MATLIS INJECTIVE MODULES

Hangyu Yan

ABSTRACT. In this paper, Matlis injective modules are introduced and studied. It is shown that every R-module has a (special) Matlis injective preenvelope over any ring R and every right R-module has a Matlis injective envelope when R is a right Noetherian ring. Moreover, it is shown that every right R-module has an \mathcal{F}^{\perp_1} -envelope when R is a right Noetherian ring and \mathcal{F} is a class of injective right R-modules.

1. Introduction

Throughout this paper, R will denote an associative ring with identity and all modules will be unitary right R-modules.

The motivation of this paper is from [4], where the notion of Whitehead modules was studied. Recall that an R-module M is called a Whitehead module or W-module if $\operatorname{Ext}^1_R(M,R)=0$. We introduce the notion of Matlis injective modules as a dual notion of Whitehead modules in some sense. An R-module M is called Matlis injective if $\operatorname{Ext}^1_R(E(R),M)=0$, where E(R) denotes the injective envelope of R. Let R be an integral domain and Q its field of quotients, an R-module C is called Matlis cotorsion or weakly cotorson if $\operatorname{Ext}^1_R(Q,C)=0$. Then, it is easy to see that the notion of Matlis injective R-modules coincides with the notion of Matlis cotorsion R-modules when R is an integral domain. Following [7], an R-module M is called copure injective if $\operatorname{Ext}^1_R(E,M)=0$ for any injective R-module E. Clearly, every copure injective R-module is Matlis injective, but it is easy to see that the converse is not true in general. Thus Matlis injective R-modules can be seen as a generalization of copure injective R-modules.

Let \mathcal{C} be a class of R-modules. Enochs defined a \mathcal{C} -(pre)cover (\mathcal{C} -(pre)envelope) of an R-module in [6]. Therefore, it is natural to study the existence of Matlis injective (pre)covers and Matlis injective (pre)envelopes. Obviously, the class of Matlis injective R-modules is closed under direct summands, but we show that it is not closed under direct sums in general. So there exist a ring

Received October 15, 2011; Revised January 20, 2012.

²⁰¹⁰ Mathematics Subject Classification. 16D10, 16E30.

Key words and phrases. Matlis injective module, (pre)envelope, Σ -pure injective.

This research was partially supported by Research Fund of China Pharmaceutical University (No. 211148).

R and an R-module M such that M doesn't have a Matlis injective precover. Then, we are only interested in the existence of Matlis injective (pre)-envelopes in this paper. Let \mathcal{F} be a class of R-modules, we denote by \mathcal{F}^{\perp_1} the class of R-modules N such that $\operatorname{Ext}^1_R(F,N)=0$ for every $F\in\mathcal{F}$. In [5, Theorem 10], Eklof and Trlifaj proved that if there is a set \mathcal{S} of R-modules such that $\mathcal{F}^{\perp_1}=\mathcal{S}^{\perp_1}$, then every R-module has an \mathcal{F}^{\perp_1} -preenvelope. Using this result, we show that every R-module has a Matlis injective preenvelope. If R is a right Noetherian ring, we show that every R-module has a \mathcal{F}^{\perp_1} -envelope, where \mathcal{F} is any subclass of the class of injective R-modules. As a byproduct, we show that every R-module has a Matlis injective envelope when R is a right Noetherian ring.

2. Preliminaries

In this section we briefly recall some definitions and results required in this paper.

For a ring R, Mod-R will denote the category of all right R-modules and pd(M) will denote the projective dimension of M. For an R-module M, we denote by E(M) the injective envelope of M. We frequently identify M with its image in E(M) and think of M as a submodule of E(M).

Let $\mathcal{C} \subseteq \text{Mod-}R$. Define

$$\mathcal{C}^{\perp_1} = \{ X \in \text{Mod-}R \mid \text{Ext}_R^1(C, X) = 0 \text{ for all } C \in \mathcal{C} \},$$

$${}^{\perp_1}\mathcal{C} = \{ X \in \text{Mod-}R \mid \text{Ext}_R^1(X, C) = 0 \text{ for all } C \in \mathcal{C} \}.$$

Add(\mathcal{C})={ $X \in \text{Mod-}R \mid X \text{ is a direct summand of } \bigoplus_{i \in I} C_i$, where I is a set and where for any $i \in I$, C_i is isomorphic to an element of \mathcal{C} }.

For $C = \{C\}$, we write C^{\perp_1} , $^{\perp_1}C$ and Add(C) in place of $\{C\}^{\perp_1}$, $^{\perp_1}\{C\}$ and $Add(\{C\})$, respectively.

Let $M \in \text{Mod-}R$. A homomorphism $f \in \text{Hom}_R(M,C)$ with $C \in \mathcal{C}$ is called a \mathcal{C} -preenvelope of M provided that the abelian group homomorphism $\text{Hom}_R(f,C'): \text{Hom}_R(C,C') \to \text{Hom}_R(M,C')$ is surjective for each $C' \in \mathcal{C}$. The \mathcal{C} -preenvelope f is called a \mathcal{C} -envelope of M provided that f = gf implies g is an automorphism for each $g \in \text{End}_R(C)$. Moreover, a \mathcal{C} -preenvelope $f: M \to C$ of M is called special provided that f is injective and Coker $f \in {}^{\perp_1}\mathcal{C}$. \mathcal{C} -envelopes may not exist in general, but if they exist, they are unique up to isomorphism. If \mathcal{C} is the class of injective modules, then we get the usual injective envelopes.

 \mathcal{C} -precovers and \mathcal{C} -covers are defined dually. These generalize the projective covers introduced by Bass in the 1960's.

A pair $(\mathcal{A}, \mathcal{B})$ of R-module classes is called a cotorsion theory (or cotorsion pair) provided that $\mathcal{A}^{\perp_1} = \mathcal{B}$ and $\mathcal{A} = {}^{\perp_1}\mathcal{B}$. An R-module M is called cotorsion if $\operatorname{Ext}^1_R(F, M) = 0$ for any flat R-module F. Let \mathscr{F} be the class of flat R-modules and \mathscr{C} be the class of cotorsion R-modules, it is known that $(\mathscr{F}, \mathscr{C})$ is a cotorsion theory.

For any class \mathcal{F} of R-modules. The following theorem, due to Eklof and

Trlifaj, says that every R-module has a special \mathcal{F}^{\perp_1} -preenvelope if there is a set \mathcal{S} of R-modules such that $\mathcal{S}^{\perp_1} = \mathcal{F}^{\perp_1}$. Before stating the result, we need more notions:

A sequence of modules $\mathcal{A} = (A_{\alpha} | \alpha \leq \mu)$ is called a *continuous chain of modules* provided that $A_0 = 0, A_{\alpha} \subseteq A_{\alpha+1}$ for all $\alpha < \mu$ and $A_{\alpha} = \bigcup_{\beta < \alpha} A_{\beta}$ for all limit ordinals $\alpha \leq \mu$.

Let M be a module and \mathcal{C} a class of modules. Then M is called \mathcal{C} -filtered provided that there are an ordinal κ and a continuous chain, $(M_{\alpha}|\alpha \leq \kappa)$, consisting of submodules of M such that $M = M_{\kappa}$, and such that each of the modules $M_{\alpha+1}/M_{\alpha}$ ($\alpha < \kappa$) is isomorphic to an element of \mathcal{C} . The chain $(M_{\alpha}|\alpha \leq \kappa)$ is called a \mathcal{C} -filtration of M.

Theorem 2.1 ([10], Theorem 3.2.1, p. 117). Let S be a set of R-modules and M an R-module. Then there is a short exact sequence $0 \to M \hookrightarrow P \to N \to 0$, where $P \in S^{\perp_1}$ and N is S-filtered. In particular, $M \hookrightarrow P$ is a special S^{\perp_1} -preenvelope of M.

The following theorem from [10] gives a criterion to judge when an R-module M has a \mathcal{C}^{\perp_1} -envelope.

Theorem 2.2 ([10], Theorem 2.3.2, p. 107). Let R be a ring and M be an R-module. Let C be a class of R-modules closed under extensions and direct limits. Assume that M has a special C^{\perp_1} -preenvelope ν with Coker $\nu \in C$. Then M has a C^{\perp_1} -envelope.

A short exact sequence $0 \to A \to B \to C \to 0$ of R-modules is called *pure* if the induced sequence $0 \to \operatorname{Hom}_R(F,A) \to \operatorname{Hom}_R(F,B) \to \operatorname{Hom}_R(F,C) \to 0$ of abelian groups is exact for every finitely presented R-module F. A submodule A of an R-module B is called a *pure submodule* of B if the canonical exact sequence $0 \to A \to B \to B/A \to 0$ is pure. An R-module M is called *pure injective* if the sequence $0 \to \operatorname{Hom}_R(C,M) \to \operatorname{Hom}_R(B,M) \to \operatorname{Hom}_R(A,M) \to 0$ is exact for every pure exact sequence $0 \to A \to B \to C \to 0$ of R-modules.

Let M be an R-module. M is said to be Σ -pure injective if for every index set I the direct sum $M^{(I)}$ is pure injective. M is said to be Σ -self orthogonal if $\operatorname{Ext}^1_R(M,M^{(I)})=0$ for every index set I.

The following property of Σ -pure injective modules will be used in this paper.

Proposition 2.3 ([9], Corollary 1.42, p. 30). Every pure submodule of a Σ -pure injective module B is a direct summand of B.

For unexplained terminology and notation, we refer the reader to [1, 3, 8, 10, 13].

3. Properties of Matlis injective modules

We start with the following definition.

Definition 3.1. Let R be a ring and M an R-module. M is said to be Matlis injective if $\operatorname{Ext}^1_R(E(R), M) = 0$. An R-module N is said to be Matlis projective if $\operatorname{Ext}^1_R(E(R), C) = 0$ implies $\operatorname{Ext}^1_R(N, C) = 0$ for any R-module C. R is said to be a right Matlis ring if E(R) is flat and $pd(E(R)) \leq 1$.

In what follows, we denote by \mathcal{MI} (\mathcal{MP}) the class of Matlis injective (projective) R-modules. For $\mathcal{C} = \mathcal{MI}$, \mathcal{C} -(pre)envelopes will simply be called Matlis injective (pre)envelopes.

Proposition 3.2. Let R be a ring. Then \mathcal{MI} is closed under extensions, direct products and direct summands; $\mathcal{MI} = \text{Mod-}R$ if and only if E(R) is projective.

Proof. It is easy to see that the assertion holds by definition.

Corollary 3.3. Let R be an integral domain. Then every R-module is Matlis injective if and only if R is a field.

Proof. " \iff " is trivial.

" \Longrightarrow ". By Proposition 3.2, E(R) is projective, then there exists a non-zero homomorphism $f \in \operatorname{Hom}_R(E(R), R)$. So f(E(R)) is a non-zero divisible submodule of R. Let r be any non-zero element from R. We choose a non-zero element $x \in f(E(R))$. Since rx is non-zero and f(E(R)) is divisible, there is an element $y \in f(E(R))$ with (rx)y = x, and so (ry - 1)x = 0. But R is an integral domain, then ry - 1 = 0, i.e., ry = 1. Hence R is a field.

Remark 3.4. Recall that a commutative domain R is called almost perfect provided that R/I is a perfect ring for each ideal $0 \neq I \neq R$. We will show that \mathcal{MI} is not closed under direct sums if R is an almost perfect domain but not a field. If R is an almost perfect domain, then \mathcal{MI} coincides with the class of cotorsion R-modules by [10, Theorem 4.4.16, p. 172]. But the class of cotorsion R-modules is closed under direct sums if and only if R is a perfect ring by [11, Theorem 19]. Note that E(R) is flat when R is a commutative domain, and so R is a perfect ring if and only if R is a field by Corollary 3.3. Hence \mathcal{MI} is not closed under direct sums when R is an almost perfect domain but not a field. Then we will show that there exist a ring R and an R-module M such that M doesn't have a Matlis injective precover. For example, let R be an almost perfect domain but not a field, then there exists a family $\{M_i\}_{i\in I}$ of Matlis injective R-modules such that $\bigoplus_{i\in I} M_i$ is not Matlis injective. But since \mathcal{MI} is closed under direct summands by Proposition 3.2, it is easy to check that $\bigoplus_{i\in I} M_i$ doesn't have a Matlis injective precover.

Lemma 3.5. Let R be a ring. Then every cotorsion R-module is Matlis injective if and only if E(R) is flat.

Proof. " \iff " is clear.

" \Longrightarrow ". Let C be any cotorsion R-module. By hypothesis, we have

$$\operatorname{Ext}_{R}^{1}(E(R),C)=0.$$

Hence E(R) is flat by the fact that $(\mathcal{F}, \mathcal{C})$ is a cotorsion theory.

Proposition 3.6. Let R be a ring. Then $\mathcal{MI} = \mathscr{C}$ if and only if E(R) is flat and every Matlis injective R-module is cotorsion.

Proof. " \Leftarrow " holds by assumption and Lemma 3.5.

" \Longrightarrow ". By assumption, we have M is cotorsion if and only if it is Matlis injective. Then the assertion holds by Lemma 3.5.

Proposition 3.7. Let R be a ring. Then the following are equivalent.

- (1) Every quotient module of any Matlis injective R-module is Matlis injective.
- (2) Every quotient module of any injective R-module is Matlis injective.
- (3) The projective dimension of E(R) is at most 1.

Proof. $(1) \Longrightarrow (2)$ is trivial.

- $(2)\Longrightarrow (3)$. Let K be any R-module. It is enough to show that $\operatorname{Ext}^2_R(E(R),K)=0$. Let us consider the exact sequence $0\to K\to E(K)\to E(K)/K\to 0$. We then have the exact sequence $\operatorname{Ext}^1_R(E(R),E(K)/K)\to \operatorname{Ext}^2_R(E(R),E(K))=0$. Note that $\operatorname{Ext}^1_R(E(R),E(K)/K)=0$ by (2), we get $\operatorname{Ext}^2_R(E(R),K)=0$.
- (3) \Longrightarrow (1). Let M be a Matlis injective R-module and N a submodule of M. Let us consider the exact sequence $0 \to N \to M \to M/N \to 0$. Applying the functor $\operatorname{Hom}_R(E(R),-)$ to the above exact sequence, we get the exact sequence $0 = \operatorname{Ext}^1_R(E(R),M) \to \operatorname{Ext}^1_R(E(R),M/N) \to \operatorname{Ext}^2_R(E(R),N)$. Note that $\operatorname{Ext}^2_R(E(R),N) = 0$ by (3), so $\operatorname{Ext}^1_R(E(R),M/N) = 0$ and (1) follows. \square

Remark 3.8. If E(R) is flat, then the condition that every quotient module of any cotorsion R-module is Matlis injective is also equivalent to the conditions of Proposition 3.7.

Lemma 3.9. Let R be a ring. Then $(\mathcal{MP}, \mathcal{MI})$ is a cotorsion theory.

Proof. Straightforward.

Theorem 3.10. Let R be a ring. Then the following are equivalent.

- (1) R is a right Matlis ring.
- (2) Every quotient module of any Matlis injective R-module is Matlis injective and every cotorsion R-module is Matlis injective.
- (3) Every quotient module of any injective R-module is Matlis injective and every cotorsion R-module is Matlis injective.
- (4) Every Matlis projective R-module is flat and its projective dimension is at most 1.

Proof. (1) \iff (2) \iff (3) hold by Lemma 3.5 and Proposition 3.7.

 $(1) \Longrightarrow (4)$. By Lemma 3.9 and [10, Corollary 3.2.4, p. 119], every Matlis projective R-module is a direct summand of some $\{E(R), R\}$ -filtered R-module. Note that every $\{E(R), R\}$ -filtered R-module is flat and its projective dimension is at most pd(E(R)) by (1) and [10, Lemma 3.1.2, p. 113]. So every Matlis projective R-module is flat and its projective dimension is at most 1.

(4) \Longrightarrow (1). Obviously, E(R) is Matlis projective by definition. So (1) holds by assumption. \Box

Recall that a submodule N of a module M of projective dimension k is said to be a *tight submodule* if the projective dimension of M/N is at most k. We now have the following simple fact:

Proposition 3.11. Let R be a ring. If $pd(E(R)) \leq 1$, then tight submodules of Matlis projective R-modules are also Matlis projective.

Proof. Let us consider the exact sequence $0 \to N \to M \to M/N \to 0$, where M is Matlis projective and N is a tight submodule of M. Then $pd(M) \le 1$ by hypothesis and the proof of Theorem 3.10. For any Matlis injective R-module C, we have the induced exact sequence

$$\operatorname{Ext}^1_R(M,C) \to \operatorname{Ext}^1_R(N,C) \to \operatorname{Ext}^2_R(M/N,C).$$

The two ends vanish, since M is Matlis projective and $pd(M/N) \leq pd(M) \leq 1$. So the middle term is 0, and hence the assertion holds.

Proposition 3.12. Let R be a ring. Then the following are equivalent.

- (1) $C \in \mathcal{MI}$ whenever $0 \to A \to B \to C \to 0$ is an exact sequence of R-modules such that $A, B \in \mathcal{MI}$.
- (2) E(M)/M is Matlis injective when M is Matlis injective.
- (3) For any R-module M, $\operatorname{Ext}_R^1(E(R), M) = 0$ implies $\operatorname{Ext}_R^2(E(R), M) = 0$.

Proof. $(1) \Longrightarrow (2)$ is trivial.

- $(2)\Longrightarrow (3)$. Let M be an R-module such that $\operatorname{Ext}^1_R(E(R),M)=0$, i.e., M is Matlis injective. Then E(M)/M is Matlis injective by (2). Applying the functor $\operatorname{Hom}_R(E(R),-)$ to the exact sequence $0\to M\to E(M)\to E(M)/M\to 0$, we have the exact sequence $0=\operatorname{Ext}^1_R(E(R),E(M)/M)\to\operatorname{Ext}^2_R(E(R),M)\to\operatorname{Ext}^2_R(E(R),E(M))=0$. So $\operatorname{Ext}^2_R(E(R),M)=0$.
- (3) \Longrightarrow (1). Let $0 \to A \to B \to C \to 0$ be an exact sequence of R-modules such that $A,B \in \mathcal{MI}$. Applying the functor $\mathrm{Hom}_R(E(R),-)$ to the above sequence, we have the exact sequence $0 = \mathrm{Ext}^1_R(E(R),B) \to \mathrm{Ext}^1_R(E(R),C) \to \mathrm{Ext}^2_R(E(R),A) = 0$ by (3). So $\mathrm{Ext}^1_R(E(R),C) = 0$, i.e., C is Matlis injective. Hence (1) holds.

Proposition 3.13. Let R be a commutative Artinian ring. Then \mathcal{MI} is closed under direct sums, pure submodules and direct limits. Moreover, \mathcal{MI} is a definable class, i.e., it is closed under pure submodules, direct products and direct limits.

Proof. By hypothesis, E(R) is finitely presented by [12, Theorem 3.64, p. 90]. Then \mathcal{MI} is closed under direct sums by the isomorphism

$$\bigoplus \operatorname{Ext}^1_R(F, M_\alpha) \cong \operatorname{Ext}^1_R(F, \bigoplus M_\alpha)$$

for any finitely presented R-module F and any family $\{M_{\alpha}\}$ of R-modules. Suppose that A is a pure submodule of a Matlis injective R-module B. Then we have the exact sequences $0 \longrightarrow \operatorname{Hom}_R(E(R),A) \longrightarrow \operatorname{Hom}_R(E(R),B) \longrightarrow \operatorname{Hom}_R(E(R),B/A) \longrightarrow 0$ and $\operatorname{Hom}_R(E(R),B) \longrightarrow \operatorname{Hom}_R(E(R),B/A) \longrightarrow \operatorname{Ext}_R^1(E(R),A) \longrightarrow \operatorname{Ext}_R^1(E(R),B) = 0$. Hence $\operatorname{Ext}_R^1(E(R),A) = 0$, i.e., A is Matlis injective. So \mathcal{MI} is closed under pure submodules. That \mathcal{MI} is closed under direct limits follows from the isomorphism $\operatorname{Ext}_R^1(F,\varinjlim M_i) \cong \varinjlim \operatorname{Ext}_R^1(F,M_i)$ for any finitely presented R-module F and any family $\{M_i\}$ of R-modules since R is a commutative Artinian ring. So \mathcal{MI} is definable by Proposition 3.2.

Proposition 3.14. Let R be a commutative Artinian ring and $S \subset R$ be a multiplicative set. If M is a Matlis injective R-module, then $S^{-1}M$ is a Matlis injective $S^{-1}R$ -module.

Proof. By assumption, E(R) is finitely generated by [12, Theorem 3.64, p. 90] and R is a Noetherian ring. So,

$$\operatorname{Ext}^{1}_{S^{-1}R}(S^{-1}E_{R}(R), S^{-1}M) \cong S^{-1}\operatorname{Ext}^{1}_{R}(E_{R}(R), M)$$

by [8, Theorem 3.2.5, p. 76]. But $S^{-1}E_R(R) \cong E_{S^{-1}R}(S^{-1}R)$ by [8, Theorem 3.3.3, p. 84]. Thus $S^{-1}M$ is a Matlis injective $S^{-1}R$ -module when M is a Matlis injective R-module.

Proposition 3.15. Let R be a commutative Noetherian ring and $S \subset R$ be a multiplicative set. If M is a Matlis projective R-module, then $S^{-1}M$ is a Matlis projective $S^{-1}R$ -module.

Proof. Note that $S^{-1}E_R(R)\cong E_{S^{-1}R}(S^{-1}R)$ by [8, Theorem 3.3.3, p. 84] and by hypothesis. Then, every Matlis projective $S^{-1}R$ -module is a direct summand of some $\{S^{-1}E_R(R), S^{-1}R\}$ -filtered $S^{-1}R$ -module by [10, Corollary 3.2.4, p. 119]. Since M is a Matlis projective R-module, M is a direct summand of some $\{E(R), R\}$ -filtered R-module by [10, Corollary 3.2.4, p. 119]. Let N be an $\{E(R), R\}$ -filtered R-module and the chain $(N_{\alpha}|\alpha \leq \kappa)$ be a $\{E(R), R\}$ -filtration of N. Then $S^{-1}N$ is an $\{S^{-1}E_R(R), S^{-1}R\}$ -filtered $S^{-1}R$ -module and the chain $(S^{-1}N_{\alpha}|\alpha \leq \kappa)$ is a $\{S^{-1}E_R(R), S^{-1}R\}$ -filtration of $S^{-1}N$ by [8, Theorem 1.5.7, p. 33, and Proposition 2.2.4, p. 44] and by definition. So $S^{-1}M$ is a Matlis projective $S^{-1}R$ -module and the assertion holds. \square

4. The existence of Matlis injective (pre)envelopes

According to Theorem 2.1, we immediately have the following proposition.

Proposition 4.1. Let R be a ring. Then every R-module has a special Matlis injective preenvelope.

The following lemmas are needed to prove the main result of this paper.

Lemma 4.2. Let R be a ring and M an R-module. If M is Σ -pure injective and Σ -self orthogonal, then Add(M) is closed under extensions and direct limits.

Proof. Let $0 \to A \to B \to C \to 0$ be an exact sequence of R-modules such that both A and C are in $\operatorname{Add}(M)$. Without loss of generality, we may assume that both A and C are direct summands of $M^{(I)}$ for an index set I. Since M is Σ -self orthogonal, we have $\operatorname{Ext}^1_R(C,A)=0$. Then the exact sequence $0 \to A \to B \to C \to 0$ splits, and so $B \cong A \bigoplus C$. Obviously, $A \bigoplus C \in \operatorname{Add}(M)$. Therefore, $B \in \operatorname{Add}(M)$. So $\operatorname{Add}(M)$ is closed under extensions. We claim that any R-module N from $\operatorname{Add}(M)$ is Σ -pure injective. It is clear that N is pure injective since M is Σ -pure injective. In addition, $\operatorname{Add}(M)$ is closed under direct sums. Thus N is Σ -pure injective. Let $((M_i)_{i \in I}, (f_{ji}))$ be a direct system of R-modules from $\operatorname{Add}(M)$ where I is a directed set. Then there exists a short exact sequence $0 \to K \hookrightarrow \bigoplus_{i \in I} M_i \to \varinjlim_{i \in I} M_i \to 0$ with K a pure submodule of $\bigoplus_{i \in I} M_i$. But $\bigoplus_{i \in I} M_i$ is Σ -pure injective, then the exact sequence $0 \to K \hookrightarrow \bigoplus_{i \in I} M_i \to \limsup_{i \in I} M_i \to 0$ splits by Proposition 2.3. So $\varinjlim_{i \in I} M_i$ is isomorphic to a direct summand of $\bigoplus_{i \in I} M_i$, i.e., $\varinjlim_{i \in I} M_i \in \operatorname{Add}(M)$. Hence $\operatorname{Add}(M)$ is closed under direct limits.

Lemma 4.3. Let R be a ring and M an R-module. Assume that M is Σ -pure injective and Σ -self orthogonal. Then every R-module N has an M^{\perp_1} -envelope.

Proof. Obviously, $M^{\perp_1} = (\operatorname{Add}(M))^{\perp_1}$. Thus it is equivalent to show that every R-module N has an $(\operatorname{Add}(M))^{\perp_1}$ -envelope. By Theorem 2.1, N has a special $(\operatorname{Add}(M))^{\perp_1}$ -preenvelope f with Coker f is $\{M\}$ -filtered. Note that every $\{M\}$ -filtered R-module is in $\operatorname{Add}(M)$ by Lemma 4.2 and transfinite induction. So N has an $(\operatorname{Add}(M))^{\perp_1}$ -envelope by Lemma 4.2 and Theorem 2.2.

We are now in a position to prove the following

Theorem 4.4. Let R be a right Noetherian ring and \mathcal{F} a class of injective R-modules. Then every R-module M has an \mathcal{F}^{\perp_1} -envelope; in particular, every R-module M has a Matlis injective envelope.

Proof. If R is right Noetherian, then every injective R-module is the direct sum of indecomposable injective R-modules. Each such module is the injective envelope of a cyclic R-module. Hence, we can find a representative set of such modules. So there is a family $\{E_i\}_{i\in I}$ of indecomposable injective R-modules such that every injective R-module is the direct sum of copies of E_i .

Let $S = \{E_i \mid E_i \text{ is isomorphic to a direct summand of an element of } \mathcal{F}\}$. It is easy to see that $(\bigoplus_{E_i \in \mathcal{S}} E_i)^{\perp_1} = \mathcal{F}^{\perp_1}$. Note that $\bigoplus_{E_i \in \mathcal{S}} E_i$ is Σ -pure injective and Σ -self orthogonal by the fact that the class of right injective R-modules is closed under direct sums when R is right Noetherian. So the assertion holds by Lemma 4.3.

We end this paper with the following remark.

Remark 4.5. If R is a commutative Artinian ring, then every R-module has a Matlis injective cover by Proposition 3.13 and [2, Corollary 2.6 and Proposition 4.3(3)].

Acknowledgements. The author would like to thank the referees for the very helpful comments and suggestions.

References

- F. W. Anderson and K. R. Fuller, Rings and Categories of Modules, Grad. Texts in Math. 13, Springer-Verlag, New York 1974.
- [2] S. Bazzoni, When are definable classes tilting and cotilting classes?, J. Algebra 320 (2008), no. 12, 4281–4299.
- [3] H. Cartan and S. Eilenberg, *Homological Algebra*, Princeton Math. Ser., 1956.
- [4] P. C. Eklof and S. Shelah, On Whitehead modules, J. Algebra 142 (1991), no. 2, 492–510.
- [5] P. C. Eklof and J. Trlifaj, How to make Ext vanish, Bull. Lond. Math. Soc. 23 (2001), no. 1, 41–51.
- [6] E. E. Enochs, Injective and flat covers, envelopes and resolvents, Israel J. Math. 39 (1981), no. 3, 189–209.
- [7] E. E. Enochs and O. M. G. Jenda, Copure injective modules, Quaest. Math. 14 (1991), no. 4, 401–409.
- [8] ______, Relative Homological Algebra, de Gruyter Expos. Math. 30, de Gruyter, Berlin 2000.
- [9] A. Facchini, Module Theory: Endomorphism Rings and Direct Sum Decompositions in Some Classes of Modules, Progress in Math. vol. 167, Birkhäuser, Basel, 1998.
- [10] R. Göbel and J. Trlifaj, Approximations and Endomorphism Algebras of Modules, de Gruyter Expos. Math. 41, de Gruyter, Berlin 2006.
- [11] P. A. Guil Asensio and I. Herzog, $Sigma-cotorsion\ rings,$ Adv. Math. 191 (2005), no. 1, 11–28.
- [12] T. Y. Lam, Lectures on Modules and Rings, Grad. Texts in Math. 189, Springer, New York 1999.
- [13] J. J. Rotman, An Introduction to Homological Algebra, Pure Appl. Math. 85, Academic Press, New York 1979.

FACULTY OF SCIENCE

CHINA PHARMACEUTICAL UNIVERSITY

Nanjing 211198, P. R. China

E-mail address: hyyan07@126.com