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Abstract—In this paper, we develop and analyze the basic
methodology for minimum-energy (ME) band-limited prediction
of sampled time-variant flat-fading channels. This predictor is
based on a subspace spanned by time-concentrated and band-
limited sequences. The time-concentration of these sequences is
matched to the length of the observation interval and the band-
limitation is determined by the support of the Doppler power
spectral density of the fading process. Slepian showed that discrete
prolate spheroidal (DPS) sequences can be used to calculate the
ME band-limited continuation of a finite sequence. We utilize
this property to perform channel prediction. We generalize the
concept of time-concentrated and band-limited sequences to a
band-limiting region consisting of disjoint intervals. For a fading
process with constant spectrum over its possibly discontiguous
support we prove that the ME band-limited predictor is identical
to a reduced-rank maximum-likelihood predictor which is a
close approximation of a Wiener predictor. In current cellular
communication systems the time-selective fading process is highly
oversampled. The essential dimension of the subspace spanned
by time-concentrated and band-limited sequences is in the order
of two to five only. The prediction error mainly depends on the
support of the Doppler spectrum. We exploit this fact to propose
low-complexity time-variant flat-fading channel predictors using
dynamically selected predefined subspaces. The subspace selection
is based on a probabilistic bound on the reconstruction error.
We compare the performance of the ME band-limited predictor
with a predictor based on complex exponentials. For a prediction
horizon of one eights of a wavelength the numerical simulation
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results show that the ME band-limited predictor with dynamic
subspace selection performs better than, or similar to, a predictor
based on complex exponentials with perfectly known frequencies.
For a prediction horizons of three eights of a wavelength the
performance of the ME band-limited predictor approaches that of
a Wiener predictor with perfectly known Doppler bandwidth.

Index Terms—Discrete prolate spheroidal sequences, minimum-
energy band-limited predictor, time-variant channel prediction.

I. INTRODUCTION

I N mobile communication systems channel state informa-
tion at the transmitter proves to be beneficial for increasing

the system capacity. In a time-division duplex (TDD) system,
channel state information can be obtained by exploiting channel
reciprocity: While a data block is received, channel state in-
formation is obtained. This information can be utilized in the
following transmission period. However, for moving users at
vehicular speed the channel state information gets outdated
rapidly. Thus, appropriate channel prediction is necessary.

Existing linear prediction algorithms for time-variant chan-
nels can be categorized into two groups. The first group of algo-
rithms exploits the long-term correlation property of the fading
process without considering a physical wave propagation model
[1]. Thus, second-order statistics must be known in detail. In
wireless communication systems, detailed second-order statis-
tics are difficult to acquire due to the short time-interval over
which the channel can be assumed to be stationary (in the wide
sense) [2], [3]. Furthermore, bursty data transmission in mul-
tiuser systems pose another problem for obtaining channel ob-
servations over a sufficiently long time-interval.

The second group of algorithms take physical wave propaga-
tion models into account. The time-variant flat-fading channel
is represented as the superposition of propagation paths. Each
path is characterized by its distinct complex weight and Doppler
shift. A finite number of noisy channel observations is used to
identify the parameters of all paths.

1) The Doppler shift of each path is identified [4]–[8].
2) The complex weight of each path is estimated in the min-

imum mean square error (MMSE) sense.
3) Future channel values are predicted based on the above

estimates.
The Doppler shift estimation for each individual path requires
high computational complexity. Another drawback of the spec-
ular path models is rooted in the fact that the estimation error
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for the complex weight increases drastically if the Doppler fre-
quency difference between two paths becomes small [9]. In [6]
a prediction algorithm assuming few discrete scatterers is ana-
lyzed. The results in [6] show good performance in simulations
but reduced performance with measured channel data.

In this paper, we deal with the prediction of time-variant flat-
fading channels in a single-input single-output wireless mobile
communication system. We are concerned with low-complexity
prediction of a fading process from noisy channel observations
that are obtained while receiving a single data block. We con-
sider a data block length such that the time-selective fading
process is observed at most for one or two wavelength at the
maximum user velocity.

The symbol rate, or equivalently the sampling rate of the
fading process, in wireless communication systems is much
higher than the Doppler bandwidth. Thus, time-limited snap-
shots of the sampled fading process span a subspace with small
dimension [10]. The essential subspace dimension depends
on the Doppler bandwidth the sampling rate and the
number of observed samples

(1)

The number of maximal possible subspace dimensions gets
reduced by the factor . In practical wireless communica-
tion systems is in the order of two to five only.

The same subspace is also spanned by index-limited discrete
prolate spheroidal (DPS) sequences [11]. The band-limitation
of the DPS sequences is chosen according to the support of the
power spectral density of the time-selective fading process. The
energy of the DPS sequences is most concentrated in an interval
equal to the length of the observed data block. Thus, the DPS
sequences allow to calculate the minimum-energy (ME) band-
limited continuation of a finite sequence [10], hence, predict
future samples.

Prediction of continuous-time channels is treated in
[12]–[14]. In the present paper, we deal with discrete-time,
i.e., sampled channels which are important for practical im-
plementations using digital signal processing hardware. ME
band-limited prediction for multidimensional energy-concen-
trated signals with a priori known band-limiting region is
presented in [15].

Contributions of the Paper:
• We prove that ME band-limited prediction is equivalent to

a reduced-rank approximation [16] of the Wiener predictor
[17, Sec. 12.7] for a fading process with constant Doppler
spectrum. A first result in the same direction but for the
noiseless case is given in [18].

• Using analytic performance results we show for Clarke’s
fading model that the prediction error of a reduced-rank
predictor is strongly dependent on the support of the
Doppler power spectral density, while the actual shape of
the Doppler spectrum is of minor importance [19].

• In mobile communication channels, fading processes fre-
quently arise whose spectral support is the union of disjoint
intervals. Examples for such short-time Doppler spectra
are reported in [20], [21]. We generalize the concept of ME
band-limited prediction to processes whose band-limit is
defined by a region consisting of disjoint intervals.

• In practical systems, detailed information about the
Doppler spectrum or its band-limiting region is not
available. Instead, we exploit the small subspace dimen-
sion and define a finite set of precalculated subspaces.
Each subspace represents a hypothesis about the disjoint
band-limiting region of the fading process. We obtain
probabilistic bounds on the reconstruction error of each
predefined subspace using the method from [22] for
the current data block. The subspace with the smallest
reconstruction error is selected and utilized for channel
prediction [23].

Notation: We denote a column vector by and its th element
with . Similarly, we denote a matrix by and its th el-
ement by . The transpose of is given by and its con-
jugate transpose by . A diagonal matrix with elements
is written as and the identity matrix as . The
absolute value of is denoted by and its complex conjugate
by . The largest (smallest) integer that is lower (greater) or
equal than is denoted by ( ). We denote the set
of all integers by , the set of real numbers by and the set of
complex numbers by .

Organization of the Paper: The signal model for time-variant
flat-fading channels is presented in Section II. In Section III,
we explain the ME band-limited prediction method. The tight
relation between the ME band-limited predictor and the Wiener
predictor is highlighted in Section IV. In Section V, analytic
expressions for the prediction error of the ME band-limited
predictor are presented and an analytic performance compar-
ison with the Wiener predictor is conducted in Section VI.
In Section VII, a dynamic subspace selection scheme for the
ME band-limited predictor is introduced and its computational
complexity is assessed in Section VIII. An enhancement for
discontiguous Doppler spectra is shown in Section IX. We
provide Monte Carlo simulation results in Section X and draw
conclusions in Section XI.

II. SIGNAL MODEL FOR TIME-VARIANT

FLAT-FADING CHANNELS

We consider a TDD communication system transmitting data
in blocks of length over a time-variant channel. The symbol
duration is much longer than the delay spread of the
channel, i.e., . Hence, we assume the channel as fre-
quency-flat. Discrete time at rate is denoted by

. The channel incorporates the transmit filter, the transmit an-
tenna, the physical channel, the receive antenna, and the receive
matched filter. The data symbols are randomly and evenly
drawn from a symbol alphabet with constant modulus. Without
loss of generality . The discrete-time signal at the
matched filter output

(2)

is the superposition of the data symbol multiplied by the
sampled time-variant channel weight and complex
white Gaussian noise with variance . Without loss
of generality is a zero-mean, circularly symmetric,
unit-variance (due to power control) process.
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We assume an error-free decision feedback structure [24],
[25]. Thus, we are able to obtain noisy channel observations [11]
using the error-free data symbol estimates

(3)

Note that has the same statistical properties as . The
signal-to-noise ratio (SNR) is .

The transmission is block oriented. A data block spans the
time interval . The noisy channel ob-
servations , obtained during a single data block
are used to predict the channel weight up to symbols into the
future.

The electromagnetic field at the receiver is the superposition
of the contribution of the individual fields of impinging wave
fronts. Each wave front is conceived as originating from a spe-
cific scatterer. For a user moving with velocity the time-variant
fading process is band-limited by the one-sided normal-
ized Doppler bandwidth

(4)

where is the carrier frequency and stands for the speed of
light. As indicated with the inequality in (4) the sampling rate

is much higher than the Nyquist sampling rate.
We assume a time-variant block-fading channel model.

Hence, the fading process is wide-sense stationary
over the limited time interval (cf. Section X-A) with
covariance function

(5)

III. MINIMUM-ENERGY BAND-LIMITED PREDICTION

The samples of the channel weights in a single block are
collected in the vector

(6)

The covariance matrix of is defined as with
elements for . The noisy
observation vector is used for
channel prediction. Its covariance matrix reads

(7)

A. Reduced-Rank Channel Estimation

We consider a subspace-based approximation which expands
the vector in terms of orthonormal basis vectors

,

(8)

In this expression

(9)

contains the orthonormal basis vectors and
collects the basis expansion coeffi-

cients. The least square estimate of simplifies to

(10)

due to the orthogonality of the basis functions. The reconstruc-
tion error per data block is defined as

(11)

where

(12)

and contains the basis vectors spanning
the subspace orthogonal to the signal subspace spanned by the
columns of . The noise samples are collected in the vector

.
We define the mean square reconstruction error per sample

(13)

and the mean square reconstruction error per data block

(14)

(15)

In the sequel, we seek basis vectors and the sub-
space dimension which minimize the reconstruction error per
data block.

B. Time-Concentrated and Band-Limited Sequences

Slepian analyzed discrete prolate spheroidal (DPS) sequences
in [10]. DPS sequences time-limited to form a set

of orthogonal basis vectors . This set of basis vectors is used
in [11] for the estimation of fading processes with symmetric
spectral support with .

In mobile radio communication channels, the most signifi-
cant part of the power in the estimated Doppler spectrum of the
fading process is usually localized on the union of disjoint inter-
vals in the frequency range as depicted in Fig. 1.
Examples for such estimated (short-time) Doppler spectra are
reported in [20] and [21]. In the sequel, we generalize the con-
cept of time-concentrated and band-limited sequences from a
symmetric band-limiting interval to the union of multiple dis-
joint intervals using results presented in [26].

Fig. 1 depicts a region consisting of
disjoint intervals. Each interval is defined as ,

and

(16)
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Fig. 1. Band-limiting regionW (16) consisting of I = 3 disjoint intervals.

with . The Lebesgue measure of
reads

(17)

Definition 1: A sequence is band-limited to the
region , if its spectrum

(18)

vanishes outside . Thus,

(19)

Definition 2: The energy-concentration of a sequence
in the interval is defined as

(20)

Theorem 1: The sequences ,
band-limited to the region and with most concentrated

energy in the interval are the solutions to

(21)

where

(22)

Note that is proportional to the covariance function of
a process exhibiting a constant spectrum with support . More
details are given in Section III-C.

Equation (22) evaluates to

(23)

if the band-limiting region consists of disjoint intervals as
defined in (16) and depicted in Fig. 1.

The actual energy-concentration of the sequence
is given by

(24)

Proof: See Appendix II.
Theorem 1 shows, that the eigenvalue is a direct mea-

sure of the energy-concentration of the sequence
in the interval . The sequences and the eigen-
values depend on the region and the interval length

. In the sequel, we omit the dependence on the block length
since this parameter is kept fixed throughout the paper.

Both, the sequences and their restrictions on
form orthogonal sets [27]. The eigenvalues decay expo-
nentially for [26]. The essential subspace dimension
is defined as

(25)

Let us define the vectors
and the matrix for

. It follows from (21) that

(26)

i.e., the vectors are the eigenvectors of and
are their corresponding eigenvalues.

C. Relation to the Karhunen-Loève Identity

Identity (26) coincides with the Karhunen-Loève identity
[28] in the case where the fading process has a constant
spectrum with support given in (16)

otherwise.
(27)

The covariance function of reads in this case

(28)

Comparing (28) and (23) yields

(29)

The restriction of the process to the interval has a
covariance matrix proportional to

(30)

The Karhunen-Loève identity writes in this case

(31)
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From the Karhunen-Loève identity it follows that the basis
vectors minimize the mean square reconstruction error
(14) for a fading process with constant Doppler spectrum

with support . The subspace dimension mini-
mizing the MSE per observation interval for a given SNR is
found to be [29]

(32)

We implicitly assume here that the eigenvalues are ranked
. Moreover, the term in

the parentheses results immediately from (15) for the partic-
ular choice of . By optimizing we perform a square
bias-variance tradeoff, see also Section V.

D. Channel Prediction

So far we considered the channel estimation problem for a
channel observed over a time interval . We used orthogonal
basis vectors that result from time-limiting infinite sequences to
the interval .

However, the main interest of this paper lies on channel pre-
diction. Slepian points out [10, Sec. 3.1.4] that given the channel
samples , there are infinitely many ways to choose
the channel samples , such that the infinite se-
quence is band-limited. However, there exists only one
way to extend a band-limited sequence in the sense of a ME
continuation. This is achieved by using the time-concentrated
and band-limited sequences because the sequences

are most energy-concentrated in the interval .
Evaluating (26) we obtain , i.e., we know

for . The sequences can be continued over
in the ME band-limited sense by evaluating (21). Finally, we

can express the ME band-limited prediction of a time-variant
channel for any as

(33)

where

(34)

In the next section we explain the relation between ME band-
limited prediction and the Wiener predictor. The main benefit
of ME band-limited prediction will become clear in Section VII.
There we utilize the insights into the subspace structure of linear
prediction, gained in this section, to design a new low complexity
prediction scheme based on a finite set of hypothesis about the
actual Doppler spectrum of the fading process. Each hypothesis
is represented by a precalculated subspace spanned by the time-
concentrated and band-limited sequences defined in this section.

IV. RELATION TO THE WIENER PREDICTOR

In [17, Sec. 12.7] a solution to the prediction problem is pre-
sented using a Wiener (linear minimum MSE) predictor. The
Wiener predictor can be closely approximated by a reduced-

rank predictor where the subspace dimensions with small eigen-
values are truncated [16]. Both, the Wiener predictor and its re-
duced rank approximation are defined for a process with general
Doppler spectrum and the related covariance matrix .

A process exhibiting a constant Doppler spectrum
with support given in (27) (see Fig. 1) has the co-

variance function (28). The restriction of on
the interval is described by the covariance matrix
given in (30). For this class of processes we show that the re-
duced-rank maximum-likelihood (ML) predictor coincides with
a ME band-limited predictor [19].

A. Wiener Predictor

With the definition

(35)

for the -step Wiener predictor, ,
is of the form

(36)

B. Reduced-Rank Maximum-Likelihood Predictor

Similar to the reduced-rank ML estimator [16], [30] we are
able to define a reduced-rank ML predictor. The reduced-rank
ML channel estimation described in Section III-A uses a deter-
ministic signal model: The channel weight vector depends de-
terministically on given the matrix . However, as is pointed
out in [16, Sec. 1] we implicitly exploit the long-term correla-
tion properties: Matrix (9) is comprised of the first essential
eigenvectors defined by the eigenvalue identity .
The optimum dimension is chosen according to

(37)

Note that depends on the noise variance.
The reduced-rank ML predictor closely approximates (36)

using a subspace of with the optimum subspace dimension
:

(38)

where and
. The sequences are

defined as

(39)

generalizing (21). Again, the sequences and the restric-
tions of these sequences on form orthogonal sets. Note that

.
For reduced-rank ML prediction the situation is similar to

reduced-rank ML channel estimation. The predicted channel
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weights depend deterministically on . However, again the de-
terministic sequences are obtained by assuming a spe-
cific channel covariance matrix.

C. ME Band-Limited Prediction

For a fading process with constant Doppler spectrum
with support we can show the similarity between

the reduced-rank ML predictor (38) and the ME band-limited
predictor (33). We recast (21) as

(40)

(41)

where we use the fact that and
. Moreover, inserting (40) in (34)

yields

(42)

where ,
, and

.
Inserting (42) into the ME band-limited predictor (33) we ob-

tain

(43)

(44)

which is identical to the reduced-rank ML predictor (38) for
fading processes with constant Doppler spectrum .
Hence, both predictors use a subspace spanned by time-con-
centrated and band-limited sequences.

V. ANALYTICAL EXPRESSIONS FOR THE PREDICTION ERROR

A. Wiener Predictor

The minimum MSE per sample, which is achieved with the
Wiener predictor is given by [17, Sec. 12.7]

(45)

Specializing to constant Doppler spectra we can
express the of the Wiener predictor in terms of time-
concentrated and band-limited sequences and their
eigenvalues . Utilizing (42) we obtain

(46)

For constant Doppler spectra we can conclude that
the prediction horizon of linear prediction methods is inherently
limited because the energy of is most concentrated
in the interval and . This conclu-
sion is a direct consequence of (46). Indeed, di-
rectly depends on the absolute value of the time-concentrated
and band-limited sequences . Since the energy of

these sequences is most concentrated in the interval the ab-
solute value of decays outside and the MSE per
sample increases at the same time. A similar con-
clusion can be drawn from (45) and the decay of the covariance
function .

B. Reduced-Rank ML Predictor

The MSE per sample of the reduced-rank ML predictor can
be described as the sum of a square bias and a variance term

(47)

The expression for square bias and variance developed in [31,
Sec. 6] and [11] can be extended for reduced-rank ML predic-
tion [19]. Note that in all equations in this section .

The following (48)–(51) are valid for any Doppler power
spectral density of the actual fading process .
Thus, we can evaluate the prediction error for the mismatched
case too. This mean, the predictor design is based on the
assumed Doppler spectrum but the actual fading process
has Doppler spectrum .

We define the instantaneous frequency response of the re-
duced-rank ML predictor according to

(48)

where and . In (48), the
sum projects the complex exponential
onto the basis function, i.e., we calculate the inner product with
every basis function. Then, the realization at time instant is
calculated by left multiplying with .

The complex exponential in (48) is shifted by , thus,
is the instantaneous amplitude response of the re-

duced-rank ML predictor at time instant . The design goal for
the predictor is to have no amplitude error and no phase error.
Therefore, the instantaneous error characteristic of the reduced
rank Wiener predictor is defined as [31, Sec. 6.1.4]

(49)

The square bias per sample of the reduced-rank ML
predictor can be computed from the instantaneous error charac-
teristic and the power spectral density of ac-
cording to

(50)

The variance of reduced-rank ML prediction can be approxi-
mated according to

(51)
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C. ME Band-Limited Prediction

The MSE per sample

(52)

for ME band-limited prediction can be obtained by spe-
cializing the equations from the previous section by setting

(34).

VI. ANALYTIC PERFORMANCE COMPARISON

In this section, we show analytic performance results for the
Wiener predictor (36) and the reduced-rank ML predictor (38)
using full covariance information. These results are compared
with the performance of ME band-limited prediction (33) where
the knowledge of the support of the Doppler power spectral den-
sity is utilized only.

A. Channel Model and System Assumption

The time-variant flat-fading channel is assumed to
conform to Clarke’s model [32]. The covariance function of

is where is the zeroth-order
Bessel function of the first kind. The spectrum of reads

(53)

for and is zero elsewhere.
The symbol duration s is chosen according

to the system parameters considered in [11]. The speed of the
user varies in the range

. The carrier frequency is . This results
in a Doppler bandwidth range . Thus,
the normalized Doppler bandwidth, , ranges in

. The channel is observed over
symbols. During the observation, interval the user

travels a distance of at most one wavelength .
We are interested in the prediction error at a prediction horizon

symbols. At speed the
prediction horizon corresponds to a distance
of where denotes the wavelength.
For all simulations the SNR is 10 dB.

B. Analytic Results

In Fig. 2, we use the MSE of the Wiener predictor (denoted
Wiener predictor) as lower bound and plot
given by (45) for .

Second, we plot the MSE of the reduced-rank ML predictor
(47) calculating the integral (50) numerically (denoted RR
ML predictor). The reduced-rank ML predictor uses the exact
Doppler spectrum of the fading process, . The
steps in the curve corresponds to the transitions when the di-
mension of the (approximation) subspace is increased, see (37).

Third, we show the results for the ME band-limited predictor
(denoted ME band-limited) given by
in (52). For this predictor, we assume no knowledge about
the detailed shape of the Doppler spectrum and assume exact

Fig. 2. Mean square prediction errorMSE[M�1+`] at prediction horizon ` 2
f32; 64; 128g versus the normalized Doppler bandwidth � . The normalized
Doppler bandwidth � = 0 . . . 3:8 � 10 is induced by a receiver moving
with v = 0 . . . 27:8 m=s. The block length M = 256. The measurement
period relates to a distance traveled by the user in the range of � M = 0 . . . 1
wavelengths. The SNR equals 10 dB. We compare a Wiener predictor (Wiener
predictor) with a reduced-rank ML predictor (RR ML predictor) and the ME
band-limited predictor (ME band-limited).

knowledge of the Doppler bandwidth only represented by the
band-limiting region . This assumption
leads to a subspace spanned by DPS sequences. The dimension
switching points obtained by (32) for this case are slightly
suboptimal.

We can see that the MSE for the reduced-rank ML predictor
is larger than the MSE achieved with the Wiener predictor. If we
assume knowledge of the Doppler bandwidth only the MSE is
increased again. However, the MSE changes by several orders of
magnitude with increasing Doppler bandwidth. Thus, for a prac-
tical implementation the ME band-limited predictor based on
DPS sequences achieves close to optimum results while needing
information about the Doppler-bandwidth only. The reason for
the small loss incurred by utilizing the Doppler bandwidth in-
formation only is rooted in the extremely small dimension of the
time-concentrated and band-limited channel subspace.

VII. DYNAMIC SUBSPACE SELECTION

In practical systems, information about the Doppler band-
width must be obtained from channel observations. In [33],
a ME band-limited predictor is presented that utilizes the
Doppler-bandwidth estimator from [34]. The estimator in [34]
assumes a Doppler spectrum according to Clarke’s model.
Measured Doppler spectra deviate substantially from Clarke’s
model [20], [21]. Thus, specular Rice components lead to biased
Doppler-bandwidth estimates as well as channels with a small
number of specular propagation paths. The Doppler-bandwidth
estimator proposed in [35] is less sensitive to deviations from
Clarke’s model, however it requires large observation intervals
and an SNR larger than 30 dB.
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Fig. 3. Symmetric band-limiting region W =(�q=Q� ;+q=Q� )
for q 2 f1; . . . ; Qg used to define a set of Q subspaces.

We are interested in a low complexity implementation of the
channel predictor. To this end we develop a dynamic subspace
selection scheme for ME band-limited prediction that does not
need an explicit Doppler-bandwidth estimate [23]:

• First, we define a finite number of hypotheses about the ac-
tual Doppler bandwidth in Section VII-A. Utilizing the the-
oretical results from Section III we represent each hypoth-
esis by a subspace spanned by time-concentrated and band-
limited sequences. The orthogonal basis vectors spanning
each subspace are calculated once and then stored.

• Second, we propose a subspace selection method based on
a probabilistic bound on the reconstruction error (11) in
Section VII-B. The subspace with the smallest reconstruc-
tion error is selected based on the observation of a single
data block. This subspace is used for ME band-limited
prediction.

A. Subspace Definition

We define the maximum Doppler bandwidth

(54)

as system parameter given by the maximum (supported) user
velocity . Furthermore, we define a set of subspaces with
spectral support

(55)

for as shown in Fig. 3. The selec-
tion of for a specific simulation scenario is treated in
Section X-B. The time-concentrated and band-limited se-
quences corresponding to the band-limiting
region are calculated according to (21). We define the sub-
space for .
The subspace dimension is chosen according
to (32). The dimension of the subspace spanned by grows
with increasing due to the increasing spectral
support with Lebesgue measure
[cf. (32)]. The subspace orthogonal to is spanned by

.

B. Subspace Selection

In [22], an information theoretic subspace selection scheme
is proposed. This method uses the observable data error

(56)

where

(57)

to obtain an estimate on the reconstruction error

(58)

which cannot be observed directly. For the subspace selection,
is considered deterministic. The results in [22] are derived for

real valued signals. They are adapted here for complex valued
signals and noise.

a) Distribution of the Reconstruction Error: The recon-
struction error is a sample of a random variable which is
distributed as [22, Lemma 1]

(59)

where is a Chi-square random variable of order .
Therefore, has expected value

(60)

and variance

(61)

b) Distribution of the Data Error: The data error is a
sample of a random variable which is distributed as [22,
Lemma 2]

(62)

Therefore, has expected value

(63)

and variance

(64)

c) Probabilistic Lower Bound On The Reconstruction
Error: First, assuming is known, the recon-
struction error is bounded with probability according to
[22, Sec. III.C.]

(65)

where

(66)

and

(67)

The term is calculated by solving

(68)
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numerically for . In (68) denotes the Chi-square cu-
mulative distribution function with degrees of freedom. Note
that is actually independent of the current channel realiza-
tion [36] which will be important for a practical low complexity
implementation as discussed in Section VIII.

Second, we utilize to obtain a probabilistic bound on
. Because is large we can invoke

the Central Limit Theorem to approximate with a Gaussian
random variable. The term is bounded with
probability according to [22, Theorem 1]

(69)

The lower bound is zero if
, where the probability is considered in the form

, and
. Otherwise, the lower bound is

(70)

where

(71)

The upper bound is

(72)

Finally, we use the upper bound ,

(73)

on the reconstruction error to select the appropriate subspace
spanned by the columns of

(74)

The chosen subspace and the associated sequences
are used for ME band-limited prediction.

The probability is chosen as with
. The probability

.

VIII. COMPLEXITY

We assume the following known system parameters for
the predictor: The block length , the maximum velocity of
the user , the maximum Doppler bandwidth , the
number of precalculated subspaces , and the operating range
of the . The noise variance is
represented by discrete values over the operating range of
the predictor.

Fig. 4. Asymmetric band-limiting region. Example for Q = 4.

The complexity of the proposed ME band-limited predictor
with dynamic subspace selection is mainly determined by the
complexity of projecting the observation vector on all sub-
spaces in (57). This operation requires com-
plex multiply accumulate instructions. The storage of all precal-
culated basis functions needs memory for values.

The computational effort needed to calculate the upper bound
on the reconstruction error for each single subspace ,

in (73) can be neglected since it involves the simple
calculation of three terms ( , and fixed): The first term in
(73), , can be precalculated and needs storage of
values.The second term, ,depends directly on thedata
error . For the calculation of the individual terms of we need
storage for precalculated values and the calculation of
square roots for . The third term, , can
be precalculated needing storage of values.

A predictor based on complex exponentials needs Doppler
shift estimates for all paths. Most methods for Doppler shift
estimation rely on an eigenvalue decomposition of the channel’s
sample covariance matrix [37]. The complexity of the eigen-
value decomposition grows with . Hence, the complexity
the ME band-limited predictor with dynamic subspace selec-
tion is much smaller then the complexity of complex-exponen-
tial-based predictors if . For the simulation
parameters used in Section X this relation is fulfilled.

IX. ADAPTION TO DISJOINT DOPPLER SPECTRA

In mobile communication channels, fading processes fre-
quently arise whose spectral support is the union of disjoint
intervals. Such short-time Doppler spectra are caused by a
nonuniform scatterer distribution or by a small number of
specular propagation paths, as reported in [20] and [21]. For
such fading processes the set of subspaces defined based on
symmetric constant Doppler spectra (55) are suboptimal.

If the number of specular propagation paths is small it is likely
that all paths, for example, have either a positive or a negative
Doppler shift only. The band-limiting region defining the
subspace in Fig. 3 is symmetric to the origin, hence in this
case the support of the band-limiting region is larger than nec-
essary leading to a reduced prediction horizon, see the Monte
Carlo simulation results in Section X.

Based on the above explanations we propose to partition
the region into spectral bins with equal
length as depicted in Fig. 4. The spectral bin
spans the interval

(75)
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Using all possible binary combinations of we can define
band-limiting regions ,

(76)

(77)

(78)
...

(79)

Based on the band-limiting regions we can define ,
and similar to the definition in Section VII-A.

X. MONTE CARLO SIMULATIONS

In this section, we present performance results for ME
band-limited prediction using the dynamic subspace selection
scheme derived in the previous section. We provide compar-
isons to a Wiener predictor that utilized the long-term Doppler
spectrum and to a classic predictor based on complex exponen-
tials. The predictor using complex exponentials is described in
Appendix I.

A. Physical Wave Propagation Channel Model

We simulate the fading process using physical wave
propagation principles [32], [38]. The electromagnetic field at
the receiving antenna is the superposition of the contribution of
the individual fields of impinging plane waves. Each plane
wave is conceived as propagating along a specific path. Under
these assumptions the channel weight is of the form

(80)

Here is the Doppler shift of wave . For easier notation we
define the normalized Doppler frequency as . Note
that . The gain and phase shift of path are
embodied in the complex weight . We model the random
parameter sets and , as independent.
The random variables in each set are independent and identi-
cally distributed. The path angles are uniformly distributed
over . The normalized Doppler shift per path is

. The path weights are defined as
where is uniformly distributed over . Under the above
assumptions, the covariance function of converges to

, for , where is the zeroth-order
Bessel function of the first kind [32].

We assume a time-variant block-fading channel model com-
prised of paths. Hence, the random path parameters and

are assumed to be constant over a block of symbols.
However, the path parameters and change independently
from block to block, therefore, the short-time spectrum changes
as well [2].

We note that the overidealized simulation models from Jakes
[39] or Zheng [40] are not suitable for the evaluation of channel
prediction algorithms. This is because a symmetric distribution
of the scatterers with equidistant spacing is assumed in [39],

Fig. 5. Lower bound on the frequency resolution (82) versus number of propa-
gation pathsP . TheSNR 2 f0; 10g dB and the block lengthM 2 f256; 512g.

[40]. However real-world channels will not exhibit equidis-
tantly spaced scatterers. Prediction algorithms assuming a
finite number of specular paths [41] show optimistically biased
performance due to this overidealized scatterer distribution.

B. Choice of the Number of Subspaces

The lower bound for the frequency estimation error of a single
complex exponential in white Gaussian noise is given by the
Cramér-Rao lower bound (CRLB) [17, Sec. 15.10],

(81)

This bound applies to the problem of Doppler frequency estima-
tion for propagation path, too. With increasing number
of paths the estimation error for the Doppler frequency per
path increases due to reduced energy per propagation path. The
higher likelihood of closely spaced frequencies increases the
CRLB additionally [9]. We conjecture that the CRLB for fre-
quency estimation is a lower bound for the problem of Doppler
bandwidth estimation for a fading process with propa-
gation paths.

We are interested to define a finite number of hypothesis
about the Doppler bandwidth of the fading process (see Fig. 3).
To this end we quantize the range into
sub-intervals. We define the relative frequency resolution as

(82)

and use its inverse to get an upper bound on the number of
subspaces . In Fig. 5 we plot versus the number
of paths for an dB. Fig. 5 documents that
the lower bound on the frequency resolution is in the order of

to for propagation paths and
block length . Since frequencies can only be esti-
mated with 10% accuracy, 10 hypothesis (subspaces) are suffi-
cient to estimate the Doppler bandwidth. We partition the range

into intervals, see (55).
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C. Simulation Setup and Results

We use the simulation parameters from Section VI-A. For all
simulations the SNR is 10 dB. Monte Carlo simulations have
been performed to contrast the performance of the three fol-
lowing predictors:

• The Wiener predictor (denoted Wiener predictor) is defined
in (36) and utilizes knowledge of the long-term model co-
variance function . This predictor is
a sensible choice for large number of propagation paths

. However, for paths this predictor will
be suboptimal.

• The predictor based on complex exponential functions (de-
noted compl. exponential) which is derived based on the
specular-path model (80) knows the number of paths and
the Doppler frequencies of each path perfectly. Only the
complex path weights are estimated, see Appendix I. This
allows us to obtain a lower bound on the performance of
the predictor based on complex exponentials.

• The new ME band-limited predictor is presented in two
configurations.
1) We show simulation results (denoted ME band-limited

sym.) using the set of symmetric subspaces ,
with defined according to Fig. 3

in Section VII-A.
2) We combine the set of symmetric subspaces

with the set of asymmetric subspaces ,
with defined according

to Fig. 4 in Section IX. Both sets contain two identical
band-limiting regions, which are
and

. Thus, and are not used. The
subspace selection method from Section VII is applied
on the combined set of subspaces. The simulation
results are denoted ME band-limited sym.+asym.

The MSE of all three predictors are reported in Figs. 6–10
versus the normalized Doppler frequency . We present re-
sults for the prediction horizons
and considering a channel model with propagation
paths. At speed the prediction horizon corre-
sponds to a distance of where denotes
the wavelength.

All MSE results in the paper are given in terms of the sample
mean where the index

denotes the block number. We average over in-
dependent channel realizations. We do not perform any further
normalization or outlier removal as in [5], [6].

D. Discussion of Simulation Results

We can observe that the Wiener predictor performance is
independent of the number of propagation paths . In Fig. 6,
we show the results for the ME band-limited predictor with dy-
namic subspace selection. This predictor shows slightly higher
MSE than the Wiener predictor. Note that the Wiener predictor
knows the model covariance function exactly while the ME
band-limited predictor selects the best subspace based on the
observation of a single data block. The results in Fig. 6 agree

Fig. 6. Mean square prediction error MSE[M � 1+ `] at prediction horizon
` 2 f32; 96g versus the normalized Doppler bandwidth � . The normalized
Doppler bandwidth � = 0 . . . 3:8 � 10 is induced by a receiver moving
with v = 0 . . . 27:8 m=s. The block length M = 256. The measurement
period relates to a distance traveled by the user in the range of � M = 0 . . . 1
wavelengths. The SNR equals 10 dB. We compare a Wiener predictor (Wiener
predictor) with a ME band-limited predictor with dynamic subspace selection
(ME band-limited sym.).

qualitatively with the analytic results presented in Fig. 2 which
where obtained with perfect Doppler bandwidth knowledge.

By combining the set of symmetric and the set of asymmetric
subspaces in Figs. 7 and 8 we are able to enhance the perfor-
mance for small number of paths and large Doppler
bandwidth. The dynamic subspace selection has now added
freedom to exclude empty regions from the signal subspace.
Each spectral bin in Fig. 4 can be switched on or off
individually leading to enhanced prediction performance.

Additionally, we show the performance of the predictor based
on complex exponentials. This predictor performs poorly if the
Doppler bandwidth is small, see Figs. 7 and 8. This is be-
cause the estimation error for the complex weight of each in-
dividual path increases if the Doppler shift difference between
two paths becomes small. A detailed analysis of the Cramér-Rao
lower bound (CRLB) for the situation of two paths is presented
in [9]. For less than four paths and for large Doppler spread the
predictor based on complex exponentials performs better than
the Wiener predictor (see Figs. 7 and 8). We emphasize that we
assumed perfect knowledge of the number of paths and the
Doppler shift of each path , , which leads to
highly optimistic performance for the predictor based on com-
plex exponentials. We stick to this assumption to obtain a lower
bound on the complex exponential predictor performance.

In Fig. 9, we plot the lower bound for a Wiener predictor
by using the exact Doppler power spectral density of the
current data block (denoted Wiener pred. inst. spectrum).
In this case, the Doppler power spectral density is given as
the sum of Dirac pulses at the Doppler shift of each path

. Additionally, we plot the
result for the most simple predictor that assumes a band-limiting
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Fig. 7. Mean square prediction error MSE[M � 1 + `] versus Doppler
bandwidth � at prediction horizon ` = 32 for a channel with P 2 f2; 30g
propagation paths. We compare a predictor using complex exponential basis
functions (compl. exponential) with perfectly known frequencies, the Wiener
predictor (Wiener predictor) and the ME band-limited predictor with dy-
namically selected symmetric and asymmetric subspaces (ME band-limited
sym.+asym.). The SNR = 10 dB and the observation block length M = 256.

Fig. 8. Mean square prediction error MSE[M � 1+ `] versus Doppler band-
width � at prediction horizon ` = 96 for a channel with P 2 f2;30g propa-
gation paths. The SNR = 10 dB and the observation block length M = 256.

region according to the maximum
velocity (denoted ME band-limited ), see (54).
For large Doppler bandwidth, the dynamic subspace selection
scheme performs slightly worse than the predictor with the
fixed bandlimiting region. This is due to the fact that the
subspace selection scheme decides to use the wrong subspace
sometimes.

In Fig. 10, we show results for a data block length of
. By doubling the observation interval the prediction perfor-

mance of the Wiener predictor and the predictor based on com-
plex exponentials changes only slightly. However, the subspace

Fig. 9. Mean square prediction error MSE[M � 1+ `] versus Doppler band-
width � at prediction horizon ` = 96 for a channel with P 2 f2;4; 30g
propagation paths. We compare the ME band-limited predictor with dynami-
cally selected subspaces with a predictor that uses a fixed subspace according
to the maximum Doppler spread (ME band-limited � ). As lower bound
we show results for a Wiener predictor that knows the instantaneous Doppler
frequencies perfectly (Wiener pred. inst. spectrum). The SNR = 10 dB and the
observation block length M = 256.

Fig. 10. Mean square prediction error MSE[M�1+ `] versus Doppler band-
width � at prediction horizon ` = 96 for a channel with P 2 f2;30g propa-
gation paths. The SNR = 10 dB and the observation block length M = 512.

selection scheme benefits from the enlarged observation period
because the probabilistic estimate of the upper bound on the re-
construction error (73) shows reduced variance.

XI. CONCLUSION

In this paper, we presented a new ME band-limited prediction
method for a time-variant process with arbitrary power spectral
density. The predictor is based on time-concentrated and band-
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limited sequences. We obtain time-concentrated and band-lim-
ited sequences for a band-limiting region consisting of disjoint
intervals by generalizing results from Slepian [10].

We showed that ME band-limited prediction is identical to
reduced-rank ML prediction for fading processes with constant
Doppler spectrum. For a fading process with constant Doppler
spectrum, this equivalence allows the conclusion that the
subspace underlying the linear prediction problem is energy-
concentrated. This fact inherently limits the prediction horizon
of linear prediction methods. A similar conclusion can be
drawn from the decay of the covariance function .

We provided a performance analysis for reduced-rank ML
prediction using full information about the channel covariance
function and for ME band-limited prediction using information
about the Doppler bandwidth only. Numeric evaluation of the
prediction error shows that knowledge of the detailed power
spectral density is not crucial. We conclude that the predictor
performance primarily depends on the Doppler bandwidth, but
is almost indifferent to other features of the Doppler spectrum.

We exploit these observations to design a set of subspaces
spanned by sequences with fixed time-concentration but
growing Doppler bandwidth. The sequences in each subspace
exhibit a fixed time-concentration and a subspace-specific
bandwidth. Each subspace is matched to the support of a
certain Doppler power spectral density. The dimensions of
the predefined subspaces are in the range from one to five for
practical communication systems. The subspace applied for
ME prediction is selected based on a probabilistic bound on
the reconstruction error. For a prediction horizon of one eights
of a wavelength the numerical simulation results show that the
ME band-limited predictor with dynamic subspace selection
performs better than or similar to a predictor based on complex
exponentials with perfectly known frequencies. For a prediction
horizons of three eights of a wavelength the performance of
the ME band-limited predictor approaches that of a Wiener
predictor with perfectly known Doppler bandwidth.

APPENDIX I
CHANNEL PREDICTION BASED ON COMPLEX EXPONENTIAL

BASIS FUNCTIONS

The ME band-limited predictor described in Section III
uses time-concentrated and band-limited sequences to span
the channel subspace. Classical channel prediction algorithms
describe the channel subspace using complex exponential
basis functions. In the method proposed in [4] and [5] the path
parameters and in (80) are estimated to enable channel
prediction. We review here shortly the method, so that we are
able to compare it with our ME band-limited predictor.

For a limited observation interval , we can rewrite (80) in
vector matrix notation according to

...
...

...
...

(83)

where . In [4] ESPRIT [42] is used to estimate
the Doppler shift of each single propagation path. ESPRIT
requires . The number of paths is known as well.

The complex weight vector is estimated
according to

(84)

where results by inserting the Doppler estimates in . Fi-
nally, the time-variant channel is predicted via

(85)

for . In this paper we assume that all
, are known exactly which allows us to

obtain a lower bound on the performance of the predictor based
on complex exponentials.

APPENDIX II
PROOF OF THEOREM 1

Consider square-summable sequences , which
are band-limited to a region , i.e., whose
Fourier transform vanishes outside , see (18) and (19).
Furthermore, the energy-concentration on an arbitrary but fixed
index set should be maximal, i.e.,

(86)

Using Parseval’s theorem can be recast as

(87)

It can be seen, that is maximum if, and only if, satisfies
the integral equation

(88)

with the Hermitian kernel defined as

(89)

Notice that inserting (88) into (87) yields

(90)

Since the kernel is degenerate and has the specific form (89),
the solutions of (88) are finite and can be found by writing the
left-hand side (LHS) of (88) as [43]

(91)
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In the above expression, is an indexing of the solutions. Sub-
stituting in (88) and replacing by results in

(92)

Multiplying both sides with and integrating with respect
to over the region yields

(93)

This identity is exactly the defining (21) of the band-limited and
time-concentrated sequences in Theorem 1.

Note that in [27], identity (90) is derived assuming that the
defining (21) is already known. The present proof yields all re-
sults by maximizing the energy-concentration of the sought se-
quence in the interval only. In [10], identity (90) is proven for
a symmetric band-limiting region .

The proof presented here is valid for any Lebesgue-measur-
able subset of and in particular when is the
union of disjoint intervals as considered in Section III-B. More-
over, throughout the paper we consider the special case

.
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