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Abstract

Mobile clients feature increasingly sophisticated wireless networking support that enables real-
time information exchange with remote databases. Location-dependent queries, such as determining
the proximity of stationary objects (e.g., restaurants and gas stations) are an important class of
inquiries. We present a novel approach to support nearest-neighbor queries from mobile hosts by
leveraging the sharing capabilities of wireless ad-hoc networks. We illustrate how previous query
results cached in the local storage of neighboring mobile peers can be leveraged to either fully or
partially compute and verify spatial queries at a local host. The feasibility and appeal of our technique
is illustrated through extensive simulation results that indicate a considerable reduction of the query
load on the remote database. Furthermore, the scalability of our approach is excellent because a
higher density of mobile hosts increases its effectiveness.

1 Introduction

Location-based queries are of interest in a number of applications, for example, geographical information
systems. An example query might be “find the nearest gas station” or “find the three nearest Italian
restaurants.” Increasingly such queries are issued from mobile clients.

In this study we propose an approach that leverages short-range, ad-hoc networks to share informa-
tion in a peer-to-peer (P2P) manner among mobile clients to answer location-based nearest neighbor
queries. The efficiency of our approach is derived from the observation that the results of spatial queries
often exhibit spatial locality. For example, if two mobile hosts are close to each other, the result sets
of their kNN queries for a specific object type may overlap significantly. Through mobile cooperative
caching [3] of the result sets, query results can be efficiently shared among mobile clients.

Figure 1 shows an example. At time T the mobile query point Q can establish contact with two other
mobile hosts within its communication range: P ′

1 and P ′

2. Both of these clients in the past executed a
1NN query for the nearest gas station when they were located at P1 and P2, respectively1. The results
that they obtained and cached were <n2, P1> and <n4, P2>. These two tuples represent candidate
solutions for Q’s own 1NN query. Through a local verification process Q can determine whether one of
the solutions obtained from its neighbors is indeed its own nearest gas station. Note that the current

1In our notation we use the object identifier to represent its position coordinates.
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Figure 1: Example of 1NN peer-to-peer result sharing.

location of the neighboring hosts, P ′

1 and P ′

2, has no specific significance, as long as they are within the
communication range of Q.

The contributions of this study are as follows. In our methodology we first identify a set of character-
istics that enable the development of effective sharing methods. We then introduce a set of algorithms
that aid in the decision process within this distributed environment to verify whether the data items
received from neighboring clients provide a complete, partial, or irrelevant answer to the posed query.
Our initial method verifies results from a single neighbor, and we then extend it to work with multiple
neighboring clients. Finally, through extensive simulation experiments we explore the benefits of our
approach under different parameter sets (e.g., mobile host density, wireless transmission range).

The rest of this paper is organized as follows. Section 2 introduces the related work for processing
NN and kNN queries. Our approach is detailed in Section 3 and the experimental results obtained from
our simulation model are contained in Section 4. Finally, Section 5 concludes the paper and outlines
future research directions.

2 Related Work

The existing work relevant to our approach can broadly be classified into two areas, namely nearest
neighbor query processing and cache management in mobile environments.

Nearest Neighbor Query Processing One of the most fundamental operations performed on spa-
tial data sets is to find the nearest neighbors of a query object – either one (1NN) or a specific number
k (kNN).

R-trees [9] and their derivatives have been a prevalent method to index spatial data and increase
query performance. To find nearest neighbors, Roussopoulos et al. [15] proposed a branch-and-bound
algorithm that searches an R-tree in a depth-first manner. The best-first NN algorithm proposed by
Gı́sli et al. [10] retains a heap with the entries of the nodes visited so far and it always expands the first
entry in the heap. The algorithm is optimal since it visits only the minimally necessary nodes and it
reports nearest neighbors in ascending order according to their distance to the query point. It can be
applied without a-priori knowledge of the number k of queried nearest neighbors. Both the depth-first
and best-first algorithms are designed for stationary objects and query points. They may be used when
moving objects infrequently issue nearest neighbor queries (single-step search).

With the emergence of mobile devices attention has focused on the problem of continuously finding k
nearest neighbors for moving query points (k-NNMP). A naive approach might be to continuously issue
kNN queries along the route of a moving object (multi-step search). This solution results in repeated
server accesses and nearest neighbor computations and is therefore inefficient. One method to reduce
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the computational complexity is to sample the trajectory instead of treating it as a continuous curve.
Song and Roussopoulos [18] utilize partial results from queries launched at previous sampled positions
to reduce the accesses to the server.

Tao et al. [19] investigated the problem of finding the continuous nearest neighbor of every point
along a segment, assuming that the trajectory is known and can be described in closed form with a
function of reasonable complexity. Their approach pre-computes so-called split-points that divide the
object path into segments during which the nearest neighbor result sets remain unchanged. This method
is efficient, but requires knowledge of the object path (or at least an approximation).

In the early work, nearest neighbor searches were based on the Euclidean distance between the
query object and the sites of interest. However, in many applications objects cannot move freely in
space but are constrained by a network (e.g., cars on roads, trains on tracks). Therefore, in a realistic
environment the nearest neighbor computation must be based on the spatial network distance, which
is more expensive to compute. A number of techniques have been proposed to manage the complexity
of this problem [12, 13, 17].

Cache Management in Mobile Environments Caching is a key technique to improve data re-
trieval performance in widely distributed environments. Leveraging the combined resources of several
cooperating caches has been proposed to improve file system [5] and Web performance [20]. In conven-
tional mobile environments, wireless connections are treated as extensions of the wired infrastructure.
Hence, mobile clients retrieve information from database servers via intermediate base-stations. With
the increasing deployment of new peer-to-peer wireless communication technologies (e.g., IEEE 802.11x
and Bluetooth) there exists a new information sharing alternative known as peer-to-peer cooperative
caching. With this technique mobile hosts communicate with neighboring peers in an ad-hoc manner
to share information rather than having to rely on the communication link to the remote information
sources.

Peer-to-peer cooperative caching can bring about several distinctive benefits to a mobile system:
improving access latency, reducing server workload and alleviating point-to-point channel congestion.
As a disadvantage, it may increase the communication overheads among mobile hosts.

Recently, a number of techniques have been proposed to address caching in ad-hoc peer-to-peer
networks. The COoperative CAching (COCA) [3] scheme investigates the effects of client activity levels,
data replication, and cache size. The benefits of clustering mobile clients into groups are investigated
in [4].

Semantic caching stores additional information such as query descriptions with the data items in the
local cache. The metadata is used to determine whether a new query is fully answerable from the cache.
In that case no communication with the server is required. If the query can only partially be answered,
then it may be trimmed and sent to the server. In either case, the database processing complexity and
the amount of data transferred can be significantly reduced [14]. One form of cachable metadata is the
data access path which may be used to redirect future accesses to nearby cache nodes [21]. Another
possibility is to cache the index that supports the objects. The cached index enables the objects to be
reused for common types of queries [11].

Addressing specifically the nearest neighbor search for stationary objects, Zheng et al. [22] proposed
an index based on Voronoi diagrams in conjunction with a semantic cache to enhance the efficiency of
the search.

3 Sharing Based Nearest Neighbor Queries

The fundamental idea of our methodology is to leverage the cached results from previous queries at
reachable mobile hosts for answering spatial queries at the local host. In some circumstances the query
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results obtained from peer hosts can only provide a partial answer or no answer at all. To achieve
scalability it is imperative that a mobile client can locally determine whether the result set from its
neighbors provides a full, partial or no answer. As a novel component in our methodology we present
a verification algorithm that can certify if a result object is part of the solution set. We term such an
object certain. If the object is not guaranteed to be part of the result set, we call it uncertain. The
first variant of our verification procedure validates object certainty from a single peer. We then extend
the process to multiple peers. If no full set of certain objects can be retrieved from neighboring peers,
the query is forwarded to a spatial database server including the acquired partial result. The database
search efficiency can be improved by utilizing the partial query results from clients.

In this study we use the k-nearest neighbor (kNN) search as an example of spatial queries and explain
in detail how they are processed by cooperating mobile hosts. Specifically, in Section 3.1 we introduce
the infrastructure that we assume for our work. Next, Section 3.2 presents algorithms for verifying query
results from neighboring peers and the exact ranking of verified Points Of Interest (POI). Section 3.3
explains how to use our metrics to decrease the server load for processing kNN queries. Section 3.4
illustrates the extension of our algorithms for solving spatial network kNN queries.

3.1 Assumed Infrastructure

Figure 2 depicts our operating environment with two main entities: remote spatial databases and wireless
mobile hosts. We are considering mobile clients, such as cars, that are instrumented with a global
positioning system (GPS) for continuous position information. Furthermore, we assume that two-tiers
of wireless connections are available on future automobiles. Traditional, cellular-based networks (such
as utilized by the OnStar service) allow medium range connections to base-stations that interface with
the wired Internet infrastructure. A second type of short-range networks allow ad-hoc connections with
neighboring mobile clients. Technologies that enable short range communication include, for example,
IEEE 802.11x. Benefiting from the power capacities of vehicles, we assume that each mobile host has
a significant transmission range and virtually unlimited lifetime. The architecture can also support
hand-held mobile devices. However, then power consumption becomes an additional parameter which
we are not currently considering.
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Figure 2: Example system environment.
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3.2 Euclidean Distance Nearest Neighbor Queries

With our assumed infrastructure, a mobile host Q has two choices to find the solution to a kNN query.
First, it can send the query directly to the database server for execution. However, since spatial searches
are expensive to compute, the server may become a bottleneck when the number of mobile hosts grows.
An alternative solution is to collect NN data from peers and harvest these existing query results for
completing Q’s query. We term the latter approach a Sharing-based Euclidean distance Nearest Neighbor
(SENN) query. We will subsequently extend the technique to make use of the network distance.

We propose two approaches to process NN information obtained from peers for fulfilling NN queries
of a mobile host Q. The single peer NN verification, also called kNNsingle, attempts to verify k certain
objects by sequentially verifying the returned NN data from each peer. If this is not possible, then the
multiple peer NN verification process, kNNmultiple, attempts to complete the verification process with
several peers.

3.2.1 Single Peer NN Verification: kNNsingle

The objective of the kNNsingle method is to verify if the point of interest data returned from each peer
can be valid nearest neighbors of a mobile host Q. In order to verify if a returned POI object ni is one
of the top k nearest neighbors of a mobile host Q, we utilize the spatial relationship between mobile
hosts and their POIs as follows.

Lemma 3.1 Let Q and P1 be two mobile hosts, and let P1 have k nearest neighbors, n1, n2, . . . , nk

which are sorted in ascending order according to their distance to P1. If Dist(Q,ni) + δ > Dist(P1, nk)
then ni cannot be verified as one of the top k-nearest neighbors of Q.

In the above lemma, Dist(Q, ni) is the Euclidean distance between Q and ni, δ is the Euclidean
distance between Q and P1, and Dist(P1, nk) is the Euclidean distance between P1 and its cached
farthest nearest neighbor nk. An illustration of Lemma 3.1 is shown in Figure 3. The nearest neighbor
n2 of mobile host P1 – which is a peer of mobile host Q – cannot be verified as one of the top k-nearest
neighbors of Q. An uncertain area exists in the circle which takes Q as its center point and Dist(Q,
n2) as its radius. A point of interest ni may be located in that area with Dist(Q, ni)<Dist(Q, n2).
Therefore, we can only classify n2 as an uncertain nearest neighbor.

Lemma 3.2 Let Q and P1 be two mobile hosts, and let P1 have k nearest neighbors, n1, n2, . . . , nk

which are sorted in ascending order according to their distance to P1. For any nearest neighbor ni of
P1, if Dist(Q, ni) + δ ≤ Dist(P1, nk) then ni is one of the top k-nearest neighbors of Q.

Proof Assume ni /∈ kNN of Q. Then, there exist m1,m2, . . . ,mk ∈ kNN of Q such that ∀mj ∈
{m1,m2, . . . ,mk}, Dist(Q,mk) < Dist(Q,ni). We can identify a point M located at the intersection
of the extension of the line from P1 to Q and the circumference of the circle with center Q and radius
Dist(Q,ni) (identified as circle CQ in Figure 4). Then, ∀mi ∈ kNN of Q:

Dist(P1, mi) < Dist(P1, M) (1)

Recall that we assume the following inequality holds:

Dist(Q, ni) + δ ≤ Dist(P1, nk) (2)

Because the circle CQ (with center Q and radius Dist(Q,M)) is fully covered by the circle CP1 (with
center P1 and radius Dist(P1,M)) it follows that

Dist(Q, ni) + δ = Dist(Q, M) + δ = Dist(P1, M) (3)
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Figure 3: Verification of a point of interest with an uncertain area.

By Equations 1, 2 and 3, ∀mi ∈ kNN of Q, Dist(P1,mi) < Dist(P1, nk). Thus nk /∈ kNN of P1. However,
this contradicts the assumption that nk ∈ kNN of P1. Therefore, ni must be one of the top k-nearest
neighbors of Q.

Q
P1 n1

n2

n3

Dist (Q, n2) + < Dist (P1, n3)

M

CQ

CP1

Figure 4: Verification of a certain point of interest.

An illustration of Lemma 3.2 is shown in Figure 4. The nearest neighbor n2 of mobile host P1, which
is a peer of mobile host Q, can be verified as the nearest neighbors of Q and is termed a certain nearest
neighbor. Because the Euclidean distance between n2 and Q plus the Euclidean distance between Q and
P1, δ, is no greater than the Euclidean distance between P1 and its presently cached farthest nearest
neighbor, n3.

We observe quite intuitively that the cached query locations which are located closer to the query
host Q have a higher likelihood (but are not guaranteed) to be able to provide useful (i.e., adjacent)
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points of interest. We therefore will use Heuristic 3.3 to guide the order in which the cached NN query
results returned from neighboring peers are processed.

Heuristic 3.3 Let NNset be a result set of nearest neighbor objects and their query points returned from
the peers of the query mobile host Q. Sorting NNset in ascending order according to the distance between
each query point to the location of Q may save computation time during processing by a subsequent search
algorithm.

Lemma 3.4 ∀ x, y, and Q, if Dist(x,Q) < Dist(y,Q) and if y ∈ kNN of Q, then x ∈ kNN of Q and
Rank(x,Q) < Rank(y,Q).

Since Dist(x,Q) < Dist(y,Q), we know that x is closer to Q than y. According to the definition of
nearest neighbor and y ∈ kNN of Q, we conclude that x ∈ kNN of Q and Rank(x,Q) < Rank(y,Q).

Lemma 3.5 ∀ x, y, and Q, if Dist(x,Q) 6= Dist(y,Q), then x 6= y.

This follows from the definition of Euclidean distance – since we have Dist(x,Q) 6= Dist(y,Q), x 6=
y.

Lemma 3.6 ∀ P and Q, Dist(P,Q) = δ, ∀ni, nj ∈ kNN of P , if Dist(P, ni) < Dist(P, nj) and Dist(Q,ni)
+ δ ≤ Dist(P, nj), then Rank(ni, Q) < k and ni ∈ kNN of Q.

Proof According to Lemma 3.2 and the assumed conditions, ni must be one of the top k nearest
neighbors of Q. Since we know that nj ∈ kNN of P , there are at most k − 1 POIs within circle CP

(with center P and radius Dist(P, nj)). Therefore, we can verify at most k − 1 POIs for Q by utilizing
nj and it follows that Rank(ni, Q) < k.

Lemma 3.7 ∀ P and Q, Dist(P,Q) = δ. Given n1, n2, . . . , nk ∈ kNN of P and ni sorted in ascending
order to their distance to Q: Dist(Q,n1) < Dist(Q,n2) < . . . < Dist(Q,nk). If Dist(Q,ni) + δ ≤
Dist(P, nj) and Dist(P, ni) < Dist(P, nj), then ni is the ith nearest neighbor of Q and Rank(ni, Q) = i.

Proof Since Dist(Q,ni) + δ ≤ Dist(P, nj) and Dist(P, ni) < Dist(P, nj), by Lemma 3.6 we observe:

Rank(ni, Q) < k (4)

Because we are given that Dist(Q,n1) < Dist(Q,n2) < . . . < Dist(Q,nk), we deduce that there exist
i − 1 points (n1, n2, . . . , ni−1) which are closer to Q than ni. Therefore, we derive:

Rank(ni, Q) ≥ i (5)

From Equations (4) and (5), we conclude:

i ≤ Rank(ni, Q) < k (6)

In the next step, we prove Rank(ni, Q) = i by contradiction. Suppose Rank(ni, Q) > i, then
there must exist a NN np, such that np /∈ {n1, n2, . . . , ni−1} and Dist(np, Q) < Dist(ni, Q). Therefore,
∀nx ∈ {ni, ni+1, . . . , nk}, Dist(np, Q) < Dist(nx, Q). By Lemma 3.5, we observe np /∈ {ni, ni+1, . . . , nk}.
Consequently, np /∈ {n1, n2, . . . , nk} and np /∈ kNN of P . As shown in Figure 5, np is inside the circle
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with Q as its center point and Dist(Q,ni) as its radius. According to the characteristics of triangles we
derive:

Dist(np, P ) < Dist(np, Q) + Dist(Q, P ) (7)

and
Dist(np, Q) + Dist(Q, P ) < Dist(ni, Q) + Dist(Q, P ) (8)

Since we are given Dist(ni, Q)+Dist(Q,P ) < Dist(P, nj) and Equations (7) and (8), it follows that:

Dist(np, P ) < Dist(P, nj) (9)

By Lemma 3.4 and Equation (9) we deduce that np ∈ kNN of P , which contradicts what we
concluded before, namely that np /∈ {n1, n2, . . . , nk} and np /∈ kNN of P . Therefore, the assumption
Rank(ni, Q) > i cannot hold and it follows that Rank(ni, Q) ≤ i. Since we know that Rank(ni, Q) ≥ i
from Equation (5), we conclude that Rank(ni, Q) = i.

Q

Pnp

ni

nj

Figure 5: The spatial relationships between ni, np, Q, and P .

The kNNsingle method maintains a heap H with the entries of certain and uncertain points of
interest discovered so far (illustrated in Table 1). The size of H is determined by the total number of
queried interest objects Qk. Initially H is empty and the kNNsingle method processes the sorted NNP

in sequence. The heap H is updated according to the distance from the location of Q to a POI object
and its certainty. If there exist uncertain nearest neighbor objects in H, a newly discovered certain NN
object will replace an uncertain object and H maintains the certain objects in an ascending order of
their Euclidean distance to Q. Uncertain objects exist in H only if the number of certain objects is less
than Qk. These uncertain objects are also stored in ascending distance order.

Consider the following example to illustrate the operation of kNNsingle. Figure 6 illustrates the
location of Q and its two closest mobile hosts, P1 and P2. Because the cached query location of mobile
host P1 is the closest to Q, kNNsingle starts its NN verification process from P1. The single peer NN
verification rule follows Lemma 3.2. Assuming that Q searches for four nearest neighbors, then after
processing P1 and P2 the content of the heap H is as shown in Table 1. Based on the set NNP of both
peer P1 and P2, Q can retrieve two certain NNs, n2−P1 and n1−P1, and two uncertain NNs, n3−P1 and
n3−P2.
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Certain/Uncertain C C UC UC
Points of Interest n2−P1 n1−P1 n3−P1 n3−P2

Distance to Q
√

2
√

3
√

5
√

8

Table 1: The data structure of the heap H.

kNNsingle is executed iteratively with each peer in the nearest neighbor data set NNP . If k elements
in H are certain, the kNN query is fulfilled and H will remember the top k NN in sequence. Otherwise,
we need to perform kNNmultiple to expand the search space to include more candidate certain interest
objects.

Q

P1 n1-P1

n2-P1

n3-P1 P2

n1-P2

n2-P2

n3-P2

Q

P1 n1-P1

n2-P1

n3-P1

Fig. 6a. Mobile host Q retrieves two cer-
tain nearest neighbors from the NN set of
peer P1.

Fig. 6b. Mobile host Q can only retrieve
uncertain nearest neighbors from peer P2.

Figure 6: The mobile host Q and its two closest peers, P1 and P2.

3.2.2 Multiple Peer NN Verification: kNNmultiple

Under some conditions the kNNsingle method may not be able to verify all k nearest neighbors. There-
fore, we extend the verification process to include results from multiple peers simultaneously. Figure 7
demonstrates an example in which a point of interest (n2−P3) cannot be verified by the NN data set
of a single peer; neither with peer P3 nor with peer P4. The kNNmultiple method combines the area of
all the peers, each bounded by the outermost NN circle, into a certain region Rc (the shaded area in
Figure 7c). It is expensive to compute an exact solution for Rc. Therefore, we adopt a polygonization
technique that transforms all the certain area circles into polygons to closely approximate the certain
area reported by each peer. After this transformation the polygons can be merged together as a certain
region Rc by performing the MapOverlay algorithm [6]. The kNNmultiple verification technique is exe-
cuted based on Rc similarly to kNNsingle. Lemma 3.8 provides the rules for verifying nearest neighbors
with multiple peers.

Lemma 3.8 If the nearest neighbor data set NNP is composed of data from j peers, the certain region
Rc can be represented as:

Rc = P1−area ∪ P2−area ∪ · · · ∪ Pj−area.

For any interest object ni in Rc, the distance between Q and ni is used as a radius to draw a circle Cni.
If Cni is fully covered by Rc, then ni is a certain NN of Q.
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P3

n1-P3

n2-P3

Q

n3-P3

CP3

P4

n2-P3

n2-P4

P4n1-P4

Q

CP4

P3
P3

n2-P3

n2-P4

P4

Q

n3-P3 and n1-P4

n1-P3

CP3

CP4

Fig. 7a. Mobile host Q cannot
verify POI n2−P3 as a certain
NN with peer P3.

Fig. 7b. Mobile host Q cannot
verify POI n2−P3 as a certain
NN with peer P4, either.

Fig. 7c. After merging the cer-
tain regions of peer P3 and P4,
POI n2−P3 can be verified as a
certain object.

Figure 7: An example of multiple peers NN verification. The point of interest n2−P3 can only be verified
as a NN of Q based on the region of both peer P3 and peer P4.

3.3 Nearest Neighbor Query Pruning Bounds

We assume that the spatial database server executes an efficient k-nearest neighbor search algorithm
based on R-tree indexing [10] for solving kNN queries. The NN search is supported with a priority queue
containing the nodes visited so far. Initially the priority queue contains the entries of the R-tree root
sorted according to their minimum distance (MINDIST) to the query point Q. In general most of the
moving objects have executed either one or both kNNsingle and kNNmultiple processes before forwarding
kNN search queries to the server. Hence, it is worthwhile to calculate branch expanding upper and
lower bounds from the entries in heap H to speed up the NN search process at the server. The heap
H is in one of six different states after a mobile host has executed both the kNNsingle and kNNmuitiple

mechanisms without retrieving k certain objects:

• State 1: H is full and it contains both certain and uncertain entries.

• State 2: H is full and it contains only uncertain entries.

• State 3: H is not full and it contains both certain and uncertain entries.

• State 4: H is not full and it contains only certain entries.

• State 5: H is not full and it contains only uncertain entries.

• State 6: H contains no entry.

In State 1 there may exist some POIs which are closer to Q compared with the last element in H.
Hence, we can consider the last entry of H as the final candidate nearest neighbor in the NN search
and forward its distance attribute to the server as the branch expanding upper bound. In addition, the
distance attribute Dct of the last certain entry can be another bound, the branch expanding lower bound.
Because we are certain about the POIs within the circle region Cr with radius Dct and center point
Q, the NN search algorithm executed in the server does not need to expand any minimum bounding
rectangle which is completely covered by Cr. Conversely, when H is full and contains just uncertain
entries, we can infer only the upper bound (State 2). In States 3 and 4 after the mobile host performed
the two algorithms, there have merely less than k interest objects been found. Therefore, we can only
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infer the lower bound from the distance attribute of the last certain element in H. In the last two states,
H is not full and contains only uncertain entries or no entry at all. Consequently we cannot infer any
bounds from them.

To take advantage of the two new bounds for kNN queries, we slightly modified the kNN best-
first search algorithm such that it calculates one more metric, the maximum distance (MAXDIST), for
pruning R-tree branches. MAXDIST indicates which MBRs are totally covered in region Cr and the
algorithm does not need to expand them. Furthermore, we added two new MBR pruning strategies for
the kNN search as follows:

1. Any MBR M with MAXDIST(Q, M) smaller than the branch expanding lower bound is pruned
(downward pruning).

2. Any MBR M with MINDIST(Q, M) greater than the Euclidean distance from Q to the kth

element in H is discarded (upward pruning).

The complete algorithm of the sharing based kNN query is described in Algorithm 1.

Algorithm 1 SENN: Sharing-based Euclidean distance Nearest Neighbor query (Q, k)

1: /* Q is the query mobile host */
2: Query moving object peers within the communication range
3: Sort the peer query results NNP according to their last query locations
4: for each element e of NNP do

5: kNNsingle(Q, k)
6: end for

7: if a certain kNN set is found by kNNsingle then

8: return kNN set
9: else

10: kNNmultiple(Q, k)
11: end if

12: if a certain kNN set is found by kNNmuitiple then

13: return kNN set
14: end if

15: if the heap H is full and an uncertain kNN set is acceptable by the mobile host then

16: return the uncertain kNN set
17: else

18: /* The heap H is not full or an uncertain kNN set is not acceptable */
19: Query the server with pruning upper bound and lower bound, if available
20: /* Forward the branch expanding upper bound and the branch expanding lower bound found by

kNNmuitiple */
21: return the kNN set
22: end if

3.4 Spatial Network Nearest Neighbor Queries

In the real world, mobile objects often move on pre-defined networks (e.g., roads, railways, etc.). In this
scenario, the spatial network distance provides a more exact estimation of the travel distance between
two objects. Papadias et al. [13] have proposed a technique to solve spatial network nearest neighbor
queries. However, to the best of our knowledge, sharing based spatial network nearest neighbor queries
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Fig. 8a. The 1st Euclidean NN. Fig. 8b. The 2nd Euclidean NN.

Figure 8: Nearest neighbor search in a spatial network environment with the IER algorithm.

have not been studied before. Here, we extend our sharing based Euclidean distance nearest neighbor
method to support applications in spatial network environments.

Leveraging existing methods, we assume a digitization process that generates a modeling graph from
an input spatial network. The modeling graph contains three categories of graph nodes: the network
junctions, the start/end points of a road segment, and other auxiliary points. The shortest path between
two nodes can be computed with Dijkstra’s algorithm [7], which is leveraged as the basis for computing
the network distance between any two arbitrary points. For two nodes i and j, we observe that their
Euclidean distance ED(ni, nj) always provides a lower bound on their network distance ND(ni, nj).
We refer to this fact as the Euclidean lower bound property. Papadias et al. proposed two algorithms
for nearest neighbor queries in spatial network databases: the Incremental Euclidean Restriction (IER)
and the Incremental Network Expansion (INE). Here we extend the IER algorithm to utilize cached NN
query results in a P2P sharing infrastructure.

Incremental Euclidean Restriction The IER algorithm is based on the multi-step kNN techniques [8,
16]. To execute a nearest neighbor search for query point Q, IER first retrieves the Euclidean distance
nearest neighbor n1 of Q and computes the Euclidean distance ED(Q,n1). Next it calculates the
network distance from Q to n1, ND(Q, I1). Subsequently we can use Q as the center to draw two
concentric circles with radii ED(Q,n1) and ND(Q,n1). Due to the Euclidean lower bound property,
objects closer to Q than n1 in the network must be within the network distance, ND(Q,n1). Therefore,
the search space becomes the ring area between the two circles as shown in Figure 8a. In the next
iteration, the second closest object n2 is retrieved (by Euclidean distance). Since in our example
ND(Q,n2) < ND(Q,n1), n2 becomes the current candidate for spatial network nearest neighbor and
the search upper bound becomes ND(Q,n2). This procedure is repeated until the next Euclidean
nearest neighbor is located beyond the search region (as n3 is in Figure 8b). The extension of IER to a
kNN search is straightforward.

In our P2P environment, we assume that each mobile host retains the data of the local spatial
network modeling graph. A mobile host Q executes the SENN algorithm first to obtain k certain
nearest neighbors (by Euclidean distance) and then calculates the network distance of the k objects
based on its local spatial network modeling graph. The resulting objects are sorted in ascending order
of their network distance to Q and the Euclidean distance of ND(Q, Ik) between Q and the kth object
becomes the search upper bound, Sbound. Next, Q retrieves the subsequent Euclidean distance nearest

12



Algorithm 2 SNNN: Sharing-based Network distance Nearest Neighbor query(Q, k)

1: /* Q is the query mobile host */
2: Execute the Sharing-based Euclidean distance Nearest Neighbor (SENN) query algorithm for re-

trieving k nearest neighbors {n1, . . . , nk}
3: for each object ni do

4: Compute its network distance to Q
5: end for

6: Sort {n1, . . . , nk} in ascending order according to their network distance to Q
7: Set ND(Q, nk) as the upper search bound Sbound

8: i = 1
9: repeat

10: nnext= the object with the longest distance to Q which is returned by SENN(Q, k + i)
11: if ND(Q, nnext)<ND(Q, nk) then

12: /* The next Euclidean NN is closer than the kth NN */
13: Replace nk with nnext

14: Sort {n1, . . . , nk} in ascending order according to their network distance to Q
15: Set Sbound=ND(Q, nk)
16: end if

17: i = i+1
18: until ED(Q, nnext)>Sbound

neighbors incrementally from its peers or the spatial database server and keeps updating the k candidate
spatial network NNs until the next Euclidean NN falls beyond the search region. This Sharing-based
Network distance Nearest Neighbor (SNNN) algorithm is formalized in Algorithm 2.

4 Experimental Validation

To evaluate the performance of our approach we have implemented our sharing based spatial query
algorithms within a simulator. The main objective of our peer-to-peer design is to increase scalability
in two dimensions. First, the server access workload can be reduced as queries are answered directly by
peers. Second, for the remaining queries that must be sent to the server our technique diminishes the
search overhead by providing pruning-bounds for the R-tree algorithm. Consequently, the focus of our
simulation is on quantifying the server load variations as a function of two main parameters, the spatial
query request rate (SQRR) and page access rate (PAR). SQRR is for quantifying how many percent of
the total client spatial queries are required to be processed by the spatial database server and PAR is
for evaluating server side memory (primary and secondary) access rate for a sequence of spatial queries.
We have performed our experiments with both synthetic and real-world parameter sets.

4.1 Simulator Implementation

Our simulator consists of two main modules, the mobile host module and the server module. The
objective of the mobile host module is to generate and control the movements and query launch patterns
of all mobile hosts. Each mobile host is an independent object which decides its movement autonomously.
The server module processes spatial searches and is responsible for estimating the I/O load of the spatial
database server. Spatial data indexing is provided with the well known R*-tree algorithm [1]. We
implemented our SENN query algorithm in the mobile host module.
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Parameter Description

POINumber The number of point of interest in the system
MHNumber The number of mobile host in the simulation area

CSize The cache capacity of each mobile host
MPercentage The mobile host movement percentage
MV elocity The mobile host movement velocity (mph)
λQuery The mean number of queries per minute

TxRange The transmission range of queries
λkNN The mean number of queried nearest neighbors

Texecution The length of a simulation run

Table 2: Parameters for the simulation environment.

Each mobile host is implemented as an independent object that encapsulates all its related param-
eters such as the movement velocity MoveV elocity, the cache capacity CSize, the wireless transmission
range TxRange, etc. All mobile hosts move inside a geographical area and the measure can be decided
by users (in our experiment, we adopt a 2 miles by 2 miles area and a 30 miles by 30 miles area).
Additionally, user adjustable parameters are provided for the simulation such as execution length, the
number of mobile hosts and their query frequency, the number of POIs, etc. Table 2 lists all of the
simulation parameters.

The simulation is initialized by randomly choosing a starting location for each MH within the
simulation area. The movement generator then generates trajectories with two different modes, the free
movement mode and the road network mode. In the former mode, each mobile host moves obstacle-free
within the environment and the movement velocity is fixed. The road network mode is more realistic
since MHs follow an underlying road network and their travel speed s is determined by the speed limit
on the corresponding road segment. We employed the random waypoint model [2] as our mobility
model. Each MH selects a random destination inside the simulation area and progresses towards it.
When reaching that location, it pauses for a random interval and decides on a new destination for the
next travel period. This process repeats for all MHs until the end of the simulation.

Every simulation has numerous intervals (whose lengths are Poisson distributed) and at the end of
such an interval, the simulator selects a random subset of the mobile hosts to launch spatial queries.
The subset size is controlled via the λQuery parameter (e.g., 500 queries per minute). These hosts then
execute the SENN algorithm by interacting with their peers. A mobile host will first attempt to answer
each spatial query from its local cache and via the SENN algorithm. If this is unsuccessful, the query
will be forwarded to the remote database server. Each mobile host manages its local NN query result
cache with a combination of the following two policies:

1. A MH only stores the query location (the coordinates where it launched the query) and all the
certain nearest neighbors of the most recent query.

2. If a kNN query must be sent to the server, the MH will query for as many NN as its cache capacity
allows (e.g., if the cache capacity is 10, the query will be for 10-NNs).

The single peer nearest neighbor verification process is implemented according to the algorithm
detailed in Section 3.2.1. A MH sequentially verifies the candidate points of interest starting with the
results obtained from its closest peer query location (using Euclidean distance). In the multiple peer
verification algorithm of Section 3.2.2, multiple, potentially overlapping circles must be combined to
provide the verification area. We utilize a polygonization technique that transforms all the peer certain
area circles into polygons and then sequentially merges them into a certain region Rc by performing the
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MapOverlay algorithm. Afterwards, a MH can verify POIs with the kNNmultiple verification technique
based on Rc.

4.1.1 Simulation Parameter Sets

To obtain results that closely correspond to real world conditions we obtained our simulation parameters
from data sets that report, for example, car and gas station densities in urban areas. We term the two
parameters sets based on these real-world statistics the Los Angeles County parameter set and the
Riverside County parameter set.

• Points of Interest: We obtained information about the density of interest objects (e.g., gas sta-
tions, restaurants, hospitals, etc.) in the Greater Los Angeles area from two online sites: GasPrice-
Watch.com2 and CNN/Money3. Because gas stations are commonly the target of kNN queries,
we use them as the sample POI type for our simulations. The server load variations of other POI
types are expected to be very similar.

• Mobile Hosts: We collected vehicle statistics of the Greater Los Angeles area from the Federal
Statistics web site4. The data provide the number of registered vehicles in the Los Angeles and
Riverside Counties (5,498,554 and 944,645, respectively). In our simulations we assume that about
10% of these vehicles are on the road during non-peak hours according to the traffic information
from Caltrans5. We further obtained the land area of each county to compute the average vehicle
density per square mile.

Parameter Los Angeles Riverside Synthetic Units
County County Suburbia

POINumber 16 5 11
MHNumber 463 50 257

CSize 10 10 10
MPercentage 80 80 80 %
MV elocity 30 30 30 mph
λQuery 23 2.5 13 min−1

TxRange 200 200 200 m
λkNN

3 3 3
Texecution 1 1 1 hr

Table 3: The simulation parameter sets for the Los Angeles, the Riverside Counties, and the synthetic
suburbia of a 2 miles by 2 miles area.

The Los Angeles and the Riverside County parameter sets represent very dense, urban area and a
low-density, more rural area. Hence, for comparison purposes we blended the two real parameter sets
together to generate a third, synthetic parameter set. The synthetic data set demonstrates vehicle and
interest object densities in-between Los Angeles County and Riverside County, representing a suburban
area. Table 3 lists the three parameter sets of a 2 miles by 2 miles area and Table 4 demonstrates the
parameter sets of a 30 miles by 30 miles area.

2http://www.gaspricewatch.com
3http://money.cnn.com/
4http://www.fedstats.gov/
5http://www.dot.ca.gov/hq/traffops/saferesr/trafdata/
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Parameter Los Angeles Riverside Synthetic Units
County County Suburbia

POINumber 4050 2160 3105
MHNumber 121500 11700 66600

CSize 20 20 20
MPercentage 80 80 80 %
MV elocity 30 30 30 mph
λQuery 8100 780 4440 min−1

TxRange 200 200 200 m
λkNN

5 5 5
Texecution 5 5 5 hr

Table 4: The simulation parameter sets for the Los Angeles, the Riverside County, and the synthetic
suburbia of a 30 miles by 30 miles area.

4.1.2 Road Network Generation

We generated our road network from the TIGER/LINE street vector data available from the U.S. Census
Bureau6. The road segments belong to several different categories, such as primary highways, secondary
and connecting roads, and rural roads. The segments associated with a different road classes are
associated with different maximum driving speeds. Each mobile hosts monitors the speed limit on the
road that it is currently traveling on and adjusts its velocity accordingly. One of the challenges when
integrating road segments into a complete road network is to isolate intersecting paths and determine
if they are indeed intersections. For example, freeways generally project many intersections in two-
dimensional space, but many of them are over-passes or bridges. Our solution is to detect intersection
points with the help of their endpoint coordinates. In addition, differing road classes let us distinguish
over-passes from intersections.

4.2 Experimental Results with the Road Network Mode

We used all three input parameter sets – Los Angeles County, Riverside County, and Synthetic Suburbia
– to simulate our peer sharing techniques in conjunction with the road network mode. We varied the
following parameters to observe their effect on the system performance: the wireless transmission range,
the cache capacity, the movement velocity, and the nearest neighbor number k. The performance metric
in the mobile host module was SQRR. The primary difference between the three different parameter
sets is the vehicle and the POI density. Hence, we utilized the simulation to verify the applicability
of our design to different geographical and urban areas. All simulation results were recorded after the
system reached steady state.

4.2.1 Effect of the Transmission Range

In our first experiment we varied the mobile host wireless transmission range from 10 meters to 200
meters, with all other parameters unchanged. We chose 200 meters as a practical upper limit on the
transmission range of the IEEE 802.11 technology. Because of obstacles such as buildings, this range
could diminish to 100 meters or less in urban areas. Figure 9 and 10 illustrate percentage of the queries
that can be resolved by one peer, multiple peers or the server with the Los Angeles County, the Synthetic
Suburbia, and the Riverside County parameter sets, respectively in the two simulation regions. As the

6http://www.census.gov/geo/www/tiger/
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Fig. 9a. Los Angeles County. Fig. 9b. Synthetic Suburbia. Fig. 9c. Riverside County.

Figure 9: The percentage of queries that are resolved by one peer, multiple peers and the server as a
function of the wireless transmission range of a 2 miles by 2 miles area.

 0

 20

 40

 60

 80

 100

 20  40  60  80  100  120  140  160  180  200

Transmission Range (Meters)

Percentage of Total Queries

Queries Solved by the Server
Queries Solved by Single-Peer

Queries Solved by Multi-Peer

 0

 20

 40

 60

 80

 100

 20  40  60  80  100  120  140  160  180  200

Transmission Range (Meters)

Percentage of Total Queries

Queries Solved by the Server
Queries Solved by Single-Peer

Queries Solved by Multi-Peer

 0

 20

 40

 60

 80

 100

 20  40  60  80  100  120  140  160  180  200

Transmission Range (Meters)

Percentage of Total Queries

Queries Solved by the Server
Queries Solved by Single-Peer

Queries Solved by Multi-Peer

Fig. 10a. Los Angeles County. Fig. 10b. Synthetic Suburbia. Fig. 10c. Riverside County.

Figure 10: The percentage of queries that are resolved by one peer, multiple peers and the server as a
function of the wireless transmission range of a 30 miles by 30 miles area.

transmission range extends, an increased number of queries can be answered by surrounding peers. As
expected, the effect is most pronounced in Los Angeles County, because of its high vehicle density. At
a transmission range of 200 m only around 20% ∼ 30% of the queries must be sent to the server.

4.2.2 Effect of the MH Cache Capacity

Next we varied the mobile host cache capacity. The cache capacity denotes how many nearest neighbor
objects a mobile host can store. Figure 11 and 12 illustrate cache capacity changes from 1 to 9 and 4 to
20 respectively with the three parameter sets. In Figure 12a, even though the number of interest objects
is much larger than the maximum capacity of the cached NN query results, we can find a remarkable
server workload decrease with a higher MH cache capacity. In Figure 11c, however, because of the
sparseness of interest objects, the server workload becomes stabilized after a cache capacity of five.

4.2.3 Effect of the MH Movement Velocity

We studied the effect of host movement velocity by changing the MH velocity from 10 miles per hour
(mph) to 50 mph and the results are shown in Figure 13 and 14. We observe that the movement velocity
has a stronger effect on the server workload in areas with a lower vehicle and interest object density.
However, the effect is quite gradual in all cases.
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Fig. 11a. Los Angeles County. Fig. 11b. Synthetic Suburbia. Fig. 11c. Riverside County.

Figure 11: The percentage of queries that are resolved by one peer, multiple peers and the server as a
function of the mobile host cache capacity of a 2 miles by 2 miles area.
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Fig. 12a. Los Angeles County. Fig. 12b. Synthetic Suburbia. Fig. 12c. Riverside County.

Figure 12: The percentage of queries that are resolved by one peer, multiple peers and the server as a
function of the mobile host cache capacity of a 30 miles by 30 miles area.

4.2.4 Effect of k

We were also interested in the effect that varying the number of requested nearest neighbors, i.e., k,
would have on the system performance. In our simulation we chose k randomly for each host and each
query in the range from 1 to 9 and 3 to 15 respectively in the two regions. Figure 15 and 16 illustrate
the results. The server workload of the Los Angeles County parameter set increases 68% and 29% when
we raise the k from 1 to 9 and from 3 to 15 in the two regions. The server workload of the Riverside
County parameter set increases by only 11% and 19%, because its starting level is much higher. Not
surprisingly result sharing is much more effective for small values of k.

4.3 Experimental Results from the Free Movement Mode

We executed the simulations in free movement mode with otherwise the same parameter settings as
before with the free movement mode. We observe from the experimental results that the server workload
with the Los Angeles County parameter set decreases between 5% and 8% (in the 2 miles by 2 miles area)
and 2% to 5% (in the 30 miles by 30 miles area) under all conditions. The results of the synthetic and the
Riverside parameter sets are very close to their counterparts of the road network mode. Because mobile
hosts do not have to follow any underlying road network for their movements, this change decreases the
distance between mobile hosts compared with the road network mode and hence slightly increases the
performance of our sharing algorithm. This effect is more evident in regions with a high vehicle density
such as Los Angeles County.
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Fig. 13a. Los Angeles County. Fig. 13b. Synthetic Suburbia. Fig. 13c. Riverside County.

Figure 13: The percentage of queries that are resolved by one peer, multiple peers and the server as a
function of the mobile host movement velocity of a 2 miles by 2 miles area.
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Fig. 14a. Los Angeles County. Fig. 14b. Synthetic Suburbia. Fig. 14c. Riverside County.

Figure 14: The percentage of queries that are resolved by one peer, multiple peers and the server as a
function of the mobile host movement velocity of a 30 miles by 30 miles area.

4.4 Experimental Results from the Spatial Database Server

In order to evaluate the nearest neighbor query pruning bounds of Section 3.3, we extended the R-
tree incremental nearest neighbor (INN) algorithm [10] with one more metric, MAXDIST. For each
incoming NN query from mobile hosts, the server module executes both the original INN algorithm
and our extended INN algorithm with pruning bounds (denoted by EINN) to compare the performance
improvement with respect to page accesses. We examined the behavior of the two algorithms as the
number of k increases. We utilized the R*-tree for indexing the POI data set (gas station locations)
in the server module. The R*-tree has an advantage in query response time over the conventional
R-tree algorithm by utilizing more sophisticated insertion and node-splitting methods, which attempt
to minimize a combination of overlap between bounding rectangles and the total area. The branching
factor of both the index and leaf nodes was set to 30. Because NN queries are generated by randomly
selected mobile hosts, query points are uniformly distributed over the simulation area. The experiments
are executed sufficiently often to obtain consistent results.

At the end of a spectrum there are two extreme I/O behaviors of the spatial database server: all
requested memory pages are found in main memory or every I/O leads to disk activity. In the former
case, because of fast main memory access, we cannot discern a significant performance difference between
INN and EINN. However, any reasonably large data set will not fit into main memory and more disk
I/Os will be performed. Hence, the database I/O behavior is closer to the other end of the spectrum.
Since the EINN usually requests fewer R*-tree nodes and objects than INN, we believe that the kNN
search algorithm with query pruning bounds (EINN) will have good scalability with large data sets.
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Fig. 15a. Los Angeles County. Fig. 15b. Synthetic Suburbia. Fig. 15c. Riverside County.

Figure 15: The percentage of queries that are resolved by one peer, multiple peers and the server as a
function of k of a 2 miles by 2 miles area.
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Fig. 16a. Los Angeles County. Fig. 16b. Synthetic Suburbia. Fig. 16c. Riverside County.

Figure 16: The percentage of queries that are resolved by one peer, multiple peers and the server as a
function of k of a 30 miles by 30 miles area.

During the simulation process, the server module counts the number of R*-tree node (index nodes
and data nodes) accesses which correspond to both main memory and disk I/Os. According to our
observation, the number of node accesses provides a good predication of the actual NN query I/O cost.

Next, we varied the number of k with all the three parameter sets with both the EINN and INN
algorithms. The server module recorded the relevant R*-tree page access information (Section 4.2.4).
As shown in Figure 17, the EINN algorithm performs consistently better than INN, while the rate of
growth is similar for both. We conclude that the pruning bounds can always decrease the number of
page accesses. We varied the number of k from 3 to 15 with the three parameter sets and the EINN
algorithm accesses 10% to 21% fewer pages than INN.

We conclude from all the performed experiments that the mobile host density has a considerable
impact on the spatial query request rate. As a result, if more mobile hosts travel in a specific area, each
MH has a higher opportunity to fulfill its kNN queries by peers. Furthermore, the nearest neighbor
query pruning bounds also have a significant positive effect on the page access rate and successfully
decrease the server load.

5 Conclusions and Future Work

We have presented a novel approach for answering spatial nearest neighbor search queries by leveraging
results from neighboring peers within a mobile environment. Significantly, our method allows a mobile
peer to locally verify whether candidate objects received from neighbors are indeed part of its own
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Figure 17: The page access comparison of EINN and INN as a function of k.

nearest neighbor data set. Our simulation results indicate that the technique can reduce the access
traffic to remote servers by a significant amount, for example up to 80% in a dense urban area. This
is achieved with minimal caching at the peers. By virtue of its peer-to-peer architecture, the method
exhibits great scalability: the higher the mobile peer density, the more queries can be answered by
peers. Therefore, the load on the remote databases increases sub-linearly with the number of clients.
We plan to extend our work to investigate other types of spatial queries, such as range and spatial join
searches.
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