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MATLIS INJECTIVE MODULES

Hangyu Yan

Abstract. In this paper, Matlis injective modules are introduced and
studied. It is shown that every R-module has a (special) Matlis injec-
tive preenvelope over any ring R and every right R-module has a Matlis
injective envelope when R is a right Noetherian ring. Moreover, it is
shown that every right R-module has an F⊥1 -envelope when R is a right
Noetherian ring and F is a class of injective right R-modules.

1. Introduction

Throughout this paper, R will denote an associative ring with identity and
all modules will be unitary right R-modules.

The motivation of this paper is from [4], where the notion of Whitehead
modules was studied. Recall that an R-module M is called a Whitehead module

or W -module if Ext1R(M,R) = 0. We introduce the notion of Matlis injective
modules as a dual notion of Whitehead modules in some sense. An R-module
M is called Matlis injective if Ext1R(E(R),M) = 0, where E(R) denotes the
injective envelope of R. Let R be an integral domain and Q its field of quotients,
an R-module C is called Matlis cotorsion or weakly cotorson if Ext1R(Q,C) = 0.
Then, it is easy to see that the notion of Matlis injective R-modules coincides
with the notion of Matlis cotorsion R-modules when R is an integral domain.
Following [7], an R-module M is called copure injective if Ext1R(E,M) = 0 for
any injective R-module E. Clearly, every copure injective R-module is Matlis
injective, but it is easy to see that the converse is not true in general. Thus
Matlis injective R-modules can be seen as a generalization of copure injective
R-modules.

Let C be a class of R-modules. Enochs defined a C-(pre)cover ( C-(pre)envelo-
pe) of an R-module in [6]. Therefore, it is natural to study the existence of
Matlis injective (pre)covers and Matlis injective (pre)envelopes. Obviously, the
class of Matlis injective R-modules is closed under direct summands, but we
show that it is not closed under direct sums in general. So there exist a ring
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R and an R-module M such that M doesn’t have a Matlis injective precover.
Then, we are only interested in the existence of Matlis injective (pre)-envelopes
in this paper. Let F be a class of R-modules, we denote by F⊥1 the class of
R-modules N such that Ext1R(F,N) = 0 for every F ∈ F . In [5, Theorem
10], Eklof and Trlifaj proved that if there is a set S of R-modules such that
F⊥1 = S⊥1 , then every R-module has an F⊥1 -preenvelope. Using this result,
we show that every R-module has a Matlis injective preenvelope. If R is a
right Noetherian ring, we show that every R-module has an F⊥1 -envelope,
where F is any subclass of the class of injective R-modules. As a byproduct,
we show that every R-module has a Matlis injective envelope when R is a right
Noetherian ring.

2. Preliminaries

In this section we briefly recall some definitions and results required in this
paper.

For a ring R, Mod-R will denote the category of all right R-modules and
pd(M) will denote the projective dimension of M. For an R-module M, we
denote by E(M) the injective envelope of M. We frequently identify M with
its image in E(M) and think of M as a submodule of E(M).

Let C ⊆Mod-R. Define

C⊥1 = {X ∈ Mod-R | Ext1R(C,X) = 0 for all C ∈ C},

⊥1C = {X ∈ Mod-R | Ext1R(X,C) = 0 for all C ∈ C}.

Add(C)={X ∈ Mod-R | X is a direct summand of
⊕

i∈I Ci, where I is a set
and where for any i ∈ I, Ci is isomorphic to an element of C}.

For C = {C}, we write C⊥1 , ⊥1C and Add(C) in place of {C}⊥1 , ⊥1{C} and
Add({C}), respectively.

Let M ∈ Mod-R. A homomorphism f ∈ HomR(M,C) with C ∈ C is
called a C-preenvelope of M provided that the abelian group homomorphism
HomR(f, C

′

) : HomR(C,C
′

) → HomR(M,C
′

) is surjective for each C
′

∈ C. The
C-preenvelope f is called a C-envelope ofM provided that f = gf implies g is an
automorphism for each g ∈ EndR(C). Moreover, a C-preenvelope f : M → C of
M is called special provided that f is injective and Coker f ∈ ⊥1C. C-envelopes
may not exist in general, but if they exist, they are unique up to isomorphism.
If C is the class of injective modules, then we get the usual injective envelopes.

C-precovers and C-covers are defined dually. These generalize the projective
covers introduced by Bass in the 1960’s.

A pair (A,B) of R-module classes is called a cotorsion theory (or cotorsion
pair) provided that A⊥1 = B and A = ⊥1B. An R-module M is called cotor-

sion if Ext1R(F,M) = 0 for any flat R-module F . Let F be the class of flat
R-modules and C be the class of cotorsion R-modules, it is known that (F ,C )
is a cotorsion theory.

For any class F of R-modules. The following theorem, due to Eklof and
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Trlifaj, says that every R-module has a special F⊥1-preenvelope if there is a
set S of R-modules such that S⊥1 = F⊥1 . Before stating the result, we need
more notions:

A sequence of modules A = (Aα| α ≤ µ) is called a continuous chain of

modules provided that A0 = 0, Aα ⊆ Aα+1 for all α < µ and Aα =
⋃

β<α Aβ

for all limit ordinals α ≤ µ.
Let M be a module and C a class of modules. Then M is called C-filtered

provided that there are an ordinal κ and a continuous chain, (Mα| α ≤ κ),
consisting of submodules of M such that M = Mκ, and such that each of
the modules Mα+1/Mα (α < κ) is isomorphic to an element of C. The chain
(Mα| α ≤ κ) is called a C-filtration of M.

Theorem 2.1 ([10], Theorem 3.2.1, p. 117). Let S be a set of R-modules and

M an R-module. Then there is a short exact sequence 0 → M →֒ P → N → 0,
where P ∈ S⊥1 and N is S-filtered. In particular, M →֒ P is a special S⊥1-

preenvelope of M.

The following theorem from [10] gives a criterion to judge when an R-module
M has a C⊥1-envelope.

Theorem 2.2 ([10], Theorem 2.3.2, p. 107). Let R be a ring and M be an

R-module. Let C be a class of R-modules closed under extensions and direct

limits. Assume that M has a special C⊥1-preenvelope ν with Coker ν ∈ C. Then
M has a C⊥1-envelope.

A short exact sequence 0 → A → B → C → 0 of R-modules is called pure if
the induced sequence 0 → HomR(F,A) → HomR(F,B) → HomR(F,C) → 0 of
abelian groups is exact for every finitely presented R-module F. A submodule
A of an R-module B is called a pure submodule of B if the canonical exact
sequence 0 → A → B → B/A → 0 is pure. An R-module M is called pure in-

jective if the sequence 0 → HomR(C,M) → HomR(B,M) → HomR(A,M) → 0
is exact for every pure exact sequence 0 → A → B → C → 0 of R-modules.

Let M be an R-module. M is said to be Σ-pure injective if for every index
set I the direct sum M (I) is pure injective. M is said to be Σ-self orthogonal
if Ext1R(M,M (I)) = 0 for every index set I.

The following property of Σ-pure injective modules will be used in this paper.

Proposition 2.3 ([9], Corollary 1.42, p. 30). Every pure submodule of a Σ-pure
injective module B is a direct summand of B.

For unexplained terminology and notation, we refer the reader to [1, 3, 8,
10, 13].

3. Properties of Matlis injective modules

We start with the following definition.
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Definition 3.1. Let R be a ring and M an R-module. M is said to be Matlis

injective if Ext1R(E(R),M) = 0. An R-module N is said to be Matlis projective

if Ext1R(E(R), C) = 0 implies Ext1R(N,C) = 0 for any R-module C. R is said
to be a right Matlis ring if E(R) is flat and pd(E(R)) ≤ 1.

In what follows, we denote by MI (MP) the class of Matlis injective (pro-
jective) R-modules. For C = MI, C-(pre)envelopes will simply be called Matlis
injective (pre)envelopes.

Proposition 3.2. Let R be a ring. Then MI is closed under extensions, direct

products and direct summands; MI=Mod-R if and only if E(R) is projective.

Proof. It is easy to see that the assertion holds by definition. �

Corollary 3.3. Let R be an integral domain. Then every R-module is Matlis

injective if and only if R is a field.

Proof. “ ⇐= ” is trivial.
“ =⇒ ”. By Proposition 3.2, E(R) is projective, then there exists a non-
zero homomorphism f ∈ HomR(E(R), R). So f(E(R)) is a non-zero divisible
submodule of R. Let r be any non-zero element from R. We choose a non-zero
element x ∈ f(E(R)). Since rx is non-zero and f(E(R)) is divisible, there is
an element y ∈ f(E(R)) with (rx)y = x, and so (ry − 1)x = 0. But R is an
integral domain, then ry − 1 = 0, i.e., ry = 1. Hence R is a field. �

Remark 3.4. Recall that a commutative domain R is called almost perfect

provided that R/I is a perfect ring for each ideal 0 6= I 6= R. We will show that
MI is not closed under direct sums if R is an almost perfect domain but not
a field. If R is an almost perfect domain, then MI coincides with the class of
cotorsion R-modules by [10, Theorem 4.4.16, p. 172]. But the class of cotorsion
R-modules is closed under direct sums if and only if R is a perfect ring by [11,
Theorem 19]. Note that E(R) is flat when R is a commutative domain, and so
R is a perfect ring if and only if R is a field by Corollary 3.3. Hence MI is not
closed under direct sums when R is an almost perfect domain but not a field.
Then we will show that there exist a ring R and an R-module M such that
M doesn’t have a Matlis injective precover. For example, let R be an almost
perfect domain but not a field, then there exists a family {Mi}i∈I of Matlis
injective R-modules such that

⊕
i∈I Mi is not Matlis injective. But since MI

is closed under direct summands by Proposition 3.2, it is easy to check that⊕
i∈I Mi doesn’t have a Matlis injective precover.

Lemma 3.5. Let R be a ring. Then every cotorsion R-module is Matlis injec-

tive if and only if E(R) is flat.

Proof. “ ⇐= ” is clear.
“ =⇒ ”. Let C be any cotorsion R-module. By hypothesis, we have

Ext1R(E(R), C) = 0.

Hence E(R) is flat by the fact that (F ,C ) is a cotorsion theory. �
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Proposition 3.6. Let R be a ring. Then MI = C if and only if E(R) is flat

and every Matlis injective R-module is cotorsion.

Proof. “ ⇐= ” holds by assumption and Lemma 3.5.
“ =⇒ ”. By assumption, we have M is cotorsion if and only if it is Matlis
injective. Then the assertion holds by Lemma 3.5. �

Proposition 3.7. Let R be a ring. Then the following are equivalent.

(1) Every quotient module of any Matlis injective R-module is Matlis in-

jective.

(2) Every quotient module of any injective R-module is Matlis injective.

(3) The projective dimension of E(R) is at most 1.

Proof. (1) =⇒ (2) is trivial.
(2) =⇒ (3). Let K be any R-module. It is enough to show that Ext2R(E(R),

K) = 0. Let us consider the exact sequence 0 → K → E(K) → E(K)/K → 0.
We then have the exact sequence Ext1R(E(R), E(K)/K) → Ext2R(E(R),K) →
Ext2R(E(R), E(K)) = 0. Note that Ext1R(E(R), E(K)/K) = 0 by (2), we get
Ext2R(E(R),K) = 0.

(3) =⇒ (1). Let M be a Matlis injective R-module and N a submodule of
M. Let us consider the exact sequence 0 → N → M → M/N → 0. Applying
the functor HomR(E(R),−) to the above exact sequence, we get the exact
sequence 0 = Ext1R(E(R),M) → Ext1R(E(R),M/N) → Ext2R(E(R), N). Note
that Ext2R(E(R), N) = 0 by (3), so Ext1R(E(R),M/N) = 0 and (1) follows. �

Remark 3.8. If E(R) is flat, then the condition that every quotient module of
any cotorsion R-module is Matlis injective is also equivalent to the conditions
of Proposition 3.7.

Lemma 3.9. Let R be a ring. Then (MP ,MI) is a cotorsion theory.

Proof. Straightforward. �

Theorem 3.10. Let R be a ring. Then the following are equivalent.

(1) R is a right Matlis ring.

(2) Every quotient module of any Matlis injective R-module is Matlis in-

jective and every cotorsion R-module is Matlis injective.

(3) Every quotient module of any injective R-module is Matlis injective and

every cotorsion R-module is Matlis injective.

(4) Every Matlis projective R-module is flat and its projective dimension

is at most 1.

Proof. (1) ⇐⇒ (2) ⇐⇒ (3) hold by Lemma 3.5 and Proposition 3.7.
(1) =⇒ (4). By Lemma 3.9 and [10, Corollary 3.2.4, p. 119], every Matlis

projectiveR-module is a direct summand of some {E(R), R}-filteredR-module.
Note that every {E(R), R}-filtered R-module is flat and its projective dimen-
sion is at most pd(E(R)) by (1) and [10, Lemma 3.1.2, p. 113]. So every Matlis
projective R-module is flat and its projective dimension is at most 1.
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(4) =⇒ (1). Obviously, E(R) is Matlis projective by definition. So (1) holds
by assumption. �

Recall that a submodule N of a module M of projective dimension k is said
to be a tight submodule if the projective dimension of M/N is at most k. We
now have the following simple fact:

Proposition 3.11. Let R be a ring. If pd(E(R)) ≤ 1, then tight submodules

of Matlis projective R-modules are also Matlis projective.

Proof. Let us consider the exact sequence 0 → N → M → M/N → 0, where
M is Matlis projective and N is a tight submodule of M. Then pd(M) ≤ 1 by
hypothesis and the proof of Theorem 3.10. For any Matlis injective R-module
C, we have the induced exact sequence

Ext1R(M,C) → Ext1R(N,C) → Ext2R(M/N,C).

The two ends vanish, since M is Matlis projective and pd(M/N) ≤ pd(M) ≤ 1.
So the middle term is 0, and hence the assertion holds. �

Proposition 3.12. Let R be a ring. Then the following are equivalent.

(1) C ∈ MI whenever 0 → A → B → C → 0 is an exact sequence of

R-modules such that A,B ∈ MI.
(2) E(M)/M is Matlis injective when M is Matlis injective.

(3) For any R-module M, Ext1R(E(R),M) = 0 implies Ext2R(E(R),M) =
0.

Proof. (1) =⇒ (2) is trivial.
(2) =⇒ (3). Let M be an R-module such that Ext1R(E(R),M) = 0, i.e., M is

Matlis injective. Then E(M)/M is Matlis injective by (2). Applying the func-
tor HomR(E(R),−) to the exact sequence 0 → M → E(M) → E(M)/M → 0,
we have the exact sequence 0 = Ext1R(E(R), E(M)/M) → Ext2R(E(R),M) →
Ext2R(E(R), E(M)) = 0. So Ext2R(E(R),M) = 0.

(3) =⇒ (1). Let 0 → A → B → C → 0 be an exact sequence of R-modules
such that A,B ∈ MI. Applying the functor HomR(E(R),−) to the above
sequence, we have the exact sequence 0 = Ext1R(E(R), B) → Ext1R(E(R), C) →
Ext2R(E(R), A) = 0 by (3). So Ext1R(E(R), C) = 0, i.e., C is Matlis injective.
Hence (1) holds. �

Proposition 3.13. Let R be a commutative Artinian ring. Then MI is closed

under direct sums, pure submodules and direct limits. Moreover, MI is a

definable class, i.e., it is closed under pure submodules, direct products and

direct limits.

Proof. By hypothesis, E(R) is finitely presented by [12, Theorem 3.64, p. 90].
Then MI is closed under direct sums by the isomorphism

⊕
Ext1R(F,Mα) ∼= Ext1R(F,

⊕
Mα)
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for any finitely presented R-module F and any family {Mα} of R-modules.
Suppose that A is a pure submodule of a Matlis injective R-module B. Then
we have the exact sequences 0 −→ HomR(E(R), A) −→ HomR(E(R), B) −→
HomR(E(R), B/A) −→ 0 and HomR(E(R), B) −→ HomR(E(R), B/A) −→
Ext1R(E(R), A) −→ Ext1R(E(R), B) = 0. Hence Ext1R(E(R), A) = 0, i.e., A
is Matlis injective. So MI is closed under pure submodules. That MI is
closed under direct limits follows from the isomorphism Ext1R(F, lim−→Mi) ∼=

lim−→Ext1R(F,Mi) for any finitely presented R-module F and any family {Mi}

of R-modules since R is a commutative Artinian ring. So MI is definable by
Proposition 3.2. �

Proposition 3.14. Let R be a commutative Artinian ring and S ⊂ R be a

multiplicative set. If M is a Matlis injective R-module, then S−1M is a Matlis

injective S−1R-module.

Proof. By assumption, E(R) is finitely generated by [12, Theorem 3.64, p. 90]
and R is a Noetherian ring. So,

Ext1S−1R(S
−1ER(R), S−1M) ∼= S−1Ext1R(ER(R),M)

by [8, Theorem 3.2.5, p. 76]. But S−1ER(R) ∼= ES−1R(S
−1R) by [8, Theorem

3.3.3, p. 84]. Thus S−1M is a Matlis injective S−1R-module when M is a
Matlis injective R-module. �

Proposition 3.15. Let R be a commutative Noetherian ring and S ⊂ R be

a multiplicative set. If M is a Matlis projective R-module, then S−1M is a

Matlis projective S−1R-module.

Proof. Note that S−1ER(R) ∼= ES−1R(S
−1R) by [8, Theorem 3.3.3, p. 84]

and by hypothesis. Then, every Matlis projective S−1R-module is a direct
summand of some {S−1ER(R), S−1R}-filtered S−1R-module by [10, Corollary
3.2.4, p. 119]. Since M is a Matlis projective R-module, M is a direct summand
of some {E(R), R}-filtered R-module by [10, Corollary 3.2.4, p. 119]. Let N be
an {E(R), R}-filtered R-module and the chain (Nα| α ≤ κ) be a {E(R), R}-
filtration of N . Then S−1N is an {S−1ER(R), S−1R}-filtered S−1R-module
and the chain (S−1Nα| α ≤ κ) is a {S−1ER(R), S−1R}-filtration of S−1N by
[8, Theorem 1.5.7, p. 33, and Proposition 2.2.4, p. 44] and by definition. So
S−1M is a Matlis projective S−1R-module and the assertion holds. �

4. The existence of Matlis injective (pre)envelopes

According to Theorem 2.1, we immediately have the following proposition.

Proposition 4.1. Let R be a ring. Then every R-module has a special Matlis

injective preenvelope.

The following lemmas are needed to prove the main result of this paper.
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Lemma 4.2. Let R be a ring and M an R-module. If M is Σ-pure injective and
Σ-self orthogonal, then Add(M) is closed under extensions and direct limits.

Proof. Let 0 → A → B → C → 0 be an exact sequence of R-modules such
that both A and C are in Add(M). Without loss of generality, we may assume
that both A and C are direct summands of M (I) for an index set I. Since
M is Σ-self orthogonal, we have Ext1R(C,A) = 0. Then the exact sequence
0 → A → B → C → 0 splits, and soB ∼= A

⊕
C. Obviously, A

⊕
C ∈ Add(M).

Therefore, B ∈ Add(M). So Add(M) is closed under extensions. We claim
that any R-module N from Add(M) is Σ-pure injective. It is clear that N
is pure injective since M is Σ-pure injective. In addition, Add(M) is closed
under direct sums. Thus N is Σ-pure injective. Let ((Mi)i∈I , (fji)) be a direct
system of R-modules from Add(M) where I is a directed set. Then there
exists a short exact sequence 0 → K →֒

⊕
i∈I Mi → lim−→Mi → 0 with K a

pure submodule of
⊕

i∈I Mi. But
⊕

i∈I Mi is Σ-pure injective, then the exact
sequence 0 → K →֒

⊕
i∈I Mi → lim−→Mi → 0 splits by Proposition 2.3. So

lim−→Mi is isomorphic to a direct summand of
⊕

i∈I Mi, i.e., lim−→Mi ∈ Add(M).

Hence Add(M) is closed under direct limits. �

Lemma 4.3. Let R be a ring and M an R-module. Assume that M is Σ-pure
injective and Σ-self orthogonal. Then every R-module N has an M⊥1-envelope.

Proof. Obviously, M⊥1 = (Add(M))⊥1 . Thus it is equivalent to show that ev-
ery R-module N has an (Add(M))⊥1 -envelope. By Theorem 2.1, N has a spe-
cial (Add(M))⊥1-preenvelope f with Coker f is {M}-filtered. Note that every
{M}-filtered R-module is in Add(M) by Lemma 4.2 and transfinite induction.
So N has an (Add(M))⊥1 -envelope by Lemma 4.2 and Theorem 2.2. �

We are now in a position to prove the following

Theorem 4.4. Let R be a right Noetherian ring and F a class of injective R-

modules. Then every R-module M has an F⊥1-envelope; in particular, every

R-module M has a Matlis injective envelope.

Proof. If R is right Noetherian, then every injective R-module is the direct
sum of indecomposable injective R-modules. Each such module is the injective
envelope of a cyclic R-module. Hence, we can find a representative set of such
modules. So there is a family {Ei}i∈I of indecomposable injective R-modules
such that every injective R-module is the direct sum of copies of Ei.

Let S = {Ei | Ei is isomorphic to a direct summand of an element of F}. It
is easy to see that (

⊕
Ei∈S

Ei)
⊥1 = F⊥1 . Note that

⊕
Ei∈S

Ei is Σ-pure injec-
tive and Σ-self orthogonal by the fact that the class of right injective R-modules
is closed under direct sums when R is right Noetherian. So the assertion holds
by Lemma 4.3. �

We end this paper with the following remark.
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Remark 4.5. If R is a commutative Artinian ring, then every R-module has a
Matlis injective cover by Proposition 3.13 and [2, Corollary 2.6 and Proposition
4.3(3)].
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