
International Journal of Digital Content Technology and its Applications
Volume 3, Number 4, December 2009

RASA: A New Grid Task Scheduling Algorithm

Saeed Parsa, Reza Entezari-Maleki*Corresponding author
Parallel Processing and Concurrent Systems Laboratory, Department of Computer Engineering,

Iran University of Science and Technology (IUST), Tehran, Iran
parsa@iust.ac.ir, r_entezari@comp.iust.ac.ir

doi: 10.4156/jdcta.vol3.issue4.10

Abstract

In this paper, a new task scheduling algorithm
called RASA, considering the distribution and
scalability characteristics of grid resources, is
proposed. The algorithm is built through a
comprehensive study and analysis of two well known
task scheduling algorithms, Min-min and Max-min.
RASA takes advantages of the both algorithms and
avoids their drawbacks. To achieve this, RASA firstly
estimates the completion time of the tasks on each of
the available grid resources, and then applies the Max-
min and Min-min algorithms, alternatively. In this
respect, RASA uses the Min-min strategy to execute
small tasks before the large ones, and applies the Max-
min strategy to avoid delays in the execution of the
large tasks and to support concurrency in the
execution of the large and small tasks. Our
experimental results of applying RASA on scheduling
independent tasks within grid environments
demonstrate the applicability of RASA in achieving
schedules with comparatively lower makespan.

Keywords

Grid computing, task scheduling algorithm,
makespan, Max-min, Min-min

1. Introduction

Grid is a large scale distributed system, concerned
with coordinated resource sharing and problem
solving. The grid infrastructure provides a mechanism
to execute applications over autonomous and
geographically distributed nodes by sharing resources
which may belong to different individuals and
institutions [1]. Computational grid is a kind of grid
environments, targeted at solving computationally
intensive problems. Computational grid is defined as a
hardware and software infrastructure which provides
dependable, consistent, pervasive and inexpensive
access to computational resources existing on the
network [1].

To make effective use of the tremendous
capabilities of the computational grids, efficient task
scheduling algorithms are required. Task scheduling
algorithms are commonly applied by grid resource
managers to optimally dispatch tasks to grid resources
[2, 3, 4, 5, 6, 7, 8, 9, 10]. Typically, grid users submit
their own tasks to the grid manager to take full
advantage of the grid facilities. The grid manager in a
computational grid tries to distribute the submitted
tasks amongst the grid resources in such a way that the
total response time is minimized.

There are relatively a large number of task
scheduling algorithms to minimize the total completion
time of the tasks in distributed systems [3, 9, 11, 12,
13, 14]. These algorithms try to minimize the overall
completion time of the tasks by finding the most
suitable resources to be allocated to the tasks. It should
be noticed that minimizing the overall completion time
of the tasks does not necessarily result in the
minimization of execution time of each individual task.

Two well known examples of such algorithms are
Max-min and Min-min [3, 9, 11, 12, 14]. These two
algorithms estimate the execution and completion
times of each of the tasks on each of the grid resources.
Estimating the execution time of each task on different
resources, the Min-min algorithm selects the task with
minimum completion time and assigns it to the
resource on which the minimum execution time is
achieved. The algorithm applies a same procedure to
the remaining tasks. A major difficulty with the
Min-min algorithm is to assign the smaller tasks to the
resources with relatively higher computational power.
As a result, the makespan of the system is determined
by the large tasks whenever the number of the small
tasks exceeds the large ones. To resolve the difficulty,
the Max-min algorithm gives priority to the large tasks.
The Max-min algorithm firstly assigns the large or in
other words time consuming tasks to the resources and
then assigns the small ones. The Max-min algorithm
seems to do better than the Min-min whenever the
number of small tasks is much more than the large
ones, but in the other cases, early execution of the large
tasks might increase the total response time of the
system. Also, in the Max-min algorithm, the small

91

RASA: A New Grid Task Scheduling Algorithm
Saeed Parsa, Reza Entezari-Maleki

tasks may be required to wait for the completion of the
large ones.

To avoid the drawbacks of the Min-min and Max-
min algorithms, these two algorithms could be
executed alternatively, to assign tasks to appropriate
resources. In this way, a large task is selected
immediately after a small one and vice versa. Thereby,
a comparatively better load balancing is achieved and
the total response time of the grid system is improved.

This paper offers a new task scheduling algorithm
to resolve the above mentioned problems with the Min-
min and Max-min algorithms. The algorithm, RASA1

2. Related Works

,
applies the Max-min and Min-min strategies
alternatively to assign tasks to the resources. RASA is
implemented in GridSim environment. Practical
experiments with GridSim demonstrate the benefits of
applying RASA to schedule independent tasks within
grid environments.

The remaining parts of this paper are organized as
follows: Section 2 presents the related works. In
Section 3, the concept of task scheduling in grid
environments and several well known scheduling
algorithms which are benchmarks of many other
works, are introduced. In section 4, a new scheduling
algorithm is proposed and the prominence of the
algorithm is demonstrated through an example. Section
5 compares the scheduling algorithms in a typical grid
environment using GridSim; and presents the results of
the comparison. Finally, section 6 concludes the paper
and presents future works.

Due to relatively high communication costs in grid

environments most of the well known scheduling
algorithms are not applicable in large scale distributed
systems such as grid environments [3, 7, 8]. There has
been an ongoing attempt to build scheduling
algorithms specifically within grid environments.

X. He et al. have presented a new algorithm based
on the conventional Min-min algorithm [3]. The
proposed algorithm which is called QoS guided
Min-min, schedules tasks requiring high bandwidth
before the others. Therefore, if the bandwidth required
by different tasks varies highly, the QoS guided
Min-min algorithm provides better results than the
Min-min algorithm. Whenever the bandwidth
requirement of all of the tasks is almost the same, the
QoS guided Min-min algorithm acts similar to the
Min-min algorithm.

F. Dong et al. have proposed a similar algorithm
called QoS priority grouping scheduling [12]. This
algorithm, considers deadline and acceptation rate of

1 Resource Aware Scheduling Algorithm

the tasks and the makespan of the wholes system as
major factors for task scheduling. In comparison with
Min-min and QoS guided Min-min, the QoS priority
grouping scheduling algorithm achieves better
acceptance rate and completion time for the submitted
tasks.

E. Ullah Munir et al. have presented a new task
scheduling algorithm for grid environments called QoS
Sufferage [13]. This algorithm considers network
bandwidth and schedules tasks based on their
bandwidth requirement as the QoS guided Min-min
algorithm does. Compared with the Max-min,
Min-min, QoS guided Min-min and QoS priority
grouping algorithms, QoS Sufferage obtains smaller
makespans.

K. Etminani et al. have proposed a new algorithm
which uses Max-min and Min-min algorithms [14].
The algorithm determines to select one of these two
algorithms, dependent on the standard deviation of the
expected completion times of the tasks on each of the
resources.

L. Mohammad Khanli et al. have presented QoS
based scheduling solutions in a specific architecture
called Grid-JQA [4, 5]. This scheduling solution
applies an aggregation formula that is a combination of
parameters together with weighting factors to evaluate
QoS. Despite outperforming the Max-min, Min-min,
and Sufferage, the Khanli's scheduling algorithm is not
practical and seems to be an unpractical mathematical
solution [5].

A. Afzal et al. have proposed a new grid scheduling
algorithm that minimizes the cost of the execution of
workflows while ensuring that their associated QoS
constraints are satisfied [15]. The algorithm views a
grid environment as a queuing system and schedules
tasks within this system. This algorithm is system
oriented and considers the execution cost. Hence, it is
suitable for economic grids. Since the algorithm is
non-linear, as the size of the problem is gets large the
time it takes to obtain a suitable scheduling becomes
very long and unacceptable.

E. Elmroth et al. have proposed a user oriented
algorithm for task scheduling in grid environments,
using advanced reservation and resource selection [6].
The algorithm minimizes the total execution time of
the individual tasks without considering the total
execution time of all of the submitted tasks. Therefore,
the overall makespan of the system does not
necessarily get small.

B.T. Benjamin Khoo et al. have presented a new
scheduling algorithm for workload distribution in grid
environments [7]. This algorithm which is known as
multiple resources scheduling (MRS) algorithm, takes
into account both the site capabilities and the resource
requirements of tasks. To quantify the performance of

92

International Journal of Digital Content Technology and its Applications
Volume 3, Number 4, December 2009

the algorithm, the average task wait times, queue
completion times, and average resource utilization
factor, of the algorithm are compared to the
conventional backfill and replication algorithms. The
comparison results indicate that this algorithm is more
applicable than the other two algorithms.

B. Yagoubi et al. have offered a model to
demonstrate grid architecture and an algorithm to
schedule tasks within grid resources [8]. The algorithm
tries to distribute the workload of the grid environment
amongst the grid resources, fairly. Although, the
mechanism used in [8] and other similar strategies
which try to create load balancing within grid
resources can improve the throughput of the whole grid
environment, the total makespan of the system does
not decrease, necessarily.

3. Task Scheduling Algorithms

Suppose that m resources Rj(j = 1, . . .,m) have to
process n tasks Ti(i = 1, . . . , n). A schedule for each
task is an allocation of one or more time intervals to
one or more resources [16]. The expected execution
time Eij of task Ti on resource Rj is defined as the
amount of time taken by Rj to execute Ti given Rj has
no load when Ti is assigned. The expected completion
time Cij of task Ti on resource Rj is defined as the
wall-clock time at which Rj completes Ti (after having
finished any previously assigned tasks). Let bi denote
to the beginning of the execution of task Ti. From the
above definitions, Cij=bi+Eij. Let Ci be the completion
time for task Ti, and it is equal to Cij where resource Rj
is assigned to execute task Ti. The makespan for the
complete schedule is then defined as)(iKT CMax

i∈
.

Makespan is a measure of the throughput of the
heterogeneous computing system (like computational
grid) [9, 11].

Decision about the assigning of tasks to the
resources and Finding the best match between tasks
and resources is NP-complete problem [3, 10, 11, 16].
Lots of scheduling algorithms are proposed to assign
the tasks to the resources by considering one or several
QoS parameters. These algorithms show different
performances based on the environment in which they
are used. The traditional parallel scheduling problem is
to schedule the subtasks of an application on the
parallel machines in order to reduce the turnaround
time. In a grid environment, the scheduling problem is
to schedule a set of tasks from different users on a set
of computing resources to minimize the completion
time of a specific task or the makespan of a system.
Also, other parameters such as load balancing, system
throughput, service reliability, service cost, system
utilization, and so forth can be considered.

Generally, the scheduling algorithms are divided
into two basic categories; immediate mode scheduling
and batch mode scheduling. In the immediate mode, a
task is mapped onto a resource as soon as it arrives at
the scheduler. In the batch mode, tasks are not mapped
onto the resources as they arrive; instead they are
collected into a set that is examined for mapping at
prescheduled times called mapping events. The
independent set of tasks which is considered for
mapping at the mapping events is called a meta-task
[14]. Some algorithms estimate the execution time of
the tasks existing in the meta-task on the resources;
then assign each task to the resource with the minimum
expected execution time for that task. The algorithms
with this mechanism are named as minimum execution
time (MET) algorithms [3, 9, 11, 14]. The minimum
completion time (MCT) algorithms assign each task to
the resource which results in that task's earliest
completion time. This causes some tasks to be assigned
to the resources that do not have the minimum
execution time for them [3, 9, 11, 14].

One of the earlier scheduling algorithms which do
not use the execution or completion time of the tasks,
and schedules the tasks in the arbitrary order is
opportunistic load balancing (OLB) algorithm. The
insight behind OLB is to keep all resources as busy as
possible. One advantage of OLB is its simplicity, but
because OLB does not consider expected task
execution times, the mappings it finds can result in
very poor makespans [11]. In OLB algorithm, if
multiple resources become ready at the same time, then
one resource is arbitrarily chosen. The complexity of
the OLB is dependent on the implementation. As an
example, in the implementation considered in [9], the
complexity of the algorithm is O(m), where m is the
number of all of the resources.

In contrast with OLB, Min-min and Max-min
algorithms schedule tasks by considering the execution
time of the tasks on the resources. The Min-min
algorithm begins with the set U of all unscheduled
tasks. Then, the set of minimum completion times for
each of the tasks exiting in U is found. Next, the task
with the overall minimum completion time from
unscheduled tasks is selected and assigned to the
corresponding resource (hence the name Min-min).
Last, the newly scheduled task is removed from U, and
the process repeats until all tasks are scheduled [11].
The Min-min algorithm is shown in Figure 1.

In Figure 1, rj denotes the expected time which
resource Rj will become ready to execute a task after
finishing the execution of all tasks assigned to it. First,
the Cij entries are computed using the Eij (the estimated
execution time of task Ti on resource Rj) and rj values.

For each task Ti, the resource that gives the earliest
expected completion time is determined by scanning

93

RASA: A New Grid Task Scheduling Algorithm
Saeed Parsa, Reza Entezari-Maleki

the ith row of the C matrix (composed of the Cij
values). The task Tk that has the minimum earliest
expected completion time is determined and then
assigned to the corresponding resource.

The matrix C and vector r are updated, and the above
process is repeated for tasks that have not yet been
assigned to a resource.

The Max-min algorithm is similar to the Min-min
algorithm. It differs from the Min-min algorithm in
that once the resource that provides the earliest
completion time is found for every task, the task Tk that
has the maximum earliest completion time is
determined and then assigned to the corresponding
resource. That is, in line (6) of Figure 1, “minimum”
would be changed to “maximum” [9].

Both the Min-min and Max-min algorithms
consider a hypothetical assignment of tasks to
resources, projecting when a resource will become idle
based on the hypothetical assignment. Both algorithms
have time complexities of O(mn2), where m is the
number of resources in the system and n is the number
of tasks which should be scheduled to be executed
[10].

4. The New Scheduling Algorithm

Let Ti be the first task mapped by Min-min onto the
resource, Rj. According to the Min-min algorithm, Rj
should execute Ti in the shortest possible time,
compared with the other resources. The remaining
tasks are assigned to the fastest resource, Rj, as long as
the total execution times of the task assigned to the Rj
is less than the time it takes to execute the tasks on the
other resources. This approach results in a
comparatively shorter makespan if the execution time
of the tasks varies slightly because it attempts to assign
the tasks to the fastest resources. However, if there are
large and small tasks, the large ones may be assigned

to slower resources and the makespan of the system
will be increased, dramatically.

The Max-min algorithm seems to do better than the
Min-min algorithm in the cases when the number of
short tasks is much more than the long ones. For
example, if there is only one long task, the Max-min
algorithm executes many short tasks concurrently with
the long task. In this case, the makespan of the system
is most likely determined by the execution time of the
long task. However, since the Min-min algorithm
attempts to assign the short tasks before the long one,
the makespan increases compared with the Max-min.
On the other hand, mapping the longest task to the
fastest resource provides a better opportunity for
concurrent execution of the small tasks on different
resources. In this certain situation, the Max-min
provides a better mapping which supports load
balancing across the grid resources more than the
Min-min [11]. Although load balancing in small scale
distributed systems is desirable and leads to reduced
total completion times however, in large scale
distributed systems load balancing does not necessarily
results in the shortest makespan. The proposed
algorithm outperforms Max-min in large scale systems,
because it focuses on minimizing the completion time
of tasks rather than load balancing.

 In subsection 4.1, the new algorithm is proposed
and in subsection 4.2, an illustrative example is
presented to compare the proposed algorithm with
existing algorithms.

4.1 RASA

Our proposed grid scheduling algorithm, RASA, is
presented in Figure 2. The algorithm builds a matrix C
where Cij represents the completion time of the task Ti
on the resource Rj. If the number of available resources
is odd, the Min-min strategy is applied to assign the
first task, otherwise the Max-min strategy is applied.
The remaining tasks are assigned to their appropriate
resources by one of the two strategies, alternatively.
For instance, if the first task is assigned to a resource
by the Min-min strategy, the next task will be assigned
by the Max-min strategy. In the next round the task
assignment begins with a strategy different from the
last round. For instance if the first round begins with
the Max-min strategy, the second round will begin
with the Min-min strategy.

Experimental results show that if the number of
available resources is odd it is preferred to apply the
Min-min strategy the first in the first round otherwise
is better to apply the max-min strategy the first.
Alternative exchange of the Min-min and Max-min
strategies results in consecutive execution of a small
and a large task on different resources, and hereby, the

1. for all tasks Ti in meta-task Mv
2. for all resources Rj
3. Cij=Eij+rj
4. do until all tasks in Mv are mapped
5. for each task in Mv find the earliest
 completion time and the resource that
obtines it
6. find the task Tk with the minimum earliest
 completion time
7. assigne task Tk to the resource Rl that gives the
 earliest completion time
8. delete task Tk from Mv
9. update rl
10. update Cil for all i
11.end do

Figure 1- The Min-min algorithm

94

International Journal of Digital Content Technology and its Applications
Volume 3, Number 4, December 2009

waiting time of the small tasks in Max-min algorithm
and the waiting time of the large tasks in Min-min
algorithm are ignored. As RASA is consist of the
Max-Min and Min-Min algorithms and have no time
consuming instruction, the time complexity of RASA
is O(mn2) where m is the number of resources and n is
the number of tasks (similar to Max-min and Min-min
algorithms).

4.2 An Illustrative Example

As a simple example, assume there is a grid
environment with two resources. The processing speed
of the resources and the bandwidth of the
communication links which connect each of the
resources to the grid manager are shown in Table 1.
Four tasks T1, T2, T3, and T4 are in the meta-task Mv,
and the grid manager is supposed to schedule all the
tasks within Mv on two resources R1 and R2. Table 2
represents the volume of instructions and data in the
tasks T1 to T4.

Table 1- Specification of the resources
Related Bandwidth

(Mbps)
Processing

speed (MIPS) Resources

100 50 R1
5 100 R2

Table 2- Specification of the tasks
Volume of Volume of Tasks

data (Mb) instructions (MI)
44 128 T1
62 69 T2
64 218 T3
59 21 T4

Applying the data presented in Table 1 and Table 2,
it is possible to calculate the expected completion time
of the tasks on each of the resources. The calculated
completion time of the tasks are demonstrated in
Table 3.

Table 3- Completion time of the tasks on each of the

resources

R2 R1 Tasks /
Resources

10 3 T1
13 2 T2
15 5 T3
12 1 T4

Figure 3 includes two Gantt charts representing the

results of applying Max-min and Min-min algorithms
on the meta-task Mv, described in Table 1 and Table 2.
Although the orders of the tasks scheduled in Max-min
and Min-min algorithms are different, the makespan of
the system is equal when applying each of the
algorithms.

The result of applying RASA on meta-task Mv is
exposed in Figure 4. As shown in Figure 4, the
makespan of the system when applying RASA is 10
second, whilst Max-min and Min-min provide a
scheduling with a makespan of 11 seconds.

Also, considering the completion times in Figures 3
and 4 it is observed that RASA outperforms Max-min
and Min-min algorithms by providing relatively

1. for all tasks Ti in meta-task Mv
2. for all resources Rj
3. Cij=Ej+rj
4. do until all tasks in Mv are mapped
5. if the number of resources is even then
6. for each task in Mv find the earliest
completion
 time and the resource that obtines it
7. find the task Tk with the maximum earliest
 completion time
8. assigne task Tk to the resource Rl that gives
the
 earliest completion time
9. delete task Tk from Mv
10. update rl
11. update Cil for all i
12. else
13. for each task in Mv find the earliest
completion
 time and the resource that obtines it
14. find the task Tk with the minimum earliest
 completion time
15. assigne task Tk to the resource Rl that gives
the
 earliest completion time
16 delete task Tk from M

Figure 2- The proposed algorithm (RASA)

Max-min

R1 R2

T4

T1

T3

T2

Min-min
R1 R2

T4

T2

T1

T3

1

3

6

11

5

8

10

11

Completion
 time (sec)

Completion
time (sec)

Figure 3- Gantt chart of the Max-min and Min-min
algorithms

95

RASA: A New Grid Task Scheduling Algorithm
Saeed Parsa, Reza Entezari-Maleki

smaller makespan and higher load balancing. It is
assumed that tasks can be executed on any of the
resources, independently. Therefore, the QoS guided
Min-min and QoS priority grouping algorithms act the
same as Min-min algorithm. The above example is
only one case which shows the privilege of RASA
compared to the other algorithms. However, one can
provide an example in which the results of RASA are
equal or even worse than the other above mentioned
algorithms. In general when the submitted tasks have
almost the same size, the Min-min or Max-min
algorithms may act better than RASA.

5. Simulation and Experimental Results

To evaluate and compare RASA with other
algorithms such as Max-min, Min-min, OLB, QoS
guided Min-min, and QoS priority grouping, a
simulation environment known as GridSim toolkit [17]
has been used. In order to demonstrate the preeminence
of RASA in comparison with other algorithms, two
different assumptions are made:
1. Assumption I: the computation time of the tasks

overcomes to the communication time of them.
This situation occurs in multiprocessors and
small scale distributed systems (such as cluster
environments).

2. Assumption II: the communication time
becomes more and even can be overcomes to the
computation time of the tasks. This situation
occurs in large scale distributed systems such as
grid environments in which the resources are
widely distributed and connected via the
communication links.

The above mentioned algorithms have been
simulated in GridSim environment. It has been
assumed that there are no constraints for executing

tasks on different resources and each of the tasks could
be executed on each of the resources. In this situation,
the QoS guided Min-min and QoS priority grouping
algorithms performed the same as the Min-min
algorithm. Therefore, in all the plots presented in the
following figures, only the results of Min-min are
depicted and the plots related to QoS guided Min-min
and QoS priority grouping algorithms are eliminated.
In order to study the effect of the volume of workload
on the efficacy of RASA and to compare it with the
other algorithms, in each of the above mentioned
assumptions, three different workloads of light,
medium and heavy load are considered. In light load,
200 tasks are dispatched within 10 to 11 grid resources
and makespan is estimated for each of the algorithms.
Also, in medium load, 1000 tasks and in heavy load,
5000 tasks have been considered. Figure 5 and Figure
6 show the makespans achieved by applying the
algorithms, considering Assumption I and
Assumption II, respectively.

As shown in Figure 5-(a), when the computation
time of the tasks exceeds their communication time
and the workloads of the resources are light, Max-min
returns relatively smaller makespan than the other
algorithms. As the workload of the resources increases,
the makespans achieved by the Min-min and RASA
get smaller. As shown in Figure 5-(b) and Figure 5-(c),
the makespan returned by RASA is less than the
makespans returned by the other algorithms.
Considering Figure 5-(b) and 5-(c), it can be concluded
that; RASA returns smaller makespans compared with
Max-min, Min-min, OLB, QoS guided Min-min, and
QoS priority grouping algorithms, in small scale
distributed systems.

Figure 6 shows the makespans of the algorithms
based on Assumption II. As shown in Figure 6-(a),
when the workload is light, the makespan returned by
RASA is less than the other algorithms. Comparing
Figures 5-(a) and 6-(a), it is observed that; Max-min is
suitable for small scale distributed systems whilst
Min-min well suits large scale distributed systems.
However, RASA returns relatively smaller makespans
than both the Min-min and Max-min algorithms in
both small scale and large scale distributed systems.
When the workload of the resources is heavy, RASA
achieves smaller makespans in comparison with the
other algorithms. Therefore, RASA achieves smaller
makespans both in light and heavy load conditions.

For the sake of clarity, in Figures 5 and 6 the
makespans returned by different algorithms are
rescaled. Here, the largest makespan, returned by OLB,
is 100 and the other makespans are rescaled with
respect to this amount. The six different cases observed
in Figures 5 and 6 are considered as vertices of a
regular hexagon. The vertices of the hexagon are

R1 R2

T4

T1

T3

T2

5

7

10

8

Completion
 time (sec)

Figure 4- Gantt chart of RASA

96

International Journal of Digital Content Technology and its Applications
Volume 3, Number 4, December 2009

named as Light 1, Light 2, Medium 1, Medium 2,
Heavy 1, and Heavy 2 which imply light load in
Assumption I, light load in Assumption II, medium
load in Assumption I, medium load in Assumption II,
heavy load in Assumption I, and heavy load in
Assumption II, respectively. The hexagon is shown in
Figure 7. In this hexagon the number of grid resources
is assumed to be 10. The number of grid resources, in
Figure 8, is 11. As shown in Figures 7 and 8 the area of
the non-regular hexagon which is related to RASA, is

smaller than the other algorithms. Therefore, it can be
concluded that; the makespans returned by RASA are
smaller than the other algorithms in almost all different
conditions.

6. Conclusion and Future Works

Min-min and Max-min algorithms are applicable in
small scale distributed systems. When the number of
the small tasks is more than the number of the large
tasks in a meta-task, the Min-min algorithm can not

17
17.5

18
18.5

19
19.5

20
20.5

21
21.5

22
22.5

23

10 11

Max-min Min-min O LB RASA

85

87

89

91

93

95

97

99

101

103

105

107

10 11

635
640
645
650
655
660
665
670
675
680
685
690
695
700
705
710
715
720
725

10 11

38

39.5

41

42.5

44

45.5

47

48.5

50

51.5

10 11

Max-min Min-min O LB RASA

190

195

200

205

210

215

220

225

230

235

240

10 11

970
982
994

1006
1018
1030
1042
1054
1066
1078
1090
1102
1114
1126
1138
1150
1162
1174
1186

10 11

Figure 5- Makespans of the algorithms in Assumption

I
Figure 6- Makespans of the algorithms in Assumption

II

(a)

(b)

(c)

(a)

(b)

(c)

97

RASA: A New Grid Task Scheduling Algorithm
Saeed Parsa, Reza Entezari-Maleki

85

87.5

90

92.5

95

97.5

100
Light 1

Heavy 2

Heavy 1

Medium 2

Medium 1

Light 2

Max-min Min-min
OLB RASA

Figure 7 - Makespans onu da f the algorithms when
the number of resources is 10

85

87.5

90

92.5

95

97.5

100
Light 1

Heavy 2

Heavy 1

Medium 2

Medium 1

Light 2

Max-min Min-min
OLB RASA

Figure 8 - Makespans of the algorithms when the
number of resources is 11

schedule tasks, appropriately, and the makespan of the
system gets relatively large. Unlike the Min-min
algorithm, the Max-min algorithm attempts to achieve
load balancing within resources by scheduling the large
tasks prior to the small ones. However, within a
computational grid environment high throughput is of
great interest rather than the load balancing. To achieve
this, in this article, a new task scheduling algorithm,
RASA, is proposed.

RASA is composed of two traditional scheduling
algorithms; Max-min and Min-min. RASA uses the
advantages of Max-min and Min-min algorithms and
covers their disadvantages. The experimental results
obtained by applying RASA within the GridSim
simulator, shows that RASA is outperforms the

existing scheduling algorithms in large scale
distributed systems.

This study is only concerned with the number of the
resources to be odd or even and analyses the merits and
drawbacks of two well known traditional algorithms,
Max-min and Min-min. In this paper, the deadline of
each task, arriving rate of the tasks, cost of the task
execution on each of the resource, cost of the
communication and many other cases that can be a
topic of research are not considered. Also, applying the
proposed algorithm on actual grid environment for
practical evaluation can be other open problem in this
area.

7. Acknowledgment

The authors want to express their gratitude to the
Iranian National Elite Foundation and Iran

Telecommunication Research Center for their support
of this paper.

Also, the authors would like to express their cordial
thanks to Miss Pegah Moradi-Hamed and Miss
Marziye Mehdi-Beyraghdar for their valuable assist.

8. References

[1] I. Foster, and C. Kesselman, The Grid 2: Blueprint for

a New Computing Infrastructure, Second Edition,
Elsevier and Morgan Kaufmann Press, 2004.

[2] L. Chunlin, and L. Layuan, "QoS based resource
scheduling by computational economy in
computational grid," Journal of Information
Processing Letters, Vol. 98, pp. 119-126, 2006.

[3] X. He, X-He Sun, and G. V. Laszewski, "QoS Guided
Min-min Heuristic for Grid Task Scheduling," Journal
of Computer Science and Technology, Vol. 18, pp.
442-451, 2003.

[4] L. Mohammad Khanli, and M. Analoui, "Resource
Scheduling in Desktop Grid by Grid-JQA," The 3rd
International Conference on Grid and Pervasive
Computing, IEEE, 2008.

[5] L. Mohammad Khanli, and M. Analoui, "Grid_JQA: A
QoS Guided Scheduling Algorithm for Grid
Computing," The Sixth International Symposium on
Parallel and Distributed Computing (ISPDC’07),
IEEE, 2007.

[6] E. Elmroth, and J. Tordsson, "Grid resource brokering
algorithms enabling advance reservations and resource
selection based on performance predictions," Journal
of Future Generation Computer Systems, Vol. 24, pp.
585-593, 2008.

[7] B.T. Benjamin Khoo, B. Veeravalli, T. Hung, and
C.W. Simon See, "A multi-dimensional scheduling
scheme in a Grid computing environment," Journal of

98

International Journal of Digital Content Technology and its Applications
Volume 3, Number 4, December 2009

Parallel and Distributed Computing, Vol. 67, pp. 659-
673, 2007.

[8] B. Yagoubi, and Y. Slimani, "Task Load Balancing
Strategy for Grid Computing," Journal of Computer
Science, Vol. 3, No. 3, pp. 186-194, 2007.

[9] M. Maheswaran, Sh. Ali, H. Jay Siegel, D. Hensgen,
and R. F. Freund, "Dynamic Mapping of a Class of
Independent Tasks onto Heterogeneous Computing
Systems, Journal of Parallel and Distributed
Computing, Vol. 59, pp. 107-131, 1999.

[10] R. F. Freund, M. Gherrity, S. Ambrosius, M.
Campbell, M. Halderman, D. Hensgen, E. Keith, T.
Kidd, M. Kussow, J. D. Lima, F. Mirabile, L. Moore,
B. Rust and H. J. Siegel, "Scheduling Resource in
Multi-User, Heterogeneous, Computing Environment
with SmartNet," In the Proceeding of the Seventh
Heterogeneous Computing Workshop, 1998.

[11] T. D. Braun, H. Jay Siegel, N. Beck, L. L. Boloni, M.
Maheswaran, A. I. Reuther, J. P. Robertson, M. D.
Theys, and B. Yao, "A Comparison of Eleven Static
Heuristics for Mapping a Class of Independent Tasks
onto Heterogeneous Distributed Computing Systems,"
Journal of Parallel and Distributed Computing, Vol.
61, pp. 810-837, 2001.

[12] F. Dong, J. Luo, L. Gao, and L. Ge, "A Grid Task
Scheduling Algorithm Based on QoS Priority
Grouping," In the Proceedings of the Fifth
International Conference on Grid and Cooperative
Computing (GCC’06), IEEE, 2006.

[13] E. Ullah Munir, J. Li, and Sh. Shi, 2007. QoS
Sufferage Heuristic for Independent Task Scheduling
in Grid. Information Technology Journal, 6 (8): 1166-
1170.

[14] K. Etminani, and M. Naghibzadeh, "A Min-min Max-
min Selective Algorithm for Grid Task Scheduling,"
The Third IEEE/IFIP International Conference on
Internet, Uzbekistan, 2007.

[15] A. Afzal, A. Stephen McGough, and J. Darlington,
"Capacity planning and scheduling in Grid computing
environment," Journal of Future Generation Computer
Systems, Vol. 24, pp. 404-414, 2008.

[16] P. Brucker, Scheduling Algorithms, Fifth Edition,
Springer Press, 2007.

[17] R. Buyya, and M. Murshed, "GridSim: A toolkit for
the odeling and simulation of distributed resource
management and scheduling for grid computing,"
Journal of Concurrency and Computation Practice and
Experience, pp 1175–1220, 2002.

Saeed Parsa received the BS in
mathematics and computer
Science from Sharif University
of Technology, Iran, the MS
degrees in computer science
from the University of Salford at
England, and the Ph.D. degree in
computer science from the
University of Salford at
England. He is an associated

professor of computer science at Iran University of
Science and Technology. His research interests include
software engineering, soft Computing and algorithms.

Reza Entezari-Maleki received
the B.Sc. and M.Sc. degree in
computer engineering (software)
(2007 and 2009, respectively)
from department of computer
engineering, Iran University of
Science and Technology (IUST).
He is also a member of Iranian
National Elite Foundation.

His research interests include grid computing,
task scheduling algorithms, and modelling and
performance/dependability analysis within grid
environments.

99

