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Abstract 
 

In this paper, a new task scheduling algorithm 
called RASA, considering the distribution and 
scalability characteristics of grid resources, is 
proposed. The algorithm is built through a 
comprehensive study and analysis of two well known 
task scheduling algorithms, Min-min and Max-min. 
RASA takes advantages of the both algorithms and 
avoids their drawbacks. To achieve this, RASA firstly 
estimates the completion time of the tasks on each of 
the available grid resources, and then applies the Max-
min and Min-min algorithms, alternatively. In this 
respect, RASA uses the Min-min strategy to execute 
small tasks before the large ones, and applies the Max-
min strategy to avoid delays in the execution of the 
large tasks and to support concurrency in the 
execution of the large and small tasks. Our 
experimental results of applying RASA on scheduling 
independent tasks within grid environments 
demonstrate the applicability of RASA in achieving 
schedules with comparatively lower makespan. 
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1. Introduction 
 

Grid is a large scale distributed system, concerned 
with coordinated resource sharing and problem 
solving. The grid infrastructure provides a mechanism 
to execute applications over autonomous and 
geographically distributed nodes by sharing resources 
which may belong to different individuals and 
institutions [1]. Computational grid is a kind of grid 
environments, targeted at solving computationally 
intensive problems. Computational grid is defined as a 
hardware and software infrastructure which provides 
dependable, consistent, pervasive and inexpensive 
access to computational resources existing on the 
network [1].  

To make effective use of the tremendous 
capabilities of the computational grids, efficient task 
scheduling algorithms are required. Task scheduling 
algorithms are commonly applied by grid resource 
managers to optimally dispatch tasks to grid resources 
[2, 3, 4, 5, 6, 7, 8, 9, 10]. Typically, grid users submit 
their own tasks to the grid manager to take full 
advantage of the grid facilities. The grid manager in a 
computational grid tries to distribute the submitted 
tasks amongst the grid resources in such a way that the 
total response time is minimized.  

There are relatively a large number of task 
scheduling algorithms to minimize the total completion 
time of the tasks in distributed systems [3, 9, 11, 12, 
13, 14]. These algorithms try to minimize the overall 
completion time of the tasks by finding the most 
suitable resources to be allocated to the tasks. It should 
be noticed that minimizing the overall completion time 
of the tasks does not necessarily result in the 
minimization of execution time of each individual task.   

Two well known examples of such algorithms are 
Max-min and Min-min [3, 9, 11, 12, 14]. These two 
algorithms estimate the execution and completion 
times of each of the tasks on each of the grid resources. 
Estimating the execution time of each task on different 
resources, the Min-min algorithm selects the task with 
minimum completion time and assigns it to the 
resource on which the minimum execution time is 
achieved. The algorithm applies a same procedure to 
the remaining tasks. A major difficulty with the     
Min-min algorithm is to assign the smaller tasks to the 
resources with relatively higher computational power. 
As a result, the makespan of the system is determined 
by the large tasks whenever the number of the small 
tasks exceeds the large ones. To resolve the difficulty, 
the Max-min algorithm gives priority to the large tasks. 
The Max-min algorithm firstly assigns the large or in 
other words time consuming tasks to the resources and 
then assigns the small ones. The Max-min algorithm 
seems to do better than the Min-min whenever the 
number of small tasks is much more than the large 
ones, but in the other cases, early execution of the large 
tasks might increase the total response time of the 
system. Also, in the Max-min algorithm, the small 
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tasks may be required to wait for the completion of the 
large ones.  

To avoid the drawbacks of the Min-min and Max-
min algorithms, these two algorithms could be 
executed alternatively, to assign tasks to appropriate 
resources. In this way, a large task is selected 
immediately after a small one and vice versa. Thereby, 
a comparatively better load balancing is achieved and 
the total response time of the grid system is improved.  

This paper offers a new task scheduling algorithm 
to resolve the above mentioned problems with the Min-
min and Max-min algorithms. The algorithm, RASA1

2. Related Works 

, 
applies the Max-min and Min-min strategies 
alternatively to assign tasks to the resources. RASA is 
implemented in GridSim environment. Practical 
experiments with GridSim demonstrate the benefits of 
applying RASA to schedule independent tasks within 
grid environments.  

The remaining parts of this paper are organized as 
follows: Section 2 presents the related works. In 
Section 3, the concept of task scheduling in grid 
environments and several well known scheduling 
algorithms which are benchmarks of many other 
works, are introduced. In section 4, a new scheduling 
algorithm is proposed and the prominence of the 
algorithm is demonstrated through an example. Section 
5 compares the scheduling algorithms in a typical grid 
environment using GridSim; and presents the results of 
the comparison. Finally, section 6 concludes the paper 
and presents future works.  

 

 
Due to relatively high communication costs in grid 

environments most of the well known scheduling 
algorithms are not applicable in large scale distributed 
systems such as grid environments [3, 7, 8]. There has 
been an ongoing attempt to build scheduling 
algorithms specifically within grid environments.        

X. He et al. have presented a new algorithm based 
on the conventional Min-min algorithm [3]. The 
proposed algorithm which is called QoS guided     
Min-min, schedules tasks requiring high bandwidth 
before the others. Therefore, if the bandwidth required 
by different tasks varies highly, the QoS guided     
Min-min algorithm provides better results than the 
Min-min algorithm. Whenever the bandwidth 
requirement of all of the tasks is almost the same, the 
QoS guided Min-min algorithm acts similar to the 
Min-min algorithm.     

F. Dong et al. have proposed a similar algorithm 
called QoS priority grouping scheduling [12]. This 
algorithm, considers deadline and acceptation rate of 
                                                           
1 Resource Aware Scheduling Algorithm 

the tasks and the makespan of the wholes system as 
major factors for task scheduling. In comparison with 
Min-min and QoS guided Min-min, the QoS priority 
grouping scheduling algorithm achieves better 
acceptance rate and completion time for the submitted 
tasks.  

E. Ullah Munir et al. have presented a new task 
scheduling algorithm for grid environments called QoS 
Sufferage [13]. This algorithm considers network 
bandwidth and schedules tasks based on their 
bandwidth requirement as the QoS guided Min-min 
algorithm does. Compared with the Max-min,        
Min-min, QoS guided Min-min and QoS priority 
grouping algorithms, QoS Sufferage obtains smaller 
makespans.     

K. Etminani et al. have proposed a new algorithm 
which uses Max-min and Min-min algorithms [14]. 
The algorithm determines to select one of these two 
algorithms, dependent on the standard deviation of the 
expected completion times of the tasks on each of the 
resources.     

L. Mohammad Khanli et al. have presented QoS 
based scheduling solutions in a specific architecture 
called Grid-JQA [4, 5]. This scheduling solution 
applies an aggregation formula that is a combination of 
parameters together with weighting factors to evaluate 
QoS. Despite outperforming the Max-min, Min-min, 
and Sufferage, the Khanli's scheduling algorithm is not 
practical and seems to be an unpractical mathematical 
solution [5].   

A. Afzal et al. have proposed a new grid scheduling 
algorithm that minimizes the cost of the execution of 
workflows while ensuring that their associated QoS 
constraints are satisfied [15]. The algorithm views a 
grid environment as a queuing system and schedules 
tasks within this system. This algorithm is system 
oriented and considers the execution cost. Hence, it is 
suitable for economic grids. Since the algorithm is 
non-linear, as the size of the problem is gets large the 
time it takes to obtain a suitable scheduling becomes 
very long and unacceptable.  

E. Elmroth et al. have proposed a user oriented 
algorithm for task scheduling in grid environments, 
using advanced reservation and resource selection [6]. 
The algorithm minimizes the total execution time of 
the individual tasks without considering the total 
execution time of all of the submitted tasks. Therefore, 
the overall makespan of the system does not 
necessarily get small. 

B.T. Benjamin Khoo et al. have presented a new 
scheduling algorithm for workload distribution in grid 
environments [7]. This algorithm which is known as 
multiple resources scheduling (MRS) algorithm, takes 
into account both the site capabilities and the resource 
requirements of tasks. To quantify the performance of 
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the algorithm, the average task wait times, queue 
completion times, and average resource utilization 
factor, of the algorithm are compared to the 
conventional backfill and replication algorithms. The 
comparison results indicate that this algorithm is more 
applicable than the other two algorithms.  

B. Yagoubi et al. have offered a model to 
demonstrate grid architecture and an algorithm to 
schedule tasks within grid resources [8]. The algorithm 
tries to distribute the workload of the grid environment 
amongst the grid resources, fairly. Although, the 
mechanism used in [8] and other similar strategies 
which try to create load balancing within grid 
resources can improve the throughput of the whole grid 
environment, the total makespan of the system does 
not decrease, necessarily. 
 
3. Task Scheduling Algorithms 
 

Suppose that m resources Rj(j = 1, . . .,m) have to 
process n tasks Ti(i = 1, . . . , n). A schedule for each 
task is an allocation of one or more time intervals to 
one or more resources [16]. The expected execution 
time Eij of task Ti on resource Rj is defined as the 
amount of time taken by Rj to execute Ti given Rj has 
no load when Ti is assigned. The expected completion 
time Cij of task Ti on resource Rj is defined as the   
wall-clock time at which Rj completes Ti (after having 
finished any previously assigned tasks). Let bi denote 
to the beginning of the execution of task Ti. From the 
above definitions, Cij=bi+Eij. Let Ci be the completion 
time for task Ti, and it is equal to Cij where resource Rj 
is assigned to execute task Ti. The makespan for the 
complete schedule is then defined as )( iKT CMax

i∈
. 

Makespan is a measure of the throughput of the 
heterogeneous computing system (like computational 
grid) [9, 11]. 

Decision about the assigning of tasks to the 
resources and Finding the best match between tasks 
and resources is NP-complete problem [3, 10, 11, 16]. 
Lots of scheduling algorithms are proposed to assign 
the tasks to the resources by considering one or several 
QoS parameters. These algorithms show different 
performances based on the environment in which they 
are used. The traditional parallel scheduling problem is 
to schedule the subtasks of an application on the 
parallel machines in order to reduce the turnaround 
time. In a grid environment, the scheduling problem is 
to schedule a set of tasks from different users on a set 
of computing resources to minimize the completion 
time of a specific task or the makespan of a system. 
Also, other parameters such as load balancing, system 
throughput, service reliability, service cost, system 
utilization, and so forth can be considered.  

Generally, the scheduling algorithms are divided 
into two basic categories; immediate mode scheduling 
and batch mode scheduling. In the immediate mode, a 
task is mapped onto a resource as soon as it arrives at 
the scheduler. In the batch mode, tasks are not mapped 
onto the resources as they arrive; instead they are 
collected into a set that is examined for mapping at 
prescheduled times called mapping events. The 
independent set of tasks which is considered for 
mapping at the mapping events is called a meta-task 
[14]. Some algorithms estimate the execution time of 
the tasks existing in the meta-task on the resources; 
then assign each task to the resource with the minimum 
expected execution time for that task. The algorithms 
with this mechanism are named as minimum execution 
time (MET) algorithms [3, 9, 11, 14]. The minimum 
completion time (MCT) algorithms assign each task to 
the resource which results in that task's earliest 
completion time. This causes some tasks to be assigned 
to the resources that do not have the minimum 
execution time for them [3, 9, 11, 14].  

One of the earlier scheduling algorithms which do 
not use the execution or completion time of the tasks, 
and schedules the tasks in the arbitrary order is 
opportunistic load balancing (OLB) algorithm. The 
insight behind OLB is to keep all resources as busy as 
possible. One advantage of OLB is its simplicity, but 
because OLB does not consider expected task 
execution times, the mappings it finds can result in 
very poor makespans [11]. In OLB algorithm, if 
multiple resources become ready at the same time, then 
one resource is arbitrarily chosen. The complexity of 
the OLB is dependent on the implementation. As an 
example, in the implementation considered in [9], the 
complexity of the algorithm is O(m), where m is the 
number of all of the resources.  

In contrast with OLB, Min-min and Max-min 
algorithms schedule tasks by considering the execution 
time of the tasks on the resources.  The Min-min 
algorithm begins with the set U of all unscheduled 
tasks. Then, the set of minimum completion times for 
each of the tasks exiting in U is found. Next, the task 
with the overall minimum completion time from 
unscheduled tasks is selected and assigned to the 
corresponding resource (hence the name Min-min). 
Last, the newly scheduled task is removed from U, and 
the process repeats until all tasks are scheduled [11]. 
The Min-min algorithm is shown in Figure 1. 

In Figure 1, rj denotes the expected time which 
resource Rj will become ready to execute a task after 
finishing the execution of all tasks assigned to it. First, 
the Cij entries are computed using the Eij (the estimated 
execution time of task Ti on resource Rj) and rj values.  

For each task Ti, the resource that gives the earliest 
expected completion time is determined  by  scanning 
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the ith row of the C matrix (composed of the Cij 
values). The task Tk that has the minimum earliest 
expected completion time is determined and then 
assigned to the corresponding resource. 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

The matrix C and vector r are updated, and the above 
process is repeated for tasks that have not yet been 
assigned to a resource. 

The Max-min algorithm is similar to the Min-min 
algorithm. It differs from the Min-min algorithm in 
that once the resource that provides the earliest 
completion time is found for every task, the task Tk that 
has the maximum earliest completion time is 
determined and then assigned to the corresponding 
resource. That is, in line (6) of Figure 1, “minimum” 
would be changed to “maximum” [9]. 

Both the Min-min and Max-min algorithms 
consider a hypothetical assignment of tasks to 
resources, projecting when a resource will become idle 
based on the hypothetical assignment. Both algorithms 
have time complexities of O(mn2), where m is the 
number of resources in the system and n is the number 
of tasks which should be scheduled to be executed 
[10]. 
 
4. The New Scheduling Algorithm 
 

Let Ti be the first task mapped by Min-min onto the 
resource, Rj. According to the Min-min algorithm, Rj 
should execute Ti in the shortest possible time, 
compared with the other resources. The remaining 
tasks are assigned to the fastest resource, Rj, as long as 
the total execution times of the task assigned to the Rj 
is less than the time it takes to execute the tasks on the 
other resources. This approach results in a 
comparatively shorter makespan if the execution time 
of the tasks varies slightly because it attempts to assign 
the tasks to the fastest resources. However, if there are 
large and small tasks, the large ones may be assigned 

to slower resources and the makespan of the system 
will be increased, dramatically.  

The Max-min algorithm seems to do better than the 
Min-min algorithm in the cases when the number of 
short tasks is much more than the long ones. For 
example, if there is only one long task, the Max-min 
algorithm executes many short tasks concurrently with 
the long task. In this case, the makespan of the system 
is most likely determined by the execution time of the 
long task. However, since the Min-min algorithm 
attempts to assign the short tasks before the long one, 
the makespan increases compared with the Max-min. 
On the other hand, mapping the longest task to the 
fastest resource provides a better opportunity for 
concurrent execution of the small tasks on different 
resources. In this certain situation, the Max-min 
provides a better mapping which supports load 
balancing across the grid resources more than the    
Min-min [11]. Although load balancing in small scale 
distributed systems is desirable and leads to reduced 
total completion times however, in large scale 
distributed systems load balancing does not necessarily 
results in the shortest makespan. The proposed 
algorithm outperforms Max-min in large scale systems, 
because it focuses on minimizing the completion time 
of tasks rather than load balancing. 

 In subsection 4.1, the new algorithm is proposed 
and in subsection 4.2, an illustrative example is 
presented to compare the proposed algorithm with 
existing algorithms.  
 
4.1 RASA 
 

Our proposed grid scheduling algorithm, RASA, is 
presented in Figure 2. The algorithm builds a matrix C 
where Cij represents the completion time of the task Ti 
on the resource Rj. If the number of available resources 
is odd, the Min-min strategy is applied to assign the 
first task, otherwise the Max-min strategy is applied. 
The remaining tasks are assigned to their appropriate 
resources by one of the two strategies, alternatively. 
For instance, if the first task is assigned to a resource 
by the Min-min strategy, the next task will be assigned 
by the Max-min strategy. In the next round the task 
assignment begins with a strategy different from the 
last round. For instance if the first round begins with 
the Max-min strategy, the second round will begin 
with the Min-min strategy. 

Experimental results show that if the number of 
available resources is odd it is preferred to apply the 
Min-min strategy the first in the first round otherwise 
is better to apply the max-min strategy the first. 
Alternative exchange of the Min-min and Max-min 
strategies results in consecutive execution of a small 
and a large task on different resources, and hereby, the 

1.  for all tasks Ti in meta-task Mv 
2.       for all resources Rj 
3.            Cij=Eij+rj 
4.  do until all tasks in Mv are mapped 
5.      for each task in Mv find the earliest 
           completion time and the resource that 
obtines it  
6.      find the task Tk with the minimum earliest 
           completion time 
7.      assigne task Tk to the resource Rl that gives the 
           earliest completion time 
8.      delete task Tk from Mv 
9.      update rl 
10.    update Cil for all i 
11.end do 

Figure 1- The Min-min algorithm 
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waiting time of the small tasks in Max-min algorithm 
and the waiting time of the large tasks in Min-min 
algorithm are ignored. As RASA is consist of the   
Max-Min and Min-Min algorithms and have no time 
consuming instruction, the time complexity of RASA 
is O(mn2) where m is the number of resources and n is 
the number of tasks (similar to Max-min and Min-min 
algorithms).  

 

 
 
 
4.2 An Illustrative Example  
 

As a simple example, assume there is a grid 
environment with two resources. The processing speed 
of the resources and the bandwidth of the 
communication links which connect each of the 
resources to the grid manager are shown in Table 1. 
Four tasks T1, T2, T3, and T4 are in the meta-task Mv, 
and the grid manager is supposed to schedule all the 
tasks within Mv on two resources R1 and R2. Table 2 
represents the volume of instructions and data in the 
tasks T1 to T4. 

 

Table 1- Specification of the resources 
Related Bandwidth 

(Mbps) 
Processing 

speed (MIPS) Resources 

100 50 R1 
5 100 R2 

 
 

Table 2- Specification of the tasks 
Volume of Volume of Tasks 

data (Mb) instructions (MI) 
44 128 T1 
62 69 T2 
64 218 T3 
59 21 T4 

 

Applying the data presented in Table 1 and Table 2, 
it is possible to calculate the expected completion time 
of the tasks on each of the resources. The calculated 
completion time of the tasks are demonstrated in   
Table 3.  

 
Table 3- Completion time of the tasks on each of the 

resources 

R2 R1 Tasks / 
Resources 

10 3 T1 
13 2 T2 
15 5 T3 
12 1 T4 

 
Figure 3 includes two Gantt charts representing the 

results of applying Max-min and Min-min algorithms 
on the meta-task Mv, described in Table 1 and Table 2. 
Although the orders of the tasks scheduled in Max-min 
and Min-min algorithms are different, the makespan of 
the system is equal when applying each of the 
algorithms.  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

The result of applying RASA on meta-task Mv is 
exposed in Figure 4. As shown in Figure 4, the 
makespan of the system when applying RASA is 10 
second, whilst Max-min and Min-min provide a 
scheduling with a makespan of 11 seconds.  

Also, considering the completion times in Figures 3 
and 4 it is observed that RASA outperforms Max-min 
and Min-min algorithms by providing relatively 

1. for all tasks Ti in meta-task Mv 
2.      for all resources Rj 
3.           Cij=Ej+rj 
4. do until all tasks in Mv are mapped 
5.        if the number of resources is even then  
6.             for each task in Mv find the earliest 
completion           
                    time and the resource that obtines it  
7.             find the task Tk with the maximum earliest 
                    completion time 
8.             assigne task Tk to the resource Rl that gives 
the 
                    earliest completion time 
9.             delete task Tk from Mv 
10.            update rl 
11.            update Cil for all i 
12.       else   
13.            for each task in Mv find the earliest 
completion           
                    time and the resource that obtines it  
14.            find the task Tk with the minimum earliest 
                    completion time 
15.            assigne task Tk to the resource Rl that gives 
the 
                    earliest completion time 
16             delete task Tk from M  

              
                 
         

  
 
 

Figure 2- The proposed algorithm (RASA)  

Max-min  

R1 R2 

T4 

T1 

T3 

T2 

Min-min  
R1 R2 

T4 

T2 

T1 

T3 

1 

3 

6 

11 

5 

8 

10 

11 

Completion 
  time (sec) 

Completion 
time (sec) 

Figure 3- Gantt chart of the Max-min and Min-min 
algorithms    
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smaller makespan and higher load balancing. It is 
assumed that tasks can be executed on any of the 
resources, independently. Therefore, the QoS guided 
Min-min and QoS priority grouping algorithms act the 
same as Min-min algorithm. The above example is 
only one case which shows the privilege of RASA 
compared to the other algorithms. However, one can 
provide an example in which the results of RASA are 
equal or even worse than the other above mentioned 
algorithms. In general when the submitted tasks have 
almost the same size, the Min-min or Max-min 
algorithms may act better than RASA. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
5. Simulation and Experimental Results 
 

To evaluate and compare RASA with other 
algorithms such as Max-min, Min-min, OLB, QoS 
guided Min-min, and QoS priority grouping, a 
simulation environment known as GridSim toolkit [17] 
has been used. In order to demonstrate the preeminence 
of RASA in comparison with other algorithms, two 
different assumptions are made: 
1. Assumption I: the computation time of the tasks 

overcomes to the communication time of them. 
This situation occurs in multiprocessors and 
small scale distributed systems (such as cluster 
environments). 

2. Assumption II: the communication time 
becomes more and even can be overcomes to the 
computation time of the tasks. This situation 
occurs in large scale distributed systems such as 
grid environments in which the resources are 
widely distributed and connected via the 
communication links.  

The above mentioned algorithms have been 
simulated in GridSim environment. It has been 
assumed that there are no constraints for executing 

tasks on different resources and each of the tasks could 
be executed on each of the resources. In this situation, 
the QoS guided Min-min and QoS priority grouping 
algorithms performed the same as the Min-min 
algorithm. Therefore, in all the plots presented in the 
following figures, only the results of Min-min are 
depicted and the plots related to QoS guided Min-min 
and QoS priority grouping algorithms are eliminated. 
In order to study the effect of the volume of workload 
on the efficacy of RASA and to compare it with the 
other algorithms, in each of the above mentioned 
assumptions, three different workloads of light, 
medium and heavy load are considered. In light load, 
200 tasks are dispatched within 10 to 11 grid resources 
and makespan is estimated for each of the algorithms. 
Also, in medium load, 1000 tasks and in heavy load, 
5000 tasks have been considered. Figure 5 and Figure 
6 show the makespans achieved by applying the 
algorithms, considering Assumption I and   
Assumption II, respectively.  

As shown in Figure 5-(a), when the computation 
time of the tasks exceeds their communication time 
and the workloads of the resources are light, Max-min 
returns relatively smaller makespan than the other 
algorithms. As the workload of the resources increases, 
the makespans achieved by the Min-min and RASA 
get smaller. As shown in Figure 5-(b) and Figure 5-(c), 
the makespan returned by RASA is less than the 
makespans returned by the other algorithms. 
Considering Figure 5-(b) and 5-(c), it can be concluded 
that; RASA returns smaller makespans compared with 
Max-min, Min-min, OLB, QoS guided Min-min, and   
QoS priority grouping algorithms, in small scale 
distributed systems.  

Figure 6 shows the makespans of the algorithms 
based on Assumption II. As shown in Figure 6-(a), 
when the workload is light, the makespan returned by 
RASA is less than the other algorithms. Comparing 
Figures 5-(a) and 6-(a), it is observed that; Max-min is 
suitable for small scale distributed systems whilst   
Min-min well suits large scale distributed systems. 
However, RASA returns relatively smaller makespans 
than both the Min-min and Max-min algorithms in 
both small scale and large scale distributed systems. 
When the workload of the resources is heavy, RASA 
achieves smaller makespans in comparison with the 
other algorithms. Therefore, RASA achieves smaller 
makespans both in light and heavy load conditions.  

For the sake of clarity, in Figures 5 and 6 the 
makespans returned by different algorithms are 
rescaled. Here, the largest makespan, returned by OLB, 
is 100 and the other makespans are rescaled with 
respect to this amount. The six different cases observed 
in Figures 5 and 6 are considered as vertices of a 
regular hexagon. The vertices of the hexagon are 

R1 R2 

T4 
 

 
 

T1 

T3 

T2 

5 

7 

10 

8 

Completion 
 time (sec) 

Figure 4- Gantt chart of RASA    
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named as Light 1, Light 2, Medium 1, Medium 2, 
Heavy 1, and Heavy 2 which imply light load in 
Assumption I, light load in Assumption II, medium 
load in Assumption I, medium load in Assumption II, 
heavy load in Assumption I, and heavy load in 
Assumption II, respectively. The hexagon is shown in 
Figure 7. In this hexagon the number of grid resources 
is assumed to be 10. The number of grid resources, in 
Figure 8, is 11. As shown in Figures 7 and 8 the area of 
the non-regular hexagon which is related to RASA, is 

smaller than the other algorithms. Therefore, it can be 
concluded that; the makespans returned by RASA are 
smaller than the other algorithms in almost all different 
conditions. 
 
 
6. Conclusion and Future Works  
 

Min-min and Max-min algorithms are applicable in 
small scale distributed systems. When the number of 
the small tasks is more than the number of the large 
tasks in a meta-task, the Min-min algorithm  can  not  
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Figure 8 - Makespans of the algorithms when the 
number of resources is 11 

 

schedule tasks, appropriately, and the makespan of the 
system gets relatively large. Unlike the Min-min 
algorithm, the Max-min algorithm attempts to achieve 
load balancing within resources by scheduling the large 
tasks prior to the small ones. However, within a 
computational grid environment high throughput is of 
great interest rather than the load balancing. To achieve 
this, in this article, a new task scheduling algorithm, 
RASA, is proposed. 

RASA is composed of two traditional scheduling 
algorithms; Max-min and Min-min. RASA uses the 
advantages of Max-min and Min-min algorithms and 
covers their disadvantages. The experimental results 
obtained by applying RASA within the GridSim 
simulator, shows that RASA is outperforms the 

existing scheduling algorithms in large scale 
distributed systems.  

This study is only concerned with the number of the 
resources to be odd or even and analyses the merits and 
drawbacks of two well known traditional algorithms, 
Max-min and Min-min.  In this paper, the deadline of 
each task, arriving rate of the tasks, cost of the task 
execution on each of the resource, cost of the 
communication and many other cases that can be a 
topic of research are not considered. Also, applying the 
proposed algorithm on actual grid environment for 
practical evaluation can be other open problem in this 
area. 
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