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Abstract

In this paper, we propose a general framework for distributed model predictive control
(DMPC) of discrete-time nonlinear systems with decoupled dynamics, but subject to coupled
constraints and a common, cooperative task. In order to ensure recursive feasibility and conver-
gence to the desired cooperative goal, the systems optimize a local cost function in a sequential
order, while only neighbor-to-neighbor communication is allowed. In contrast to most of the
existing DMPC schemes in the literature, we do not necessarily consider the stabilization of
an a priori known setpoint. Instead, also other cooperative control tasks like consensus and
synchronization problems can be handled within the proposed framework. In particular, one of
our main contributions is to show how for the latter case the terminal cost functions and the
terminal region can be suitably defined and computed. Furthermore, we illustrate our results
with simulation examples.

1 Introduction

The problem of controlling networks of interacting dynamical systems has attracted a lot of atten-
tion in recent years. Besides classical control objectives like the stabilization of an a priori known
setpoint, a variety of cooperative control tasks like consensus and synchronization between the
systems are of great importance in such a context (see, e.g., [1–3] and the references therein). In
particular, in consensus and synchronization problems, the systems have to agree on a common
trajectory online, in contrast to following an a priori specified reference trajectory.

On the other hand, model predictive control (MPC) has become one of the most successful
control strategies which finds application in many industrial processes. The major advantages
are the possibility to explicitly take constraints into account and to optimize some performance
criterion [4–6]. Considering the above, it is an interesting question how model predictive control
can be used for decentralized and distributed control of networks of interacting systems. To this
end, a variety of different settings and solution strategies have been proposed in the literature
in recent years (see, e.g., [7–18] and the references therein). The various considered setups and
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proposed different DMPC schemes can be classified in several ways, such as decentralized or nonco-
operative/cooperative distributed algorithms, coupled or uncoupled system dynamics, iterative or
noniterative schemes, all-to-all or neighbor-to-neighbor communication, or according to the type of
information exchanged between the systems (e.g. predicted state sequences or dual variables when
using dual decomposition-based approaches), and so forth [7].

In this paper, the focus will be on dynamically decoupled systems which are coupled to each
other through both coupling constraints as well as through the performance criterion, i.e., through
a common objective. This setup is typically used when considering cooperative control tasks such
as consensus and synchronization problems. The distributed MPC algorithms proposed in this
paper are noniterative, and only neighbor-to-neighbor communication is required. Distributed
MPC for the setting of dynamically decoupled systems was also considered in [8–11]. Stability
was established via consistency constraints, meaning that at each time step, the newly calculated
optimal trajectories of each system must not deviate too much from the ones calculated at the
previous time step [8], or from the ones the neighboring systems assumed [9]. A different approach
was taken in [10] for systems only coupled by constraints, where the systems solve their respective
optimization problem sequentially, thus ensuring consistency over the network. In [11], the authors
establish stability with an additional constraint requiring that the MPC control law asymptotically
converges to some fixed local control law.

However, the vast majority of the existing DMPC algorithms in the literature, including those
mentioned above, only consider the stabilization of an a priori known setpoint. There are only
very few exceptions considering other cooperative tasks. In [19], consensus for single- and double-
integrators is considered, where for the proof of convergence the optimal value function is not used
as a Lyapunov function, but specific geometric properties of the system trajectories are utilized.
In [20], for linear systems, the authors calculate an optimal consensus point at each time step by
iteratively solving a centralized optimization problem, where this point is used as setpoint in the
MPC formulation. A theoretical analysis of the proposed algorithm is given in [21], where conver-
gence to a common consensus point corresponding to an equilibrium of the system is established.

The contribution of this paper is twofold. As a first main contribution (Section 3), we propose
two distributed MPC algorithms where the goal is to asymptotically stabilize the overall closed-
loop system with respect to some set X 0. Herein, the first algorithm deals with the case of general
cost functions, while in the second we exploit a certain separable structure of the cost functions.
The proposed DMPC algorithms are rather general in nature and can be used for the solution of
a number of distributed control problems. In particular, they are designed such that they also
can be used for cooperative control tasks like consensus and synchronization problems. In the
proposed algorithms, the systems optimize their performance criteria in a sequential order, similar
to [10], where this idea was used for the robust stabilization of a setpoint for systems only coupled
via constraints. The advantage of this approach is that less communication between the systems
is needed in comparison to iterative schemes and that the control action is computed in a truly
distributed way, in the sense that only neighboring systems have to communicate with each other
and no centralized optimization problem is solved iteratively.

A second main contribution of the paper (Sections 4 and 5) is to explicitly show how the
proposed DMPC algorithms of Section 3 can be used for two typical distributed control tasks. After
applying the algorithms to the problem of stabilizing an a priori known setpoint and comparing
our results to other existing DMPC schemes for this control task (Section 4), we in particular
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illustrate in Section 5 how the proposed algorithms can be used for the solution of consensus and
synchronization problems of both linear and nonlinear systems. In contrast to [21], the common
trajectory the systems agree upon does not necessarily have to be an equilibrium point of the
system, which is crucial when e.g. considering the synchronization of oscillators. We specifically
show how the terminal cost functions and the terminal region can be suitably defined and computed.
Furthermore, we illustrate the applicability of our results with some simulation examples.

2 Preliminaries and setup

2.1 Notation

Denote by R the field of real numbers, and by Z+ the set of nonnegative integers. For any a ∈ R,
|a| is the absolute value of a. For any vector bi ∈ R

n, define ‖bi‖2 as the 2-norm, and ‖bi‖∞ as
the ∞-norm of bi. Let {bi}i∈I denote the collection of vectors bi for all i in the index set I. For
a symmetric matrix A ∈ R

n×n, denote by λmax(A) its maximum eigenvalue. Let In and 0n be the
n×n identity and zero matrix, respectively. Let A⊗B ∈ R

np×mq be the Kronecker product of two
matrices A ∈ R

n×m and B ∈ R
p×q. Φ+(x) := Φ(f(x, u)) for any function Φ(·), when x satisfies

x(k + 1) = f(x(k), u(k)). For a set A ⊆ R
n, denote by int(A) the interior of A. For a set A ⊆ R

n

and a point x ∈ R
n, the distance of x from the set A is defined as |x|A := infz∈A |x−z|. A function

γ: [0,∞) → [0,∞) is of class K if γ is continuous, strictly increasing, and γ(0) = 0. If γ is also
unbounded, it is of class K∞. A function β: [0,∞) × [0,∞) → [0,∞) is of class KL if β(·, t) is of
class K for each fixed t ≥ 0, and β(r, t) is decreasing in t with limt→∞ = 0 for each fixed r ≥ 0.

2.2 Problem setup

Consider a network of N discrete-time dynamically decoupled systems si of the form

si : xi(k + 1) = fi(xi(k), ui(k)), k ∈ Z+, (1)

where xi ∈ Xi ⊆ R
ni denotes the state and ui ∈ Ui ⊆ R

mi the control input to system i, and
i ∈ I := {1, 2, . . . , N}. The input constraint sets Ui are assumed to be compact and to contain
the origin in their interior. Denote by x and u the state and input of the overall system, i.e.,
x := [xT

1 , . . . , xT
N ]T and u := [uT

1 , . . . , uT
N ]T , and let X := X1 × · · · × XN and U := U1 × · · · × UN .

Furthermore, denote by f the overall system dynamics such that x(k + 1) = f(x(k), u(k)).

While the systems (1) are dynamically decoupled, they are coupled with each other via common
constraints and a common objective (to be made precise later). Hence for any system i, we can
define system j to be a neighbor of system i if the two systems are subject to coupled constraints
or a coupled objective function. More formally, each of the systems si can be identified with a
vertex of a graph G = (S, E), where S = {s1, ..., sN} is the set of vertices, and the set of edges
E ⊆ {(si, sj) ∈ S × S|i 6= j} describes the interconnection topology of the systems. Denote by
M := |E| the number of edges of the graph G. Let Ni := {j|(si, sj) ∈ E} be the set of indices of
the neighbors of system i, and di := |Ni| its cardinality. According to the above definition of a
neighbor, system i is a neighbor of system j if and only if also system j is a neighbor of system i,
as coupling constraints and a coupled objective function affect both systems. This means that we
model the graph G to be undirected, i.e., for any i, j ∈ I, (si, sj) ∈ E if and only if also (sj , si) ∈ E .

3



In order to be able to achieve the common objective and to satisfy the coupling constraints, in the
following we assume that each system can communicate with each of its neighbors. In particular,
this means that the systems can exchange information about their predicted trajectories with their
neighbors, which we will make preciser later.

Our goal is to distributedly compute a control law such that the overall closed-loop system
is asymptotically stable with respect to some closed set X 0 ⊆ X . Later on, we will consider as
two special cases the situations where X 0 is (i) a prespecified setpoint, and (ii) where X 0 is the
consensus subspace X 0 = {x ∈ X : x1 = x2 = · · · = xN}. We want to achieve the stabilization
of X 0 by DMPC, i.e., by minimizing at each time step a local performance criterion for each system,
satisfying both local constraints as well as the constraints by which the systems are coupled with
their neighbors. To this end, consider the following finite horizon open-loop optimal control problem
for system i with prediction horizon T :

Problem Pi: At time instant k,

minimize
ui(k)

Ji(xi(k), x̃−i(k),ui(k))

=

T−1
∑

l=0

Li

(

xi(k + l|k), x̃−i(k + l|k), ui(k + l|k)
)

+ Fi

(

xi(k + T |k), x̃−i(k + T |k)
)

(2a)

subject to

xi(k + l + 1|k) = fi

(

xi(k + l|k), ui(k + l|k)
)

(2b)

xi(k|k) = xi(k) (2c)

ui(k + l|k) ∈ Ui (2d)

xi(k + l + 1|k) ∈ Xi (2e)

zq(xi(k + l + 1|k), x̃−i(k + l + 1|k)) ∈ Zq (2f)

for all l ∈ {0, 1, . . . , T − 1}.
Herein, ui(k) consists of the sequence of input values ui(k) := {ui(k|k), . . . , ui(k + T − 1|k)}

predicted at time k, xi(k) := {xi(k|k), . . . , xi(k + T |k)} is the corresponding predicted state se-
quence, and x̃−i(k) consists of the sequences of planned state trajectories of system i’s neighbors,
i.e.,

x̃−i(k) = {x̃−i(k|k), . . . , x̃−i(k + T |k)}

:=









x̃i1(k)

...

x̃idi
(k)









=









{x̃i1(k|k), . . . , x̃i1(k + T |k)}
...

{x̃idi
(k|k), . . . , x̃idi

(k + T |k)}









, (3)

where {i1, . . . , idi
} is an ordered sequence of the elements of the set Ni, i.e. i1 < · · · < idi

. As system
i optimizes only over its local input trajectory ui, the planned trajectories of the neighbors, x̃−i,
are held as constant parameters. We will specify later what x̃−i exactly is, i.e., which trajectories
system i assumes for its neighbors. The functions zq and the sets Zq ⊆ R

ℓq with q ∈ {1, ..., Q}
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are the Q coupling outputs and coupling constraint sets the systems are confined to. Clearly, for
Problem Pi, only those of the Q coupling constraints are relevant where xi appears explicitly. Both
the stage cost Li and the terminal cost Fi, which can both also depend on the neighboring states
{xj}j∈Ni

, are assumed to be such that their respective sum is positive definite with respect to the

set X 0, i.e.,
∑N

i=1 Li(x, u) ≥ α1(|x|X 0) for all u ∈ U and
∑N

i=1 Fi(x) ≥ α2(|x|X 0), respectively, for
some α1, α2 ∈ K∞.

When using a terminal cost and terminal region approach in MPC, the crucial assumption in
order to establish stability is that the terminal region can be made invariant under a local control
law, and that the terminal cost function can be used as a control Lyapunov function inside the
terminal region [5, 6]. We will make a similar assumption here.

Assumption 1 There exists a terminal region X f ⊆ X , and for each system i ∈ I an auxiliary
local control law ui = kloc

i (xi, {xj}j∈Ni
), such that the terminal region X f is invariant with respect

to the overall closed-loop system x(k + 1) = f(x(k), kloc(x(k))) with kloc := [(kloc
1 )T , . . . , (kloc

n )T ]T ,
and the following holds for all x ∈ X f and for all i ∈ I:

kloc
i (xi, {xj}j∈Ni

) ∈ Ui (4a)

zq(xi, {xj}j∈Ni
) ∈ Zq ∀q ∈ {1, . . . , Q} (4b)

N
∑

i=1

F+
i

(

xi, {xj}j∈Ni

)

− Fi

(

xi, {xj}j∈Ni

)

+ Li

(

xi, {xj}j∈Ni
, kloc

i (xi, {xj}j∈Ni
)
)

≤ 0 (4c)

In Assumption 1, (4a) ensures the satisfaction of the input constraints when applying the
auxiliary local control laws, (4b) the satisfaction of the coupling constraints inside the terminal
region, and (4c) the decayrate of the sum of the terminal cost functions. The invariance condition
for X f is implied by (4c), if X f is chosen as a sublevel set of the sum of the terminal cost functions.
If not stated otherwise, in the remainder of this paper we will follow this approach, i.e., take

X f := {x :

N
∑

i=1

Fi

(

xi, {xj}j∈Ni

)

≤ α} (5)

for some α > 0 such that X f ⊆ X . Note that the local controllers are only allowed to depend on
neighboring system states, whereas we assume the existence of a “centralized” terminal region X f

for the overall system. We use such a centralized terminal region as in typical distributed control
tasks such as consensus problems, only the decaying of the sum of the terminal cost functions (4c)
can be ensured, but not the decaying of the single terminal cost functions. Hence only invariance of
a centralized terminal region can be ensured, but not invariance of some decoupled terminal regions.
In order to guarantee recursive feasibility and asymptotic stability of the overall closed-loop system
with respect to the set X 0 later on, we have to require that the overall system state at the end of
the prediction horizon lies inside the terminal region, i.e.,

x(k + T |k) ∈ X f . (6)

Note that this centralized terminal constraint cannot directly be included into Problem Pi as an
additional terminal constraint, as system i does not have any information about non-neighboring
systems. In Section 3, we will show how the centralized terminal constraint (6) can be satisfied
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nevertheless and dealt with in a distributed fashion. Furthermore, we show that in some cases it is
possible to separate the centralized terminal constraint (6) in order to be able to include it directly
into the optimization problems Pi.

3 Distributed MPC algorithms for cooperative control

In this section, we will formulate and analyze two DMPC algorithms. As stated in the previous
section, the goal is to stabilize the overall closed-loop system with respect to some closed set X 0.
The first algorithm considers the situation where no further assumptions are imposed on the type
of stage and terminal cost functions Li and Fi used in Problem Pi. In the second algorithm, we
consider stage and terminal cost functions Li and Fi with a special structure which can be exploited
in order to significantly simplify the proposed DMPC algorithm.

3.1 DMPC: general cost functions

The first proposed DMPC algorithm is specified as follows.

Algorithm 1 Distributed MPC: general cost functions.

0) Initialization: Set k = 0, and for all systems i, find a feasible solution ûi(0) with corresponding
state sequence x̂i(0), such that the constraints (2b)–(2f) and (6) are satisfied. Each system
transmits x̂i(0) to its neighbors. Go to Step 2).

1) At time instant k, each system i computes the candidate input sequence

ûi(k) :=
{

u∗

i
(k|k − 1), . . . , u∗

i
(k + T − 1|k − 1), kloc

i

(

x∗

i
(k + T − 1|k − 1), x̃−i(k + T − 1|k − 1)

)

}

(7)

by taking the remaining part of the old optimal input sequence u∗
i and adding the auxiliary

local control law kloc
i , as well as the corresponding candidate state trajectory x̂i(k). Each

system sends x̂i(k) to all of its neighbors.

2) After receiving the trajectories x̂j(k) from all of its neighbors j ∈ Ni, each system i stacks
them together into

x̃−i(k) =
[

x̂i1(k)T . . . x̂idi
(k)T

]T
=: x̂−i(k) (8)

and computes Ji,old := Ji(xi(k), x̃−i(k), ûi(k)) as well as Fi,old := Fi(x̂i(k+T |k), x̃−i(k+T |k)).

3) For i = 1 to N , system i

A) solves Problem Pi, and denotes the solution by u∗
i,test(k), the corresponding state tra-

jectory by x∗
i,test(k), the optimal value of the cost function by Ji,test, and the value of

the corresponding terminal cost function by Fi,test.

B) sends x∗
i,test(k) to its neighbors, which compute Jj,test := Jj(xj(k), x̃−j,test(k), ūj(k))

and Fj,test := Fj(x̄j(k + T |k), x̃−j,test(k + T |k)). Herein, x̃−j,test := x̃−j, but with x̂i(k)
replaced by x∗

i,test(k). Furthermore, ūj(k) = u∗
j (k) and x̄j(k) = x∗

j(k) if j < i, i.e., for
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all neighbors which already have calculated their optimal input trajectory at time k;
otherwise, ūj(k) = ûj(k) and x̄j(k) = x̂j(k), i.e., for all neighbors which have not yet
calculated their optimal input trajectory at time k.

C) receives δj := Jj,test − Jj,old as well as ej := Fj,test − Fj,old from all of its neighbors and
checks whether

δi +
∑

j∈Ni

δj ≤ 0, (9)

ei +
∑

j∈Ni

ej ≤ 0. (10)

If (9)–(10) hold, set u∗
i (k) := u∗

i,test(k), x∗
i (k) := x∗

i,test(k), Ji,old := Ji,test and flag := 1;
otherwise, set u∗

i (k) := ûi(k), x∗
i (k) := x̂i(k) and flag := 0.

D) sends flag to its neighbors j ∈ Ni. If flag = 1, the neighbors set x̃−j(k) := x̃−j,test(k),
Jj,old := Jj,test, and Fj,old := Fj,test.

4) Each system applies kMPC
i := u∗

i (k|k).

5) Increment k and go to Step 1).

In Steps 3B) and 3C) of Algorithm 1, it is checked whether the input trajectory newly cal-
culated by optimizing the local performance criterion Ji leads to an overall decrease in the sum
of the optimal value functions. Inequality (9) can be interpreted as whether the “benefit” (cost
decrease) −δi, gained from minimizing the local objective function Ji, is greater than the possible
“damage” (cost increase) Σj∈Ni

δj that is done within the objective functions of system i’s neigh-
bors. Inequality (10) will be used to ensure that the centralized terminal constraint (6) is satisfied.
Note that the calculation of Ji,old and Jj,test in Step 2) and 3B), respectively, is a pure evaluation
of the respective cost function, i.e., no optimization problem has to be solved. Hence each system i

has to solve Problem Pi only once per sampling instant, namely in Step 3A).

The communication requirement for Algorithm 1 is such that at each sampling instant, each
system sends data to each of its neighbors four times. Namely, once in Step 1), where each system
sends the feasible state trajectory x̂i to all neighbors; furthermore in Steps 3B) and 3D), while
determining its own optimal input trajectory; and finally in Step 3C) when one of its neighbors
computes its optimal input trajectory. If the cost functions are decoupled as in [10], i.e., do not
depend on neighboring systems, Algorithm 1 simplifies significantly. Namely, the calculation and
exchange of δj and ej in Steps 3B) and 3C) can be omitted in this case, as optimizing the local input
trajectory ui only affects the local performance criterion. Thus, the communication requirements
are also significantly lowered. In Section 3.2, we will show that Algorithm 1 does not only simplify
in case of decoupled cost functions, but also for coupled cost functions which exhibit a certain
separable structure.

Remark 1 For clarity of presentation, in Step 3) of Algorithm 1 we require the systems to calculate
a new trajectory at each time step in a sequential order. However, the algorithm works in the same
way if two systems i and j for which Ni ∩Nj = ∅ do this in parallel. This means that Algorithm 1
is scalable with the number of systems, provided that the number of neighbors of each system is
limited.
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3.1.1 Analysis of the DMPC algorithm with general cost

In this section, we show that the proposed distributed MPC algorithm remains feasible for all times
if initial feasibility is assumed, and that the resulting closed-loop system is asymptotically stable
with respect to the set X 0. To this end, denote the overall closed-loop system resulting from the
application of Algorithm 1 by

x(k + 1) = f(x(k), kMPC(x(k))), k ∈ Z+, (11)

where kMPC := [(kMPC
1 )T , . . . , (kMPC

N )T ]T is the control law obtained in Step 4) of Algorithm 1.
Furthermore, define XT ⊆ X as the set of all states for which a feasible solution can be found in
Step 0) of Algorithm 1. We are now in a position to state the main result of this section:

Theorem 1 Suppose that an initial solution in Step 0) of Algorithm 1 exists, and that Assump-
tion 1 is satisfied. Then, Problem Pi in Step 3A) of Algorithm 1 is recursively feasible, for each of
the systems i ∈ I. Furthermore, the overall closed-loop system (11) is asymptotically stable with
respect to the set X 0 with region of attraction XT .

Proof of Theorem 1: We start by proving recursive feasibility of Algorithm 1, which follows
the arguments of [10]. First, note that at each time instant k, the feasible state sequences x̂j(k)
with which x̃−i(k) is initialized in (8), are successively replaced by x∗

j (k). Thus at the end of the
loop in Step 3), x̃−i(k) is given by

x̃−i(k) =
[

x∗
i1(k)T . . .x∗

idi
(k)T

]T
=: x∗

−i(k)

for all i ∈ I, i.e., each system knows the latest optimal predicted state sequences of its neighbors.
Thus when computing the candidate input sequence ûi in (7) at the next time step k + 1, each
system uses the final states of its neighbors’ previously calculated optimal state sequences in its
local controller kloc

i .

Now assume that a feasible solution to Problem Pi exists at time instant k − 1 for all systems
i ∈ I, such that also the terminal constraint (6) is satisfied. Consider the system with index i = 1 at
the following time instant k. The candidate input sequence û1 (7) satisfies the input constraint (2d),
as it consists of the remaining part of the previously optimal input sequence concatenated with
the auxiliary local controller. By the same argumentation, the candidate state sequence x̂1(k)
satisfies the local state constraint (2e). Furthermore, the terminal state constraint (6) is also
satisfied as the terminal region X f is invariant under the auxiliary local control laws according
to Assumption 1. Finally, consider the coupling constraints (2f). As for l = k, . . . , k + T − 1,
both x̂1(l|k) and x̃−1(l|k) consist of the remaining parts of the previously calculated optimal state
sequences, the coupling constraints are fulfilled due to the assumption that they were fulfilled at
time instant k − 1. For l = k + T , the coupling constraints are also satisfied according to (4b),
as x̂(k + T |k) lies inside the terminal region X f . Hence the candidate input sequence ûi (7) is a
feasible solution to Problem P1 at time instant k, and consequently also the optimal state trajectory
obtained from Problem P1, x∗

1,test(k), satisfies the constraints (2b)–(2f). Furthermore, according to
Step 3C), x∗

1,test(k) is only assigned to x∗
1(k) if (10) is satisfied, i.e., if the sum of the terminal cost

functions when using x∗
1,test(k) is less or equal than when the feasible state sequence x̂1(k) is used.

But this means that with x∗
1(k), also the terminal constraint (6) is satisfied.
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Assume now that at time instant k, a feasible solution exists for the systems 1 to i0, where
1 ≤ i0 ≤ n − 1. Then, there also exists a feasible solution at time instant k for the system i0 + 1.
This can be proven as follows. Input constraint satisfaction (2d) for the candidate input sequence (7)
as well as the satisfaction of the local state constraint (2e) for the corresponding candidate state
sequence x̂i0+1(k) is established as above for system 1. Furthermore, the candidate state trajectory
x̂i0+1(k) is exactly the trajectory which the previously optimizing neighbors assumed for system
i0+1. Thus the terminal constraint (6) and the coupling constraints (2f) are satisfied. Hence ûi0+1 is
a feasible solution to Problem Pi0+1 at time instant k, and consequently, as above, with x∗

i0+1(k), the
constraints (2b)–(2f) and (6) are satisfied. With this, by induction over i0, feasibility of Problem Pi

for all systems i ∈ I at time instant k can be established, with x∗(k + T |k) satisfying the terminal
constraint (6). Feasibility for all times then follows by induction over k and the assumption of
initial feasibility.

We now proceed with proving that the overall closed-loop system (11) is asymptotically stable
with respect to the set X 0. To this end, consider the functions

Vi(k) := Ji(xi(k),x∗
−i(k),u∗

i (k))

and use V (x(k)) :=
∑N

i=1 Vi(k) as a Lyapunov function candidate. According to Step 3) of Algo-
rithm 1, it holds that

V (x(k)) =
∑

i/∈{NN∪{N}}

Vi(k) +
∑

i∈NN

Vi(k) + VN (k)

≤
∑

i/∈{NN∪{N}}

Vi(k) +
∑

i∈NN

Ji

(

xi(k),















x∗
i1(k)

...

x∗
idi−1

(k)

x̂N (k)















,u∗
i (k)

)

+ JN (xN (k),x∗
−N (k), ûN (k)),

(12)

where the inequality in (12) holds due to the definition of x∗
N (k) in Step 3C) of Algorithm 1.

Namely, the newly calculated locally optimal state sequence x∗
N,test(k) is only assigned to x∗

N (k) if
(9) holds, which establishes the inequality in (12). On the other hand, if (9) is not satisfied, then
x̂N (k) is assigned to x∗

N (k), and thus (12) holds with equality. Using the same argument as in (12)
recursively from i = N down to 1, one obtains that

V (x(k)) ≤
N

∑

i=1

Ji(xi(k), x̂−i(k), ûi(k)). (13)
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Thus it holds that for all x(k) := x ∈ XT ,

V (x(k + 1)) − V (x(k))
(13)

≤
N

∑

i=1

Ji(xi(k + 1), x̂−i(k + 1), ûi(k + 1)) − V (x(k))

=
N

∑

i=1

(

− Li

(

x∗
i (k|k), x∗

−i(k|k), u∗
i (k|k)

)

+ {F+
i − Fi + Li}

(

x∗(k + T |k), kloc(x∗(k + T |k))
)

)

(4c)

≤ −
N

∑

i=1

Li

(

x∗
i (k|k), x∗

−i(k|k), u∗
i (k|k)

)

,

≤ −α1(|x∗(k|k)|X 0) = −α1(|x(k)|X 0), (14)

where for the second inequality we used the fact that x∗(k +T |k) ∈ X f , as established above. This
means that the set X 0 is attractive for the closed-loop system (11) with region of attraction XT .
Furthermore, it can be shown that there exist functions α3, α4 ∈ K∞ such that V (x) ≥ α3(|x|X 0)
for all x ∈ XT and V (x) ≤ α4(|x|X 0) for all x ∈ X f [22]. This implies that |x(k)| ≤ α−1

3 (α4(|x0|X 0))
for all x0 ∈ X f , which means that the set X 0 is Lyapunov stable for the closed-loop system (11).
Hence the closed-loop system (11) is asymptotically stable with respect to the set X 0 with region
of attraction XT , which concludes the proof of Theorem 1. �

Remark 2 As pointed out earlier, in Algorithm 1 the centralized terminal constraint (6) could
not be directly incorporated into the optimization problems Pi, but its satisfaction was ensured in a
distributed way via (10). This might result in an unnecessary use of the candidate input sequences ûi

instead of the newly calculated optimal trajectories u
∗
i,test in Step 3C) of Algorithm 1. We will show

in Section 3.2 how this limitation can be removed if the cost functions exhibit a certain separable
structure.

Remark 3 Ensuring satisfaction of the terminal constraint (6) in the way described above is also
conservative due to the reason that via (10), we in fact require the sum of the terminal cost functions
to decrease at each sampling instant. However, we can relax this as follows. Suppose that at some
time step k, for system i it holds that ei +

∑

j∈Ni
ej = −ēi for some ēi ≥ 0. Then, at the next

time step, in order for the terminal constraint to be satisfied it is sufficient that ei +
∑

j∈Ni
ej ≤ ēi.

This procedure can be iterated by updating the “buffer” ēi at each time step, thus allowing the sum
of the terminal cost functions to possibly increase at later time steps. Another possibility to lower
conservatism is that each system i sends ēi to its next optimizing neighbor inext. Then, for system
inext, in order for the terminal constraint to hold, it is enough that einext +

∑

j∈Ninext
ej ≤ ēi. With

these modifications, in our simulation results we observed that ensuring satisfaction of the terminal
constraint in the described way did not result in unnecessary conservatism, i.e., in an unnecessary
use of the candidate input sequences ûi instead of the newly calculated optimal trajectories u

∗
i,test

in Step 3C) of Algorithm 1.

3.2 DMPC: separable cost functions

In this section, we show how Algorithm 1 can be simplified if the stage and terminal cost functions
exhibit a certain separability property. Furthermore, as pointed out in Remark 2, in this case the

10



centralized terminal constraint (6) can be separated and consequently directly included into the
optimization problems Pi.

Assume that Li and Fi are given as

Li(xi, {xj}j∈Ni
, ui) = Lii(xi, ui) +

∑

j∈Ni

Lij(xi, xj),

Fi(xi, {xj}j∈Ni
) = Fii(xi) +

∑

j∈Ni

Fij(xi, xj), (15)

i.e., the stage and terminal cost functions of each system are separated into a part Lii (respectively,
Fii) consisting of its own state and input, and parts Lij (respectively, Fij) consisting of its own and
one of its neighbors’ states. In order to make use of this separable structure, define the modified
optimal control problem P̄i for each system i:

Problem P̄i: At time instant k,

minimize
ui(k)

J̄i(xi(k), x̃−i(k),ui(k))

subject to the constraints (2b)–(2f) and the additional terminal constraint

xi(k + T |k) ∈ X f
i (k), (16)

where

J̄i(xi(k), x̃−i(k),ui(k)) := Ji(xi(k), x̃−i(k),ui(k)) +

T−1
∑

l=0

∑

j∈Ni

Lji(x̃j(k + l|k), xi(k + l|k))

+
∑

j∈Ni

Fji(x̃j(k + T |k), xi(k + T |k)). (17)

The (time-varying) terminal regions X f
i (k) will be specified later on. In Problem P̄i, each

system i minimizes a cost function J̄i which is comprised of the sum of its own cost function, Ji

(defined as in (2a)), and those parts of the cost functions of its neighbors which involve its own
state xi. Hence in the following we assume that system i knows the functions Lji and Fji, for
all j ∈ Ni. The modified DMPC algorithm can now be specified as follows:

Algorithm 2 Distributed MPC: separable cost functions.

0) Same as Step 0) of Algorithm 1.

1) Same as Step 1) of Algorithm 1.

2) After receiving the trajectories x̂j(k) from all of its neighbors j ∈ Ni, each system i stacks
them together into

x̃−i(k) =
[

x̂i1(k)T . . . x̂idi
(k)T

]T
=: x̂−i(k).

3) For i = 1 to N , system i

11



A) defines the terminal region

X f
i (k) :=

{

y ∈ Xi : Fi(y, x̃−i(k + T |k)) +
∑

j∈Ni

Fji(x̃j(k + T |k), y)

≤ Fi(x̂i(k + T |k), x̃−i(k + T |k)) +
∑

j∈Ni

Fji(x̃j(k + T |k), x̂i(k + T |k))
}

,

(18)

B) solves Problem P̄i with X f
i (k) given by (18), and denotes the solution by u

∗
i (k) and the

corresponding state trajectory by x
∗
i (k),

C) sends x
∗
i (k) to its neighbors j ∈ Ni, who update x̃−j(k) by replacing x̂i(k) by x

∗
i (k).

4) Each system applies kMPC
i := u∗

i (k|k).

5) Increment k and go to Step 1).

Compared to Algorithm 1, all steps which are needed for checking whether the sum of the
cost functions as well as the terminal cost functions decreases (i.e., the exchange of δj and ej ,
respectively) can be omitted in Algorithm 2. Note that this leads to a significant decrease in the
communication requirements, as each system sends data to its neighbors only twice during each
sampling instant, namely in Step 2) and 3C), compared to four times in Algorithm 1. The above
holds due to the separable structure of the functions Li and Fi and the special choice of the cost
function J̄i which is minimized within Problem P̄i, as J̄i takes into account all terms in any of
the systems’ cost functions which are affected by the input ui through the state xi. From a game
theoretic point of view, this can be seen as a cooperative distributed MPC algorithm (see, e.g., [13]
for a more detailed discussion on this issue).

3.2.1 Analysis of the DMPC algorithm with separable cost

In this section, we show that under application of the modified DMPC Algorithm 2, recursive
feasibility as well as asymptotic stability of the the overall closed-loop system (11) with respect
to the set X 0 can be guaranteed, where kMPC now is the control law obtained in Step 4) of
Algorithm 2.

Theorem 2 Suppose that an initial solution in Step 0) of Algorithm 2 exists, and that Assump-
tion 1 is satisfied. Then, Problem P̄i in Step 3B) of Algorithm 2 is recursively feasible, for each of
the systems i ∈ I. Furthermore, the overall closed-loop system (11) is asymptotically stable with
respect to the set X 0 with region of attraction XT .

Proof of Theorem 2: Recursive feasibility of Problem P̄i can be proven as shown in the
proof of Theorem 1, with the exception that the terminal constraint is now directly included
into the optimization problem P̄i. Clearly, the candidate state sequence x̂i(k) satisfies the terminal
constraint (18), and hence Problem P̄i is recursively feasible for all systems i and all time instances k.

Furthermore, note that the terminal regions X f
i (k) are such that x∗(k + T |k) ∈ X f , i.e., the

centralized terminal constraint is satisfied. Namely, according to the definition of X f
i (k) in (18),

12



the sum of the terminal cost functions when using x∗
i (k) is less or equal than when the feasible

state sequence x̂i(k) is used, analogously to Algorithm 1, where this was ensured via (10).

In order to prove asymptotic stability of the overall closed-loop system (11) with respect to the
set X 0, consider the following. For any system i and any neighbor k ∈ Ni, define

Lk
i (xi, x−i, ui) := Lii(xi, ui) +

∑

j∈Ni,j 6=k

Lij(xi, xj) = Li(xi, x−i, ui) − Lik(xi, xk),

F k
i (xi, x−i) := Fii(xi) +

∑

j∈Ni,j 6=k

Fij(xi, xj) = Fi(xi, x−i) − Fik(xi, xk),

Jk
i (xi(k), x̃−i(k),ui(k)) :=

T−1
∑

l=0

Lk
i

(

xi(k + l|k), x̃−i(k + l|k), ui(k + l|k)
)

+ F k
i

(

xi(k + T |k), x̃−i(k + T |k)
)

. (19)

Now consider again the functions

Vi(k) := Ji(xi(k),x∗
−i(k),u∗

i (k))

and use V (x(k)) :=
∑N

i=1 Vi(k) as a Lyapunov function candidate. We obtain

V (x(k)) =
∑

i/∈{NN∪{N}}

Vi(k) +
∑

i∈NN

Vi(k) + VN (k)

(19)
=

∑

i/∈{NN∪{N}}

Vi(k) +
∑

i∈NN

JN
i (xi(k),x∗

−i(k),u∗
i (k))

+

T−1
∑

l=0

∑

i∈NN

LiN (x∗
i (k + l|k), x∗

N (k + l|k))

+
∑

i∈Ni

FiN (x∗
i (k + T |k), x∗

N (k + T |k)) + JN (xN (k),x∗
−N (k),u∗

N (k))

(17)
=

∑

i/∈{NN∪{N}}

Vi(k) +
∑

i∈NN

JN
i (xi(k),x∗

−i(k),u∗
i (k)) + J̄N (xN (k),x∗

−N (k),u∗
N (k)). (20)

But as in Step 3A) of Algorithm 2, system N solves the optimization problem P̄N with objective
function J̄N , due to optimality of u∗

N we obtain

J̄N (xN (k),x∗
−N (k),u∗

N (k)) ≤ J̄N (xN (k),x∗
−N (k), ûN (k))

(17)
= JN (xN (k),x∗

−N (k), ûN (k)) +
T−1
∑

l=0

∑

i∈NN

LiN (x∗
i (k + l|k), x̂N (k + l|k))

+
∑

i∈Ni

FiN (x∗
i (k + T |k), x̂N (k + T |k)).
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Plugging this into (20) and using again (19) yields

V (x(k)) ≤
∑

i/∈{NN∪{N}}

Vi(k) +
∑

i∈NN

Ji(xi(k),















x∗
i1(k)

...

x∗
idi−1

(k)

x̂N (k)















,u∗
i (k)) + JN (xN (k),x∗

−N (k), ûN (k)).

(21)

Using the same argument as in (21) recursively from i = N down to 1, one again obtains that (13)
holds, and the rest of the proof then follows along the lines of the proof of Theorem 1. �

Remark 4 Similar to the situation described in Remark 3, one can incorporate some additional
buffer ēi(k) into the definition of the terminal regions X f

i (k) to reduce possible conservatism.

Namely, if the terminal regions X f
i (k) are defined as in (18) with ēi(k) added on the right hand side

of the inequality, the proof of Theorem 2 still works in the same way provided that the buffer ēi(k)
is updated according to one of the methods described in Remark 3.

Both Algorithm 1 and 2 are rather general in nature and can be used for the solution of a
number of typical distributed control problems. In the following two sections, we will specifically
show how they can be applied for (i) the task of stabilizing a prespecified setpoint (Section 4) and
(ii) consensus and synchronization problems (Section 5). In particular, we show how the terminal
region X f and the auxiliary local controllers kloc

i can be computed such that Assumption 1 is
satisfied.

4 Application of DMPC algorithms to setpoint stabilization

In this section, we show how the proposed DMPC algorithms can be used for the stabilization of an
a priori known setpoint, while optimizing some common goal for neighboring trajectories. We first
show that in such a setting, fixed decoupled terminal regions can be computed, which can directly
be incorporated into the optimization problems Pi and P̄i, respectively. With this, Algorithm 1
and 2 are simplified as the computation of the time-varying terminal regions X f

i (k) in Step 3A) of
Algorithm 2, as well as the computation and exchange of the terminal cost function differences ej

in Algorithm 1 become obsolete. After that, we will illustrate the results with a specific example
and compare it to other DMPC schemes in the literature.

4.1 Computation of decoupled terminal regions

Without loss of generality, suppose that the origin is an equilibrium point for each of the systems (1),
and that the goal is to asymptotically stabilize this setpoint for all of the systems. To this end,
suppose that the stage cost functions Li for the systems i ∈ I are given by

Li(xi, {xj}j∈Ni
, ui) := xT

i Qixi + uT
i Riui +

∑

j∈Ni

(Cixi − Cjxj)
T Qij(Cixi − Cjxj), (22)
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where Qi, Ri > 0, Qij ≥ 0, and Ci, Cj are matrices of appropriate dimensions. The coupling terms
in the sum can be interpreted in the following way: Some output yi := Cixi of system i should
enter the origin along the same trajectory as the output yj := Cjxj of some neighbor j, and the
matrix Qij penalizes the deviation. The type of cost function (22) can be used to consider several
applications, including e.g. multi-vehicle formation stabilization and others [8, 9].

For the described setting, a centralized terminal region and auxiliary local controllers satisfying
Assumption 1 can be calulated using standard techniques (see, e.g., [6]), and Algorithms 1 and 2 can
readily be applied. However, in the considered case of setpoint stabilization, also decoupled terminal
regions X f

i and auxiliary local controllers kloc
i (xi), only depending on xi, can be calculated such

that Assumption 1 is satisfied with X f = X f
1 ×· · ·×X f

n . While this might lead to some conservatism
in the size of the terminal regions (due to the upper-bounding estimate in (23) below), it allows us
to simplify Algorithm 1 and 2, respectively, as explained above. Now consider the coupling terms
in the stage cost (22). It holds that

∑

j∈Ni

(yi − yj)
T Qij(yi − yj) =

∑

j∈Ni

yT
i Qijyi − yT

i Qijyj − yT
j Qijyi + yT

j Qijyj

≤
∑

j∈Ni

yT
i Qijyi + λmax(Qij)(y

T
i yi + yT

j yj) + yT
j Qijyj

=
∑

j∈Ni

yT
i (Qij + λmax(Qij)I)yi + yT

j (Qij + λmax(Qij)I)yj . (23)

We can now decouple the calculation of the auxiliary local controllers and the terminal regions by
letting system i take care of the terms in (23) involving yi, and system j taking care of the terms
involving yj. Thus, if the auxiliary local controllers and the terminal regions are calculated such
that

Fi

(

fi(xi, k
loc
i (xi))

)

− Fi(xi)

≤ −
(

xT
i Qixi + kloc

i (xi)
T Rik

loc
i (xi) + yT

i

(

∑

j∈Ni

Qij + Qji + (λmax(Qij) + λmax(Qji))I
)

yi

)

=: −L̃i(xi, k
loc
i (xi))

for all xi ∈ X f
i , then Condition (4c) in Assumption 1 is satisfied. But as L̃i only depends on xi,

i.e., is decoupled from the neighboring systems, this can be done using standard techniques, e.g.,
by considering the linearization around the origin [6].

4.2 Example

As specific example, we consider the task to stabilize the origin of six two-dimensional nonlinear
systems, with a line graph as underlying interconnection topology. For all i ∈ I, Xi = {x ∈
R

2|‖x‖∞ ≤ 5}, Ui = {u ∈ R
2|‖u‖∞ ≤ 2}, and the system dynamics are given by

xi(k + 1) =

[

0.9 0.2
−0.2 0.8

]

xi(k) +

[

1 0
0 1

]

ui(k) + 0.1

[

xi,2(k)2

xi,1(k)2

]

. (24)

The stage cost is given as in (22) with Qi = I2, Ri = 5I2 and Ci = I2 for all i; furthermore,
Q34 = Q43 = 02 and all other Qij were chosen as Qij = 3I2. One coupling constraint is assumed to
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(a) State trajectories using DMPC.
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(b) Initially planned trajectories.

Figure 1: Setpoint stabilization via DMPC in Section 4.2.

be present coupling Systems 3 and 4 such that ‖x3−x4‖2 ≤ 4. The terminal controllers and terminal
regions were calculated as described above such that Assumption 1 is satisfied. Figure 1 shows the
simulation results when applying Algorithm 2. It can be seen that the origin is asymptotically
stabilized, and that Systems 1 to 3 as well as 4 to 6 enter the origin on close by trajectories, as
desired. Furthermore, the coupling constraint is satisfied for all times. Other DMPC schemes which
can also take into account coupled cost functions like [8] have a “consistency constraint” added to
the optimization problem, ensuring that the newly calculated optimal trajectory does not deviate
too far from the previously calculated optimal trajectory, which is needed to ensure asymptotic
stability. Thus the solution heavily depends on the initially found trajectories and the actual
trajectories cannot deviate too much from these. As can be seen from the comparison of the actual
state trajectories when applying Algorithm 2 (Figure 1(a)) with the initially planned trajectories
(Figure 1(b)), this is not the case when Algorithm 1 is applied, i.e., the actual state trajectories can
deviate quite far from the initially assumed trajectories. Furthermore, hard coupling constraints
can be taken into account, which is not the case in [8, 9, 11] and constitutes an advantage of the
present approach.

5 Application of DMPC algorithms to consensus and synchroniza-

tion

In this section, we show how the proposed DMPC algorithms can be used to reach state consensus
between the systems, i.e., our goal is to synchonize the trajectories of the systems. This can be
translated in that the overall closed-loop system (11) is asymptotically stable with respect to the
set X 0 := {x ∈ X : x1 = x2 = · · · = xN}. To this end, in the following we will consider a network
of N homogeneous agents, i.e., systems with identical dynamics. We first show how the terminal
region X f and the auxiliary local controllers kloc

i can be calculated such that Assumption 1 is
satisfied in case of linear system dynamics and quadratic cost functions, and then extend the results
to the nonlinear case. In both cases, we will illustrate our results with examples of synchronizing
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oscillators.

In the following, we will make use of the incidence matrix E(G) ∈ R
N×M of the graph G

specifying the interconnection topology of the systems. In order to define E(G), we assign an
arbitrary orientation to each edge, i.e. such that each edge has a head (terminal node) and a tail
(initial node). The columns of E(G) are now indexed by the edge set and the rows by the set of
nodes, and the i-th row entry takes the value +1 if node i is the initial node of the corresponding
edge, −1 if it is the terminal node, and 0 otherwise [23].

5.1 Linear systems

In this section, we consider the special case of a network of N systems with identical linear dynamics,
i.e., (1) reduces to

si : xi(k + 1) = Axi(k) + Bui(k), k ∈ Z+. (25)

Define ξℓ := xi−xj as the state difference of the systems si and sj corresponding to the ℓ-th column
of E(G) indexed by the edge (si, sj). Let ξ := [ξT

1 , . . . , ξT
M ]T , and note that ξ = (E(G)T ⊗ In)x [23].

Now consider the local auxiliary controller candidates

kloc
i =

∑

ℓ∈N t
i

Kℓξℓ −
∑

ℓ∈Nh
i

Kℓξℓ, (26)

where N t
i denotes the set of edges with node i being the tail, and N h

i the set of edges with node i

being the head. Note that kloc
i defined by (26) is of the form kloc

i = kloc
i (xi, {xj}j∈Ni

), as required
in Assumption 1. From (26), one obtains that kloc := [(kloc

1 )T , . . . , (kloc
N )T ]T can be expressed as

kloc(x) = (E(G) ⊗ Im)Kξ = (E(G) ⊗ Im)K(E(G)T ⊗ In)x, (27)

where K = diag(Kℓ). With this, the overall system in closed-loop with the local auxiliary control
law can be written as

x(k + 1) = (IN ⊗ A)x(k) + (IN ⊗ B)kloc(k)

= (IN ⊗ A)x(k) + (IN ⊗ B)(E(G) ⊗ Im)K(E(G)T ⊗ In)x(k)

=
(

(IN ⊗ A) + (IN ⊗ B)(E(G) ⊗ Im)K(E(G)T ⊗ In)
)

x(k). (28)

Furthermore, by noting that

(E(G)T ⊗ In)(IN ⊗ A) = E(G)T IN ⊗ InA = IME(G)T ⊗ AIn = (IM ⊗ A)(E(G)T ⊗ In), (29)

we obtain from (28) that

ξ(k + 1) = (E(G)T ⊗ In)x(k + 1)

= (E(G)T ⊗ In)
(

(IN ⊗ A) + (IN ⊗ B)(E(G) ⊗ Im)K(E(G)T ⊗ In)
)

x(k)

=
(

(IM ⊗ A) + (E(G)T ⊗ In)(IN ⊗ B)(E(G) ⊗ Im)K
)

ξ(k). (30)
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Now consider the stage and terminal cost functions given by

Li(xi, {xj}j∈Ni
, ui) := uT

i Riui +
∑

ℓ∈N t
i ∪N

h
i

ξT
ℓ Qℓξℓ, (31)

Fi(xi, {xj}j∈Ni
) :=

∑

ℓ∈N t
i ∪N

h
i

ξT
ℓ Pℓξℓ, (32)

where Ri, Qℓ, Pℓ are positive definite matrices of appropriate dimension. Note that Li and Fi

given by (31) and (32), respectively, are of the form (15), and positive definite with respect to
the set X 0. Our goal is to compute the local auxiliary controller gains Kℓ as well as the terminal
weighting matrices Pℓ such that condition (4c) of Assumption 1 is satisfied. With P := diag(Pℓ),
Q := diag(Qℓ), R := diag(Ri), it holds that

N
∑

i=1

Fi(xi, {xj}j∈Ni
) =

N
∑

i=1

∑

ℓ∈N t
i ∪N

h
i

ξT
ℓ Pℓξℓ = 2ξT Pξ,

N
∑

i=1

Li(xi, {xj}j∈Ni
, kloc

i ) =
N

∑

i=1

(kloc
i )T Rik

loc
i +

N
∑

i=1

∑

ℓ∈N t
i ∪N

h
i

ξT
ℓ Qℓξℓ = (kloc)T Rkloc + 2ξT Qξ. (33)

With this, we can define the terminal region X f according to (5) as

X f := {x : 2ξT Pξ ≤ α} (34)

for some α > 0. Furthermore, (4c) results in

N
∑

i=1

{

F+
i − Fi + Li

}

(x, kloc(x))

= ξT
(

2
[

. . .
]T

P
[

(IM ⊗ A) + (E(G)T ⊗ In)(IN ⊗ B)(E(G) ⊗ Im)K
]

− 2P + KT (E(G) ⊗ Im)T R(E(G) ⊗ Im)K + 2Q
)

ξ ≤ 0, (35)

for all x ∈ X f . Denoting Ã := (IM ⊗ A), K̃ := (E(G) ⊗ Im)K and B̃ := (E(G)T ⊗ In)(IN ⊗ B),
this results in

ξT
(

2(Ã + B̃K̃)T P (Ã + B̃K̃) − 2P + K̃T RK̃ + 2Q
)

ξ ≤ 0 (36)

for all ξ. Inequality (36) can be rewritten as the following equivalent LMI with X := P−1 > 0
and Y := K̃X by using standard manipulations such as the Schur complement and left and right
multiplying with P−1 (see, e.g., [24]):









2X
√

2(XÃT + Y T B̃T )
√

2XQ1/2 Y T R1/2
√

2(ÃX + B̃Y ) X 0 0√
2Q1/2X 0 I 0

R1/2Y 0 0 I









≥ 0. (37)
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Due to the block-diagonal structure of P , also X is block-diagonal and thus Y has the same structure
as K̃. Hence K̃ can be recovered from the solution of (37) as K̃ = Y X−1 = Y P , from which K

can be obtained by recalling that K̃ was defined as K̃ := (E(G) ⊗ Im)K and K is block-diagonal,
which means that the ℓ-th diagonal block of K can be recovered from the ℓ-th block-column of K̃

due to the specific structure of the incidence matrix E(G).

In case that the graph G contains cycles, some of the state differences ξℓ are linearly dependent,
namely those corresponding to a circle subgraph. To be more precise, the linear dependencies of the
state differences ξℓ are given by eT

nullξ = 0, where enull is a vector in the nullspace of E(G) [23, 25].
Let us quickly illustrate this property with a simple example. Consider the cycle graph C3 with
three nodes and edges and incidence matrix given by

E(C3) =





1 1 0
−1 0 1
0 −1 −1



 , (38)

i.e., ξ1 = x1 − x2, ξ2 = x1 − x3, and ξ3 = x2 − x3. Clearly, it holds that ξ2 = ξ1 + ξ3, i.e.,
eT
nullξ = [1 − 1 1]ξ = 0, where enull = [1 − 1 1]T spans the nullspace of E(C3).

Considering the above, it follows that in order for condition (4c) of Assumption 1 to be satis-
fied, (36) only has to hold for those ξ such that ET

nullξ = 0, where Enull is a basis for the nullspace
of E(G). According to Finsler’s Lemma [26] (see also [27]), this is equivalent to the existence of a
constant ρ > 0 such that

2(Ã + B̃K̃)T P (Ã + B̃K̃) − 2P + K̃T RK̃ + 2Q − ρEnullE
T
null ≤ 0. (39)

However, (39) cannot be transformed into an LMI analogously to (37), as the additional term
ρEnullE

T
null in (39) would result in an additional term ρXEnullE

T
nullX in the first diagonal element

of (37), which is quadratic in X and hence destroys the LMI structure. Nevertheless, we can
tighten (39) in the following way in order still to obtain an LMI:

2(Ã + B̃K̃)T P (Ã + B̃K̃) − 2P + K̃TRK̃ + 2Q − ρ(PEnullE
T
null + EnullE

T
nullP ) ≤ 0 (40)

for some ρ. Note that solvability of (40) implies solvability of (39). Namely, (40) implies that (36)
holds for all ξ such that ET

nullξ = 0, which, as explained above, is equivalent to (39) according to
Finsler’s Lemma. In fact, the two inequalities (39) and (40) would be equivalent if in (40) we did
not multiply the terms involving EnullE

T
null with P but rather allowed for an arbitrary positive

definite matrix W instead. Now (40) can be transformed into an equivalent LMI (for fixed ρ)
analogously to above, and we obtain









2X + ρ(EnullE
T
nullX + XEnullE

T
null)

√
2(XÃT + Y T B̃T )

√
2XQ1/2 Y T R1/2

√
2(ÃX + B̃Y ) X 0 0√

2Q1/2X 0 I 0

R1/2Y 0 0 I









≥ 0. (41)

Our simulation results show that although (40) (and hence also the equivalent LMI (41)) is more
restrictive than (39), it still offers a considerable relaxation compared to the LMI (37), where the
linear dependency of the state differences ξℓ due to the cycles in the graph was not considered.
Furthermore, note that in the case when the graph contains no cycles, it follows that Enull is
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Figure 2: Interconnection topology of the linear oscillators si in Section 5.1.1.

empty, and hence from (41) we recover the LMI (37). Again, as explained above, the local auxiliary
controller gains Kℓ and the terminal weighting matrices Pℓ can be recovered from the solution X

and Y of the LMI (41). We thus arrive at the following result:

Theorem 3 If the local auxiliary controller gains Kℓ and the terminal weighting matrices Pℓ are
such that they are obtained from the solution of the LMI (41), then condition (4c) of Assumption 1
is satisfied.

In view of Theorem 3, one can conclude that if no state and input constraints are present,
Assumption 1 is satisfied in the whole state space, which thus can be used as terminal region X f ,
i.e., we can let α → ∞ in (34). If input constraints are present, α in (34) has to be chosen sufficiently
small such that (4a) is satisfied inside the terminal region. Also, for reasonable coupling constraints,
it can be assumed that (4b) holds if the terminal region is chosen sufficiently small. Finally,
if also local state constraints (2e) should be considered, the situation is not as straightforward.
Namely, for any α > 0, it is not a priori clear that X f ⊆ X , as X f defined by (34) is only given
as a weighted sum of relative distances between neighboring systems. Hence one has to ensure
that X f ∩ X , or more general, X f ∩ X̄ for some X̄ := {X̄1 × · · · × X̄N} ⊆ X is invariant under
the local auxiliary control kloc. Then, the local state constraints (2e) are satisfied if the additional
terminal constraint xi(k + T |k) ∈ X̄i is added to the optimization problem Pi (or P̄i, respectively).
In general, determining such a set X̄ might be a difficult task, and the development of a general
design procedure is out of the scope of this paper. In certain applications, on the other hand, like
in the example considered in Section 5.2.1, this can be achieved at least numerically.

5.1.1 Example - synchronization of linear oscillators

Consider as an illustrative example the problem of synchronizing five identical linear oscillators.

The dynamics of the oscillators si are given by (25) with A =

[

0.9762 0.2169
−0.2169 0.9762

]

and B = [0 1]T ,

and the interconnection topology of the oscillators is specified by the graph G, which is depicted in
Figure 2 together with the state differences ξℓ corresponding to the columns of E(G). The input
constraints are such that |ui| ≤ 1, and the weighting matrices for the stage cost (31) are chosen
as Q1 = Q2 = Q3 = Q5 = 3I2, Q4 = 0.1I2, and R1 = R2 = R2 = R4 = R5 = 1. The controller
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Figure 3: Synchronization of linear oscillators via DMPC in the example of Section 5.1.1.

gains Kℓ and matrices Pℓ are calculated according to the above procedure such that Assumption 1
is satisfied. Figure 3 shows simulation results obtained with prediction horizon T = 15. One can
see that the systems synchronize, and that ξ4 converges to 0 much slower than the other ξℓ, which
is in accordance with the choice the weighting matrices Qℓ.

5.2 Nonlinear systems

In this section, we show how the procedure developed in Section 5.1 for linear systems can be
extended to nonlinear systems, i.e., how the terminal region and the terminal controllers can be
calculated such that Assumption 1 holds. Our approach will be to linearize the systems and then
let the terminal region be sufficiently small such that (4c) still holds for the nonlinear system.
However, in contrast to [6], where such a method was developed for the task to centrally stabilize
an a priori known setpoint, in our setup the point around which the linearized system dynamics
are considered is not determined a priori.
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Consider a network of N systems with identical nonlinear dynamics, i.e., (1) reduces to

si : xi(k + 1) = f(xi(k), ui(k)), k ∈ Z+. (42)

Let the stage and terminal cost functions be given by (31)–(32), and the terminal region X f by (34).
Our goal is that the overall system state x asymptotically converges to the set X 0∩X̄ , where X̄ ⊆ X
is a set wherein the synchronized trajectories are restricted to lie. The set X̄ has to be computed
such that X f ∩X̄ is invariant under the local auxiliary control kloc, as discussed in Section 5.1. For
technical reasons which will become apparent later on, we assume X̄ to be compact. Note that in
many cases, this is not a major restriction, like in the example considered in Section 5.2.1, where
the goal is to synchronize nonlinear oscillators to a bounded limit cycle.

In order to extend the approach developed in Section 5.1 to nonlinear systems, consider the
following. For given x := [xT

1 , . . . , xT
N ]T , the arithmetic mean x̄ of all agents is given by

x̄ =
x1 + · · · + xN

N
. (43)

Furthermore, for any agent i it holds that

xi − x̄ =
Nxi − (x1 + · · · + xN )

N

=
(xi − x1) + · · · + (xi − xi−1) + (xi − xi+1) + · · · + (xi − xN )

N
. (44)

As we assume the graph G to be connected, the difference between the states of two arbitrary
agents i and k can be expressed as a linear combination of the state differences ξℓ, 1 ≤ ℓ ≤ M , i.e.
xi − xk = cT

ikξ for some coefficient vector cik. Using this, from (44) we obtain that for all i

xi − x̄ =
1

N

∑

k 6=i

cikξ =:
1

N
c̄iξ. (45)

Linearization of the systems (42) around (x̄, 0) yields

f(xi, ui) = f(x̄, 0) +
∂f

∂xi
|(x̄,0)(xi − x̄) +

∂f

∂ui
|(x̄,0)ui + Φx̄(xi − x̄, ui)

=: f(x̄, 0) + Ax̄(xi − x̄) + Bx̄ui + Φx̄(xi − x̄, ui), (46)

where Φ constitutes the higher order terms in (xi − x̄, ui). The overall linearized system is then
given by

ftot(x, u) = 1N ⊗ f(x̄, 0) + (IN ⊗ Ax̄)(x − (1N ⊗ x̄)) + (IN ⊗ Bx̄)u + Φ̄x̄(x, u), (47)

where Φ̄x̄(x, u) := [Φx̄(x1 − x̄, u1)
T , . . . ,Φx̄(xN − x̄, uN )T ]T .

Considering (45), it follows that under application of the local auxiliary controller candi-
dates (26), it holds that

Φ̄x̄(x, kloc) = O(|ξ|2). (48)
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Hence when applying the local auxiliary controller candidates (26), from (47) and using (29) we
obtain

ξ(k + 1) = (E(G)T ⊗ In)x(k + 1) = (E(G)T ⊗ In)ftot(x(k), kloc(x(k)))

= (Ãx̄ + B̃x̄K̃)ξ(k) + (E(G)T ⊗ In)Φ̄x̄(x(k), kloc(x(k)))

=: ÃK,x̄ξ(k) + Ψx̄(ξ(k)), (49)

where Ãx̄ := (IM ⊗ Ax̄), B̃x̄ := (E(G)T ⊗ In)(IN ⊗ Bx̄), and Ψx̄(ξ) is of order O(|ξ|2) due to (48).
Hence there exist constants κ, α > 0 such that

(ÃK,x̄ξ + Ψx̄(ξ))T P (ÃK,x̄ξ + Ψx̄(ξ)) ≤ ξT ÃT
K,x̄PÃK,x̄ξ + κξT Pξ, ∀ξTPξ ≤ α. (50)

The constants κ and α can e.g. be calculated as described in [6]. Using this, condition (4c) of
Assumption 1 can be transformed into the following LMI analogously to above:









2(1 − κ)X + ρ(EnullE
T
nullX + XEnullE

T
null)

√
2(XÃT

x̄ + Y T B̃T
x̄ )

√
2XQ1/2 Y T R1/2

√
2(Ãx̄X + B̃x̄Y ) X 0 0√

2Q1/2X 0 I 0

R1/2Y 0 0 I









≥ 0.

(51)

As noted earlier, the point around which the linearized system dynamics are considered is not
known a priori, but may vary in each time step. Hence a sufficient condition for (4c) to hold inside
the terminal region X f ∩X̄ at each time step is that the LMI (51) as well as (50) hold for all x̄ ∈ X̄ .
As we assume the set X̄ to be compact, and as f is assumed to be continuous, for each x̄ ∈ X̄

the linearized system matrices Ãx̄ and B̃x̄ lie in some compact sets A ∈ R
nM×nM ,B ∈ R

nM×mN .
Furthermore, Ψx̄(ξ) lies in a compact set for all x̄ ∈ X̄ if ξ lies in a compact set. Hence constants κ

and α can be calculated such that (50) holds for all x̄ ∈ X̄ (which, e.g., can be done as described
in [6]), and ensuring that the LMI (51) holds for all x̄ ∈ X̄ can be done by ensuring that it holds
for the extreme points of the convex hull of A× B (or a polytopic outer approximation of it).

Remark 5 Ensuring that the LMI (51) holds for all x̄ ∈ X̄ might in general be quite conservative.
A possible relaxation would be to allow for different, state-dependent, controller gains Kx̄. However,
the question then arises which controller gain each agent uses for computing its feasible trajectory
which it sends to its neighbors, as the arithmetic mean of all agents x̄ is unknown to each agent.
One possibility would be that each agent uses Kxi

, i.e., the control gain according to its local state.
However, a theoretical examination of such a modified scheme is beyond the scope of this paper.

5.2.1 Example - synchronization of Van der Pol oscillators

Consider as an example four Van der Pol oscillators with dynamic equations

ẋi = f(xi, ui) :=

[

xi,2 + ui

−xi,1 + ε(xi,2 − 1
3x3

i,2)

]

, i = 1, . . . , 4, (52)

where ε > 0 is a parameter specifying the degree of nonlinearity. The oscillators (52) exhibit
a unique, exponentially stable limit cycle whose amplitude can be computed numerically (see,
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Figure 4: Synchronization of Van der Pol oscillators via DMPC in Section 5.2.1.

e.g., [28] and the references therein). The interconnection topology of the four oscillators is given
by a line graph. Our goal is to synchronize the four oscillators via the DMPC algorithms developed
in Section 3. To this end, we first derive a simple approximate model of the system (52) by standard
Euler discretization with sampling time ts:

xi(k + 1) =

[

xi,1 + tsxi,2 + tsui

xi,2 − tsxi,1 + tsε(xi,2 − 1
3x3

i,2)

]

. (53)

Linearization of the system (53) around some point (x̄, 0) yields the system matrices

Ax̄ =

[

1 ts

−ts 1 + εts(1 − x̄2
2)

]

, Bx̄ =

[

ts

0

]

. (54)

The set X̄ is computed numerically as a compact convex set according to the above discussed re-
quirements and such that it contains the unique limit cycle of the Van der Pol oscillators. From (54),
one can see that ensuring that the LMI (51) holds for all x̄ ∈ X̄ reduces to ensuring it to hold for
the two extreme matrices Ax̄′ and Ax̄′′ resulting from x̄′

2 = 0 and x̄′′
2 = maxx̄∈X̄ |x̄2|. The input

constraints are such that |ui| ≤ 5, and the weighting matrices Qi for the stage cost (31) are chosen
such that ξ2 := x2 − x3 is penalized ten times less than ξ1 := x1 − x2 and ξ3 := x3 − x4. Figure 4
shows simulation results for ε = 0.43, ts = 0.05, and prediction horizon T = 50. One can see that
the Van der Pol oscillators synchronize, and that indeed ξ1 and ξ3 converge faster to zero than ξ2,
as desired.

6 Conclusions

In this paper, we presented a general DMPC framework for cooperative control. We proposed
two algorithms, one for general cost functions, and the second for a certain type of separable
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cost functions. We showed that both algorithms result in asymptotic stability of the closed-loop
system with respect to the desired target set X 0. Furthermore, we illustrated how several typical
cooperative control problems such as the stabilization of an a priori known setpoint as well as
consensus and synchronization tasks can be handled within this framework. In particular, we
showed how the terminal region and the local auxiliary controllers can be calculated in these cases.
Finally, we illustrated our results with several simulation examples.

The results presented in this paper were only obtained for nominal system dynamics, i.e., with-
out considering disturbances. Hence future research will include designing robust distributed MPC
schemes which are suited for cooperative control tasks. Furthermore, an important question to ad-
dress is how the proposed algorithms perform in case of packet drops or delays in the communication
between the systems.
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