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Abstract

Current competitive market environment requires manufacturers to continuously

provide better service and support. As a result, warranty considerations emerge as

a significant instrument for increasing product marketability. In this paper, we

propose a new warranty policy, the repair-limit risk-free warranty with a threshold

point on the number of repairs, where replacement is deemed to be more cost effec-

tive thereafter. Consumers are better off than with a traditional free repair policy

since they could be compensated with a new product in case of premature failures.

As for the manufacturers, it not only offers extra marketing incentives, but also

reduces the possibility of high cost lawsuits due to the products with ‘proven’ bad

quality. Some useful results of the warranty cost of imperfectly repaired products

are derived through a censored quasi-renewal process.

keywords: Warranty cost; Repair limit; Imperfect repair; Quasi-renewal pro-

cesses; Renewal processes.

1



Acronyms

cdf cumulative distribution function

i.i.d. identically and independently distributed

pdf probability density function

pmf probability mass function

FRW free repair warranty

PRW pro-rata warranty

r.v. random variables

Notation

w length of a warranty period (w > 0)

m threshold point of the number of repairs under warranty

α parameter for a (censored) quasi-renewal process

Na(w), Nb(w) number of free repairs and replacements within w respectively

ca, cb unit repair and replacement cost respectively, both constant

Tp, tp pivot points. Capital letter indicates an r.v.

Xi inter-occurrence times of a (censored) quasi-renewal process

Si occurrence times of a (censored) quasi-renewal process

F, f cdf and pdf of the first failure time of a new product

Fi, fi cdf and pdf of the ith failure time of a (censored) quasi-renewal process

G(n) cdf of the nth occurrence time of a (censored) quasi-renewal process

C(w) warranty cost per product sold

Mq(·),Mq,2(·) first and second moments of a (censored) quasi-renewal process

Md(·),Md,2(·) first and second moments of a delayed renewal process

1 Introduction

Numerous warranties have been studied extensively in warranty literature. In gen-

eral, one can divide them into three categories: free repair/replacement warranty
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(FRW), pro-rata warranty (PRW) and combination warranty that contains both

the features of a FRW and a PRW. For a complete categorization of warranties and

the cost analysis of these policies, we refer to [2].

In this paper we propose and study a repair-limit risk-free warranty of a fixed

period w. Different from the traditional FRW policies, this policy has a threshold

point m on the number of repairs. In case there are more than m system failures

within w, the failed product will be replaced instead of being repaired again. Such a

policy is desirable for both manufacturers and consumers. Consumers should prefer

such a policy to a simple free repair policy because there are chances that they could

own another new product for free. From manufacturers’ point of view, first of all,

such a policy offers extra marketing incentives. Secondly, if a single product has

failed m times within a period of w, this might have provided sufficient information

that the particular product is indeed of low quality. So it could be cost effective

for the manufacturer to simply provide replacements without wasting more time on

repairs. In addition, such extra compensation for those ’unlucky’ consumers may

effectively reduce the chance of high-cost lawsuits due to the products with ‘proven’

bad quality.

In the literature of maintenance, many researchers have studied various repair

limit problems that can be categorized into three groups: repair-number limit prob-

lems, repair-time limit problems and repair-cost limit problems. Park [14] deter-

mined the optimal number of repairs before replacement based on the assumptions

of minimal repair and Weibull failure time distribution. Nguyen and Murthy [13]

and Kaio and Osaki [6] discussed several repair-time limit problems. They estab-

lished the threshold time point after which the failed products should no longer be

repaired. When repair cost per failure is considered random, it is possible to set

up a maintenance policy based on the estimated repair cost to determine whether

to repair or replace a failed product. This problem was investigated by Dohi [4],

Koshimae, et al. [8] and others. Almost all researchers dealing with repair-limit
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problems assume infinite horizon and perform the analysis based on asymptotic

cost measures such as the long-run average cost. In this study, we consider finite

horizon for the proposed repair-number limit warranty policy. Exact expressions of

the warranty cost moments are derived based on a censored quasi-renewal process

and other probability methodologies.

The key analytical tool used in this paper is the censored quasi-renewal pro-

cesses. Wang and Pham [23] studied the quasi-renewal processes and applied to

imperfect maintenance problems. They also successfully applied the methodology

to the modeling of software reliability growth and testing costs [16]. Censored quasi-

renewal processes is an extension of regular quasi-renewal processes. The concept

and some important properties will be discussed in section 2.

Another important issue in warranty cost analysis is the variability of warranty

cost. It is often not sufficient for warranty managers to simply obtain an esti-

mate of the expected warranty cost. Additional information about the variability

of warranty cost is essential to evaluate the risks involved in warranty programs.

Discussions on warranty cost variation can be seen in [1, 5, 11, 12, 15].

The rest of this paper is organized as follows: Section 2 introduces the censored

quasi-renewal processes and presents some important properties. Section 3 provides

the cost analysis of the repair-limit risk-free warranty policy. Several special cases

are discussed in section 4. Section 5 presents the sensitivity analysis for various

policy parameters. We conclude this paper in section 6.

Assumptions

1. All warranty service is instant.

2. Repairs are imperfect and the repair process can be modelled by a quasi-

renewal process.

3. All warranty claims are executed and all claims are valid.

4. Both repair cost ca and replacement cost cb are constant and ca < cb to avoid
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triviality.

2 Censored Quasi-Renewal Processes

In this section, we first introduce the concept of quasi-renewal processes follow-

ing Pham and Wang [16], then discuss the censored and truncated quasi-renewal

processes and several important properties.

There are extensive discussion on truncation and censoring in survival analy-

sis literature, for example, [7]. However, to our knowledge, no explicit study on

censored distributions (processes) have been done in warranty literature. Censored

quasi-renewal processes arise naturally in the study of warranty policies involving

imperfect repair. There are also potential applications in reliability and maintenance

modelling.

2.1 Quasi-renewal Processes

Let {N(t), t > 0} be a counting process and Xn be the inter-occurrence time between

the (n− 1)th and nth events of the process. We say {N(t), t > 0} is a quasi-renewal

process associated with the distribution F and the parameter α, α > 0, a constant,

if Xn = αn−1Zn, n = 1, 2, · · ·, where Zns are i.i.d. and Zn ∼ F .

Denote fi and Fi as the pdf and cdf of Xi. It is easy to see that for the quasi-

renewal process,

fi(x) = α1−if(α1−ix)

Fi(x) = F (α1−ix).

The pmf of N(t) can be easily derived through the relationship that N(t) ≥

n ⇐⇒ Sn ≤ t, where Sn is the occurrence time of the nth event in the process.

P[N(t) = n] = G(n)(t)−G(n+1)(t), n = 0, 1, 2, · · ·
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where G(n)(t) is the convolution of the inter-occurrence times X1, X2, · · · , Xn, and

G(0)(t) = 1 .

The expected value of N(t), or the renewal function, Mq(t), for the quasi-renewal

process is given by :

Mq(t) =
∞∑

n=1

G(n)(t).

Denote Mq,2(t) as the second non-centered moment of N(t). It is well known

(i.e. see [22]) that

Mq,2(t) =
∞∑

n=1

(2n− 1)G(n)(t).

2.2 Truncated Quasi-Renewal Processes

We now consider an extension of quasi-renewal processes - the truncated quasi-

renewal processes by omitting from the range of possible values some of non-negative

integers. Depending on the values omitted from the underlying distribution of

a quasi-renewal process, there are three types of truncation: truncation above,

truncation below and double truncation.

In particular, a quasi-renewal process truncated above m means that for a given

t, N(t) can only take values of 0, 1, · · · ,m. For such N(t), let Pi(t) ≡ P[N(t) = i],

then

Pi(t) =
G(i)(t)−G(i+1)(t)

1−G(m+1)(t)
, i = 0, 1, · · · ,m (1)

The scaling of the pmf by 1−G(m+1)(t) is to ensure the distribution integrates

to unity.

As a result, the first and second moments of N(t) are given by:

E[N(t)] =
m∑

i=0

i(G(i)(t)−G(i+1)(t))/(1−G(m+1)(t))

=
1

1−G(m+1)(t)
[

m∑

i=1

iG(i)(t)−
m+1∑

j=2

(j − 1)G(j)(t)] (let j = i + 1)
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=
1

1−G(m+1)(t)
[

m∑

i=1

iG(i)(t)−
m+1∑

j=2

jG(j)(t) +
m+1∑

j=2

G(j)(t)]

=
∑m+1

i=1 G(i)(t)− (m + 1)G(m+1)(t)
1−G(m+1)(t)

=
∑m

i=1 G(i)(t)−mG(m+1)(t)
1−G(m+1)(t)

(2)

and

E[N2(t)] =
1

1−G(m+1)(t)

m∑

i=0

i2(G(i)(t)−G(i+1)(t))

=
1

1−G(m+1)(t)
[

m∑

i=1

i2G(i)(t)−
m+1∑

j=2

(j − 1)2G(j)(t)] (let j = i + 1)

=

∑m
i=1 i2G(i)(t)− (

∑m+1
j=2 j2G(j)(t)−∑m+1

j=2 2jG(j)(t) +
∑m+1

j=2 G(j)(t))

1−G(m+1)(t)

=
∑m+1

i=1 (2i− 1)G(i)(t)− (m + 1)2G(m+1)

1−G(m+1)(t)

=
∑m

i=1(2i− 1)G(i)(t)−m2G(m+1)(t)
1−G(m+1)(t)

. (3)

2.3 Censored Quasi-Renewal Processes

Censoring refers to the fact that any observations above (below) a certain value are

reported or transformed into a single value. For example, the observation rule of y,

given an underlying y∗, is as follows:

y =





a, if y∗ > a

y∗, if y∗ ≤ a

Similar to the case of truncation, there are three types of censoring: censoring

above, censoring below and double censoring. Here we focus on the discussion of

the case of censoring above because it is directly related to the proposed warranty

policy.

Different from the truncated quasi-renewal processes, in a censored quasi-renewal

process, the relative magnitude of Pi(t) changes. In particular, let {N(t), t > 0} be
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a quasi-renewal process censored above m, and again denote Pi(t) ≡ P[N(t) = i],

then

Pi(t) = G(i)(t)−G(i+1)(t), for i = 0, 1, · · · , m− 1

Pm(t) = 1−
m−1∑

j=0

Pj(t) = G(m)(t). (4)

Consequently, the first and second moments of N(t) are:

E[N(t)] =
m−1∑

i=0

i(G(i)(t)−G(i+1)(t)) + mG(m)(t)

=
m−1∑

i=1

iG(i)(t)−
m∑

j=2

(j − 1)G(j)(t) + mG(m)(t) (let j = i + 1)

=
m∑

i=1

G(i)(t) (5)

and

E[N2(t)] =
m−1∑

i=0

i2(G(i)(t)−G(i+1)(t)) + m2G(m)(t)

=
m−1∑

i=1

i2G(i)(t)−
m∑

j=2

(j − 1)2G(j)(t) + m2G(m)(t) (let j = i + 1)

=
m−1∑

i=1

i2G(i)(t)− (
m∑

j=2

j2G(j)(t)−
m∑

j=2

2jG(j)(t)

+
m∑

j=2

G(j)(t)) + m2G(m)(t)

=
m∑

i=1

(2i− 1)G(i)(t). (6)

It should be noted that for the purpose of analyzing the repair-limit risk free

warranty, one should apply the censored quasi-renewal processes because the policy

in essence specifies a censoring rule on the number of repairs, and the threshold

point m has no impact on the probabilities of the number of repairs except when it

is equal to m.
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3 Analysis of Repair-Limit Risk-Free Warranties

In this section we study the warranty cost of the repair-limit risk-free policy with

parameters w and m. We assume that repairs are imperfect such that after each

repair, the system is between the states of new and old. In particular, the imperfect

repair can be modelled by a quasi-renewal process associated with F and α (0 <

α < 1).

According to the definition of the policy, any warranted products will be repaired

no more than m times. Consequently, the failure process before the first replacement

is actually a censored quasi-renewal process (censored above m). As a reminder, by

the definition of a quasi-renewal processes, the inter-failure times in the process are

independent and follow the distributions F (α1−nx).

Let Na(w) and Nb(w) be the number of repairs and the number of replacement

under the warranty respectively. Since w is predetermined, we will suppress it later

on for simplicity. Denote ca as the repair cost per failure and cb the replacement

cost per unit, then for the warranty cost per product sold C, we have

E[C] = caE[Na] + cbE[Nb] (7)

and

V[C] = c2
aV[Na] + c2

bV[Nb] + 2cacbcov(Na, Nb). (8)

It is worth noting that Na and Nb are correlated and cov(Na, Nb) 6= 0. The

relationship between them can be summarized as follows:

• Na < m implies Nb = 0

• Nb > 0 implies Na = m

• Nb = 0 implies Na ≤ m

• Na = m implies Nb ≥ 0
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Moments of Na

Since under the warranty replacement instead of repair will be performed if

there are more than m failures within w, it is obvious that Na is a realization of

a quasi-renewal process censored above m. Based on the results in section 2.3, we

have

E[Na] =
m∑

i=1

G(i)(w) (9)

E[N2
a ] =

m∑

i=1

(2i− 1)G(i)(w). (10)

The Pivot Point Sm

A pivot point is the time epoch that indicates the change of the type of warranty

service. For the repair-limit risk-free policy, clearly Sm is the pivot point because

any failed products will be replaced instead of being repaired again afterward. Let

H(tp) be the cdf of Sm, then

H(tp) ≡ P[Sm ≤ tp]

= G(m)(tp), tp ≥ 0. (11)

Moments of Nb

Nb ≥ 0 if Na = m, the latter holds if and only if Sm ≤ w. Suppose Sm =

tp, 0 ≤ tp ≤ w, then starting from tp, the system failure process becomes a delayed

renewal process with the first failure time having the distribution Fm+1 (Fm+1(x) =

F (α−mx)) , and all the following failure times are i.i.d. with distribution F .

Conditioning on Sm = tp, tp ≤ w, from the theory of renewal processes,

E[Nb|Sm = tp, tp ≤ w] = Md(w − tp),
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where Md(·), the renewal function for the delayed renewal process, is given by

Md(t) =
∞∑

i=0

Fm+1 ∗ F (i)(t).

Here F (i)(·) is the i-fold convolution of F (·) itself and F 0(·) = 1 and

Fm+1 ∗ F (i)(t) =
∫ t

0
Fm+1(t− x)dF (i)(x), i ≥ 0

is the convolution of Fm+1 and F (i).

After un-conditioning on Sm,

E[Nb] =
∫ w

0
Md(w − tp)dH(tp). (12)

Similar techniques can be used to obtain E[N2
b ]. Let Md,2(w− tp) ≡ E[N2

b |Sm =

tp, tp ≤ w], then

E[N2
b ] =

∫ w

0
Md,2(w − tp)dH(tp), (13)

where Md,2(·) can obtained by

Md,2(t) =
∞∑

i=0

(2i + 1)Fm+1 ∗ F (i)(t).

For more discussion on delayed renewal processes, we refer to [18].

Covariance of (Na, Nb)

Next we determine cov(Na, Nb). Since cov(Na, Nb) = E[NaNb]− E[Na]E[Nb], it

is sufficient to know E[NaNb].

Since

E[Na, Nb] =
∞∑

nb=0

m∑

na=0

nanbP[Na = na, Nb = nb]

= m
∞∑

nb=0

nbP[m,nb]

= m

∞∑

nb=1

nb

∫ w

0
P[nb|Sm = tp]dH(tp)
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and for tp ≤ w,

P[Nb = 0|Sm = tp] = 1− Fm+1(w − tp)

P[Nb = nb|Sm = tp] = Fm+1 ∗G(nb−1)(w − tp)− Fm+1 ∗G(nb)(w − tp), nb ≥ 1,

we obtain

E[Na, Nb] = m
∞∑

nb=1

nb

∫ w

0
[Fm+1∗G(nb−1)(w−tp)−Fm+1∗G(nb)(w−tp)]dH(tp). (14)

Consequently,

cov[Na, Nb] = m
∞∑

nb=1

nb

∫ w

0
[Fm+1 ∗G(nb−1)(w − tp)− Fm+1 ∗G(nb)(w − tp)]

−
∫ w

0
Md(w − tp)dH(tp)

m∑

i=1

G(i)(w). (15)

First and Second Warranty Cost Moments

Substituting equations (9) and (12) into (7), we obtain the expected warranty

cost per unit sold:

E[C] = ca

m∑

i=1

G(i)(w) + cb

∫ w

0
Md(w − tp)dH(tp) (16)

The variance of the warranty cost per unit sold can be obtained through equa-

tions (10), (13) and (15):

V[C] = c2
a{

m∑

i=1

(2i− 1)G(i)(w)− [
m∑

i=1

G(i)(w)]2}

+c2
b{

∫ w

0
Md,2(w − tp)dH(tp)− [

∫ w

0
Md(w − tp)dH(tp)]2}

+2cacb{m
∞∑

nb=1

nb

∫ w

0
[Fm+1 ∗G(nb−1)(w − tp)− Fm+1 ∗G(nb)(w − tp)]

−
∫ w

0
Md(w − tp)dH(tp)

m∑

i=1

G(i)(w)} (17)
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4 Special Cases

Case I:

Suppose for finite w, m = 0. In this case, no repair is allowed so all failed

products within w will always be replaced. This implies that Fi ∼ F,∀i, i ≥ 1. So

the warranty policy degenerates to the regular free replacement policy. As a result,

equation (16) becomes

E[C] = cbM(w) (18)

And equation (17) changes to

V[C] = c2
b{M2(w)− (M(w))2} (19)

where M(t) and M2(w) are the first and the second moments of the number of

renewals in a renewal process associated with F .

These are the well-known results for the FRW policy [2].

Case II:

Consider m = ∞ and w is finite. Thus no change of warranty service will ever

happen and all failed products within w will be repaired. Consequently, we have:

E[C] = ca

∞∑

i=1

G(i)(w) (20)

and

V[C] = c2
a{

∞∑

i=1

(2i− 1)G(i)(w)− [
∞∑

i=1

G(i)(w)]2} (21)

These results agree with the study in [23].

Case III:

Suppose for finite positive integer valued m, w is large such that it can be

treated as infinity. In this case, E[C] → ∞ since it is strictly increasing in w. One

may be interested in determining the warranty cost per unit time (long-run average
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cost), another cost measure that is commonly used in the warranty and maintenance

literature. It is not difficult to see that the long-run average cost E[C ′] is given by

E[C ′] =
cb∫∞

−∞ xf(x)dx
(22)

It is worth noting that this measure is only a crude approximation for the true

warranty cost per unit time, and the accuracy heavily depends on the magnitude of

w compared to the product life times.

Case IV:

Assume F has a normal distribution with mean µ and variance σ2 for finite

positive integer-valued m and finite w. That is, F ∼ N(µ, σ2). As a result, the inter-

occurrence failure times under the imperfect repairs are independent and also follow

normal distribution. In particular, it is easy to see that Fi ∼ N(αi−1µ, α2(i−1)σ2).

Thus G(i) ∼ N(1−αi

1−α µ, 1−α2i

1−α2 σ2). The pivot point distribution H(tp) is given by

H(tp) = Ψ((tp − 1− αm

1− α
µ)/

√
(1− α2m)/(1− α2)σ2 ) (23)

where Ψ(·) is the cdf of the standard normal distribution.

To compute Md(w − tp), we need Fm+1 ∗ F (i), which obeys the distribution

N((αm + i)µ, (α2m + i)σ2). So

Md(w − tp) =
∞∑

i=0

Ψ(
w − tp − (αm + i)µ

σ
√

α2m + i
) (24)

Similarly,

Md,2(w − tp) =
∞∑

i=0

(2i + 1)Ψ(
w − tp − (αm + i)µ

σ
√

α2m + i
) (25)

It is also necessary to obtain Fm+1 ∗ Gnb−1 and Fm+1 ∗ Gnb . Clearly that

they again follow normal distribution with parameters ((αm + 1−αnb−1

1−α )µ, (α2m +

1−α2(nb−1)

1−α2 )σ2) and ((αm + 1−αnb

1−α )µ, (α2m + 1−α2nb

1−α2 )σ2) respectively.

To obtain the expected warranty cost, combining the previous results together,

equation (16) is simplified to
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E[C] = ca

m∑

i=1

Ψ(
w − 1−αi

1−α µ

σ
√

1−α2i

1−α2

)

+cb

∫ w

0

∞∑

i=0

Ψ(
w − tp − (αm + i)µ

σ
√

α2m + i
)dΨ(

tp − 1−αm

1−α µ

σ
√

(1− α2m)/(1− α2)
)

(26)

The variance can be simplified in a similar way:

V[C] = c2
a{

m∑

i=1

(2i− 1)Ψ(
w − 1−αi

1−α µ

σ
√

1−α2i

1−α2

)− [
m∑

i=1

Ψ(
w − 1−αi

1−α µ

σ
√

1−α2i

1−α2

)]2}

+c2
b{

∫ w

0

∞∑

i=0

(2i + 1)Ψ(
w − tp − (αm + i)µ

σ
√

(α2m + i)
)dΨ(

tp − 1−αm

1−α µ

σ
√

(1− α2m)/(1− α2)
)

−[
∫ w

0

∞∑

i=0

Ψ(
w − tp − (αm + i)µ

σ
√

α2m + i
)dΨ(

tp − 1−αm

1−α µ

σ
√

(1− α2m)/(1− α2)
)

+2cacb{m
∞∑

nb=1

nb

∫ w

0
[Ψ(

w − tp − (αm + 1−αnb−1

1−α )µ

σ
√

α2m + 1−α2(nb−1)

1−α2

)

−Ψ(
w − tp − (αm + 1−αnb

1−α )µ

σ
√

α2m + 1−α2nb

1−α2

)]dΨ(
tp − 1−αm

1−α µ

σ
√

(1− α2m)/(1− α2)
)

−
∫ w

0

∞∑

i=0

Ψ(
w − tp − (αm + i)µ

σ
√

α2m + i
)dΨ(

tp − 1−αm

1−α µ

σ
√

(1− α2m)/(1− α2)
)

∗
m∑

i=1

Ψ(
w − 1−αi

1−α µ

σ
√

1−α2i

1−α

)} (27)

5 Sensitivity Analysis

For illustration purpose, let us consider a simple numerical example. Suppose

F ∼ N(4, 1), m = 1, w = 2.5 year, ca = $100, cb = $5, 000, and α = 0.70.

Using equations (26) and (27), we obtain that E[C] = $6.69, which accounts for

3.35% of the unit production (replacement) cost. By looking into the components

of E[C], we find that the repair cost is the dominant source of the warranty cost as
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Table 1: E[C] and V(C) for α = 0.9 and ca = 100, cb = 200

w
E[C] V(C)

m=1 m=2 m=3 m=1 m=2 m=3

1.0 0.1350 0.1350 0.1350 13.4993 13.4947 13.4947

1.5 0.6214 0.6213 0.6213 61.8705 61.7975 61.7975

2.0 2.2776 2.2766 2.2766 223.3563 222.7911 222.7912

2.5 6.6944 6.6882 6.6882 628.7408 625.5939 625.5947

3.0 15.9258 15.8970 15.8970 1357.0441 1343.2721 1343.2765

it contributes 99.80% to the total cost. This is what one should expect since the

probability of more than one failures within w is truly small (0.0075%), indicating

that most time no replacement will ever happen within a warranty period.

The standard deviation of the warranty cost is 25.07, indicating a moderate risk

contained in this warranty policy. When decomposing V(C), not surprisingly we

find that the dominant source of the variation in the warranty cost per unit sold is

from the repair cost. The contributions from repair, replacement and the interaction

between them are 99.16%, 0.44% and 0.41% respectively.

It is of interest to know how the warranty cost measures E[C] and V(C) change

with regard to parameters m,w, α, ca and cb. We first vary m in {1, 2, 3} and w in

{1.0, 1.5, 2.0, 2.5, 3.0} while keeping other parameters unchanged. The correspond-

ing reliability of a new warranted product evaluated at w are within the range of

84.13% to 99.87%.

From table 1, it is clear that both E[C] and V(C) are monotonically increasing

in w. This is expected since the chance of failures increases as the warranty period

becomes longer. As to the impact from m on the expected warranty cost, it seems

that such impact is very small for all values of w investigated. Therefore, manufac-

turers could simply choose m = 1 as long as the warranted products are reasonably
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Table 2: Moments of Warranty Cost for Various α

w
E[C] V(C)

α=0.9 α=0.7 α=0.5 α=0.9 α=0.7 α=0.5

1.0 0.1350 0.1351 0.1354 13.4947 13.5110 13.6031

1.5 0.6213 0.6217 0.6240 61.7975 61.9226 62.6523

2.0 2.2766 2.2792 2.2936 222.7911 223.5735 228.2000

2.5 6.6882 6.7023 6.7765 625.5939 629.5976 653.4632

3.0 15.8970 15.9593 16.2781 1343.2721 1359.8630 1459.7480

reliable.

To investigate how the effort of repair affects the warranty cost, we consider

three different levels of α (higher α indicates better repair). All other parameters

are kept the same and m is fixed at 2. As expected, as α increases, the moments

of C decreases (see table 2). This implies that one way to reduce the warranty cost

and mitigate the warranty cost risk is by improving the repair quality.

Replacement cost to repair cost ratio is another important factor in determining

the warranty cost. In table 3, we report the results for various cost ratios for

w = 3.0, α = 0.5 and m = 1. It is clear that the cost ratio is positively related

to both E(C) and V(C), implying that as replacement becomes more expensive

compared to repair, the repair-limit warranty policy will be more costly with higher

warranty cost risk.

Table 3: Moments of Warranty Cost for Various Cost Parameters

(ca, cb) (100,200) (100,500) (100,1000) (100,2000)

E[C] 16.5884 17.6726 19.4797 23.0939

V(C) 1600.5120 2539.5770 5546.1550 16964.8300
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6 Conclusion Remarks

In this paper, we studied a repair-limit risk-free warranty policy and provided the

first and second moments of the warranty cost per unit sold through censored quasi-

renewal processes. Warranty designers such as manufacturers are constantly in

search of novel ideas to promote their products due to the more than ever fierce

competition. Based on our research, the proposed repair-limit risk-free warranty

may be a good candidate for marketing purpose since it provides extra compensation

to consumers suffering from low quality products with a relatively low cost.

In the numerical example, we assume the failure time of a new product follows a

normal distribution to simplify the computational work. One may improve the study

by considering non-negative failure time distributions such as Weibull distribution,

Gamma distribution, or truncated normal distribution based on Tobit models [20].
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