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MATLIS INJECTIVE MODULES

HANGYU YAN

ABSTRACT. In this paper, Matlis injective modules are introduced and
studied. It is shown that every R-module has a (special) Matlis injec-
tive preenvelope over any ring R and every right R-module has a Matlis
injective envelope when R is a right Noetherian ring. Moreover, it is
shown that every right R-module has an F-11-envelope when R is a right
Noetherian ring and F is a class of injective right R-modules.

1. Introduction

Throughout this paper, R will denote an associative ring with identity and
all modules will be unitary right R-modules.

The motivation of this paper is from [4], where the notion of Whitehead
modules was studied. Recall that an R-module M is called a Whitehead module
or W-module if Exty (M, R) = 0. We introduce the notion of Matlis injective
modules as a dual notion of Whitehead modules in some sense. An R-module
M is called Matlis injective if Extp(E(R), M) = 0, where E(R) denotes the
injective envelope of R. Let R be an integral domain and @ its field of quotients,
an R-module C' is called Matlis cotorsion or weakly cotorson if Exth(Q,C) = 0.
Then, it is easy to see that the notion of Matlis injective R-modules coincides
with the notion of Matlis cotorsion R-modules when R is an integral domain.
Following [7], an R-module M is called copure injective if Exty(E, M) = 0 for
any injective R-module E. Clearly, every copure injective R-module is Matlis
injective, but it is easy to see that the converse is not true in general. Thus
Matlis injective R-modules can be seen as a generalization of copure injective
R-modules.

Let C be a class of R-modules. Enochs defined a C-(pre)cover ( C-(pre)envelo-
pe) of an R-module in [6]. Therefore, it is natural to study the existence of
Matlis injective (pre)covers and Matlis injective (pre)envelopes. Obviously, the
class of Matlis injective R-modules is closed under direct summands, but we
show that it is not closed under direct sums in general. So there exist a ring
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R and an R-module M such that M doesn’t have a Matlis injective precover.
Then, we are only interested in the existence of Matlis injective (pre)-envelopes
in this paper. Let F be a class of R-modules, we denote by F*! the class of
R-modules N such that Exth(F,N) = 0 for every F € F. In [5, Theorem
10], Eklof and Trlifaj proved that if there is a set S of R-modules such that
F+1 = 811 then every R-module has an F1!-preenvelope. Using this result,
we show that every R-module has a Matlis injective preenvelope. If R is a
right Noetherian ring, we show that every R-module has an F1!-envelope,
where F is any subclass of the class of injective R-modules. As a byproduct,
we show that every R-module has a Matlis injective envelope when R is a right
Noetherian ring.

2. Preliminaries

In this section we briefly recall some definitions and results required in this
paper.

For a ring R, Mod-R will denote the category of all right R-modules and
pd(M) will denote the projective dimension of M. For an R-module M, we
denote by E(M) the injective envelope of M. We frequently identify M with
its image in F(M) and think of M as a submodule of E(M).

Let C CMod-R. Define

Ctt = {X € Mod-R | Ext(C, X) =0 for all C € C},
110 = {X € Mod-R | ExtR(X,C) =0 for all C € C}.

Add(C)={X € Mod-R | X is a direct summand of @,_; C;, where I is a set
and where for any ¢ € I, C; is isomorphic to an element of C}.

For C = {C}, we write C+1, -1C and Add(C) in place of {C}+, +1{C} and
Add({C}), respectively.

Let M € Mod-R. A homomorphism f € Hompg(M,C) with C € C is
called a C-preenvelope of M provided that the abelian group homomorphism
Hompg(f,C") : Homg(C,C") — Hompg (M, C") is surjective for each C" € C. The
C-preenvelope f is called a C-envelope of M provided that f = g f implies g is an
automorphism for each g € Endg(C). Moreover, a C-preenvelope f : M — C of
M is called special provided that f is injective and Coker f € 11C. C-envelopes
may not exist in general, but if they exist, they are unique up to isomorphism.
If C is the class of injective modules, then we get the usual injective envelopes.

C-precovers and C-covers are defined dually. These generalize the projective
covers introduced by Bass in the 1960’s.

A pair (A, B) of R-module classes is called a cotorsion theory (or cotorsion
pair) provided that A+t = B and A = 11B. An R-module M is called cotor-
sion if Exth(F, M) = 0 for any flat R-module F. Let .Z be the class of flat
R-modules and € be the class of cotorsion R-modules, it is known that (%, %)
is a cotorsion theory.

For any class F of R-modules. The following theorem, due to Eklof and



MATLIS INJECTIVE MODULES 461

Trlifaj, says that every R-module has a special F*!-preenvelope if there is a
set S of R-modules such that S+t = FL1. Before stating the result, we need
more notions:

A sequence of modules A = (A,| @ < p) is called a continuous chain of
modules provided that Ay = 0, A, C Agyq for all « < p and A, = U,@<a Ag
for all limit ordinals o < p.

Let M be a module and C a class of modules. Then M is called C-filtered
provided that there are an ordinal x and a continuous chain, (M,| a < k),
consisting of submodules of M such that M = M,, and such that each of
the modules My41/M, (o < k) is isomorphic to an element of C. The chain
(M,| o < k) is called a C-filtration of M.

Theorem 2.1 ([10], Theorem 3.2.1, p. 117). Let S be a set of R-modules and
M an R-module. Then there is a short exact sequence 0 - M — P — N — 0,
where P € St and N is S-filtered. In particular, M — P is a special S**-
preenvelope of M.

The following theorem from [10] gives a criterion to judge when an R-module
M has a C*'-envelope.

Theorem 2.2 ([10], Theorem 2.3.2, p. 107). Let R be a ring and M be an
R-module. Let C be a class of R-modules closed under extensions and direct
limits. Assume that M has a special C+* -preenvelope v with Coker v € C. Then
M has a C*-envelope.

A short exact sequence 0 - A — B — C' — 0 of R-modules is called pure if
the induced sequence 0 — Homp(F, A) — Hompg(F, B) — Hompg(F,C) — 0 of
abelian groups is exact for every finitely presented R-module F. A submodule
A of an R-module B is called a pure submodule of B if the canonical exact
sequence 0 -+ A — B — B/A — 0 is pure. An R-module M is called pure in-
jective if the sequence 0 — Homp(C, M) — Homp(B, M) — Hompr(A, M) — 0
is exact for every pure exact sequence 0 - A — B — C — 0 of R-modules.

Let M be an R-module. M is said to be X-pure injective if for every index
set I the direct sum M) is pure injective. M is said to be X-self orthogonal
if Exty (M, M) =0 for every index set I.

The following property of X-pure injective modules will be used in this paper.

Proposition 2.3 ([9], Corollary 1.42, p. 30). Every pure submodule of a X-pure
injective module B is a direct summand of B.

For unexplained terminology and notation, we refer the reader to [1, 3, 8,

10, 13].

3. Properties of Matlis injective modules

We start with the following definition.
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Definition 3.1. Let R be a ring and M an R-module. M is said to be Matlis
injective if Exth(E(R), M) = 0. An R-module N is said to be Matlis projective
if Exth(F(R),C) = 0 implies Exty(N,C) = 0 for any R-module C. R is said
to be a right Matlis ring if E(R) is flat and pd(E(R)) < 1.

In what follows, we denote by MZ (MP) the class of Matlis injective (pro-
jective) R-modules. For C = MZ, C-(pre)envelopes will simply be called Matlis
injective (pre)envelopes.

Proposition 3.2. Let R be a ring. Then MZ is closed under extensions, direct
products and direct summands; MZ=Mod-R if and only if E(R) is projective.

Proof. 1t is easy to see that the assertion holds by definition. ([l

Corollary 3.3. Let R be an integral domain. Then every R-module is Matlis
injective if and only if R is a field.

Proof. “ <=7 is trivial.

“ = 7. By Proposition 3.2, E(R) is projective, then there exists a non-
zero homomorphism f € Hompg(E(R), R). So f(E(R)) is a non-zero divisible
submodule of R. Let r be any non-zero element from R. We choose a non-zero
element © € f(E(R)). Since rz is non-zero and f(F(R)) is divisible, there is
an element y € f(E(R)) with (rz)y = z, and so (ry — 1)z = 0. But R is an
integral domain, then ry —1 =0, i.e., ry = 1. Hence R is a field. (]

Remark 3.4. Recall that a commutative domain R is called almost perfect
provided that R/I is a perfect ring for each ideal 0 # I # R. We will show that
MUZ is not closed under direct sums if R is an almost perfect domain but not
a field. If R is an almost perfect domain, then MZ coincides with the class of
cotorsion R-modules by [10, Theorem 4.4.16, p. 172]. But the class of cotorsion
R-modules is closed under direct sums if and only if R is a perfect ring by [11,
Theorem 19]. Note that E(R) is flat when R is a commutative domain, and so
R is a perfect ring if and only if R is a field by Corollary 3.3. Hence MZ is not
closed under direct sums when R is an almost perfect domain but not a field.
Then we will show that there exist a ring R and an R-module M such that
M doesn’t have a Matlis injective precover. For example, let R be an almost
perfect domain but not a field, then there exists a family {M;};c; of Matlis
injective R-modules such that @ie ; M; is not Matlis injective. But since MZ
is closed under direct summands by Proposition 3.2, it is easy to check that
P, M; doesn’t have a Matlis injective precover.

Lemma 3.5. Let R be a ring. Then every cotorsion R-module is Matlis injec-
tiwe if and only if E(R) is flat.

Proof. “ <=7 is clear.
“=—= 7. Let C be any cotorsion R-module. By hypothesis, we have

Extk(E(R),C) = 0.
Hence E(R) is flat by the fact that (%, %) is a cotorsion theory. O
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Proposition 3.6. Let R be a ring. Then MZ =€ if and only if E(R) is flat
and every Matlis injective R-module is cotorsion.

Proof. “ <=7 holds by assumption and Lemma 3.5.
“ = ". By assumption, we have M is cotorsion if and only if it is Matlis
injective. Then the assertion holds by Lemma 3.5. (|

Proposition 3.7. Let R be a ring. Then the following are equivalent.

(1) FEwvery quotient module of any Matlis injective R-module is Matlis in-
jective.

(2) FEuvery quotient module of any injective R-module is Matlis injective.

(3) The projective dimension of E(R) is at most 1.

Proof. (1) = (2) is trivial.

(2) = (3). Let K be any R-module. It is enough to show that Ext%(E(R),
K) = 0. Let us consider the exact sequence 0 - K — E(K) — E(K)/K — 0.
We then have the exact sequence Exty(E(R), B(K)/K) — Ext%(E(R), K) —
Ext%(E(R), E(K)) = 0. Note that Exti(E(R), BE(K)/K) = 0 by (2), we get
Exth(E(R),K) = 0.

(3) = (1). Let M be a Matlis injective R-module and N a submodule of
M. Let us consider the exact sequence 0 - N — M — M/N — 0. Applying
the functor Homp(FE(R),—) to the above exact sequence, we get the exact
sequence 0 = Extp(E(R), M) — Exti(F(R), M/N) — Ext%(E(R), N). Note
that Ext%(E(R), N) = 0 by (3), so Extg(E(R), M/N) = 0 and (1) follows. [

Remark 3.8. If E(R) is flat, then the condition that every quotient module of
any cotorsion R-module is Matlis injective is also equivalent to the conditions
of Proposition 3.7.

Lemma 3.9. Let R be a ring. Then (MP, MZI) is a cotorsion theory.
Proof. Straightforward. O

Theorem 3.10. Let R be a ring. Then the following are equivalent.

(1) R is a right Matlis ring.

(2) Every quotient module of any Matlis injective R-module is Maitlis in-
jective and every cotorsion R-module is Matlis injective.

(3) FEwvery quotient module of any injective R-module is Matlis injective and
every cotorsion R-module is Matlis injective.

(4) Fvery Matlis projective R-module is flat and its projective dimension
15 at most 1.

Proof. (1) <= (2) <= (3) hold by Lemma 3.5 and Proposition 3.7.

(1) = (4). By Lemma 3.9 and [10, Corollary 3.2.4, p. 119], every Matlis
projective R-module is a direct summand of some { E(R), R}-filtered R-module.
Note that every {E(R), R}-filtered R-module is flat and its projective dimen-
sion is at most pd(F(R)) by (1) and [10, Lemma 3.1.2, p. 113]. So every Matlis
projective R-module is flat and its projective dimension is at most 1.
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(4) = (1). Obviously, E(R) is Matlis projective by definition. So (1) holds
by assumption. O

Recall that a submodule N of a module M of projective dimension k is said
to be a tight submodule if the projective dimension of M/N is at most k. We
now have the following simple fact:

Proposition 3.11. Let R be a ring. If pd(E(R)) < 1, then tight submodules
of Matlis projective R-modules are also Matlis projective.

Proof. Let us consider the exact sequence 0 - N — M — M/N — 0, where
M is Matlis projective and N is a tight submodule of M. Then pd(M) < 1 by
hypothesis and the proof of Theorem 3.10. For any Matlis injective R-module
C, we have the induced exact sequence

Extp(M,C) — Exth(N,C) — ExtR(M/N, C).

The two ends vanish, since M is Matlis projective and pd(M/N) < pd(M) < 1.
So the middle term is 0, and hence the assertion holds. (I

Proposition 3.12. Let R be a ring. Then the following are equivalent.

(1) C € MZT whenever 0 - A — B — C — 0 is an ezxact sequence of
R-modules such that A,B € MT.

(2) E(M)/M is Matlis injective when M is Matlis injective.

(3) For any R-module M, Exth(E(R), M) = 0 implies Ext%(E(R), M) =
0.

Proof. (1) = (2) is trivial.

(2) = (3). Let M be an R-module such that Exty(E(R), M) = 0, i.e., M is
Matlis injective. Then E(M)/M is Matlis injective by (2). Applying the func-
tor Homp(E(R), —) to the exact sequence 0 — M — E(M) — E(M)/M — 0,
we have the exact sequence 0 = Exth(E(R), E(M)/M) — Ext%(E(R), M) —
Ext%(E(R), E(M)) = 0. So Ext%(E(R), M) = 0.

(3) = (1). Let 0 = A — B — C — 0 be an exact sequence of R-modules
such that A, B € MZ. Applying the functor Hompg(E(R),—) to the above
sequence, we have the exact sequence 0 = Exty(E(R), B) — Extp(E(R),C) —
Ext%(E(R), A) =0 by (3). So Exth(E(R),C) = 0, i.e., C' is Matlis injective.
Hence (1) holds. O

Proposition 3.13. Let R be a commutative Artinian ring. Then MZ is closed
under direct sums, pure submodules and direct limits. Moreover, MZI is a
definable class, i.e., it is closed under pure submodules, direct products and
direct limits.

Proof. By hypothesis, F(R) is finitely presented by [12, Theorem 3.64, p. 90].
Then MZ is closed under direct sums by the isomorphism

P Ext(F, Ma) = Exty,(F, D Ma)
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for any finitely presented R-module F' and any family {M,} of R-modules.
Suppose that A is a pure submodule of a Matlis injective R-module B. Then
we have the exact sequences 0 — Hompg(F(R), A) — Hompg(E(R), B) —
Homp(E(R),B/A) — 0 and Hompg(F(R),B) — Homg(F(R),B/A) —
Exth(E(R),A) — Extp(E(R), B) = 0. Hence Extp(E(R), A) = 0, ie., A
is Matlis injective. So MZ is closed under pure submodules. That MZ is

~

closed under direct limits follows from the isomorphism Extp(F, limM;) =

@Ext}%(F , M) for any finitely presented R-module F' and any family {M;}
of R-modules since R is a commutative Artinian ring. So MZ is definable by
Proposition 3.2. (I

Proposition 3.14. Let R be a commutative Artinian ring and S C R be a
multiplicative set. If M is a Matlis injective R-module, then S™'M is a Matlis
injective ST R-module.

Proof. By assumption, E(R) is finitely generated by [12, Theorem 3.64, p. 90|
and R is a Noetherian ring. So,

Ext's-1z(ST ER(R), ST'M) = ST'Ext' gr(Er(R), M)

by [8, Theorem 3.2.5, p. 76]. But ST'ER(R) & Eg-1z(S™!R) by [8, Theorem
3.3.3, p. 84]. Thus S™!M is a Matlis injective S~'R-module when M is a
Matlis injective R-module. O

Proposition 3.15. Let R be a commutative Noetherian ring and S C R be
a multiplicative set. If M is a Matlis projective R-module, then S™'M is a
Matlis projective S~ R-module.

Proof. Note that ST'Er(R) = Eg-1z(S7'R) by [8, Theorem 3.3.3, p. 84]
and by hypothesis. Then, every Matlis projective S~'R-module is a direct
summand of some {S~!ER(R), S~ R}-filtered S~!R-module by [10, Corollary
3.2.4, p. 119]. Since M is a Matlis projective R-module, M is a direct summand
of some {E(R), R}-filtered R-module by [10, Corollary 3.2.4, p. 119]. Let N be
an {E(R), R}-filtered R-module and the chain (N,| o < k) be a {E(R), R}-
filtration of N. Then S™!N is an {S~'Eg(R), S~ !R}-filtered S~!R-module
and the chain (S7!N,| a < k) is a {ST'Eg(R), S~ R}-filtration of S~'N by
[8, Theorem 1.5.7, p. 33, and Proposition 2.2.4, p. 44] and by definition. So
S~1M is a Matlis projective S~! R-module and the assertion holds. O

4. The existence of Matlis injective (pre)envelopes
According to Theorem 2.1, we immediately have the following proposition.

Proposition 4.1. Let R be a ring. Then every R-module has a special Matlis
injective preenvelope.

The following lemmas are needed to prove the main result of this paper.
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Lemma 4.2. Let R be a ring and M an R-module. If M is X-pure injective and
Y-self orthogonal, then Add(M) is closed under extensions and direct limits.

Proof. Let 0 - A — B — C — 0 be an exact sequence of R-modules such
that both A and C are in Add(M). Without loss of generality, we may assume
that both A and C are direct summands of M) for an index set I. Since
M is Y-self orthogonal, we have Exth(C, A) = 0. Then the exact sequence
0—A— B— C — 0splits, andso B = A C. Obviously, AP C € Add(M).
Therefore, B € Add(M). So Add(M) is closed under extensions. We claim
that any R-module N from Add(M) is 3-pure injective. It is clear that N
is pure injective since M is X-pure injective. In addition, Add(M) is closed
under direct sums. Thus N is ¥-pure injective. Let ((M;)ier, (f;i)) be a direct
system of R-modules from Add(M) where I is a directed set. Then there
exists a short exact sequence 0 — K — 691'6[ M; — thZ — 0 with K a
pure submodule of @, ; M;. But ,.; M; is X-pure injective, then the exact
sequence 0 — K — @, ; M; — limM; — 0 splits by Proposition 2.3. So
limM; is isomorphic to a direct summand of D, My, ie., limM; € Add(M).
Hence Add(M) is closed under direct limits. O

Lemma 4.3. Let R be a ring and M an R-module. Assume that M is X-pure
injective and X-self orthogonal. Then every R-module N has an M=+ -envelope.

Proof. Obviously, M+t = (Add(M))*1. Thus it is equivalent to show that ev-
ery R-module N has an (Add(M))**-envelope. By Theorem 2.1, N has a spe-
cial (Add(M))+1-preenvelope f with Coker f is { M }-filtered. Note that every
{M}-filtered R-module is in Add(M) by Lemma 4.2 and transfinite induction.
So N has an (Add(M))+1-envelope by Lemma 4.2 and Theorem 2.2. O

We are now in a position to prove the following

Theorem 4.4. Let R be a right Noetherian ring and F a class of injective R-
modules. Then every R-module M has an F'-envelope; in particular, every
R-module M has a Matlis injective envelope.

Proof. If R is right Noetherian, then every injective R-module is the direct
sum of indecomposable injective R-modules. Each such module is the injective
envelope of a cyclic R-module. Hence, we can find a representative set of such
modules. So there is a family {E;};c; of indecomposable injective R-modules
such that every injective R-module is the direct sum of copies of F;.

Let S = {E;| E;is isomorphic to adirect summand of an element of F}. It
is easy to see that (Dp s E;)*t = F+1. Note that D, cs Ei is X-pure injec-
tive and X-self orthogonal by the fact that the class of right injective R-modules
is closed under direct sums when R is right Noetherian. So the assertion holds
by Lemma 4.3. (I

We end this paper with the following remark.
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Remark 4.5. If R is a commutative Artinian ring, then every R-module has a
Matlis injective cover by Proposition 3.13 and [2, Corollary 2.6 and Proposition
4.3(3)].
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