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Toward a Method of Selecting Among Computational Models of Cognition

Mark A. Pitt, In Jae Myung, and Shaobo Zhang
The Ohio State University

The question of how one should decide among competing explanations of data is at the heart of the
scientific enterprise. Computational models of cognition are increasingly being advanced as explanations
of behavior. The success of this line of inquiry depends on the development of robust methods to guide
the evaluation and selection of these models. This article introduces a method of selecting among
mathematical models of cognition known as minimum description length, which provides an intuitive and
theoretically well-grounded understanding of why one model should be chosen. A central but elusive
concept in model selection, complexity, can also be derived with the method. The adequacy of the
method is demonstrated in 3 areas of cognitive modeling: psychophysics, information integration, and

categorization.

How should one choose among competing theoretical explana-
tions of data? This question is at the heart of the scientific enter-
prise, regardless of whether verbal models are being tested in an
experimental setting or computational models are being evaluated
in simulations. A humber of criteria have been proposed to assist
in this endeavor, summarized nicely by Jacobs and Grainger
(1994). They include (a) plausibility (are the assumptions of the
model biologically and psychologically plausible?); (b) explana
tory adequacy (is the theoretical explanation reasonable and con-
sistent with what is known?); (c) interpretability (do the model and
its parts—e.g., parameters—make sense? are they understand-
able?); (d) descriptive adequacy (does the model provide a good
description of the observed data?); (e) generaizability (does the
model predict well the characteristics of data that will be observed
in the future?); and (f) complexity (does the model capture the
phenomenon in the least complex—i.e., smplest—possible manner?).

The relative importance of these criteriamay vary with the types
of models being compared. For example, verbal models are likely
to be scrutinized on the first three criteria just as much as the last
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three to thoroughly evaluate the soundness of the models and their
assumptions. Computational models, on the other hand, may have
aready satisfied the first three criteriato a certain level of accept-
ability earlier in their evolution, leaving the last three criteriato be
the primary ones on which they are evaluated. This emphasis on
the latter three can be seen in the development of quantitative
methods designed to compare models on these criteria. These
methods are the topic of this article.

In the last two decades, interest in mathematical models of
cognition and other psychological processes has increased tremen-
dously. We view this as a positive sign for the discipline, for it
suggests that this method of inquiry holds considerable promise.
Among other things, a mathematical instantiation of a theory
provides a test bed in which researchers can examine the detailed
interactions of a model’s parts with a level of precision that is not
possible with verbal models. Furthermore, through systematic
evaluation of its behavior, an accurate assessment of a model’s
viability can be obtained.

The goa of modeling is to infer the structural and functional
properties of a cognitive process from behavioral data that were
thought to have been generated by that process. At its most basic
level, then, a mathematical model is a set of assumptions about the
structure and functioning of the process. The adequacy of a model
isfirst assessed by measuring its ability to reproduce human data.
If it does so reasonably well, then the next step is to compare its
performance with competing models.

It is imperative that the model selection method that is used to
select among competing models accurately measures how well
each model approximates the mental process. Above all else, the
method must be valid. Otherwise, the purpose of modeling is
undermined. One runsthe risk of choosing amodel that in actuality
is a poor approximation of the underlying process of interest,
leading researchers astray. The potential severity of this problem
should make it clear that sound methodology is not only integral to
but also necessary for theoretical advancement. In short, model
selection methods must be as sophisticated and robust as the
models themselves.

In this article, we introduce a new quantitative method of model
selection. It is theoretically well grounded and provides a clear
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understanding of why one model should be chosen over another.
The purpose of the article is to provide a good conceptual under-
standing of the problem of model selection and the solution being
advocated. Consequently, only the most important (and new) tech-
nical advances are discussed. A more thorough treatment of the
mathematics can be found in other sources (Myung, Balasubrama-
nian, & Pitt, 2000; Myung, Kim, & Pitt, 2000; Myung & Pitt,
1997, 1998). After introducing the problem of model selection and
identifying model complexity as a key property of a model that
must be considered by any selection method, we introduce an
intuitive statistical tool that assistsin understanding and measuring
complexity. Next, we develop a quantitative measure of complex-
ity within the mathematics of differential geometry and show how
it is incorporated into a powerful model selection method known
as minimum description length (MDL). Finally, application exam-
ples of MDL and the complexity measure are provided by com-
paring modelsin three areas of cognitive psychology: psychophys-
ics, information integration, and categorization.

Generalizability Instead of Goodness of Fit

Model selection in psychology has largely been limited to a
single criterion to measure the accuracy with which a set of models
describes amental process. goodness of fit (GOF). The model that
fits a particular set of observed data the best (i.e., accounts for the
most variance) is considered superior because it is presumed to
approximate most closely the mental process that generated the
data. Typical measures of GOF include the root mean sguared
error (RMSE), which is the square root of the sum of squared
deviations between observed and predicted data divided by the
number of data points fitted, and the maximum likelihood, which
is the probability of obtaining the observed data maximized with
respect to the model’s parameter values. GOF as a selection
criterion is attractive because it appears to measure exactly what
one wants to know: How well does the model mimic human
behavior? In addition, the GOF measure is easy to calculate.

GOF is a necessary and important component of model selec-
tion: Data are the only link to the underlying cognitive process, so
amodel’s ability to describe the output from this process must be
considered in model selection. However, model selection based
solely on GOF can lead to erroneous results and the choice of an
inferior model. Just because a model fits data well does not
necessarily imply that the regularity one seeks to capture in the
dataiswell approximated by the model (Roberts & Pashler, 2000).
Properties of the model itself can enable it to provide a good fit to
the data for reasons that have nothing to do with the model’s
approximation to the cognitive process (Myung, 2000). Two of
these properties are the number of parameters in the model and its
functional form (i.e., the way in which the model’ s parameters and
data are combined in the model equation). Together they contrib-
ute to amodel’ s complexity, which refersto the flexibility inherent
in a model that enables it to fit diverse patterns of data® The
following simulation example demonstrates the independent con-
tribution of these two properties to GOF.

Three models were compared on their ability to fit data. Model
M, (defined in Table 1) generated the data to fit, and is therefore
considered the “true” model. Model M, differed from M, only in
having one additional parameter, two instead of one; note that their

Table 1
Goodness of Fit and Generalizability Measures of Three Models
Differing in Complexity

Model M, (true model) M, My
Goodness of fit 2.68 (0%) 2.49 (31%) 2.41 (69%)
Generalizability 2.99 (52%) 3.08 (28%) 3.14 (20%)

Note. Each cell contains the average root mean squared error of the fit of
each model to the data and the percentage of samples (out of 1,000) in
which that particular model fitted the data best (in parentheses). The three
modelswereasfollows: M;:y = In(x + a) + error; M,: y = b*In(x + a) +
error; and Mg: y = bx® + error. The error was normally distributed, M = 0,
D = 3. Samples were generated from model M, using a = 1 on the same
6 points for x, which ranged from 1 to 6 in increments of 1.

functional forms are the same. Model M had the same number of
parameters as M, but a different functional form (a is an exponent
of x rather than an additive component). Parameters were chosen
for each of the three models to give the best fit to 1,000 randomly
generated samples of data from the model M. Each model’s mean
fit to the samples is shown in the first row of Table 1 along with
the percentage of time that particular model provided a better fit
than its two competitors. As can been seen, M, and M, with one
more parameter than M,, always provided a better fit to the data
than M ,. Because the data were generated by M, M, and M ; must
have overfitted the data beyond what is necessary to capture the
underlying regularity. Otherwise, one would have expected M, to
fit its own data best at least some of the time. After all, M,
generated the datal The improved fit of M, and M3 occurred
because the extra parameter, b, in these two models enabled them
to absorb random error (i.e., nonsystematic variation) in the data.
Absorption of these random fluctuations is the only means by
which M, and M5 could have fitted the data better than the true
model, M. Note also that M, provided a better fit than M. This
improvement in fit must be due to functional form rather than the
number of parameters, because these two models differ only in
how the data (x) and the two parameters (a and b) are combined in
the model equation.

This example demonstrates clearly that GOF aoneisinadequate
asamodel selection criterion. Because amodel’s complexity is not
evaluated by the method, the model capable of absorbing the most
variation in the data, regardless of its source, will be chosen.
Frequently this will be the most complex model. The simulation
aso highlights the point that model selection is particularly diffi-
cult in psychology, and in other social sciences, precisely because
random error is present in the data. Although this “noise” can be
minimized (in the experimental design), it cannot be eliminated, so
in any given data set, variation due to the cognitive process and
variation due to random error are entangled, posing a significant
obstacle to identifying the best model.

To get around this problem, model selection must be based,
instead, on a different criterion—that of generalizability. The goal

1 Cutting, Bruno, Brady, and Moore (1992) used the term scope, which
is similar to our definition of complexity. They proposed to measure the
scope by assessing a model’s ability “to account for all possible data
functions, where those functions are generated by a reasonably large
sample of random data sets’ (p. 364).
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of generalizability is to predict the statistics of new, as yet unseen,
samples generated by the mental process being studied. The ratio-
nale underlying the criterion is that the model should be chosen
that fits all samples best, not the model that provides the best fit to
one particular sample. Only when this condition is met can one be
sure a model is accurately capturing the underlying process, not
also the idiosyncracies (i.e., random error) of a particular data
sample. More formally, generalizability can be defined in terms of
adiscrepancy function that measures the expected error in predict-
ing future data given the model of interest (Linhart & Zucchini,
1986; aso see their work for a discussion of the theoretical
underpinnings of generalizability).

The results of a second simulation illustrate the superiority of
generalizability as a model selection criterion. After each of the
data samples was fitted in the first smulation, the parameters of
the three models were fixed, and generalizability was assessed by
fitting the models to another 1,000 samples of data generated from
M. The average fits are shown in the second row of Table 1. As
can be seen, poor generalizability is the cost of overfitting a
specific sample of data. Not only are average fits now worse for
M, and M than for M, but these two models provided the best fit
to the second sample much less often than M,. Generaizability
should be preferred over GOF because it does a better job of
capturing the genera trend in the data and ignoring random
variation.

This difference between these two selection criteriais shown in
Figure 1. Dots in the panel represent observed data points. Lines
are the functions generated by two models varying in complexity.
The simpler model (thick line) captures the genera trend in the
data. If new data points (+) are added to the sample, fit will remain
similar. The more complex model (thin line) not only captures the
genera trend in the data, but also captures many of the idiosyn-
cracies of each observation in the data set, which will cause fit to
drop when additional observations are added to the sample. Gen-
eralizability would favor the simple model, which fits with our
intuitions. GOF, on the other hand, would favor the complex
model.
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Figure 1. Illustration of the trade-off between goodness of fit and gen-

eralizability. An observed data set (dots) wasfitted to asimple model (thick
line) and a complex model (thin line). New observations are shown by the
plus symbol.

The goal of model selection, then, should be to maximize
generalizability. This turns out to be quite difficult in practice,
because the relationship between complexity and generalizability
is not as straightforward as that between complexity and GOF.
These differences are illustrated in Figure 2. Model complexity is
represented along the horizontal axis and any fit index on the
vertical axis, where larger values indicate a better fit (e.g., percent
variance accounted for), with the two functions representing the
two selection criteria. As was demonstrated in the first smulation,
as complexity increases, so does GOF. Generalizability will also
increase positively with complexity, but only up to the point where
the model is sufficiently complex to capture the regularities in the
data caused by the cognitive process being modeled. Any addi-
tional complexity will cause a drop in generalizability, because
after that point the model will begin to capture random error, not
just the underlying process. The difference between the GOF and
generalizability curves represents the amount of overfitting that
can occur. Only by taking complexity into account can a selection
method accurately measure a model’s generalizability. The task
before the modeling community has been to develop an accurate
and complete measure of model complexity, being sensitive not
only to the number of parameters in the model but also to its
functional form.

Another way to interpret the preceding discussion is that the
trademark of agood model isits ability to satisfy the two opposing
selection pressures of GOF and complexity, with the end result
being good generalizability. These two pressures can be thought of
as the two edges of Occam’s razor: A model must be complex
enough to capture the underlying regularity yet simple enough to
avoid overfitting the data sample and thus losing generalizability.
In this regard, model selection methods should be evaluated on
their success in implementing Occam’'s razor. The selection
method that we introduce in this article, MDL, achieves this goal.
Before we describe this method, we review prior approaches to
model selection.

Prior Approaches to Model Selection

We begin this section with aformal definition of a model. From
astatistical standpoint, data are a sample generated from atrue but
unknown probability distribution, which is the regularity underly-
ing the data. A statistical model is defined as a collection of
probability distributions defined on experimental data and indexed
by the model's parameter vector, whose values range over the
parameter space of the model. If the model contains as a special
case the probability distribution that generated the data (i.e., the
“true” model), then the model is said to be correctly specified;
otherwise it is misspecified. Formally, definey = (y;, ..., Yn) &
a vector of values of the dependent variable, 6 = (6,, ..., 6,) as
the parameter vector of the model, f(y|6) as the likelihood function
as a function of the parameter 6. N is the number of observations
and k is the number of parameters. Often it is possible to write y
as a sum of a deterministic component plus random error:

y=9(0,x +e. (€

In the equation, X = (X4, ..., Xy) IS a vector of an independent
variablex, and e = (e,, . . ., €) is the random error vector from a
probability distribution with a mean of zero. Quite often the mean
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Figure 2. Illustration of the relationship between goodness of fit and
generaizability as a function of model complexity (Myung & Pitt, 2001).
From Sevens' Handbook of Experimental Psychology (p. 449, Figure 11.
4), by J. Wixted (Editor), 2001, New York: Wiley. Copyright 2001 by
Wiley. Adapted with permission.

function g(0, x) itself is taken to define a mathematical model.
However, the specification of the error distribution must be in-
cluded in the definition of amodel. Additional parameters may be
introduced in the model to specify the shape of the error distribu-
tion (e.g., normal). Often its shape is determined by the experi-
mental task or design. For example, consider a recognition mem-
ory experiment in which the participant is required to respond
“old” or “new” to a set of pictures presented across a series of n
independent trials, with the number of correct responses recorded
as the dependent variable. Suppose that a two-parameter model
assumes that the probability of a correct response follows alogistic
function of the time lag (x;), for condition i (i = 1,..., N),
between initial exposure and recognition test, in the form of g(6,,
0, %) = [1 + 6,exp(—6, * x)] % In this case, the dependent
variable y; will be binomially distributed with probability g(6,, 65,
%) and the number of binomial trials n, so the shape of error
function is completely specified by the experimental task.

Six representative selection methods currently in use are shown
in Table 2. They are the Akake information criterion (AIC;
Akaike, 1973), the Bayesian information criterion (BIC; Schwarz,
1978), the root mean squared deviation (RMSD), the information-
theoretic measure of complexity (ICOMP; Bozdogan, 1990),
cross-validation (CV; Stone, 1974), and Bayesian model selection
(BMS; Kass & Raftery, 1995; Myung & Pitt, 1997). Each of these
methods assesses a model’ s generalizability by combining a mea-
sure of GOF with a measure of complexity. Each prescribes that
the model that minimizesthe given criterion be chosen. That is, the
smaller the criterion value of a model, the better the model gen-
eralizes? A fuller discussion of these methods can be found in
Myung, Forster, and Browne (2000; see also Linhart & Zucchini,
1986).

AIC and BIC are the two most commonly used selection meth-
ods. The first term, —2 In(f(y|§)), is a maximum likelihood mea-
sure of GOF and the second term, involving k, is a measure of
complexity that is sensitive to the number of parameters in the
model. As the number of parameters increases, so does the crite-
rion. In BIC, the rate of increase is modified by the log of the

sample size, n.°> RMSD uses RMSE as the measure of GOF and also
takes into account the number of parameters through k.*

These three measures, AIC, BIC, and RMSD, are al sensitive only
to one aspect of complexity, number of parameters, but insensitive
to functional form. This is clearly inadequate because, as demon-
strated in Table 1, the functional form of a model influences
generalizability. ICOMP is an improvement on this shortcoming.
Its second and third terms together represent a complexity measure
that takes into account the effects of parameter sensitivity through
trace(Q2) and parameter interdependence through det(€2), which,
according to Li, Lewandowski, and DeBrunner (1996), are two
principal components of the functional form that contribute to
model complexity. However, ICOMP is aso problematic because
it is not invariant under reparameterization of the model, in par-
ticular under nonlinear forms of reparameterization.®

2The model selection methods discussed in the present article do not
require the assumption that the models being compared are correct or
nested. (A model is said to be correct if there is a parameter value of the
model that yields the probability distribution that has generated the ob-
served data sample. A model is said to be nested within another model if
the former can be reduced to a specia case of the latter by setting one or
more of its parameters to fixed values.) On the other hand, the generalized
likelihood ratio test based on the G? or chi-square statistics (e.g., Bishop,
Fienberg, & Holland, 1975, pp. 125-127), which are often used to compare
two models, assumes that the models are nested and, further, that the
reduced model is correct. When these assumptions are met, both types of
selection methods should perform similarly. However, the methods should
not be viewed as interchangeable because their goals differ. The selection
methods presented in this article were designed to identify the model that
generalizes best in some defined sense. The generalized likelihood ratio
test, in contrast, is a null hypothesis significance test in which the hypoth-
esis that the reduced model is correct is tested given a prescribed level of
the Type 1 error rate (i.e., ). Accordingly, the model chosen under this test
may not necessarily be the one that generalizes best.

3 Sample size refers to the number of independent data samples (more
accurately, errors, i.e., es) drawn from the same probability distribution.
Data size is the number of observed data points that are being fitted to
evaluate a model and that may come from different probability distribu-
tions, although from the same probability family. Often, the sample sizeis
equal to the data size. A casein point isalinear regression model, y; = 60x;
+ e (i =1,..., N), where  ~N(0, ¢®. Note that errors, gs, are
independent and identically distributed according to the normal probability
distribution with mean zero and variance ¢ On the other hand, if it is
assumed that each g is normally distributed with zero mean but with a
different value of the variance, that is,  ~N(0, 0;3), (i = 1, ..., N), then
the sample size, n, will now be equal to 1 whereas the data size, N, remains
unchanged.

4The RMSD defined in Table 2 differs from the RMSD that has often
been used in the psychological literature (e.g., Friedman, Massaro, Kitzis,
& Cohen, 1995) where it is defined as RMSD = V' SSE/N, in which (N —
k) isreplaced by N, and therefore does not take into account the number of
parameters. This form of RMSD is nothing more than RMSE. As such, it
is not appropriate to use as a method of model selection, especialy when
comparing models that differ in the number of parameters.

> Reparameterization refers to transforming the parameters of a model
so that it becomes another, behaviorally equivalent, model. For example, a
one-parameter exponential model with normal error, y = €™ + N(O, ¢?) is
a reparameterization of another model: y = o + N(O, ¢®). The latter is
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Table 2
Sx Prior Model Selection Methods

Selection method

Criterion equation

Akaike information criterion (AIC)

Bayesian information criterion (BIC)

Root mean square deviation (RMSD)

Information-theoretic measure of
complexity (ICOMP)

Cross-validation (CV)

Bayesian model selection (BMS)

AIC = —21Inf(y|) + 2k
BIC = —2Inf(y|o) + kInn
RMSD = VSSE/(N — K)

~ k
ICOMP = —Inf(y|0) + 3 In<

CV = —In f(yVal‘éCaJ)
BMS = —In [ f(y|6)m(6)de

t Q6 1 0
wacd (6] ) ~ 5 Inde(©(?)

Note. y = datasampleof sizen; 6 = parameter value that maximizes the likelihood function f(y|6); k = number
of parameters, SSE = sum of the sguared deviations between observed and predicted data; N = the number of
data points fitted; £ = covariance matrix of the parameter estimates; y,,,, = validation sample of observed data;
0o = maximum likelihood parameter estimate for a calibration sample; In = the natural logarithm of base €;
(6) = the prior probability density function of the parameter.

In CV, the observed data are divided into two subsamples of
equal sizes, calibration and validation. The former is used to
estimate the best-fitting parameter values of a model. The param-
eters are then fixed to these values and used by the model to fit the
validation sample, yielding a model’s CV index. CV is an easy-
to-use, heuristic method of estimating a model’s generalizability
(for a brief tutorial, see Myung & Pitt, 2001). The emphasis on
generalizability makes it reasonable to suppose that CV somehow
takes into account the effects of functional form. If, how, and how
well it does this is not clear, however.

BMS is a model selection method motivated from Bayesian
inference. As such, the method chooses models based on the
posterior probability of a model given the data. Calculation of the
posterior probability requires the specification of the parameter
prior density, 7(6), creating the possibility that model selection
will depend on the choice of the prior density. As with CV,
complexity in BMS is elusive. The integral form of the measure
indicates that BMS takes into account functional form and the
number of parameters, but how this is achieved is not entirely
clear. It can be shown that BIC performs equivalently to BMS as
a large sample approximation.

It isimportant to note that these selection criteria are themselves
sample estimates of a true but unknown population parameter (i.e.,
generalizability in the population), and thus their values can
change from sample to sample. Under the model selection proce-
dure described above, however, oneis forced to choose one model
no matter how small the difference is anong models, even when
the models are virtually equivalent in their approximation of the
underlying regularity. One solution to this dilemma is to conduct
a statistical test, before applying the model selection procedure, to
decide if two given models provide equally good descriptions of
the underlying process. Golden (2000) proposed such a method-
ology, in which one can determine whether a subset of models are

obtained from the former by defining a new parameter, «, as o = €.
Whenever two models are related to each other through reparameterization,
they become equivalent in the sense that both will fit any given data set
identically, abeit with different parameter values. Statistically speaking,
they are indistinguishable from one another.

equally good approximations of the cognitive process® If the
number of comparisonsis not small, however, it can be difficult to
control experiment-wise error.

The preceding selection methods represent important progress
in tackling the model selection problem. All have shortcomings
that limit their usefulness to various degrees. The complexity
measure in AIC, BIC, and RMSD is incomplete, and the other
three are either not invariant under reparameterization (ICOMP) or
lack aclear complexity measure (CV, BMS). Theremainder of this
article is devoted to the development and testing of a model
selection approach that overcomes these limitations. We begin by
showing that differential geometry provides a theoretically well-
justified and intuitive framework for understanding complexity
and model selection in general.

Model Complexity: A Distributional Approach

We begin the discussion of complexity with a graphical defini-
tion of the term, intended to clarify what it means for a model to
be complex. Depicted in the top panel in Figure 3 is the set of al
data patterns that are possible given a particular experimental
design. Every point in this multidimensional data space represents
aparticular data pattern in terms of a probability distribution, such
as the shape of a frequency distribution of response times. All
models occupy a section, or multiple sections, of data space, being
able to fit a subset of the possible data patterns that could be
observed. It is equally appropriate to think of data space as the
universe of al models under consideration, because every model
will occupy aregion of this space, large or small.

8 Thisisanull hypothesis significance test, which, as an extension of the
Wilke's generalized likelihood ratio test, tests the null hypothesis that all
models under consideration fit the data equally well. This test, unlike the
generalized likelihood ratio test, is applicable to comparing non-nested and
misspecified models for a wide range of discrepancy functions, including
the ones with penalty terms, such as AIC, BIC, and MDL. In the standard
model selection procedure using these criteria, one is forced to decide
between two models under comparison. Thistest allows for athird decision
that both models are equally good or there is not enough evidence yet for
choosing one model over the other.
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Figure 3. The top panel depicts regions in data space occupied by two
models, M, (simple model) and M,, (complex model), with the range of
data patterns that can be generated by each model in the lower panels.

The amount of space occupied by a model is positively related
to its complexity. A simple model (M,) will occupy a small region
of data space because it assumes a specific structure in the data,
which will manifest itself as a relatively narrow range of similar
data patterns. Thisideaisillustrated in the lower |eft panel. When
one of these few patterns occurs, the model will fit the data well;
otherwise, it will fit poorly. Simple models are easily falsifiable,
requiring a small minimum number of data points outside of its
region of data space to disprove the model. In contrast, a complex
model (M) will occupy a larger portion of data space. Complex
models do not assume a single structure in the data. Rather, the
structure changes as a function of the parameter values of the
model. A slight change in a parameter’ s value can have a dramatic
change in the model’s structure. Such chameleon-like behavior
enables complex models to be finely tuned to fit a wide range of
data patterns. This is illustrated in the lower right panel. Overly
complex models are of questionable worth because their ability to
fit such a diverse set of data patterns can make them difficult to
falsify. In general, a complex model is one with many parameters
and a (powerful) nonlinear equation for combining parameters.
Complexity is dichotomized in this example for illustrative pur-
poses only. It is more accurate to think of it as a continuum, as
depicted in Figure 2.

Response Surface Analysis

Although the examples in Figure 3 are hypothetical, the graph-
ical depiction of mathematical models in this way is not merely
illustrative. Response surface analysis (RSA) is a statistical tool
that, asin Figure 3, yields graphical representations of models for
comparing their relative complexities. In addition, it serves as an
informative starting point for the derivation of an elegant quanti-
tative measure of complexity.

RSA is a method for studying geometric relations among re-
sponses generated by a mathematical model, often used in nonlin-

ear regression (Bates & Waitts, 1988). For a model with k param-
eters and N observations, the response surface is defined as a
k-dimensional surface, formed by all possible response vectors that
the model can describe. The response surface is embedded in an
N-dimensional data space, which isthe set of al possible response
vectors that could be generated independently of a model. The
response surface is a hyperplane for a linear model but may be
curved when the model is nonlinear. The effects of model com-
plexity on model fit is easily visible when models are compared in
the space of response surfaces. This is shown in the following
example. See Myung, Kim, and Pitt (2000) for a more detailed
discussion.
Consider the following one-parameter power model:

y =t ’ (power model ), 2

wherey is the response probability (e.g., proportion correct), t isa
presentation or retention interval greater than 1, and 6 (=0) is a
parameter. Suppose that y is measured at two different time inter-
vals, t; and t,. Given two fixed values of t; and t,, the response
surface is a line or a curve in a two-dimensional data space
composed of (y,, Y,,) created by plotting the y values at t, against
the corresponding y values at t, for the full range of the parameter
0, similar to phase plots in dynamical systems research (Kelso,
1995). In essence, a model is represented graphically as a plot of
Y;, Versusy,, in data space. For example, for the parameter 6 = 1,
theyvalueatt, = 2isobtained asy, = (t,)~’ = (2~* = 0.500.
Similarly, the y value at t, = 8 is obtained as y;, = (t,)"° =
(8)"* = 0.125. These two values are then represented as a single
point (0.500, 0.125) on the (y,, Y;,) plane. Additional points are
obtained by varying the full range of the parameter (i.e, 0 = 0 <
) to form a continuous curve, which is called the response curve
of a model, shown in the middle panel of Figure 4. The equation
that describes this relationship can be derived analytically as
follows:

Vo= Y ®

Note that the parameter 6 has been removed from the equation.
The model is now parameter free, having been redefined as the
relationship between two y values instead of a parameter and ay
value. Each point on the response curve describes the relationship
between two y values that are themselves described perfectly by a
power function. Similarly, the response curves for the following
one-parameter models can be obtained and are graphed in the
adjacent panels in Figure 4:

y =1 — 6t (linear model)

y = [1.102 sin(56 + wt/12) + 1]/2 (blackhole model).  (4)

RSA provides two vauable insights into model complexity.
First, RSA makes the meaning of complexity tangible. The re-
sponse curve of a model represents a complete visual description
of the model (i.e, al of the data patterns it can describe). The
curve is the model. Any point that falls on the curve can be
perfectly fit by the model. Thus, RSA clearly reveals what patterns
of data a model can describe and what patterns it cannot. For
example, the response curve of the linear model reveals that the
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Figure4. Response curves of three one-parameter models that have the same number of parameters but differ
in functional form, each obtained fort, = 2and t, = 8.

model can describe only those (y,, Yy,) points satisfying the equa-
tion, y, = 4y, — 3 (0.75 =y, = 1), no others.

Second, the contributions of functional form to model complex-
ity become evident when models are compared in RSA space. All
three models in Figure 4 have one parameter, but their response
curves differ greatly, indicating that their functional forms must
aso differ. This observation leads to an intuitive measure of model
complexity: Given that the response surface of a model represents
the collection of all possible data patterns that the model can
describe, one could define a natural complexity measure as the
total length of the model’s response curve. For example, for the
three response curves in Figure 4, one can conclude that the
black-hole model is most complex with its line length of 25.74,
followed by the power model (length = 1.50), and then linear
model (length = 1.03). Dunn (2000) presents another RSA-based
complexity measure.

Despite the possible ways of quantifying complexity within
RSA, any such measure would be incomplete because it would not
take into account the stochastic nature of the process underlying
the data. That is, RSA ignores random variation in the data. The
response curves in Figure 4 depict the three models without an
error term. Recall that data represent a sample from an unknown
probability distribution, the shape of which must be specified by
the model. A complete measure of complexity must take into
account the distributional characteristics of a model (e), not only
that of the mean function, that is, g(6, X) in Equation 1. Only the
latter is considered in RSA. Thus, any RSA metric would yield
only an approximate measure of complexity. To incorporate ran-
dom error into a complexity measure requires that RSA be ex-
tended into a space of probability distributions, to which we now
turn.

Differential Geometric Approach to Model Complexity

In this section we show that differential geometry, a branch of
mathematics, provides a theoretically well-justified and intuitive
measure of model complexity. A more technically rigorous pre-
sentation of the topic can be found in Myung, Balasubramanian,
and Pitt (2000).

Within differential geometry, a model forms a geometric object
known as a Riemannian manifold that is embedded in the space of
al probability distributions (Amari, 1983, 1985; Rao, 1945). Asin

the data space depicted in Figure 3, every distribution isa point in
this space, and the collection of points created by varying the
parameters of the model gives rise to a hypervolume in which
similar distributions are mapped to nearby points, as illustrated in
Figure 5.

Earlier, we defined complexity as that characteristic of a model
that enables it to fit a wide range of data patterns. In a geometric
context, this transates into an inherent characteristic of a model
that enables it to describe awide range of probability distributions.
Models that are able to describe more distributions should be more
complex. Model complexity would therefore seem to be related to
the number of probability distributions that a model can generate.
This intuition immediately runs into trouble: The number of all
such distributions is uncountably infinite, making the value inde-
terminable. Or is it?

Given that not al distributions are equally similar to one an-
other, one solution is to count only distinguishable distributions.
That is, if two or more probability distributions on a model’s
manifold are sufficiently similar to one another to be statistically
indistinguishable, they are counted as one distribution, with a
cluster of such distributions occupying alocal neighborhood on the
manifold. This procedure yields a countably infinite set of distin-
guishable distributions, the size of which is a natural measure of
complexity. More precisely, two probability distributions should
be considered indistinguishable if one is mistaken for the other

Figure 5. The space of probability distributions forms a manifold on
which “similar” distributions are mapped to nearby points.
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even in the presence of an infinite amount of data. A measure of
volume that counts only distinguishable distributions must be
devised to achieve this goal.

The following mental exercise shows how this can be done.
Draw data from one distribution, which is indexed by a specific
parameter, say 6, in the model, and ask how well one can guess
whether the data came from 6, rather than from a nearby 6. The
ability to distinguish between these distributions increases with the
amount of available data. However, it can be shown that for any
fixed amount of data there is alittle ellipsoid around 6, where the
probability of error in the guessing game is large. In other words,
within this ellipsoid, distributions are not very distinguishable in
the statistical sense. To count distinguishable distributions, one
should then tile the model manifold with such ellipsoids, counting
one distribution for each ellipsoid. This procedure turns the man-
ifold into an ellipsoid-covered lattice with a distinguishable distri-
bution at each lattice point. Then the limit of infinite sample size
should be taken so that the ellipsoids of indistinguishability shrink
and the associated |attice becomes finer, forming a continuum in
the limit. Taking this limit recovers a continuum measure that
counts only distinguishable distributions. When this computation
is carried out, the number of distinguishable distributions turns out
to be equal to de{ det[1(0)]} Y2 where 1(6) is the Fisher information
matrix of asample of size 1, det(l) is the determinant of the matrix
I, and d the infinitesimal parameter volume (see Footnote 6 for a
definition of the Fisher Information matrix; see aso Schervish,
1995).

The number of all distinguishable probability distributions that
a model can generate or describe is obtained by integrating
do{ det[I(0)]} Y2 over the entire parameter manifold as follows:

Vi —f do /det[1(0)], )

where the subscript M denotes a particular model under consider-
ation. This measure is known as the Riemannian volume in differ-
ential geometry. A highly desirable property of the volume mea-
sure is that it is invariant under reparameterization. This property
is an outgrowth of models being represented as manifolds in the
space of all probability distributions. In this context, the parame-
ters of amodel simply index the collection of distributions amodel
describes. The choice of the parameters themselves is irrelevant.
The manifold is the model, which will never change, regardless of
how the model is specified in an equation (see Equation 10 and
accompanying text).

The Riemannian volume makes good sense as a complexity
measure. Because complexity is related to the volume of a model
in the space of probability distributions, the measure of volume
should count only different, or distinguishable, distributions, and
not the coordinate volume (J d6) of the manifold. The Riemannian
volume, therefore, is a direct function of the number of distin-
guishable distributions that a model can generate, with a complex
model generating more distributions than a simple model.

Relation to RSA

The differential geometric approach to model complexity is
similar to RSA in that a mathematical model is viewed as a

geometric shape embedded in a hyperdimensional space, albeit
different spaces (probability distributions vs. response vectors).
This correspondence is not accidental, because the differential
geometric approach is a logical extension of RSA. To understand
the connection between the two, think of model selection as an
inference game: The goal isto determine, out of a set of probability
distributions that index data patterns, which model ismost likely to
have generated a data sample drawn from an unknown probability
distribution. Referring back to Equation 1, the main yardstick used
in this selection process s the likelihood function, f(y|6). The value
of the likelihood function depends upon not only the mean func-
tion, g(6, x), but also the distributional characteristics of the error
term (€). Any justifiable measure of complexity should take into
account these two factors. RSA considers only the first term,
whereas the differential geometric approach considers both.

To see how the two approaches are related quantitatively, con-
sider the response curve of a one-parameter model, such as the
power model in Figure 4 (middle panel). The RSA measure of
complexity in this model is the total length of the response curve,
which in essence measures the “number” of data points along the
curve. In the differential geometric approach, counting is carried
out with the additional knowledge of the local distinguishability of
data points along the curve. This differenceisillustrated in Figure
6 for the one-parameter power model. The response curve is split
into segments of different lengths, with the points within each
segment being statistically indistinguishable. Note that distin-
guishability is not uniform along the curve. Points in the middle
region are less distinguishable than those at either end. In fact, for
any one-parameter model of observed data that follows a binomial
probability distribution, one can derive forma expressions for
these two measures of complexity as follows (see Appendix A for
a complete derivation):
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Figure 6. The power model’s response curve from Figure 5 divided into

local regions of indistinguishability (i.e., the points within each region are
statistically indistinguishable).
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In the equations, it is assumed that observed data, y,, are distrib-
uted binomially, Bin[n, g(6, x,)], of sample size n, and probability
9(6, x,). Note that the two measures are identical except for the
additional term, 1{g(0, X )[1 — 9(0, X I}, in the differential
geometric complexity measure. This extra term takes into account
local distinguishability and is equal to det[1(6)] in Equation 5.

MDL Method of Model Selection

Thus far in the article we have introduced a measure of model
complexity. Although it is useful for comparing the relative com-
plexities of models, as will be shown below, by itself the measure
is insufficient as a model selection method. What is missing is a
measure of how well the model fits the data (i.e., a measure of
GOF). MDL, a model selection method from algorithmic coding
theory in computer science (Grunwald, 2000; Rissanen, 1983,
1996) combines both of these measures.

The MDL approach to model selection was developed within
the domain of information theory, where the goal of model selec-
tion is to choose the model that permits the greatest compression
of datain its description. The assumption underlying the approach
isthat regularities or patterns in data imply redundancy. The more
the data can be compressed by extracting this redundancy, the
more we learn about the underlying regularities governing the
cognitive process of interest. The full form of the measure is
shown below. The first term is the GOF measure and the second
and third together form the intrinsic complexity of the model
(Rissanen, 1996).

MDL:—Inf(y|é)+;In(%> +|nf do det[1(0)], (7)

where y = (v, ..., ¥,) iS a data sample of size n, 0 is the
maximum likelihood parameter estimate, In is the natural loga-
rithm of base e, 1(6) is the Fisher information matrix defined
earlier.” The integration of the third term is taken over the param-
eter space defined by the model.

Aswith prior selection methods, MDL prescribes that the model
that minimizes the criterion should be chosen, the assumption
being that such a model has extracted the most redundancy (i.e.,
regularity) in the data and thus should generalize best. In practice,
the criterion represents the shortest length of computer code (mea-
sured in bits of information) necessary to describe the data given
the model. The shorter the code, the greater the amount of regu-
larity in the data that the model uncovered. The soundness of MDL
asamodel selection criterion has been well documented by Li and
Vitanyi (1997), who showed that there is a close relationship
between minimizing MDL and achieving good generalizability.

From a decision-theoretic perspective, MDL selects the one model,
among a set of competing models, that minimizes the expected
error in predicting future data in which the prediction error is
measured using a logarithmic discrepancy function (Rissanen,
1999; Y amanishi, 1998).

It turns out that minimization of MDL corresponds to maximi-
zation of the posterior probability within the Bayesian statistics
framework (i.e., BMS). Baasubramanian (1997) showed that the
MDL criterion can be derived as a finite series of terms in an
asymptotic expansion of the Bayesian posterior probability of a
model given the data for a special form of the parameter prior
density. This connection between the two suggests that choosing
the model that gives the shortest description of the observed data
is essentially equivalent to choosing the model that is most likely
“true” in the sense of probability theory (see Theorem 1 of Vitanyi
& Li, 2000).

The theoretical link between BMS and MDL also suggests that
they may perform similarly in practice. Barron and Cover (1991)
showed that BMS and MDL are asymptotically equivalent given
large sample sizes; that is, both will converge to the true model if
the true model is correctly specified. On the other hand, if models
are misspecified and sample sizeis relatively small, they can yield
disparate results, especially depending on the form of the param-
eter prior density used in the calculation of BMS.

Despite these similarities, MDL has at |east one advantage over
BMS: The complexity measure is well understood. As mentioned
above, complexity and GOF are not easily disentangled in the
integral form of BMS (Table 2). In contrast, a clear understanding
of the complexity term in MDL is provided by its counterpart in
differential geometry, the geometric complexity measure. This is
described in detail in the following section.

The latter two terms of the MDL criterion (Equation 7) readily
lend themselves to a differential geometric interpretation, which is
related to the Riemannian volume measure presented earlier. Con-
ceptually, model selection using MDL proceeds by choosing the
model that best approximates the true model by counting the
number of distinguishable distributions that come close to the true
model. Proximity to the true model is assessed by f(y|6). Within the
differential geometric approach, this corresponds to a volume
measure in the space of probability distributions. The following
volume, under the assumption of large sample size, is shown to be
a valid measure of proximity (Balasubramanian, 1997; Myung,
Balasubramanian, & Pitt, 2000): C,, = (2m/n)¥’ h(6), where k is
the number of parameters in the model and h(6) is a data-
dependent factor that goes to 1 as n grows large (some additional
conditions are required; see Balasubramanian, 1997). Essentially,
Cy represents the Riemannian volume of a small ellipsoid around
6, within which the probability of the data, f(y|6), is appreciable.
As such, it measures the number of distinguishable distributions

" The Fisher information matrix 1(6) of the MDL criterion is defined as
1;(6) = (—Un)E(9? In f(y|6)/a6,06) (i,j = 1,..., K) for the data vector
Y=V, Yn) Where y s are sample values of random variables, Y;s
g=1,..., n; see, e.g., Rissanen, 1996, Equation 7). Further, if Y s are
independently and identically distributed, the above 1(0) reduces to the
Fisher information matrix of sample sizen = 1, that is, 1;(0) = —E(0%In
f(y,|0)/06,06) (,j =1,..., K) for any q.



MODEL SELECTION AND COMPLEXITY 481

that come close to the truth, as measured by predicting the datay
with relatively high probability.

However, C,, aone is not an adequate measure of proximity
because the total number of distinguishable distributions of a
model (V,,, the Riemannian volume, Equation 5) must also be
considered. Inclusion of this additional measure leads to a volume
ratio, V,/Cy,, which penalizes models for having an unnecessarily
large number of distinguishable distributions (V,,) or having rel-
atively few distinguishable distributions close to the truth (C,,).
Taking the log of this ratio gives

|n<\é—::> :gm(%) + Inj do (det[1(6)] + In h(d). (8)

The first and second terms are independent of the true distribution
as well as the data, and therefore represent an intrinsic property of
the model. Together they will be called the geometric complexity
of the model, and are invariant under reparameterization of the
model. As sample size n increases, the third term, which is data
dependent, becomes negligible. When this occurs, the geometric
complexity isequal to the complexity penalty inthe MDL criterion
in Equation 7.

It is adso worth noting that the first term of the geometric
complexity measure increases logarithmically with sample size n,
whereas the second term is independent of n. An implication of
this is that as n grows large, the effects of complexity due to
functional form, reflected through 1(6), will gradually diminish
compared to those due to the number of parameters (k). Thus,
functional form effects will have their greatest impact on model
selection when sample size is small. Because small samples are the
norm in experiments in much of cognitive psychology, it is im-
perative that the selection method be sensitive to this property of
a model.

Differential geometry provides many valuable insights into
model complexity and model selection. Oneisanew explication of
MDL. The MDL selection criterion can be rewritten as follows:

f(y|6)
VM/CM

MDL = —In( > = —In(“normalized f(y[6)"). (9)
This reinterpretation provides a clearer picture of what MDL does
in model selection. It selects the model that gives the highest value
of the maximum likelihood per the relative ratio of distinguishable
distributions (V,/C,,). We might call this the normalized maxi-
mum likelihood. From this perspective, the better model is the one
with many distinguishable distributions close to the truth but few
distinguishable distributions overall.

Perhaps the most important insight provided by differential
geometry isan intuitive understanding of the meaning of complex-
ity in MDL: It measures the minus log of the volume of the
distinguishable distributions in a model relative to those close to
the truth. In this regard, the size of a model manifold in the space
of distributions is what matters when measuring complexity. A
model’s functional form and its number of parameters can be
misleading indicators of complexity because they are simply the
apparatus by which a collection of distributions defined by the
model isindexed. The geometric approach to complexity presented
here makes it clear that neither the parameterization nor the spe-

cific functional form used in indexing is relevant so long as the
same collection of distributions is catalogued on the model man-
ifold. For example, the following two models, athough assuming
different functional forms, are equivalent and equally complex in
the geometric sense:

Model A:y= exp(6:x, + 0,%,) + error,
Model B: y = 02 + error, (10)

where the error has zero mean and follows the same distribution
for both models. Here, the parameters of Model A arerelated to the
parameters of Model B through m; = exp(6,), i = 1, 2.

Three Application Examples

Geometric complexity and MDL constitute a powerful pair of
model evauation tools. When used together in model testing, a
deeper understanding of the relationship between models can be
gained. The first measure enables one to assess the relative com-
plexities of the set of models under consideration. The second
builds on the first by suggesting which model is preferable given
the data in hand. The following simulations demonstrate the ap-
plication of these methods in three areas of cognitive modeling:
psychophysics, information integration, and categorization. In
each example, two competing models with the same number of
parameters but different functional forms were fitted to data sets
generated by each of these models (human data were not used). Of
interest isthe ability of each selection method to recover the model
that generated the data. A good selection method should be able to
discriminate between data generated by a model from those gen-
erated by another model. That is, it should be able to “ see through”
the random variation in the data sample and accurately infer
whether the model being tested generated the data it is being fit to.
Errors are a sign of overgeneralization and revea a bias in the
selection method, which could be toward either the more complex
or simpler model. The ideal pattern of data is one in which each
model generalizes best only to data generated by itself, not to data
generated by the competing model. Inthe 2 X 2 sections of Tables
3-5, this corresponds to a mean selection criterion measure that is
lowest in the upper left and lower right quadrants, with perfect
recovery rates (100%) in these cells as well.

Four selection methods were compared: AIC, ICOMP, CV, and
MDL. Given the close relationship between MDL and BMS, the
latter was not included in the comparison. BIC and RMSD were
aso not included because of their equivalence to AIC in the
present testing conditions. AIC can be expressed with BIC as a
term in the equation: AIC = BIC + k (2 — In n). Consequently,
both methods will yield the same results when models with the
same number of parameters (i.e., equal k) are compared. RMSD
will generally yield the same outcome as well.2 A fuller discussion
of the three simulations can be found in Zhang (1999).

8 When comparing among models with the same number of parameters,
model selection under RMSD will be the same as that under AIC and BIC
when errors are normally distributed and have equal variances. This is
because in such cases the sum of squares error in RMSD s related to the
likelihood function in AIC (and BIC) as SSE « — Inf(y|6) and hence,
minimization of SSE is equivaent to maximization of the likelihood
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Table 3
Comparison of Four Selection Methods on Their Ability to
Generalize Accurately Using Two Psychophysical Models

Data from
Selection method/
model fitted Stevens's Fechner's
AlIC
Stevens's 12.42 (100%) 11.92 (47%)
Fechner's 52.22 (0%) 11.86 (53%)
ICOMP
Stevens's 4.92 (100%) 5.69 (100%)
Fechner's 25.40 (0%) 10.64 (0%)
CcVv
Stevens's 9.16 (94%) 10.70 (49%)
Fechner's 25.30 (6%) 11.01 (51%)
MDL
Stevens's 10.71 (100%) 10.46 (0%)
Fechner's 25.40 (0%) 5.21 (100%)

Note. For each method and model, the mean criterion value and the
percentage of samples (in parentheses) in which the particular model was
selected under the given method are shown. A thousand samples were
generated from each model using the same 6 points for X, which ranged
from 1 to 6 in one-step increments. The random error was normally
distributed with a mean of zero and a standard deviation of 0.3. The
parameter values used to generate the simulated datawerea = 2and b = 2
for Stevens's model and a = 2 and b = 5 for Fechner’s model. AIC =
Akaike information criterion; ICOMP = information-theoretic measure of
complexity; CV = cross-validation; MDL = minimum description length.

Psychophysics

Models of psychophysics (Roberts, 1979) were developed to
describe the relationship between physical dimensions (e.g., light
intensity) and their psychological counterparts (e.g., brightness).
Two of the most influential have been Stevens's power model and
Fechner’s logarithmic model.

Stevens's model: Y = ax® + error,
Fechner’s model: Y= aln(X+ b) + error. (11)

In both models, error is assumed to be normally distributed with a
mean of 0 and a standard deviation of 0.3. Data samples were
generated from each model using fixed parameter values. Each
model was then fitted to both data samples using each of the four
selection criteria. The results are displayed in Table 3. Shown are
the mean criterion values and the percentage of samples (out
of 1,000) by which the specified model bested its competitor.
Under AIC, Stevens's model was always selected when fitting its
own data (100% vs. 0%) but was selected about equally often as
Fechner's model when the data were generated by Fechner's
model (47% vs. 53%). This asymmetry demonstrates that AIC
overestimated the generalizability of Stevens's model relative to

function. For non-normal or unequal-variance errors, no such relationship
exists between SSE and the likelihood function. Therefore, model selection
under RMSD will differ from that under AIC and BIC. It has been our
experience that RMSD performs worse, never better, than these two
methods under such conditions. This appears to be due to RMSD’s insen-
sitivity to unequal variances.

Fechner’'s model. That is, Stevens's model was shown to general-
ize better to data generated by Fechner’'s model than Fechner's
model itself. CV and ICOMP performed no better, with model
recovery ratesfor CV comparable to those of AIC but considerably
worse for ICOMP.

Because both models have the same number of parameters, the
failure of these three selection methods can be attributed to a
complexity term that does not adequately incorporate functional
form. When MDL was used as the selection method, the model
recovery rates were perfect for both models, demonstrating the
superiority of the method's complexity measure. (An example of
how to calculate MDL and the geometric complexity measure for
these two models is provided in Appendix B.)

Calculation of the geometric complexities of the two models
reinforces and further elucidates the MDL findings. Stevens's
model is more complex than Fechner’s, with the complexity dif-
ference being equal to 5.52.° Given the logarithmic relationship
between geometric complexity and the number of distinguishable
distributions, this means that for every distribution for which
Fechner’s model can account, Stevens' s model can describe about
€52 ~ 250 distributions. These results clearly demonstrate that
appropriately accounting for the complexity of amodel is essential
to model selection. Furthermore, the geometric complexity results
validate along-held suspicion regarding the source of the superior
data-fitting abilities of Stevens's model (Townsend, 1975).

Information Integration

In a typical information integration experiment, a range of
stimuli is generated from a factorial manipulation of two or more
stimulus dimensions (e.g., visual and auditory) and then presented
to participants for categorization as one of two or more possible
response aternatives. Data are scored as the proportion of re-
sponses in one category across the various combinations of stim-
ulus dimensions. For this comparison, we consider two models of
information integration, the fuzzy logical model of perception
(FLMP; Oden & Massaro, 1978) and the linear integration model
(LIM; Anderson, 1981). Each assumes that the response probabil-
ity (p;;) of one category, say A, on the presentation of a stimulus
of the specific i and j feature dimensions in a two-factor informa-
tion integration experiment takes the following form:

FLMP o,
p|= [l
LB+ (1 - 6)(1 - )
LIM: pj=—5—, (12)
where g, and Ay i=1,...,01j=1,...,0,0< 6,7 <1) are

parameters representing the corresponding feature dimensions.
Again, the two models were fitted to data sets generated by each
model. In addition, the sample size, n, was varied in this example
to demonstrate its influence on the performance of these selection
methods. The results are shown in Table 4.

9 In computing geometric complexity measures, the following parameter
ranges were assumed: 0 < a < «, 0 < b < 3for Stevens' smodel, and 0 <
a, b < « for Fechner's model.
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Table 4
Generalizability Comparisons of Four Selection Methods Over
Three Sample Sizes Using Two Information Integration Models

Table 5
Generalizability Comparisons of Three Selection Methods Over
Three Sample Sizes Using Two Categorization Models

Data from Data from
Selection method/ Selection method/
model fitted FLMP LIM model fitted GCM PRT
Sample size: n = 20 Sample size: n = 20
AlC AIC
FLMP 59.86 (100%) 74.96 (51%) GCM 74.34 (98%) 80.36 (15%)
LIM 89.82 (0%) 75.24 (49%) PRT 85.24 (2%) 75.66 (85%)
ICOMP cv
FLMP 25.07 (100%) 30.27 (25%) GCM 37.70 (86%) 40.33 (23%)
LIM 40.32 (0%) 29.63 (75%) PRT 41.46 (14%) 37.62 (77%)
cv MDL
FLMP 30.43 (100%) 37.78 (29%) GCM 38.96 (96%) 41.97 (7%)
LIM 42.88 (0%) 37.04 (71%) PRT 43.82 (4%) 39.03 (93%)
MDL
FLMP 34.56 (89%) 42.11 (0%) Sample size: n = 60
LIM 40.80 (11%) 33.51 (100%) AlC
Sample size: n = 60 GCM 94.26 (98%) 106.90 (4%)
PRT 122.10 (2%) 93.44 (96%)
AlC Ccv
FLMP 77.94 (100%) 93.88 (25%) GCM 45.93 (99%) 52.37 (9%)
LIM 159.72 (0%) 92.32 (75%) PRT 59.70 (1%) 46.58 (91%)
ICOMP MDL
FLMP 33.55 (100%) 39.45 (14%) GCM 48.93 (98%) 55.25 (4%)
LIM 73.82 (0%) 37.95 (86%) PRT 62.25 (2%) 47.92 (96%)
cVv
FLMP 39.11 (99%) 47.28 (28%) Sample size: n = 150
LIM 76.58 (1%) 45.80 (72%)
MDL AIgCM 114.06 (99%) 137.36 (1%)
FLMP 43.70 (100%, 51.71 (0% : :
LIM 75.75 EO%) ) 4206 Elog%) CVPRT 178.80 (1%) 106.56 (99%)
Sample size: n = 150 GCM 53.30 (99%) 68.22 (4%)
PRT 90.09 (1%) 53.16 (96%)
AlIC MDL
FLMP 92.98 (100%) 112.22 (17%) GCM 58.83 (99%) 70.48 (1%)
LIM 293.74 (0%) 107.84 (83%) PRT 90.60 (1%) 54.48 (99%)
ICOMP
FLMP 40.98 (100%) 48.56 (10%) Note. The mean criterion value and the percentage of samples (in paren-
LIM 140.36 (0%) 45.68 (90%) theses) in which the particular model was selected under the given method
CcVv are shown. Simulated data were created from predetermined values of the
FLMP 47.33 (100%) 55.88 (15%) seven parameters, ¢ = 2.5, w = (0.2, 0.2, 0.2, 0.2, 0.1, 0.1). From these, 27
LIM 143.56 (0%) 53.32 (85%) trinomial response probabilities (p,;, i = 1,...,9,J = 1, 2, 3) were
MDL computed using each model equation. For each probability, a series of n
FLMP 51.21 (100%) 60.83 (0%) (i.e, n = 20, 60, or 150) independent ternary outcomes were generated
LIM 142.76 (0%) 49.82 (100%) according to the trinomia probability distribution. The number of out-

Note. For each method and model, the mean criterion value and the
percentage of samples (in parentheses) in which the particular model was
selected under the given method are shown. Simulated datain a2 X 8
factorial design (g, = 2; g, = 8) were created from predetermined values
of the 10 parameters, 6 = (0.15, 0.85), A = (0.05, 0.10, 0.26, 0.42, 0.58,
0.74,0.90, 0.95). From these, 16 binomial response probabilities (p;) were
computed using each model equation. For each probability, a series of n
(i.e, n = 20, 60, or 150) independent binary outcomes (0 or 1) were
generated according to the binomial probability distribution. The number
of ones in the series was summed and divided by n to obtain an observed
proportion. This way, each sample consisted of 16 observed propor-
tions. For each sample size, 1,000 samples were generated from each of
the two models. In parameter estimation as well as complexity calcu-
lation, 6, was fixed to 0.15 so the models became identifiable. FLMP =
fuzzy logica model of perception; LIM = linear integration model;
AIC = Akaike information criterion; ICOMP = information-theoretic
measure of complexity; CV = cross-validation;, MDL = minimum
description length.

comes of each type in the series was summed and divided by n to obtain
an observed proportion. This way, each sample consisted of 27 observed
proportions. For each sample size, 1,000 samples were generated from each
of the two models. GCM = generalized concept model; PRT = prototype
model; AIC = Akaike information criterion; CV = cross-validation;
MDL = minimum description length.

When the data were generated by FLMP, regardless of the
selection method and sample size, FLMP was recovered 100% of
the time, except for MDL when sample size was 20. In this case,
MDL performed dlightly worse than the other selection methods.
When the data were generated by LIM, all prior selection methods
faired much more poorly, except MDL, which recovered the
correct model (LIM) perfectly across al sample sizes. When AIC
was used, FLMP was selected over LIM half of the time with a
sample size of 20 (51% vs. 49%). Such errors were reduced
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considerably by the time the sample size reached 150 (17% vs.
83%). With ICOMP and CV, this erroneous selection biasin favor
of FLMP is less severe, but even with the largest sample size, all
prior selection methods except MDL failed to recover the correct
model at least 10% of the time.

That FLMP was selected over LIM when methods such as AIC
and CV were used, even when the data were generated by LIM,
suggests that FLMP is more complex than LIM. This observation
was confirmed when the geometric complexity of each model was
calculated. The differencein geometric complexity between FLMP
and LIM was 8.74, meaning that for every distribution for which
LIM can account, FLMP can describe about €®7* ~ 6,248 distri-
butions.*® As the simulation results show, the complexity term in
MDL does an excellent job of correcting for this difference and
minimizing overgeneralization of the more complex model.

Categorization

Two models of categorization were considered in the present
demonstration. They were the generalized context model (GCM;
Nosofsky, 1986) and the prototype model (PRT; Reed, 1972).
Each model assumes that categorization responses follow a multi-
nomial probability distribution with p,; (probability of category C,
response given stimulus X;), which is given by:

s

JECy

> s«

K keCk

GCM: piJ =

M

where s; = exp(—c [ >, Wy/Xm — % 19,

m=1
PRT: p, = ES—JS
K
K
M
where s; = exp(—C+ [ 2 WalXm — Xl 1), (13)
m=1

In the equation, s; is a similarity measure between multidimen-
siond stimuli X; and X, s; is a similarity measure between
stimulus X; and the prototypic stimulus X, of category C,, M isthe
number of stimulus dimensions, c is a sensitivity parameter, w,, is
an attention-weight parameter, and r is the Minkowski metric
parameter. The two models were fitted to data sets generated by
each model using the six-dimensional scaling solution from Ex-
periment 1 of Shin and Nosofsky (1992) under the Euclidean
distance metric of r = 2. Asin the last example, three sample sizes
were again used.

The results are shown in Table 5. With AIC, virtually no biasin
model recovery rate was observed for n = 60 and n = 150. Only
a small bias toward choosing GCM was found using data gener-
ated from PRT when n = 20. CV shows a similar pattern of model
recovery, with errors being highest with the smallest sample size
and there being a lightly larger bias in favor of GCM.** When
MDL was used to choose between the two models, there was no

improvement over the other selection methods when the sample
sizes were 60 and 150. Even when sample size was 20, the
improvement in model recovery was quite modest relative to AlC.
Note that this outcome contrasts with that of the preceding exam-
ples, in which MDL was generally superior to the other selection
methods when sample size was smallest.

On the face of it, these findings might suggest that MDL is not
much better than the other selection methods in measuring gener-
aizability. After all, what else could cause this result? The only
circumstance in which such an outcome is predicted using MDL is
when the functional forms of the two models are similar, thus
minimizing the differential contribution of functional form in the
complexity term (recall that the two models have the same number
of parameters). Calculation of the geometric complexity of each
model confirmed this prediction. GCM is indeed only dlightly
more complex than PRT, the difference being equal to 0.60, so
GCM can describe about two distributions (e°%° ~ 1.8) for every
distribution PRT can describe.*?

The results of these three simulations demonstrate the accuracy
of MDL in choosing computational models of cognition. MDL’s
sengitivity to functional form was clearly demonstrated in its
superior generalizability (i.e., good model recovery rate) across all
three examples, especially when it counts most: when sample size
was small and the complexities of the models differed by a
nontrivial amount. But no selection method will aways perform as
well as one would like. This was found to be true for MDL in the
information integration simulation when sample size equaled 20:
MDL performed dightly worse than the other three selection
methods. One point to be made about this outcome is that regions
of data space (Figure 3) can aways be found in which any
selection method will perform less than optimally. Because these
regions are not known in advance, it makes the most sense to use
the most robust method available. MDL is the clear choice.

The simulations also demonstrate the value of an independent
measure of complexity when comparing models. The measure not
only identifies which model is more complex, but knowing this
information can provide additional insight into the model selection
process. For example, the results of an MDL analysis might lead to
Model A being chosen over Model B, even though the results of a
complexity analysis showed Model A to be the more complex of
the two. This outcome would suggest that the additional complex-
ity of A is necessary to capture the underlying regularity in the
data. In other words, the mental process may not be as simple as
one might have originally thought.

When comparing models, it might be most efficient to compare
their relative complexities first before applying a selection method.
If the complexities differ significantly, then MDL is the better
choice of a selection method. If they are about equally complex,

1%1n computing geometric complexity measures, the following param-
eter ranges were assumed: 0.001 < 6;, \; < 0.999 for both FLMP and LIM.

1 Because ICOMP performed similar to AIC and CV in the first two
simulations, it was not included in the third test of the selection methods.

2 1n computing geometric complexity measures, the following param-
eter rangeswereassumed: 0 < c<50<w, <1(i=1,...,6),w,=1
for both GCM and PRT.
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then the choice of a selection method will matter less. Short of
doing this, MDL is the safest method to use.

In sum, these examples with simulated data in which the true
model was known a priori demonstrate the usefulness of MDL and
geometric complexity for selecting among computational models
of cognition. An obvious next step isto extend their application to
human data as well as to other types of models in the discipline.
Such endeavors are currently underway.

General Discussion

The purpose of this article is to introduce the psychological
community to MDL as amethod of selecting among mathematical
models of cognition and to demonstrate its advantages over exist-
ing methods. We began by discussing shortcomings of the most
widely used selection criterion, GOF. The simulation data in
Table 1 demonstrate that GOF alone is an insufficient criterion
with which to compare models. Instead, generalizability should be
the goal of model selection, for it overcomes the problem inherent
in GOF of teasing apart random variation in the data sample from
variation due to the cognitive process.

Fit and complexity were identified as two properties of a model
that any selection method must be sensitive to. As schematized in
Figure 2, optimization of these two opposing properties defines the
model selection problem. What is needed, then, is a selection
method that acts as a fulcrum on which fit and complexity can be
balanced. The development of a theoretically justifiable measure
of complexity, which includes the effects of functional form as
well as the number of parameters, has been a nontrivial problem.
Although selection methods such as AIC were important advances
in model selection because they are sensitive to one aspect of
complexity (the number of parameters in a model), proper use of
such techniques is limited to situations in which the effect of
functional form on model fit is minimal or can be ignored. Such
selection methods are of limited usefulness for comparing models
of cognition, most of which differ in functional form.

At the heart of the difficulty of developing a suitable selection
method was discovering a meaningful metric that could be used to
compare models with radically different functional forms. For
example, how does one compare the functional forms of the
logarithmic and exponential models in Table 1? The literature has
been relatively silent on this issue (but see Cutting et al., 1992;
Townsend, 1975). As we show above, differential geometry not
only provides a solution, but the solution is intuitive. Complexity
is conceptualized as counting explanations (i.e., distinguishable
probability distributions that the model can generate) that lie close
to the true model that generated the data. The relative complexities
of the models, which are defined in Equation 8, can be estimated
by comparing these distributions with the total number of distin-
guishable distributions the models can generate.

There are many attractive features of this complexity measure.
To begin with, it is independent of any selection method and can
therefore serve as an additiona tool with which to evaluate and
compare models. Complexity is no longer hidden in the equation
of a particular selection method, such as BMS. In addition, geo-
metric complexity equals the complexity term of the MDL crite-
rion (Equation 7). Thislink between the two measures reveal s how
model selection works in MDL: It selects the model that maxi-

mizes the “normalized” maximum likelihood (Equation 9). The
elucidation of MDL by means of differential geometry demon-
strates that MDL is a suitable model selection method, and the
outcomes of the three application examples support this conten-
tion. In the following sections, we discuss some of the limitations
of these two tools and the factors that affect their use.

Factors That Affect Geometric Complexity

The number of parameters and functional form are not the only
factors that influence geometric complexity. There are at |east four
others on which the complexity measure depends. Each is de-
scribed briefly along with a discussion of their implications for
model selection.

Extension of the parameter space. As shown in Equation 8,
the definition of geometric complexity involves the integration of
a non-negative quantity—the square root of the determinant of the
Fisher information matrix—over a region of the parameter space
on which the model is defined. Model complexity is directly
related to the extent of the parameter space, with a larger space
resulting in a more complex model. An implication of this is that
two models that are identical in al respects, except in the range of
their parameters, will have different geometric complexity mea-
sures. This makes sense from the standpoint of differential geom-
etry. A model with a wider parameter space will contain more
distinguishable probability distributions than a model with a
smaller parameter space. The two are different models as far as
model selection is concerned. Accordingly, the parameter range
must be clearly specified when defining a model.

Samplesize.  Just as with the extension of the parameter space,
sample size is directly related to complexity, as can be seen in
Equation 8. Complexity increases with larger sample sizes. The
measure’s sensitivity to this variable is related to the fact that
variance in a probability distribution decreases as sample size
increases. With a small sample, two probability distributions on a
model’ s manifold might not be distinguishable because variance is
large. They will thus be counted as a single distribution when
calculating the geometric complexity of the model. As sample size
increases, the variance will decrease and the two distributions will
become more discriminable. At some point, the two distributions
will be distinguishable and counted separately in the complexity
measure. In other words, the number of distinguishable distribu-
tions increases as sample size grows, increasing complexity. The
first term of the geometric complexity measure in Equation 8
reflects this effect.

Shape of the probability distribution. As described earlier, a
model isaparametric family of probability distributions, which are
specified by its likelihood function f(y|6). Accordingly, a model’s
geometric complexity will depend upon the particular shape of the
probability distribution assumed. To see this, note that the Fisher
information matrix, 1(6), which defines geometric complexity, is
determined by the likelihood function f(y|6), and that the likelihood
function takes different forms depending on the shape of the
probability distribution. For example, for two psychophysical
models that assume the same power function for the deterministic
component g(6, x) but different distributions of the error term (e.g.,
normal vs. uniform), they will in general have different complexity
values. It would be interesting to investigate the relative contribu-
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tions of the two components (structural and distributional) to the
overall value of the complexity measure, although the contribution
of the latter is predicted to be small.

Experimental design.  To the extent that the Fisher information
matrix is sensitive to the experimental design represented by the
independent variable x in g(0, X), the geometric complexity mea-
sure can depend upon the specific choices of x values used in an
experiment. For example, for a linear model of the formy;, = 6x;
+ N0, 6® (i =1,...,n0= 6 o< =), dfferent complexities
can be obtained for two designssuchasx = {1, 2, 3,4} and x =
{3, 4, 5, 6} even for the same sample size (n = 4) and the same
error distribution (see Appendix B for an example).

To summarize, the geometric complexity of a model is deter-
mined by a number of factors. Some represent inherent character-
istics of the model such as the number of parameters, functional
form, and extension of parameter space. Others represent non-
model, experimental factors such as the error distribution and the
experimental design. As a general rule of thumb, any factor that
will affect the number of distinguishable distributions could alter
the geometric complexity of the model.

Computing Geometric Complexity

The definition of geometric complexity includes an integral of
the determinant of the Fisher information matrix. Therefore, com-
puting geometric complexity involves two stages: derivation of the
Fisher information matrix and evaluation of the integral. The
Fisher information matrix is obtained by calculating the second-
derivatives of the log likelihood function of the model of interest,
either by hand derivation or using technical computing software
such as Mathematica (Wolfram Research, Inc., Champaign, IL) or
Maple (Waterloo Maple, Inc., Ontario, Canada).

Once the Fisher information matrix is obtained, the next step is
to integrate its determinant over the extension of the parameter
space defined by the model. It is not in genera possible to obtain
a closed-form solution of the integral, so the solution must be
sought numerically instead. This step can be challenging, although
recent advancements in Monte Carlo techniques, as well as the
availability of statistical packages that implement these techniques,
has made the high-dimensional integration problem technically
feasible. In Appendix C, we provide a tutorial of Monte Carlo
methods. For a more technically rigorous treatment of the topic,
consult Gelman, Carlin, Stern, and Rubin (1995), and Gilks,
Richardson, and Spiegelhalter (1996).

The use of MDL requires that the determinant of the Fisher
information matrix be nonsingular, meaning that its value must
remain finite for the full range of the parameters. If the determinant
becomes infinite for certain values of the parameters, the range of
parameters must be restricted to ensure the integral of the deter-
minant is finite.*® This is, in effect, equivalent to redefining the
model itself, as discussed earlier. For example, for FLMP, the
determinant of the Fisher information matrix becomes singular at
the two endpoints of each parameter, that is, A;, 6, = 0, and 1. To
avoid this problem, we restricted the range of the parameters
t00.001 = \;, 0, = 0.999 for all isand js. As noted above, different
parameter ranges will yield different complexity values.

A challenge in computing geometric complexity arises for al-
gorithmic models, such as random-walk models (e.g., Ratcliff,

1978). The likelihood function that predicts amodel’ s performance
for any given stimulus condition is not defined a priori. Rather, a
prediction is obtained only by simulating the model for each given
stimulus condition. Further, to get areliable estimate of the prob-
ability of a particular prediction, the procedure must be repeated
over a large number of trials. In short, obtaining the likelihood
function (or the Fisher information matrix), which is a prerequisite
for computing complexity, would be computationally unfeasible, if
not impossible. An aternative is to try some sort of an algorithm-
based estimate of geometric complexity that in essence imple-
ments MDL in principle but does not require the derivation of the
Fisher information matrix or its integration (e.g., Hochreiter &
Schmidhuber, 1997).

Future Work and Other |ssues

Testing qualitative models of cognition. Application of MDL
and geometric complexity require that each of the models being
compared be quantitative models that can be expressed as a para-
metric family of probability distributions. Because of the large
number of qualitative (i.e., verbal) models in cognitive psychol-
ogy, it would be ideal to extend these two selection tools to this
domain as well. In a qualitative model, predictions are made
verbally or graphically at the level of ordina scales without
necessarily making use of mathematical equations or the specifi-
cation of the error structure. For example, models of word recog-
nition state that lexical decision response times will be faster to
high-frequency than low-frequency words, but these models make
few statements about the magnitude of the time difference between
frequency conditions, how frequency isrelated to response latency
(e.g., linearly or logarithmically), or the shape of the response time
distribution. The axiomatic theory of decision making (e.g., Fish-
burn, 1982) is another example of qualitative modeling. The theory
is formulated in rigorous mathematical language and makes pre-
cise predictions about choice behavior given a set of hypothetical
gambles, but it lacks an error theory. Without an appropriate error
theory, it is not possible to express the axiomatic theory as a
parametric family of probability distributions.

Preliminary work by Grunwald (1999) suggests that extension
of the two tools to such cases is possible. Most importantly, there
may be no need to develop a statistical form of the model to apply
MDL. This line of research may hold great promise.

The scope of the selection methods. The focus of this article
has been on how to evaluate a quantitative model’s account of
behavioral data. The tools presented here for doing so (MDL and
the complexity measure) can give the impression that model se-
lection can be highly automated and purely objective. Nothing
could be further from the truth. The outcomes of these tests
contribute only a few pieces of evidence to the model selection
process and should by no means be the sole selection criteriawhen
comparing models. Not only are they silent on crucial issues such
as plausibility, explanatory adequacy, and falsifiability (see Bam-
ber & van Santen, 1985), but on other issues pertinent to the
particular testing situation, such as the quality and significance of
the data being modeled. MDL and geometric complexity should be

3 For other regularity conditions, see Rissanen (1996, pp. 41-42).
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used in conjunction with other criteria in making informed deci-
sions about which model to choose.

Conclusion

The goal of model selection as outlined early in the article isto
satisfy two opposing goals. Choose the model that provides a
sufficiently good fit to the data in the least complex manner, thus
ensuring good generaizability. MDL does just this. Geometric
complexity provides deeper insight into the models under consid-
eration by helping us understand why one model is chosen over
another. One model might provide a better fit but only at the cost
of additional complexity. This excess complexity might not yet be
justified given what is known about the regularities underlying the
cognitive process. On the other hand, a model’s additional com-
plexity might be justified by its vastly superior fit to the data
relative to its competitor. Viewed in this light, the purpose of this
article was to make the case that it is no longer enough to select a
model on the basis of its superior fit to a sample of data. An
additional property of the model must be justified as well, namely
its complexity. Doing so will help ensure success in selecting
among mathematical models of cognition.
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Appendix A

Relationship Between Response Surface Analysis (RSA) and Differential Geometry

This appendix derives the equations that show the relation between the
RSA length measure L, in response-surface analysis and the volume
measure V\, in the differential geometric approach for a one-parameter
model.

Suppose that a random variable v, (q = 1, ..., N) isindependently and
binomially distributed, Bin[n, g(6, x,)], with probability g(6, x,) and
sample size n where 0 = g(6, x;) = 1. Define a data variable y, = v,/n,
which is the proportion of ones over n binary trials (see Footnote 2 for the
distinction between N and n).

The response surface of the one-parameter model for data size N isin
fact a curve embedded in the N-dimensional data space and formed by the
expected response vector E(y) = [E(y,), - - - , E(yn)], whichisequal to[g(#,
Xy), - - ., 9(6, Xy)] for any n. The total length of the model’ s response curve
can be calculated using the standard cal culus technique. From Pythagorean
theorem, the infinitesimal length ds of the response curve is given by

= JIdE)? + - - + [dE(W ]

% [ dg(6, %)\ 2
do
Then, the desired total length L, is obtained by integrating the above ds
over the parameter space defined by the model.
To derive the differential geometric volume measure, we first need to

find the Fisher information matrix 1(6) of the model. The Fisher informa-
tion matrix for a multi-parameter model is defined as

a%Inf(ylo
|ij(9) = *Eo[%‘;‘)],

dg(6,
('.‘dE(yq) _ = X“)do> .

wherey isthe data vector of samplesizen = 1, and the expectation istaken
over the data. Because our model has one parameter, |(6) becomes a scalar
quantity instead of a matrix. Note that for n = 1, the data variable y, is
equal to the binomial random variablev,, (9 = 1,..., N) wherevy, € {0,

1} is binomially distributed with probability g(6, X,). The log likelihood of
the data vector y = (y,, ..., Yn) is then given by

In f(y|6)

N
E( yq.(l .)+yq|ng(0 X,) + (1—yq)ln[1—g(0,xq)]>-

g=1

From the log likelihood, the first and second derivatives are obtained as

follows:
) <dg(0, xq)> ( _ dg(o, ><q)>
dinf(ylo) de -
@~ 2 \Y g T g ] )
d?Inf(y|6)
do?
<dg(6, ><q)>2
— . do 2
- 2 9(0’ Xq)2(1 _ g[@, Xq)]z (erq - 2ng(9‘ Xq) + g(O, Xq) )

g=1

By taking the minus expectation of the second derivative and substituting

the relations E[y2] = g(6, x))[1 — 9(6, x,)] and E[y,] = 9(6, x,) for the
binomial distribution of sample size 1, we get the following form of the
Fisher information matrix:

N

o d?lnf(yw)]_ 1 <dg(0,><q)>2
1(6) = E[ 6 ‘Eg(e.xq)[l—gw,xq)] do /-

Finally, the geometric volume measure V,, is obtained by integrating the
square root of the determinant of the above quantity, V det[I(6)], over the
parameter space defined by the model.
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Appendix B

Calculation of Minimum Description Length (MDL) and Geometric Complexity
for the Two Psychophysics Models

This appendix shows the steps involved in calculating geometric com-
plexity for Fechner’s and Stevens's models of psychophysics.

For Fechner’s model, the probability distribution of datay; given x, and
parameters (a, b) is given by

1
—252(Yi—aln(x+b))2
e 2 ( ) ,

f(yla b) =

1
7o

with its log likelihood

1 1
L=Inf(y|0) = 7ﬁ[yﬁaln(x‘+ b)? — Inofiln 2.

First, we find the first and second derivatives of the log likelihood as
follows:

aL 1

Ja= o2 i~ aln(x + blin(x + b),
9°L 1 )

Franir i L R

L 2a

95~ g2 ¥ —aln(x + bl/(x +b),

a%L a ,
e f?[yifaln(xﬁ b) + a]/(x + b)?, and
2L

a0~ o [yi = 2aln(x + b)J/(x + b).

Next, expectations of minus log likelihoods over y; are sought using E(y;)
=aln(x + b) as

2L 1
ﬁ) = zlin(x + b) 1,

|
m
S
SN

9’L\  alIn(x+b)
- <aaab> T o2 (x+b

Therefore, we obtain the Fisher information matrix given x; as

(In(x + b))? a%
h@bix) =21 |nx+b) & ’
8 x+tb)  (x+Db?

where the subscript | stands for sample size 1. The desired Fisher infor-
mation matrix | in Equation 7 for the entire datay = (yy, - . ., Y,), iSthen
obtained as

1 [62Inf(y:(y1,...

SR
0= tab) = (1,= NI
i%

l n
=2 h@bx)
-1

In(x + b)
(x + b)

> (n(x +b)? > a

i=1 i=1

n az
z (% + b)?

no

. In(x + b)
2 a o)

i=1

assuming independent observations, that is, In f(y|6) = i:21 In f(y|6).

From the above result, the geometric complexity (GC) of Fechner’'s
model is obtained as

k n
GCr = > In E+ In fde \det(1(6))

= ddba b | I(I n
=1In a ?H() —nn+§nﬁ

=Infada+InJH(b) db—2Inoc—In27

for k = 2, with

2
. . 1 " In(x + b)

Hb) = 4[> (In(xi+b))2)<z) - (2) ,
=~ (% + b)? = (x+b)

i=1

where x = {1, 2, ..., 6} isassumed in the present simulation.
Similarly, for Stevens's model, the Fisher information matrix for the

datay = (yy, ..., Y, can be obtained as follows:
n S ad ik
1 1 -1 i=1
|(a,b)=ﬁ§|1(a,b,>q)=ﬁ ) )
. a Y inx a >x(nx)?
i=1 i=1

From this, the geometric complexity of Stevens's model is given by

GCs= 1 ddbaWb I I(I "
s=1In a?()—nn-kinﬁ

=Injada-ﬁ-lan(b)db—Zlna—In27-r

for k = 2, with

(Appendix continues)
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W(b) = 4/ (D x(n%)?) — (O ¥°In x)?,

i=1 i=1 i=1

where x = {1, 2,...6}.

We note that in choosing between two models using MDL, only the
difference in geometric complexity between the two models matters, not
their absolute values. The difference for the two psychophysics modelsis
as follows:

AGC = GCs— GCr

=Inj W(b)db—lnf H(b)db.

Therefore, we only need to evaluate two one-dimensional integrals.
For Stevens smodel, theintegral In [ W(b)db over the entire range of the
exponent parameter b (i.e, 0 < b < ) turns out to be infinity. Conse-

quently, the range of the parameter must be restricted to make the integral
finite. The range of 0 < b < 3 was chosen based on typical values of the
parameter observed in experiments (e.g., Stevens, 1960). The integral was
then evaluated numerically by the ssmple Monte Carlo method (see Ap-
pendix C) in which 100,000 random samples were drawn from the uniform
distribution on [0, 3]. The result was 8.00. For Fechner’'s model, the
integral In [ H(b)db is finite over the entire range of the parameter (0 < b
< ). The integral was evaluated numerically by the simple Monte Carlo
method, and its value runs were 2.48. Combining these two results, the
difference in geometric complexity between Stevens's and Fechner’'s mod-
els was calculated as AGC = GCg — GCr = 8.00 — 2.48 = 5.52.

From this point, calculation of MDL is straightforward. Plug the com-
plexity value into Equation 7 and combine it with the calculation of the log
likelihood measure; the common constant term C, = In [ ada — 2Ino —
In 277 can be ignored:

MDLs= — Inf(y|d + 8.00

MDLy = — Inf(y|fp) + 2.48.

Appendix C

Numerical Integration Methods

The definition of the geometric complexity measure includes an integral
of the determinant of the Fisher information matrix. Asitis, in general, not
possible to obtain an analytic solution of the integral, integration by
sampling (i.e.,, Monte Carlo methods) is the only option. This appendix
provides a tutorial of Monte Carlo integration methods.

Simple Monte Carlo Method

Let f(x) denote the function to be integrated (e.g., the square root of the
determinant of the Fisher information matrix in calculating geometric
complexity). Suppose we wish to evaluate the following one-dimensional

integral:
b
| = f f(x)dx,

a

where a < b. The value of this integral is equal to (b — a) - f, where f is
the mean value of f(x) over the interval [a, b]. The mean can be estimated
based on a set of n samples {x;, X,, . . ., X,} randomly selected from the
uniform density over [a, b]. From the estimated mean, the desired integral
can then be approximated as

In= (b_a)'fm

where f, = 1/n 21 f(x). This method is called the simple Monte Carlo

method. Generalization of the method to multidimensional integration
problems is straightforward.

The rationale for the simple Monte Carlo method is the strong law of
large number in probability theory, and therefore, the accuracy of the
simple Monte Carlo method is improved as sample size increases. Specif-
ically, the standard error of |,, is given by

S, = ol \/ﬁ,

where ¢ is the population standard deviation. Although in theory s,
approaches zero as n goes to infinity, in practice the quantity may not be

quite close to zero even for an extremely large but finite n (e.g., million)
because o may be quite large, depending on the form of f(x). Other
techniques must then be developed to increase the accuracy of the numer-
ical approximation.

Importance Sampling Monte Carlo Method

Importance sampling improves on the simple Monte Carlo method by
directly controlling . Let us rewrite the original integration problem as

| = hf dx = b@ d
= ) (x)dx = ag(x) g(x)dx

in terms of some probability density g(x), from which we know how to

sample. Based on a set of n independent samples {x,, X, . .., X,} drawn
from g(x), the desired integral | can be estimated as
1 f
- 2 (%) . 1)

n < gx)

For this estimator, o can be shown to be effectively close to zero if g(X) is
chosen such that the importance ratio, f(x;)/g(x;), is roughly close to a
constant for all xs. Under this condition, a fairly precise estimate of the
integral | can be obtained. On the other hand, importance sampling may be
poor if the importance ratio varies greatly across x values. When a uniform
density is chosen for g(x), the importance Monte Carlo reduces to the
simple Monte Carlo.

Markov Chain Monte Carlo

The simple and importance sampling Monte Carlo methods prescribe
that samples{x;, X, . . . , X} bedrawn independently. This may not always
be feasible, for g(x) can be quite nonstandard. In such cases, a dependent
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sample could be used to estimate the integral by applying Markov chain
Monte Carlo methods.

The basic idea of this method is to generate samples {x,, X5, . . ., X3},
possibly dependent, from a Markov chain process whose stationary distri-
bution is g(x). Because the samples are not necessarily independent, the
strong law of large numbers is not applicable. Instead, the asymptotic
consistency of the series in Equation C1 is guaranteed by the ergodic
property of Markov chains, which ensures |, — | as n goes to infinity.

Among many agorithms that are currently in use to generate samples
from a Markov chain, Gibbs sampling is the most popular method because
of its simplicity. This algorithm, as a special case of the Metropolis-
Hastings algorithm, proceeds as follows:

Step 1: Lett = 0. Draw a starting point X(t) = [X,(t), . .., X,(1)]

from any starting distribution, say g(x), whose full condi-
tiona distributions are known.

Step 2:  For i = 1ton, sample x(t + 1) from the one-dimensional
conditional distribution g[x (t)[x,(t + 1), ..., X_,(t + 1),
%a(t), -0 XeD)].

Step 3: Lett =1t + 1. Goto Step 2.

For further detail on this and other Monte Carlo methods, see Gilks et al.
(1996) and Gelman et a. (1995), on which the present tutorial is based.
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