and "ungrammatical”, in this
case) proceeded with three critical steps for each iteration of the model: 1)
Normalization of information sources (Eg. 3), 2) Integration of information
sources (Eg. 4, wherew=1/n), and 3) Feedback from the integration layer to the
information sources (Eq. 5). An important difference between this Normalized
Recurrence simulation and previous ones is that the model was not allowed to
iterate until reaching a criterion, because duration of competition (e.g., reaction
time) was not the measure of interest. Rather, the model was stopped at various
intervals and the activations of the interpretation units were treated as
probabilities of "grammatical" and "ungrammatical" responses. In order to
prevent unnaturally high d-primes, each interpretation unit has a maximum of
.95 activation in thisfirst simulation.

With each iteration, the model gets more and more "confident” in one of
these decisions. Of course, in the case of only two competing alternatives, the
moment one decision is greater in activation than the other, it is obvious
that (in this deterministic version of the competition agorithm) the current
winner will be the ultimate winner. However, for simulating the time course of
information integration, we need to allow the model to settle toward some
criterion activation, especially if we consider the possibility that different
response mechanisms (e.g., manua response, vocal response, or eye
movements) may have different criteriafor execution.
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Figure 6. Schematic diagram of the Normalized Recurrence model designed
to simulate the results of McElree and Griffith (1995).

In the first ssimulation of McElree and Griffith's (1995) SAT version of
the speeded grammaticality judgment task, the model was given input values
indicating either a grammatical sentence, subcategory violation sentence, or
thematic violation sentence. The model was then allowed to iterate, gradually
converging toward a decision on the grammaticality of the input, until an
interruption point was reached, at which time the integration layer's values were
recorded for the probability of a correct response (as though the model were being
interrupted and forced to make adecision). For grammatical sentences, the input
value for the grammatical node in each constraint was .51, and thus the input
value for the ungrammatical node in each constraint was .49. When each
iteration is treated as 50 ms, these values produce "grammatical” response times
that approximate those from McElree and Griffith (1995). For a subcategory
violation, the input values for the subcategory nodes were .2 grammatical and .8
ungrammatical, whereas for a thematic violation, the input values for the
thematic role nodes were .4 grammatical and .6 ungrammatical.

To compute d-primesat each time step of the model, the activation of
the "grammatical" integration node after a grammatical input was treated as the
percentage of hits, and the activation of the "ungrammatical” integration node
after ungrammatical input was treated as the percentage of correct rejections
Figure 7 compares McElree and Griffith's data to the model's d-prime values as a
function of processing time. Thefirst thing to notice is that the model reaches
asymptote much more abruptly than in the human data. Thisis primarily due to
a .95 maximum imposed on the activations in order to prevent d-primes of 4+.
Much of the smooth, graded approach to asymptote exhibited by Normalized



Recurrence actually takes place between .95 and 1.0 activation. With that range
omitted, this first simulation rather suddenly hits a sharp maximum before it is
through with the steeply rising portion of its sigmoid function over time.
Despite this obvious weakness of the first simulation, the critical portion of the
data, where the early measurements for subcategory and thematic role violations
are dissociated, is well accounted for by the model. Whereas McElree and
Griffith's (1995) account of the data assumesthat the curves for subcategory and
thematic violations must depart from zero d-prime (or "become operative") at
different pointsin time, Normalized Recurrence accounts for this portion of the
data using two sigmoidal curves that "become operative" at the same time, but
one has a stronger initial bias backing it up.

Improvements on this first simulation can be achieved in a number of
ways. There are essentialy six parameters in this model that can be
manipulated: 1) the "grammatical input" value, 2) the "subcategory
violation" value, 3) the "thematic violation" value, 4) the weights (since
each pair must sum to 1, each of these first four terms counts as a single model
parameter), 5) theactivation rectification limit, and 6) the amount of time each
iteration correspondsto. In the first simulation, the space of parameters 2 and 3
was searched (in steps of .05) to converge on an approximate fit to the data.
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Figure 7. Accuracy of grammaticality detection (McElree & Griffith,
1995) and results of the first simulation with Normalized Recurrence.
The fit to the data accounts for 90% of the variance.



In this next simulation (Figure 8), parameters 5 and 6 were modified to
converge on a fit to the data. The input values for the different experimental
conditions were identical to those of the first simulation. However, instead of a
strict activation rectification, the normalization function (Eq. 3) added a small
uniformly random value between 0 and .2 to the denominator at each time step
(cf. Heeger, 1993). Also, the time constant was reduced to 30 ms per iteration.

The experimental results of McElree and Griffith's (1995) SAT version
of the speeded grammaticality judgment task are certainly intriguing. Unlike
most experimental methodologies in the field of sentence processing, the SAT
procedure provides awindow into preliminary incomplete representations that are
in the process of being computed as information continuously accrues.
However, attempting to extrapolate from the sampled d-primes to the underlying
function's x-intercept via an exponential function may prematurely imply
separate discrete pointsin time at which different linguistic processors "become
operative." Instead, the results of these simulations suggest that the sampled
d-primes over time may come from a system that integrates its different
information sources simultaneously but with differing strengths. A weaker
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Figure 8. Accuracy of grammaticality detection (McElree & Giriffith,
1995) and results of the revised simulation with Normalized Recurrence.
Thefit to the data accounts for 95% of the variance.



signal (e.g., thematic constraints) that "becomes operative" at the sametime asa
stronger signal (e.g., subcategory constraints) will still take longer to rise above
the noise inherent in a probabilistic information processing system (Figure 8).

Although the performance of the Normalized Recurrence model is
encouraging, the simulations presented here did not quite account for as much of
the variance in the data as did McElree and Griffith's (1995) six-parameter Stepit-
driven exponential fit (Eq. 5). Moreover, McElree and Griffith's (1998) more
recent findings hold still more challenges for a parallel processing system, such
as syntactic idand constraints having higher d-primes than lexically-specific
constraints, and crossings between different curves of d-prime over time. Future
work with this model will explore further manipulation of the parameters of this
network.

A Prediction from Competition

Many competition-based models (and other dynamical models) of
sentence processing assume that a representation's activation will have a
relatively non-extreme value during early moments of processing, and will
gravitate toward an extreme value (e.g., minimum or maximum) as time
proceeds -- modulo the occasional nonmonotonic vacillation. Note that, since
its representations are localist nodes, Normalized Recurrence's attractors are
cornersin the state-space, and therefore asingle run of the model with only two
competing interpretations cannot exhibit vacillations. (Nonmonotonic behavior
on one run of the model, such as that in Panel C of Figure 2, can only happen
when several information sources compete over severa interpretations, or when
some stochasticity is added to the normalization function.)

When only two interpretations are competing in Normalized
Recurrence, as one begins to increase in activation, the other must decrease, and
they will continue on these trajectories monotonically. For example, with the
ambiguity between aMain Clause (MC) and a Reduced Relative (RR) (3), input
to the model that averages just barely in favor of the MC will cause the model to
start out with equibiased representations for the MC and RR that gradually settle
entirely in favor of the MC interpretation. In contrast, a model that posits a
separate processing stage for syntactic biases followed by a stage for thematic
role biases (e.g., Frazier & Fodor, 1978; Frazier, 1987; McElree & Giriffith,
1998) might predict zero activation of the RR representation early on, regardless
of what thematic fit information suggests. If thematic role information strongly
biases an RR interpretation (such as a prisoner being a good Patient and a poor
Agent of a capturing event), the activation of the RR representation will, at later
points in time, eventually accrue some positive activation.

(3) a Theprisoner captured__arat and kept it asa pet. (Main Clause)
b. The prisoner captured by the guardswastortured. (Reduced Relative)




Thus, the prediction made by Normalized Recurrence, and ruled out by
the two-stage models, is the following: With sentence fragments of the form
"The"-noun-verb"-ed",in which thematic role information strongly biases the
RR structure, even early moments of processing should show nonzero activation
of the RR representation. A further, more specific, prediction from Normalized
Recurrence is that those particular sentence fragments in which all constraints
conspire just barely in favor of the MC, should in fact elicit greater positive
activation of the RR representation during the early moments of processing than
during the later moments of processing.

To test these predictions, we have designed a novel experimental
methodology: speeded sentence completions, in which participants read sentence
fragments, one word at atime, and complete these sentences under varioustime
constraints. They are allowed 300 ms, 600 ms, 900 ms, or 1200 msto prepare
the completion. The results from 63 participants are presented herein.

Speeded Sentence Completions

Each trial proceeded asfollows: ared circle appeared in the center of the
screen indicating where the words would be presented, each word of the sentence
fragment was presented in a noncumulative fashion in the center of the screen for
500 ms, three periods then appeared indicating that the participant should start
preparing a completion, then a green circle appeared indicating that a completion
must begin within 300 ms. Participants found the task difficult at first, but a 20-
trial practice session (with a 500 ms processing interval) was typically enough
to acquaint the participant with the task.

In this experiment, the three periods were on the screen for 300, 600,
900, or 1200 ms. These four different processing-interval conditions were run as
separate blocks. In each block of 20 trials, the first 10 were fillers(ranging from
two to four words in length), allowing the participant to get accustomed to that
particular processing-interval condition. The remaining 10 trials in the block
had four critical sentences embedded among 6 fillers items. The order of these
blocks was randomized for each participant.

Participants were instructed to speak into the microphone what first
came to mind and not to censor themselves. They heard a beep if they started
responding too soon (i.e, while ‘.. was ill on the screen), and saw a
“Respond faster!” sign on the screen if they began their response more than 300
ms after the green circle appeared. After finishing a sentence, they pressed a key
on the button box to advance to the next trial.

The critical sentences were constructed from sixteen verbs, each with a
typical Agent and a typical Patient for that particular event. Agenthood and
Patienthood ratings were taken from norms collected in the work of McRae et al.
(1998), and the verb form frequencies (Simple Past Tense, Past Participle, and
Base frequency) were taken from Kucera & Francis (1982). See Table 1.



Table 1. Stimuli used in Speeded Sentence Completions

Verb Frequency Thematic Fit Thematic Fit
VERB  SPast PPart Base NOUN1 Ahood Phood NOUN2 Ahood Phood
arrested 4 15 27 police 6.45 1.46 suspect 140 5.49
audited 0 1 3 government 6.17 3.00 taxpayer 272 6.16
cptured 2 15 33 troops 5.97 387 prisoner 176 5.03
convicted 1 13 16 juror 6.61 132 crimina 145 5.87
cured 1 6 20 doctor 6.76 3.78 patient 137 6.14
executed 1 13 22 terrorists 6.05 4.03 hostages 1.66 4.95
graded 0 2 3 teacher 6.94 260 student 242 6.81
ingructed 2 14 23 coach 6.74 211 trainee 166 6.22
investigated2 16 38 auditor 6.25 2.22 theft 122 6.78
pad 1 95 256 man 550 3.65 tax 163 5.43
punished 1 8 14 parent 6.50 1.54 child 153 5.78
rescued 1 5 14 knight 597 1.68 victim 121 4.89
sent 1 74 172 manager 555 295 package 158 6.16
sentenced 1 8 9 judge 6.94 127 defendant 125 6.35
tortured 1 8 10 Kkidnapper 5.68 1.60 dave 129 557
worshipped 1 2 12 priest 6.67 4.05 goddess 150 6.73

To utilize as many data as possible, all responses that began 300-1500
ms after the onset of the three periodswere included in the analysis. Responses
that weretoo early or too late for their condition were counted as belonging to
the temporally accurate processing-interval. For example, if during a block of
trials with the 600 ms delay a response occurred at 950 ms, it was counted as
belonging to the 900-1200 ms processing-interval bin. Responses that began
after 1500 ms (3%) and responses that were incomplete and/or still ambiguous
(6%) were excluded from analysis.

The overall results of this study are compelling. At the earliest
measured point in time, the 300-600 ms bin, sentence fragments with Patient-
like nouns show significantly more reduced relative completions than those with
Agent-like nouns (25% vs. 2%,; p<.05). Figure 9 shows the percentage of RR
completions for both good Patients and good Agents at the four processing
interval bins. When the sixteen items are averaged for each curve, the temporal
dynamics from individual items cancel each other out, resulting in relatively flat
curves that are consistently about 25% apart from one another. We do not seein
the good Patient condition an initial near-zero percentage of RRs that gradually
increases over time, as would be most naturally predicted by a syntax-first
model. Nonetheless, athough this result seems most consistent with a
simultaneous integration of constraints account of sentence processing, a syntax-
first model can always accommodate these findings by restricting the purely
syntactic processing stage to the first 300 ms of processing.
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Figure 9. Overall results of the speeded sentence completion task.

The more specific prediction made by competition models is aso borne
out: that a particular sentence fragment in which all constraints conspire just
bardy in favor of the MC will dlicit greater positive activation of the RR
representation during the early moments of processing than during the later
moments of processing. For example, "The prisoner captured..." elicited 35-
40% RRs during the early delay conditions, and 0-10% RRs during the latter
delay conditions. Syntax-first models are fundamentally incapable of explaining
such aresult, whereas Normalized Recurrence predicts this result quite naturally.

Normalized Recurrence

As the Normalized Recurrence competition algorithm emerged in the
context of the constraint-based lexicalist framework in sentence processing (e.g.,
Filip et a., this volume; McRae et a., 1998; Spivey & Tanenhaus, 1998), it
makes sense to apply the model to the lexically specific stimuli used in this
experiment and average the two groups of 16 runs of the model for comparison
with the averaged human data (Figure 9). (In fact, very different andinappropriate
results would arise from instead averaging the stimulus parameters in the two
groups of 16 items and running the model twice with those averaged values.)

Figure 10 shows a schematic diagram of the Normalized Recurrence
simulation of the speeded sentence completions. We used the same three
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Figure 10. A schematic diagram of the Normalized Recurrence
model that simulates the speeded sentence compl etions data.

information sources as in McRae et al. (1998): SVO bias, Thematic Fit, and
Verb Form Frequency. For the SVO bias, MC=.92 and RR=.08 (McRae et al.,
1998). For the lexically specific biases, the values were taken from Table 1.
Thematic fit ratings were entered "as is," and the verb form frequencies were
entered as MC=SPast/Base, RR=PPart/Base. (For the two verbs where SPast=0,
the values were entered as MC=.01 and RR=.99, instead of MC=0 and RR=1.)
After searching the weight-space for this network (in steps of .05), the best
approximate fit to the data was found with the SVO Bias being weighted at .45,
Thematic Fit weighted at .3, and Verb Form Frequency weighted at .25.
Although the weight for Verb Form Frequency is notably greater here than in
McRae et al. (1998), the ordinal ranking of McRae et al's weights is preserved.

The model was given input from all 32 noun-verb pairs, and allowed to
iterate for 120 cycles of competition, treating each iteration as equivalent to 10
ms of processing time. Thus, the activation of the RR Interpretation node from
cycle 30 to 120 provided the model's prediction of the probability of an RR
completion during the four processing-interval binsin Figure 9.

When the model's results from the 16 good Patient items were averaged,
they dlightly overestimated the percentage of RR completions, at around 40%.
See Figure 11. Similarly, at the first processing-interval bin, the model slightly
overestimated the percentage of RR completions for good Agent items as well.
Notably, however, just as the temporal dynamics of the individua items canceled
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Figure 11. Results of Normalized Recurrence's simulation of the
speeded sentence compl etion task, averaged across the 16 verbs.

each other out when averaged in the human data, so did the temporal dynamics of
the individua items in the model simulations cancel each other out when
averaged. The model's fit to the human data when averaged across participants
and itemsis close: r2=.92.

Future work will need to break down these two curves into their item-
by-item effects, and test the model's account of the behavior of individua
sentence fragments. Since the constraint-based lexicalist framework predicts
systematic item-by-item variation, the ultimate challenge for this account of
sentence processing is to simulate the temporal dynamics of individual stimulus
items. As the typical dataset in a sentence processing experiment contains
perhaps 4-5 data points per stimulus item per condition, this new goal will
require amuch larger than usual dataset.

Until now, serial stage accounts of sentence processing have enjoyed
the position of needing only to demonstrate effects averaged across items.
However, as these theories become more explicit in their account of how the
later stages work, they too will need to make predictions about item-by-item
variation, e.g., handled by a late constraint-based stage or by a rule-based
reanalysis system.



General Discussion

In this chapter, we have discussed the benefits of a few new tools in
sentence processing, both theoretical and methodological. Nonlinear dynamics
provides a new perspective for understanding the simultaneous existence of
systematic, rule-like behavior in language, via nearby strong attractors, and
sporadic, probabilistic behavior in language, via distant or weak attractors (cf.
Tabor & Hutchins, 2000). Most dynamical models of sentence processing
generdly posit that all available constraints on interpretation are active
simultaneously, but with varying strengths -- and the results of these strength
differences, as the system gravitates toward an attractor, can be quite nonlinear.
Clearly, the best way to test this kind of account of language is to explore the
tempora dynamics of language processing at a fine-grain scale, and look for the
kinds of nonlinearities that are predicted.

In contrast to dynamical models, seria stage models of sentence
processing tend to account for rule-like constraints and more probabilistic
constraints with completely separate processing systems that apply their
congtraints at different pointsin time (Frazier & Fodor, 1978; Frazier, 1987,
McElree & Griffith, 1995, 1998). In support of this kind of account, the results
of McElree and Giriffith's (1995, 1998) SAT procedure with the speeded
grammaticality judgment task show what look like differential "start times" for
syntactic processing, verb-subcategory processing, thematic role processing, etc.
However, simulations with the Normalized Recurrence competition algorithm
demonstrate that McElree and Griffith's functions of d' over time can be
approximated by a model that integrates all information sources simultaneously,
just with different input strengths. Essentially, this amounts to an existence
proof, showing that data that might have been interpreted as consistent only with
aserial stage account of sentence processing may in fact be accommodated by a
parallel, integrative dynamical model of information integration.

The next step comes when this "existence proof" makes a specific
prediction: that at a point of syntactic ambiguity, early moments of processing
will show partial activation of the non-preferred alternative -- and in some
circumstances may even show greater activation of that alternative during early
moments of processing than during later moments of processing. In order to test
this prediction, a new methodology was introduced. Participants were instructed
to complete sentence fragments (that were ambiguous between beginning a main
clause or reduced relative clause) under varying time pressure. Results indicated
that when semantic information supported the reduced relative, participants
exhibited a substantial salience of the reduced relative alternative even at the
earliest measured point in time. Moreover, with sentence fragments for which
the constraints just barely favored the main clause, a reduced relative completion
was more likely early on than later on. A simulation of Normalized Recurrence
approximated these results rather well.



In sum, the evidence for serial stage models of sentence processing is
waning. Many of the findings that were once treated as evidence that the
influence of semantic information on parsing is delayed are being accommodated
by models that apply syntactic and semantic biases simultaneously (e.g., Filip et
al., thisvolume; McRae et al., 1998; Spivey & Tanenhaus, 1998; Tabor et a.,
1997; Tanenhaus et al., 2000). Moreover, we report here suggestive evidencein
the salience of syntactic alternatives for a type of tempora dynamics -- early
activation of the non-preferred alternative which then decreases over time -- that
istypically ruled out by serial stage models of sentence processing.

The goal here is not (not yet, anyway) to make it impossible to
delineate what information sources are fundamental to sentence processing and
what information sources are better treated as belonging to "the rest of perception
and cognition." It is relatively clear that syntax is "fundamental", verb-
subcategory information is "crucia”, thematic role information is "pretty
important”, etc. As vague as those descriptors sound in distinguishing the
relative import of each information source for sentence processing, so perhaps
should the distinctions between the importance of these information sources in
our models of sentence processing be vague. Instead of seeking evidence for
discrete, qualitative architectural differencesbetween these information sources,
such as differential "start times," we advocate seeking quantitative strength
differences between them, such as graded constraint weights, and a generic
integration algorithm that they follow.
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