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We introduce a quantile-adaptive framework for nonlinear vari-
able screening with high-dimensional heterogeneous data. This frame-
work has two distinctive features: (1) it allows the set of active vari-
ables to vary across quantiles, thus making it more flexible to accom-
modate heterogeneity; (2) it is model-free and avoids the difficult
task of specifying the form of a statistical model in a high dimen-
sional space. Our nonlinear independence screening procedure em-
ploys spline approximations to model the marginal effects at a quan-
tile level of interest. Under appropriate conditions on the quantile
functions without requiring the existence of any moments, the new
procedure is shown to enjoy the sure screening property in ultra-high
dimensions. Furthermore, the quantile-adaptive framework can natu-
rally handle censored data arising in survival analysis. We prove that
the sure screening property remains valid when the response variable
is subject to random right censoring. Numerical studies confirm the
fine performance of the proposed method for various semiparametric
models and its effectiveness to extract quantile-specific information
from heteroscedastic data.

1. Introduction. We consider the problem of analyzing ultra-high di-
mensional data, where the number of candidate covariates (or features) may
increase at an exponential rate. Many efforts have been devoted to this
challenging problem in recent years, motivated by modern applications in
genomics, bioinformatics, chemometrics, among others. A practically ap-
pealing approach is to first use a fast screening procedure to reduce the
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dimensionality of the feature space to a moderate scale; and then apply
more sophisticated variable selection techniques in the second stage. In this
paper, we propose a new quantile-adaptive, model-free variable screening
procedure, which is particularly appealing for analyzing high dimensional
heterogeneous data and data with censored responses.

Fan and Lv (2008) proposed the sure independence screening (SIS) method-
ology for linear regression which screens variables by ranking their marginal
correlations with the response variable. They established the desirable sure
screening property, that is, some important features are retained with prob-
ability approaching one, even if the dimensionality of the features is allowed
to grow exponentially fast with the sample size. Fan and Song (2010) fur-
ther extended the methodology to generalized linear models, see also Fan,
Samworth and Wu (2009). The problem of nonlinear features screening was
addressed in Hall and Miller (2009) using generalized correlation ranking
and more systematically in Fan, Feng and Song (2011) using nonparametric
marginal ranking, which extended the scope of applications of sure indepen-
dence screening. Bühlmann, Kalisch, and Maathuis (2010) introduced the
new concept of partial faithfulness and proposed a computationally efficient
PC-algorithm for feature screening in linear models.

Zhu et al. (2011) proposed a novel feature screening procedure which
avoids the specification of a particular model structure. This model-free
screening framework is very appealing because a misspecified model could
easily corrupt the performance of a variable selection method. Partly moti-
vated by this interesting piece of work, we propose a new framework called
quantile-adaptive model-free screening. We advocate a quantile-adaptive ap-
proach which allows the set of active variables to be different when mod-
eling different conditional quantiles. This new framework provides a more
complete picture of the conditional distribution of the response given all
candidate covariates and is more natural and effective for analyzing high-
dimensional data that are characterized by heteroscedasticity.

In the quantile-adaptive model-free screening framework, we estimate
marginal quantile regression nonparametrically using B-spline approxima-
tion. In this aspect, our technique shares some similarity with that in Fan,
Feng and Song (2011). The main technical challenge is to deal with the nons-
mooth loss function, because the nonparametric marginal utility we consider
does not have a closed form expression as in Fan, Feng and Song (2011). We
derive useful exponential bounds using the empirical process theory to es-
tablish the sure screening property. When working with marginal quantile
regression, the usual sub-Gaussian tail type condition in high-dimensional
analysis can be relaxed and replaced by the assumption that the conditional
density function of the random error has a positive lower bound around
the quantile of interest. Empirically, we also demonstrate that the proposed
procedure works well with heavy-tailed error distributions.
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Sure independence screening remains challenging and little explored when
the response variable is subject to random censoring, a common problem in
survival analysis. Fan, Feng and Wu (2010) extended the methodology of
sure independence screening using the marginal Cox proportional hazards
model and studied its performance empirically. In this paper, we demon-
strate that in the quantile-adaptive model-free screening framework, ran-
domly censored responses can be naturally accommodated by ranking a
marginal weighted quantile regression utility. We establish the sure screen-
ing property for the censored case under some general conditions.

The rest of the paper is organized as follows. In Section 2, we introduce
the quantile-adaptive model-free feature screening procedure. In Section 3,
we investigate its theoretical properties. Section 4 discusses the extension to
survival analysis. In Section 5, we carry out simulation studies to access the
performance of the proposed method. The numerical results demonstrate
the favorable performance of the proposed method, especially when the er-
rors are heavy-tailed or heteroscedastic. In Section 6, we demonstrate the
application on a real data example. Section 7 contains further discussions.
The technical details are given in Section 8.

2. Quantile-adaptive model-free feature screening.

2.1. A general framework. We consider the problem of nonlinear variable
screening in high-dimensional feature space, where we observe a response
variable Y and associated covariates X1, . . . ,Xp. The goal is to rapidly
reduce the dimension of the covariate space p to a moderate scale via a
computationally convenient procedure. Since ultra-high dimensional data
often display heterogeneity, we advocate a quantile-adaptive feature screen-
ing framework. More specifically, we assume that at each quantile level a
sparse set of covariates are relevant for modeling Y , but allow this set to
be different at different quantiles, see, for instance, Examples 2 and 3 in
Section 5. At a given quantile level α (0< α< 1), we define the set of active
variables

Mα = {j :Qα(Y |X) functionally depends on Xj},
whereQα(Y |X) is the τ th conditional quantile of Y givenX= (X1, . . . ,Xp)

T ,
that is, Qα(Y |X) = inf{y :P (Y ≤ y|X)≥ α}. Let Sα = |Mα| be the cardinal-
ity of Mα. Throughout this paper, we assume Sα, 0< α< 1, is smaller than
the sample size n.

In practice, we may consider several quantiles to explore the sparsity
pattern and the effects of the covariates at different parts of the conditional
distribution. We refer to Koenker (2005) for a comprehensive introduction
to quantile regression.

In ultrahigh dimensional data analysis, there generally exists little prior
information for specifying a statistical model. Given a large number of co-
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variates, it is hard to determine which covariates have linear effects and
which have nonlinear effects. In our framework besides the sparsity assump-
tion, we do not impose a specific model structure but allow the covariate
effects to be nonlinear.

2.2. Ranking by marginal quantile utility. Let {(Xi, Yi), i= 1, . . . , n} be
i.i.d. copies of (X, Y ), where Xi = (Xi1, . . . ,Xip)

T . Note that

Y and Xj are independent ⇔ Qα(Y |Xj)−Qα(Y ) = 0 ∀α ∈ (0,1),

where Qα(Y |Xj) is the αth conditional quantile of Y given Xj and Qα(Y )
is the αth unconditional quantile of Y . To estimate the effect of Xj on Y ,
we consider the marginal quantile regression of Y on Xj . Let fj(Xj) =
argminf E[ρα(Y − f(Xj)) − ρα(Y )], where the inclusion of ρα(Y ) makes
the expectation well defined even when Y has no finite moment, where
ρα(u) = u{α− I(u < 0)} is the quantile loss function (or check function). It
is known that fj(Xj) =Qα(Y |Xj), the αth conditional quantile of Y given
Xj .

Without loss of generality, we assume that each Xj takes values on the
interval [0,1]. Let F be the class of functions defined in condition (C1) in
Section 3.1. Let 0 = s0 < s1 < · · ·< sk = 1 be a partition of the interval. Using
the si as knots, we construct N = k+ l normalized B-spline basis functions
of order l + 1 which form a basis for F. We write these basis functions as
a vector π(t) = (B1(t), . . . ,BN (t))T , where ‖Bk(·)‖∞ ≤ 1 and ‖ · ‖∞ denotes
the sup norm. Assume that fj(t) ∈ F. Then fj(t) can be well approximated
by a linear combination of the basis functions π(t)Tβ, for some β ∈R

N .

Let β̂j = argminβ∈RN

∑n
i=1 ρα(Yi −π(Xij)

Tβ), and define

f̂nj(t) = π(t)T β̂j −F−1
Y,n(α),

where F−1
Y,n(α) is the αth sample quantile function based on Y1, . . . , Yn. Thus

f̂nj(t) is a nonparametric estimator of Qα(Y |Xj)−Qα(Y ). We expect f̂nj
to be close to zero if Xj is independent of Y .

The independence screening is based on the magnitude of the estimated
marginal components ‖f̂nj‖2n = n−1

∑n
i=1 f̂nj(Xij)

2. More specifically, we
will select the subset of variables

M̂α = {1≤ j ≤ p :‖f̂nj‖2n ≥ νn},
where νn is a predefined threshold value. In practice, we often rank the
features by ‖f̂nj‖2n and keep the top [n/ log(n)] features, where [a] denotes
the integer part of a.

3. Theoretical properties.

3.1. Preliminaries. We impose the following regularity conditions to fa-
cilitate our technical derivations.
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(C1) The conditional quantile function Qα(Y |Xj) belongs to F, where
F is the class of functions defined on [0,1] whose lth derivative satisfies a
Lipschitz condition of order c: |f (l)(s)−f (l)(t)| ≤ c0|s− t|c, for some positive
constant c0, s, t ∈ [0,1], where l is a nonnegative integer and c ∈ (0,1] satisfies
d= l+ c > 0.5.

(C2) minj∈Mα E(Qα(Y |Xj)−Qα(Y ))2 ≥ c1n
−τ for some 0 ≤ τ < 2d

2d+1
and some positive constant c1.

(C3) The conditional density fY |Xj
(t) is bounded away from 0 and ∞ on

[Qα(Y |Xj)− ξ,Qα(Y |Xj) + ξ], for some ξ > 0, uniformly in Xj .
(C4) The marginal density function gj of Xj , 1 ≤ j ≤ p, are uniformly

bounded away from 0 and ∞.
(C5) The number of basis functionsN satisfies N−dnτ = o(1) andNn2τ−1 =

o(1) as n→∞.

Condition (C1) assumes that the conditional quantile function Qα(Y |Xj)
belongs to a class of smooth functions. This condition is standard for non-
parametric spline approximation. Condition (C2) assumes that the features
in the active set at quantile level α have strong enough marginal signals; a
smaller τ corresponds to a stronger marginal signal. This condition is im-
portant as it guarantees that marginal utilities carries information about
the features in the active set. Condition (C3) is a standard condition on
random errors in the theory for quantile regression. It relaxes the usual sub-
Gaussian assumptions that are needed in the literature on high dimensional
inference. Condition (C4) is similar as condition (B) of Fan, Feng and Song
(2011). Note that (C4) is not restrictive when Xj is supported on a bounded
interval, say [0,1]. When the distribution of Xj has an unbounded support
(e.g., normal), we can view Xj as coming from a truncated distribution. In
fact, if there is an outlier in Xj as in the case of a heavy-tailed distribution,
we do better by dropping the outlier or transforming Xj to be uniformly
distributed on [0,1]. In our numerical simulations of Section 5, the normally
distributed covariates are scaled to the interval [0,1] and the results would
change little if any reasonable truncation is used instead. Condition (C5)
describes how fast the number of basis functions is allowed to grow with the
sample size.

Given (Y,X), where X= (X1, . . . ,Xp)
T , we define

β0j = argmin
β∈RN

E[ρα(Y −π(Xj)
Tβ)− ρα(Y )].(3.1)

Let fnj(t) = π(t)Tβ0j −Qα(Y ), whose sample version was defined in Sec-

tion 2. Furthermore, we let ‖fnj‖2 = E[fnj(Xj)
2]. The following lemma

shows that the spline approximation error is negligible in the sense that
the spline approximation carries the same level of information about the
marginal signal.
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Lemma 3.1. Under condition (C5), minj∈Mα ‖fnj‖2 ≥ c1n
−τ/8, for all

n sufficiently large.

3.2. Sure screening property. As covariate screening often serves only as
the first step for high dimensional data analysis, the most important prop-
erty as far as practical application is concerned is the sure screening property.
In the quantile-adaptive framework, we require that the sure screening prop-
erty holds at each quantile level α, that is, the set of selected covariates at
quantile level α includes Mα with probability tending to one.

The key step of deriving the sure screening property is to establish expo-

nential probability bounds for ‖β̂j − β0j‖ and ‖f̂nj‖2n − ‖fnj‖2. The main

technical challenge is that β̂j is defined by minimizing a nonsmooth objec-
tive function, thus does not have a closed-form expression. The exponential
bounds are summarized in the following lemma.

Lemma 3.2. Assume conditions (C1)–(C5) are satisfied.

(1) For any C > 0, there exist positive constants c2 and c3 such that

P
(
max
1≤j≤p

‖β̂j −β0j‖ ≥CN1/2n−τ
)

≤ 2p exp(−c2n
1−4τ ) + p exp(−c3N

−2n1−2τ )

for all n sufficiently large.
(2) For any C > 0, there exist some positive constants δ1 and δ2 such that

P
(
max
1≤j≤p

|‖f̂nj‖2n − ‖fnj‖2| ≥Cn−τ
)

≤ p{11exp(−δ1n
1−4τ ) + 12N2 exp(−δ2N

−3n1−2τ )},
for all n sufficiently large.

Remark. The results suggest that we can handle the dimensionality
log p = o(n1−4τ +N−3n1−2τ ). This dimensionality depends on the number
of basis functions N and the strength of the marginal signals. If we take
N = n1/(2d+1) (the optimal rate for spline approximation), then for τ <
min(1/4, (d− 1)/(2d+1)), we can handle ultra-high dimensionality, that is,
p can grow at the exponential rate.

The following theorem establishes the sure screening property.

Theorem 3.3 (Sure screening property). Under the conditions of Lem-
ma 3.2, if τ < 1/4, N3n2τ−1 = o(1), and we take the threshold value νn =
δ∗n−τ with δ∗ ≤ c1/16 for the constant c1 specified in Lemma 3.1, then

P (Mα ⊂ M̂α)≥ 1− Sα{11exp(−δ1n
1−4τ ) + 12N2 exp(−δ2N

−3n1−2τ )},
for all n sufficiently large. Especially, P (Mα ⊂ M̂α)→ 1 as n→∞.
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3.3. Controlling false discovery. An interesting question is how many
variables are retained after the screening. A simple bound is provided below,
which extends the results in Fan, Feng and Song (2011).

Let Π = (π(X1), . . . ,π(Xp))
T and Σ = E(ΠΠ

T ). Let ‖ · ‖F denote the
Frobenius matrix norm and let ‖ · ‖2 denote the spectral matrix norm. Note
that

p∑

j=1

‖fnj‖2 =
p∑

j=1

E(π(Xj)β0j)
2 ≤

p∑

j=1

λmax(Eπ(Xj)π(Xj)
T )‖β0j‖2

≤N

p∑

j=1

trace(Eπ(Xj)π(Xj)
T )≤NE

[
p∑

j=1

N∑

k=1

B2
k(Xj)

]

≤NE(‖Π‖2F )≤N2E(‖Π‖22) =N2λmax(Σ),

where the second inequality uses the result ‖β0j‖2 ≤ cN for some posi-
tive constant c (proved in the supplemental material [He, Wang and Hong
(2013)]).

For any ε > 0, we define the set

Dn =
{
max
1≤j≤p

|‖f̂nj‖2n −‖fnj‖2| ≤ εn−τ
}
.

Then on Dn, the cardinality of {j :‖f̂nj‖2n > 2εn−τ} cannot exceed the car-
dinality of {j :‖fnj‖2 > εn−τ}, which is bounded by ε−1N2nτλmax(Σ).

For νn = δ∗n−τ , we take ε = δ∗/2, then P (|M̂α| ≤ ε−1N2nτλmax(Σ)) ≥
P (Dn). Applying Lemma 3.2(2), we obtain the following theorem which
provides a bound on the size of selected variables.

Theorem 3.4. Under the conditions of Theorem 3.3, there exist some
positive constants δ1 and δ2 such that for all n sufficiently large,

P (|M̂α| ≤ 2N2nτλmax(Σ)/δ∗)

≥ 1− p{11exp(−δ1n
1−4τ ) + 12N2 exp(−δ2N

−3n1−2τ )}.
Especially, P (|M̂α| ≤ 2N2nτλmax(Σ)/δ∗)→ 1 as n→∞.

The above theorem suggests that if λmax(Σ) = O(nγ) for some γ > 0,
then the model obtained after screening is of polynomial size with high
probability. Similar observation has been reported for the L2-based screening
procedure of Fan, Feng and Song (2011).

4. Quantile-adaptive screening in survival analysis. There exists very
limited amount of work on feature screening with censored responses. Fan,
Feng and Wu (2010) and Zhao and Li (2012) investigated marginal screening
based on the Cox proportional hazards model. As a powerful alternative to
the classical Cox model, quantile regression has recently emerged as a useful
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tool for analyzing censored data, see Ying, Jung and Wei (1995), McKeague,
Subramanian and Sun (2001), Portnoy (2003), Peng and Huang (2008),
Wang and Wang (2009), among others. The quantile regression approach
directly models the survival time and is easy to interpret. Furthermore, it
relaxes the proportional hazards assumption of the Cox model and can natu-
rally accommodate heterogeneity in the data. The quantile regression based
screening procedure can be naturally extended to survival analysis.

Assume that Yi is subject to random right censoring. Instead of {(Xi, Yi),
i= 1, . . . , n}, we observe {(Xi, Y

∗
i , δi), i= 1, . . . , n} where

Y ∗
i =min(Yi,Ci), δi = I(Yi ≤Ci).(4.1)

The random variable Ci, called the censoring variable, is assumed to be
conditionally independent of Yi given Xi. In this section, we assume that
the censoring distribution is the same for all covariates, but this assumption
will be relaxed in Section 7.1. Let G(t) = P (Ci > t) be the survival function

of Ci. Let Ĝ(t) be the Kaplan–Meier estimator of G(t), based on {Y ∗
i , δi},

i= 1, . . . , n.
Similarly as in the case of complete data, we consider independence screen-

ing based on nonparametric marginal regression given Xj . More specifically,
we consider inverse probability weighted marginal quantile regression esti-
mator

β̂
c

j = argmin
β∈RN

n∑

i=1

δi

Ĝ(Y ∗
i )

ρα(Y
∗
i −π(Xij)

Tβ).

Let f̂ c
nj(t) = π(t)T β̂

c

j −F−1
KM,n(α) where F

−1
KM,n(α) is the nonparametric esti-

mator of the αth conditional quantile of Y based on (Y ∗
i ,Ci, δi), i= 1, . . . , n.

The estimator we use here is the inverse function (the left-continuous ver-
sion) of the Kaplan–Meier estimator of the distribution function of Y , whose
properties have been studied in Lo and Singh (1986). We will select the sub-

set of variables M̂ c
α = {1 ≤ j ≤ p :‖f̂ c

nj‖2n ≥ νcn}, where νcn is a predefined
threshold value. As for the complete data case, in practice we often rank the
features by ‖f̂ c

nj‖2n and keep the top [n/ log(n)] features.
For the random censoring case, in addition to conditions (C1)–(C5), we

assume that:

(C6) P (t ≤ Yi ≤ Ci) ≥ τ0 > 0 for some positive constant τ0 and any t ∈
[0, T ], where T denotes the maximum follow-up time. Furthermore, sup{t :
P (Y > t)> 0} ≥ sup{t :P (C > t)> 0}. The survival function of the censor-
ing variable G(t) has uniformly bounded first derivative.

(C7) There exist 0< β1 < β2 < 1 such that α ∈ [β1, β2] and that the dis-
tribution function of Yi is twice differentiable in [Qβ1(Yi)− ε,Qβ2(Yi) + ε]
for some 0 < ε < 1, with the first derivative bounded away from zero and
the second derivative bounded in absolute value.
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Condition (C6) and (C7) are common in the survival analysis literature
to ensure that the Kaplan–Meier estimator and its inverse function are well
behaved. The following theorem states that the sure screening property holds
for the random censoring case and an upper bound that controls the size of
selected variables can be obtained.

Theorem 4.1. Assume conditions (C1)–(C7) are satisfied, τ < 1/4 and
N3n2τ−1 = o(1), if we take the threshold value νcn = δ∗n−τ with δ∗ ≤ c1/16,
then:

(1) there exist positive constants δ3 and δ4 such that

P (Mα ⊂ M̂ c
α)≥ 1− Sα{17exp(−δ3n

1−4τ ) + 12N2 exp(−δ4N
−3n1−2τ )},

for all n sufficiently large. Especially, P (Mα ⊂ M̂ c
α)→ 1 as n→∞.

(2) for all n sufficiently large,

P (|M̂ c
α| ≤ 2N2nτλmax(Σ)/δ∗)

≥ 1− p{17exp(−b7n
1−4τ ) + 12N2 exp(−b8N

−3n1−2τ )}.

Especially, P (|M̂ c
α| ≤ 2N2nτλmax(Σ)/δ∗)→ 1 as n→∞.

5. Monte Carlo studies. We carry out simulation studies to investigate
the performance of the proposed quantile adaptive sure independence screen-
ing procedure (to be denoted by QaSIS). We consider two criteria for evalu-
ating the performance as in Zhu et al. (2011). The first criterion is the min-
imum model size (denoted by R), that is, the smallest number of covariates
that we need to include to ensure that all the active variables are selected.
The second criterion is the proportion of active variables (denoted by S)
selected by the screening procedure when the threshold νn = [n/ log(n)] is
adopted. Note that the first criterion does not need to specify a threshold.
An effective variable screening procedure is expected to have the value of R
reasonably small comparing to the number of active variables and the value
of S close to one.

We first consider the complete data case and compare the performance of
QaSIS with the nonparametric independence screening (NIS) procedure of
Fan, Feng and Song (2011) and the sure independent ranking and screening
(SIRS) procedure of Zhu et al. (2011). In computing QaSIS and NIS, the
number of basis (dn) is set to be [n1/5] = 3. For each example, we report the
results based on 500 simulation runs.

Example 1 (Additive model, n= 400, p= 1000). This example is adapted
from Fan, Feng and Song (2011). Let g1(x) = x, g2(x) = (2x− 1)2, g3(x) =
sin(2πx)/(2− sin(2πx)), and g4(x) = 0.1 sin(2πx) + 0.2cos(2πx) +
0.3 sin(2πx)2+0.4cos(2πx)3+0.5 sin(2πx)3. The following cases are studied:
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• Case (1a): Y = 5g1(X1) + 3g2(X2) + 4g3(X3) + 6g4(X4) +
√
1.74ε, where

the vector of covariates X= (X1, . . . ,X1000)
T is generated from the mul-

tivariate normal distribution with mean 0 and the covariance matrix
Σ = (σij)1000×1000 with σii = 1 and σij = ρ|i−j| for i 6= j, ε ∼ N(0,1) is
independent of X. In case (1a), we consider ρ= 0.

• Case (1b): same as case (1a) except that ρ= 0.8.
• Case (1c): Same as case (1b) except that ε has the Cauchy distribution.

Note that the models are homoscedastic in Example 1, thus the number of
active variables are the same across different quantiles.

Example 2 (Index model, n= 200, p= 2000). This example is adapted
from Zhu et al. (2011). The random data are generated from Y = 2(X1 +
0.8X2+0.6X3+0.4X4+0.2X5)+exp(X20+X21+X22) ·ε, where ε∼N(0,1),
X= (X1,X2, . . . ,X2000)

T follows the multivariate normal distribution with
the correlation structure described in case (1b). Different from the regression
models in Example 1, this model is heteroscedastic: the number of active
variables is 5 at the median but 8 elsewhere.

Example 3 (A more complex structure, n= 400, p= 5000). We consider
a more complex heteroscedastic model for which the conditional distribution
of Y does not have a simple additive or index structure.

• Case (3a): Y = 2(X2
1 + X2

2 ) + {10−1 exp(X1 + X2 + X18 + X19 + · · · +
X30)} · ε, where ε ∼ N(0,1), and X = (X1,X2, . . . ,X5000)

T follows the
multivariate normal distribution with the correlation structure described
in case (1b). In this case, the number of active variables is 2 at the median
but is 15 elsewhere.

• Case (3b): same as case (3a), but with 2(X2
1 +X2

2 ) replaced by 2((X1 +
1)2 + (X2 + 2)2).

The median value of R (with IRQ in the parenthesis) and the average
value of S for QaSIS, NIS and SIRS are summarized in Table 1. For Qa-
SIS, we report results for two quantiles α = 0.5 and 0.75. We observe the
following from Table 1: (i) The L2 norm based NIS procedure exhibits the
best performance when the random error has a normal distribution, but its
performance deteriorates substantially for heavy-tailed or heteroscedasitic
errors (Examples 1–2). (ii) We observe that in case (1a) where ρ = 0, no
method works really well in terms of the minimum model size. This is be-
cause the independent signals work against the marginal effect estimation
as accumulated noise, thus masking the relatively weak signals from X3 and
X4 in this model. (iii) In Example 3 where the model has a more complex
structure, QaSIS is effective in identifying the number of active variables at
different quantiles; while the performance of SIRS depends on the functional
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Table 1

Results for Examples 1–3. The numbers reported are the median of R [with interquartile
range (IQR) given in parentheses] and S

Example Case Method p
∗

R(IQR) S

Example 1 (1a) QaSIS (α= 0.50) 4 655 (434) 0.56
QaSIS (α= 0.75) 4 652 (398) 0.56

NIS 4 660 (415) 0.55
SIRS 4 689 (365) 0.53

(1b) QaSIS (α= 0.50) 4 4 (0) 1.00
QaSIS (α= 0.75) 4 4 (0) 1.00

NIS 4 4 (0) 1.00
SIRS 4 6 (9) 0.99

(1c) QaSIS(α= 0.50) 4 4 (0) 1.00
QaSIS(α= 0.75) 4 4 (0) 1.00

NIS 4 6 (79) 0.83
SIRS 4 7 (14) 0.98

Example 2 QaSIS (α= 0.50) 5 6 (2) 1.00
QaSIS (α= 0.75) 8 18 (24) 0.96

NIS 8 1726 (511) 0.22
SIRS 8 18 (16) 0.97

Example 3 (3a) QaSIS (α= 0.50) 2 3 (2) 1.00
QaSIS (α= 0.75) 15 153 (207) 0.89

NIS 15 3117 ( 4071) 0.50
SIRS 15 698 (1140) 0.89

(3b) QaSIS (α= 0.50) 2 2 (1) 1.00
QaSIS (α= 0.75) 15 88 (542) 0.92

NIS 15 4166 (1173) 0.25
SIRS 15 29 (21) 1.00

p∗: the number of truly active variables.

form. Overall, our simulations for the complete data case demonstrate that
the performance of QaSIS is on par with or better than that of NIS and
SIRS for a variety of distributions of covariates and errors.

Variable screening with censored responses has received little attention
in the literature. In Example 4 below, we compare the quantile-adaptive
nonparametric marginal screening procedure proposed in Section 4 with the
Cox model based marginal screening procedure [Cox(SIS)] of Fan, Feng and
Wu (2010) and a naive procedure treating the censored data as complete
and then applying to the QaSIS procedure (denoted by Naive).

Example 4 (Censored responses). We consider a case in which the la-
tent response variable Yi is generated using the same setup as in case (1b).
Let Y ∗

i = min(Yi,Ci), where the censoring time Ci is generated from a 3-



12 X. HE, L. WANG AND H. G. HONG

Table 2

Simulation results for Example 4 (n= 400, p= 1000). The numbers reported are the
median of R [with interquartile range (IQR) given in parentheses] and S

Method p
∗

R(IQR) S

QaSIS (α= 0.50) 4 4 (2) 0.99
QaSIS (α= 0.25) 4 5 (22) 0.96
LQaSIS (α= 0.50) 4 4 (6) 0.98
LQaSIS (α= 0.25) 4 5 (13) 0.98
Naive (α= 0.50) 4 254 (497) 0.74
Naive (α= 0.25) 4 792 (351) 0.14
Cox (SIS) 4 190 (655) 0.70

p∗: the number of truly active variables.

component normal mixture distribution 0.4N(−5,4) + 0.1N(5,1) +
0.5N(55,1). The censoring probability is about 45%. Due to the high censor-
ing rate, the performance of the variable screening procedures is investigated
at the median and the 0.25 quantile.

Table 2 summarizes the simulations results based on 100 runs. QaSIS
substantially outperforms both Naive and Cox(SIS). Under-performance of
Cox(SIS) can be attributed to the fact that the proportional hazards as-
sumption is not satisfied in this example. Table 2 also includes the LQaSIS
procedure which will be discussed in Section 7.1.

6. Real data analysis. We illustrate the proposed screening method on
the diffuse large-B-cell lymphoma (DLBCL) microarray data of Rosenwald
et al. (2002). The data set contains the survival times of 240 patients and the
gene expression measurements of 7399 genes for each patient. The gene ex-
pression measurements for each gene are standardized to have mean zero
and variance one. To assess the predictive performance of the proposed
method, we divide the data set into a training set with n1 = 160 patients
and a testing set with remaining n2 = 80 patients, in the same way as Bair
and Tibshirani (2004) did. The index of the training set is available from
http://www-stat.stanford.edu/~tibs/superpc/staudt.html.

Nearly half of the survival time data are censored, so we focus our atten-
tion on two quantile levels α= 0.2 and 0.4 that represent the effects of gene
expression on the sub-population of patients with poor prognosis. We apply
the proposed QaSIS method to the training data to select [n1/ log(n1)] = 31
genes, which is followed up by a variable selection procedure based on addi-
tive quantile regression with the SCAD penalty [Fan and Li (2001)] to find
two top genes. As with the empirical studies in the simulation study, we use
three internal knots of N = 3. Because almost all the censoring occurs above

http://www-stat.stanford.edu/~tibs/superpc/staudt.html


QUANTILE-ADAPTIVE SCREENING 13

Table 3

Estimated slope coefficients (and p-values) for survival time
versus the risk score at αth quantile obtained by QaSIS and

SIS (Cox)

Method Estimated coefficients p-value

QaSIS (α= 0.4) 0.93 0.02
QaSIS (α= 0.2) 0.53 0.04

SIS (Cox) (α= 0.4) 0.16 0.62
SIS (Cox) (α= 0.2) 0.17 0.62

the 0.4th quantile, we do not need to re-weight the censored observations
for the low quantiles we are considering in this example. Based on the two
selected genes at each α, we estimate the corresponding quantile function.
The estimated quantile function from the training set is then used to calcu-
late risk scores for each patient in the testing data set. If Yi is the survival
time of the ith patient in the training set, with si as the predicted risk score,
we expect the αth quantile of Yi given si to have a significant (and positive)
slope.

For the purpose of comparison, we also follow the same analysis path but
replace QaSIS by the sure independence screening for Cox models, SIS(Cox),
of Fan, Feng andWu (2010) and the SCAD-penalized Cox regression to select
two genes. The risk scores are then calculated based on the linear index
for the Cox model. Table 3 summarizes the slope coefficients of regressing
survival times on risk scores in the training set based on the censored quantile
regression of Portnoy (2003). It is clear that the analysis based on QaSIS has
the desired predictive power, where the 0.2 and 0.4 quantiles of survival time
for the testing data set are significantly associated with the predicted risk
scores, but the analysis based on SIS(Cox) did not make it. If we regress the
survival time on the risk scores on the training data, we would get coefficients
of exactly 1.0 under QaSIS, but it would not have validation power.

We examined the two genes selected by QaSIS. At α= 0.4, their GeneIDs
are 31981 (known as AA262133, septin 1) and 17902 (AA284323, glutathione
synthetase). Both genes belong to the known Proliferation signature group
in the study of DLBCL by Rosenwald et al. (2002). Gene AA262133 was
also ranked very high by Li and Luan (2005) using the partial likelihood-
based scores. At α= 0.2, the two selected genes have IDs 31585 (known as
NM 018518, MCM10 minichromosome maintenance deficient 10) and 33014
(AA769543, Hypothetical protein MGC4189). We find that Gene 31858 also
belongs to the known Proliferation signature group. Gene 33014 was identi-
fied as an interesting candidate by Li and Luan (2005). We did not find any
signature group associated with it, but it seems quite related to the lower
tail of the survival time distribution, and is worth further investigation.
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7. Discussions.

7.1. Further extension on screening with censored responses. The as-
sumption that the censoring distribution does not depend on the covari-
ates is popular in regression analysis of survival data. It can be further
relaxed. Assume that Yi and Ci are conditionally independent given Xij ,
j = 1, . . . , p. Let G(t|Xij) = P (Ci > t|Xij) be the conditional survival func-

tion of Ci given Xij . Let Ĝ(t|Xij) be the local Kaplan–Meier estimator of
G(t|Xij) [e.g., Beran (1981) and Gonzalez-Manteiga and Cadarso-Suarez
(1994)]. More specifically,

Ĝ(t|x) =
n∏

j=1

{
1− Bnj(x)∑n

k=1 I(Y
∗
k ≥ Y ∗

j )Bnk(x)

}I(Y ∗
j ≤t,δj=0)

,(7.1)

where Bnk(x) =K(x−xk
hn

)/{∑n
i=1K(x−xi

hn
)}, k = 1, . . . , n, are the Nadaraya–

Watson weights, hn is the bandwidth and K(·) is a density function. We
consider estimating β0j using the locally weighted censored quantile regres-
sion, that is,

β̃
c

j = argmin
β∈RN

n∑

i=1

δi

Ĝ(Y ∗
i |Xij)

ρα(Y
∗
i −π(Xij)

Tβ).

Let f̃ c
nj(t) = π(t)T β̃

c

j − F−1
KM,n(α) and define M̃ c

α = {1≤ j ≤ p :‖f̃ c
nj‖2n ≥ ηcn}

where ηcn is a predefined threshold value. We refer to this new procedure as
LQaSIS, whose numerical performance is reported in Table 2 and two other
examples in the supplemental material [He, Wang and Hong (2013)].

We assume, instead of (C6):

(C6′) infxP (t ≤ Yi ≤ Ci|x) ≥ τ0 > 0 for some positive constant τ0 and
any t ∈ [0, T ], where T denotes the maximum follow-up time. G(t|x) has
first derivatives with respect to t, which is uniformly bounded away from
infinity; and G(t|x) has bounded (uniformly in t) second-order partial deriva-
tives with respect to x. Furthermore, t0 ≤ sup{t :G(t|x)> 0} ≤ t1 uniformly
in x for some positive constants t0 and t1, and sup{t :P (Y > t|x) > 0} ≥
sup{t :G(t|x)> 0} almost surely for x.

Then Theorem 4.1 can be extended as follows.

Theorem 7.1. Assume conditions (C1)–(C5), (C6′) and (C7) are sat-
isfied, τ < 1/4, nh3 →∞, N3n2τ−1 = o(1), N2n2τ−1(logn)2h−1 = o(1) and
(N + nτ )nτh2 = o(1). If we take νn = δ∗n−τ with δ∗ ≤ c1/16, then:

(1) there exist positive constants δ3 and δ4 such that

P (Mα ⊂ M̂ c
α)≥ 1− Sα{17exp(−δ3n

1−4τ ) + 12N2 exp(−δ4N
−3n1−2τ )},

for all n sufficiently large. Especially, P (Mα ⊂ M̂ c
α)→ 1 as n→∞.
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(2)

P (|M̂ c
α| ≤ 2N2nτλmax(Σ)/δ∗)

≥ 1− p{17exp(−b7n
1−4τ ) + 12N2 exp(−b8N

−3n1−2τ )},
for all n sufficiently large. Especially, P (|M̂ c

α| ≤ 2N2nτλmax(Σ)/δ∗)→ 1 as
n→∞.

The proof of Theorem 7.1 is given in the supplemental material [He, Wang
and Hong (2013)].

7.2. Limitations and other issues. We have not investigated the prob-
lem of adaptively selecting the number of basis functions in this paper for
two reasons: (1) although adaptive tuning is possible, it will significantly
increase the computational time as it needs to be done for each covariate
separately; (2) optimal estimation is not the goal for marginal screening, in-
stead consistent estimation generally suffices. Empirically, we find that 3 or
4 internal knots are generally enough to flexibly approximate many smooth
functions typically seen in practice.

Marginally unimportant but jointly important variables may not be pre-
served in marginal screening. This is a well-recognized weakness of all exist-
ing marginal screening procedures. Iterative procedures may be helpful to a
certain degree for this problem [Fan and Lv (2008)]. In the same spirit, we
find that in practice a slightly modified QaSIS helps in situations where a
dominating variable increases the error variance of the marginal regression
model for other variables and hence mask the significance of other variables.
If the top ranked variable is dominating, then the modified QaSIS removes
its effects from Y first and screen the remaining variables again.

The way we define the set of active variables can be considered as a
nonparametric approach in the sense that we consider directly the condi-
tional quantile function without a specific model structure. In real life high-
dimensional data analysis, the knowledge needed for an appropriate model
specification is often inadequate. Using a misspecified model to perform vari-
able selection is likely to produce misleading results. We propose to separate
variable screening and model building, where a nonparametric approach is
applied to screen high-dimensional variables and then followed by sensible
model building in the second stage in a lower-dimensional space. We expect
that this model-free approach to variable screening to gain momentum in
ultra-high dimensional learning, see, for example, the work of Li, Zhong and
Zhu (2012) on distance correlation based screening.

8. Technical proofs. We present the proof for the random censoring case,
as this is the more challenging scenario. The proof for the complete data case
and that for Lemma 3.1 are given in the supplemental material [He, Wang
and Hong (2013)].



16 X. HE, L. WANG AND H. G. HONG

To establish the sure independence property, a key step is to obtain an
exponential tail probability bound for

P
(
max
1≤j≤p

|‖f̂ c
nj‖2n − ‖fnj‖2| ≥Cn−τ

)
,(8.1)

where C is any positive constant. We have

‖f̂ c
nj‖2n = β̂

cT

j (Pnπ(Xj)π(Xj)
T )β̂

c

j − 2F−1
KM,n(α)n

−1(Pnπ(Xj))
T
β̂
c

j

+ (F−1
KM,n(α))

2,

‖fnj‖2 = βT
0j(Eπ(Xj)π(Xj)

T )β0j − 2Qα(Y )(Eπ(Xj))
T
β0j + (Qα(Y ))2,

where Pnπ(Xj)π(Xj)
T = n−1

∑n
i=1π(Xij)π(Xij)

T , Pnπ(Xj) = n−1 ×∑n
i=1π(Xij), and Eπ(Xj)π(Xj)

T denotes the expectation of π(Xj)π(Xj)
T

under the true distribution of Xj . Note that

‖f̂ c
nj‖2n −‖fnj‖2

= (β̂
c

j −β0j)
T (Pnπ(Xj)π(Xj)

T )(β̂
c

j −β0j)

+ 2(β̂
c

j − β0j)
T (Pnπ(Xj)π(Xj)

T )β0j

+ β̂
c

j(Pnπ(Xj)π(Xj)
T −Eπ(Xj)π(Xj)

T )β0j

− 2F−1
KM,n(α)[Pnπ(Xj)

T β̂
c

j −Eπ(Xj)
Tβ0j ]

+ 2[Qα(Y )−F−1
KM,n(α)](Eπ(Xj)

Tβ0j)

+ [(F−1
KM,n(α))

2 − (Qα(Y ))2]

∆
=

6∑

k=1

Sjk,

where the definition of Sjk is clear from the context. From the argument of
Lemma 3.1, E(π(Xj)

Tβ0j) is uniformly bounded inXj and by Lemma 8.4(4)

below, we have |Sj5|=O(n−1/2(logn)1/2) = o(n−τ ) almost surely. Similarly,

|Sj6|=O(n−1/2(logn)1/2) = o(n−τ ) almost surely. Therefore, for all n suffi-
ciently large,

P
(
max
1≤j≤p

|‖f̂ c
nj‖2n − ‖fnj‖2| ≥Cn−τ

)

≤ P

(
max
1≤j≤p

4∑

k=1

|Sjk| ≥Cn−τ/2

)

≤
4∑

k=1

P
(
max
1≤j≤p

|Sjk| ≥Cn−τ/8
)
.
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In the following, we shall provide details on deriving exponential tail bound
for P (max1≤j≤p |Sjk| ≥Cn−τ/8).

8.1. Properties of the spline basis. First, we recall some useful properties
of the basis vector π(t) = (B1(t), . . . ,BN (t))T . Zhou, Shen and Wolfe (1998)
established that there exist two positive constants b1 and b2 such that

b1N
−1 ≤ λmin(Eπ(Xj)π(Xj)

T )≤ λmax(Eπ(Xj)π(Xj)
T )

(8.2)
≤ b2N

−1 ∀j,
where λmin and λmax denote the smallest eigenvalue and the largest eigen-
value, respectively.

Stone (1985) established that there exists a positive constant b3 such that

E(B2
k(Xij))≤ b3N

−1, 1≤ k ≤N,1≤ i≤ n,1≤ j ≤ p.(8.3)

Similar result can be found in He and Shi (1996).

Lemma 8.1. Let Pnπ(Xj)π(Xj)
T = n−1

∑n
i=1π(Xij)π(Xij)

T and Dj =
Pnπ(Xj)π(Xj)

T −Eπ(Xj)π(Xj)
T .

(1) There exists a positive constant c4 such that for all n sufficiently large

P (λmax(Pnπ(Xj)π(Xj)
T )≥ (b2 +1)N−1)≤ 2N2 exp(−c4nN

−3),(8.4)

(2) For any c5 > 0, there exists a positive constant c6 such that for all n
sufficiently large

P (max(|λmax(Dj)|, |λmin(Dj)|)≥ c5N
−1n−τ )

(8.5)
≤ 2N2 exp(−c6N

−3n1−2τ ).

Proof. The proof is an extension of that for Lemma 5 in Fan, Feng
and Song (2011) which proved similar results for the smallest eigenvalue.
First, for any two symmetric matrices A and B, we have λmax(A+B) ≤
λmax(A) + λmax(B). This implies that λmax(A)− λmax(B) ≤ λmax(A−B)
and λmax(B)− λmax(A)≤ λmax(B−A). Thus

|λmax(A)− λmax(B)| ≤max{|λmax(A−B)|, |λmax(B−A)|}.
Applying the above inequality, we have

|λmax(Pnπ(Xj)π(Xj)
T )− λmax(Eπ(Xj)π(Xj)

T )|
(8.6)

≤max{|λmax(Dj)|, |λmax(−Dj)|}.
For any N -dimensional vector a= (a1, . . . , aN )T satisfying ‖a‖= 1, we have

|aTDja| ≤ ‖Dj‖∞(
∑N

i=1 |ai|)2 ≤N‖Dj‖∞, where ‖Dj‖∞ is the sup norm of
the matrix Dj . Thus λmax(Dj) = max‖a‖=1 a

T
Dja ≤ N‖Dj‖∞. Also

λmax(Dj) =−min‖a‖=1(−a
T
Dja)≥−N‖Dj‖∞. Thus |λmax(Dj)| ≤N‖Dj‖∞.
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Similarly, we have |λmax(−Dj)| ≤N‖Dj‖∞. Following (8.6) and using the
result on the smallest eigenvalue of Dj [Fan, Feng and Song (2011)], we have

|λmax(Pnπ(Xj)π(Xj)
T )− λmax(Eπ(Xj)π(Xj)

T )|
(8.7)

≤max(|λmax(Dj)|, |λmin(Dj)|)≤N‖Dj‖∞.

As in Fan, Feng and Song (2011), applying Bernstein’s inequality to each
entry of Dj , it can be shown that ∀δ > 0,

P (N‖Dj‖∞ ≥Nδ/n)≤ 2N2 exp

{
− δ2

2(b3nN−1 + δ/3)

}
.(8.8)

To prove (8.4), we use the bound in (8.2), apply the inequality in (8.7)
and take δ =N−2n in (8.8). This gives

P (λmax(Pnπ(Xj)π(Xj)
T )≥ (b2 +1)N−1)≤ 2N2 exp(−c4N

−3n),

for some positive constant c4 for all n sufficiently large.
To prove (8.5), we apply the inequality in (8.7) and take δ = c5N

−2n1−τ

in (8.8). This gives

P (max(|λmax(Dj)|, |λmin(Dj)|)≥ c5N
−1n−τ )≤ 2N2 exp(−c6N

−3n1−2τ ),

for some positive constant c6 for all n sufficiently large. �

8.2. An exponential tail probability bound for ‖β̂c

j −β0j‖. Let

Bn(β) = n−1
n∑

i=1

δi[Ĝ(Y ∗
i )]

−1[ρα(Y
∗
i −π(Xij)

Tβ)− ρα(Y
∗
i )],

B(β) = E{δi[G(Y ∗
i )]

−1[ρα(Y
∗
i −π(Xij)

Tβ)− ρα(Y
∗
i )]}.

Then β̂
c

j = argminβ∈RN Bn(β). Applying the iterative expectation formula,
we have

B(β) = E{E{I(Yi ≤Ci)[G(Yi)]
−1[ρα(Yi −π(Xij)

Tβ)− ρα(Yi)]|Yi,Xij}}
=E[ρα(Yi −π(Xij)

Tβ)− ρα(Yi)].

Hence, β0j = argminβ∈RN B(β).

We can bound the difference ‖β̂c

j −β0j‖ by the difference of their respec-
tive objective functions.

Lemma 8.2. For any δ > 0,

P (‖β̂c

j − β0j‖ ≥ δ)
(8.9)

≤ P

(
sup

‖β−β0j‖≤δ
|Bn(β)−B(β)| ≥ 1

2
inf

‖β−β0j‖=δ
(B(β)−B(β0j))

)
.
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Proof. This is a direct application of Lemma 2 of Hjort and Pollard
(1993) making use of the convexity of the objective function. �

The lower bound of the right-hand side of (8.9) can be explicitly evaluated
for any given δ > 0. This is summarized in the following lemma.

Lemma 8.3. Let C > 0 be an arbitrary constant. Assume that N−dnτ =
o(1), then there exists a positive constant b4 such that

inf
‖β−β0j‖=CN1/2n−τ

(B(β)−B(β0j))≥ b4n
−2τ

for all n sufficiently large.

Proof. We consider β = β0j + CN1/2n−τ
u, where u ∈ R

N satisfying
‖u‖= 1. Using the identity by Knight [(1998), page 758], we have

B(β)−B(β0j)

= E{ρα(Y −π(Xj)
Tβ0j −CN1/2n−τπ(Xj)

T
u)− ρα(Y −π(Xj)

Tβ0j)}

=CN1/2n−τE{π(Xj)
T
u[I(Y −π(Xj)

Tβ0j ≤ 0)− τ ]}

+E

{∫ CN1/2n−τπ(Xj)T u

0
[I(Y −π(Xj)

Tβ0j ≤ s)

− I(Y −π(Xj)
Tβ0j ≤ 0)]ds

}

=CN1/2n−τE{π(Xj)
T
u[FY |Xj

(π(Xj)
Tβ0j)−FY |Xj

(fj(Xj))]}

+E

{∫ CN1/2n−τπ(Xj)
T
u

0
[FY |Xj

(π(Xj)
Tβ0j + s)

−FY |Xj
(π(Xj)

Tβ0j)]ds

}

∆
= I1 + I2.

By Hölder’s inequality, we have

|I1| ≤ CN1/2n−τ (E(π(Xj)
T
u)2)1/2

× [E(FY |Xj
(π(Xj)

Tβ0j)−FY |Xj
(fj(Xj)))

2]1/2

≤ CN1/2n−τO(N−1/2)O(N−d)

=O(N−dn−τ ),

where the second inequality uses inequality (B.3) in the supplementary ma-
terial and (8.2).
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Furthermore, for some ξ between π(Xj)
Tβ0j + s and π(Xj)

Tβ0j ,

I2 = E

{∫ CN1/2n−τπ(Xj)
T
u

0
fY |Xj

(ξ)sds

}
=O(1)E(N1/2n−τπ(Xj)

T
u)2

=O(n−2τ )

by (8.2). Note that I2 is nonnegative and I1 = o(I2). Thus, the conclusion
of the lemma holds. �

Lemmas 8.4–8.6 below provide several useful technical results for evalu-
ating the right-hand side of (8.9).

Lemma 8.4. Assume conditions (C6) and (C7). The Kaplan–Meier es-

timator Ĝ(t) satisfies:

(1) sup0≤t≤T |Ĝ(t)−G(t)|=O(n−1/2(logn)1/2) almost surely.

(2) Ĝ(t)−1 −G(t)−1 = n−1
∑n

j=1

ξ(Y ∗
j ,δj ,t)

G2(t)
+Rn(t), where ξ(Y ∗

j , δj , t) are

independent mean zero random variables whose expression is given in The-
orem 1 of Lo and Singh (1986), and sup0≤t≤T |Rn(t)| = O(n−3/4(logn)3/4)
almost surely.

(3) sup0≤t≤T | 1
Ĝ(t)

− 1
G(t) |=O(n−1/2(logn)1/2) almost surely.

(4) supβ1≤α≤β2
|F−1

KM,n(α)−Qτ (Y )|=O(n−1/2(logn)1/2) almost surely.

Proof. The results in (1) and (4) are given in Lemma 3 of Lo and Singh
(1986). The result in (2) follows from the Taylor expansion, Theorem 1 in
Lo and Singh (1986) and the result in (1). The proof of (3) follows Taylor
expansion and (1). �

Lemma 8.5 (Massart’s concentration theorem, 2000). Let W1, . . . ,Wn

be independent random variables and let G be a class of functions satisfying
ai,g ≤ g(Wi)≤ bi,g for some real numbers ai,g and bi,g, and for all 1≤ i≤ n
and g ∈ G. Define L2 = supg∈G

∑n
i=1(bi,g − ai,g)

2/n and Z =

supg∈G n−1|∑n
i=1(g(Wi)−E(g(Wi)))|. Then for any positive t, P (Z ≥EZ+

t)≤ exp[− nt2

2L2 ].

Lemma 8.6 [Bernstein inequality for U -statistics, Hoeffding (1963)]. Let
U2
n(g) denote the second-order U -statistics with kernel function g(t1, t2) based

on the independent random variables Z1, . . . ,Zn. Assume that the function g
is bounded: a < g < b for some finite constants a and b. If E(g(Zi,Zj)) = 0,

∀i 6= j, then ∀t > 0, P (|U2
n(g)| > t) ≤ 2exp(− 2kt2

(b−a)2
), where k denotes the

integer part of n/2.

Lemma 8.7. Assume the conditions of Theorem 4.1. For any C > 0,
there exist positive constants c7 and c8 such that for all n sufficiently
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large

P (‖β̂c

j −β0j‖ ≥CN1/2n−τ )≤ 4exp(−c7n
1−4τ ) + exp(−c8N

−2n1−2τ ).

Proof. Following Lemmas 8.2 and 8.3, there exists some b4 > 0 such
that for all n sufficiently large,

P (‖β̂c

j − β0j‖ ≥CN1/2n−τ )

≤ P
(

sup
‖β−β0j‖≤CN1/2n−τ

|Bn(β)−B(β)| ≥ b4n
−2τ
)

≤ P

(
|Bn(β0j)−B(β0j)| ≥

1

2
b4n

−2τ

)

+P

(
sup

‖β−β0j‖≤CN1/2n−τ

|Bn(β)−Bn(β0j)−B(β) +B(β0j)| ≥
1

2
b4n

−2τ

)

∆
= J1 + J2.

First, we evaluate J1. LetWi = δi[G(Y ∗
i )]

−1[ρα(Y
∗
i −π(Xij)

Tβ0j)−ρα(Y
∗
i )].

Then

Bn(β0j)−B(β0j)

= n−1
n∑

i=1

(Wi −EWi)

+ n−1
n∑

i=1

δi[(Ĝ(Y ∗
i ))

−1 − (G(Y ∗
i ))

−1][ρα(Y
∗
i −π(Xij)

Tβ0j)− ρα(Y
∗
i )]

∆
= I1 + I2.

Then J1 ≤ P (|I1| ≥ b4n
−2τ/4) + P (|I2| ≥ b4n

−2τ/4). Note that |Wi| ≤
C|π(Xij)

Tβ0j |, for some positive constant C. By the argument of Lemma 3.1,

supt |fj(t)− π(Xij)
Tβ0j | ≤ c2N

−d. Thus, |Wi| are uniformly bounded by a
constant M . Applying Bernstein’s inequality, there exists a positive constant
b5 such that for all n sufficiently large,

P (|I1| ≥ b4n
−2τ/4)≤ 2exp

(
− b24n

1−4τ/16

2M2 +Mb4n−2τ/3

)
≤ 2exp(−b5n

1−4τ ).

Furthermore, applying Lemma 8.4,

I2 = n−2
n∑

i=1

n∑

j=1

δi[G(Y ∗
i )]

−2ξ(Y ∗
j , δj , Y

∗
i )[ρα(Y

∗
i −π(Xij)

Tβ0j)− ρα(Y
∗
i )]

+ n−1
n∑

i=1

δiRn(Y
∗
i )[ρα(Y

∗
i −π(Xij)

Tβ0j)− ρα(Y
∗
i )]

∆
= I21 + I22,
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where ξ and Rn are defined in Lemma 8.4. By Lemma 8.4, I22 =
O(n−3/4(logn)3/4) almost surely. By assumptions n−3/4(logn)3/4 = o(n−2τ ),
and noting that δiG

−2(Y ∗
i )ξ(Y

∗
j , δj , Y

∗
i )[ρα(Y

∗
i −π(Xij)

Tβ0j)− ρα(Y
∗
i )] are

independent bounded random variables, we have for all n sufficiently large,

P (|I2| ≥ b4n
−2τ/4)

≤ P

(
2

n(n− 1)

n∑

i=1

n∑

j=1,j 6=i

δiG
−2(Y ∗

i )ξ(Y
∗
j , δj , Y

∗
i )

× [ρα(Y
∗
i −π(Xij)

Tβ0j)− ρα(Y
∗
i )]> b4n

−2τ/8

)

≤ 2exp(−b6n
1−4τ ),

where b6 is a positive constant, by Lemma 8.6. Therefore, J1 ≤ 4exp(−c7n
1−4τ )

where c7 =min(b5, b6).
Next, we evaluate J2. Let Vi(β) = ρα(Y

∗
i −π(Xij)

Tβ)−ρα(Y
∗
i −π(Xij)

Tβ0j)

and let Zi = δi[G(Y ∗
i )]

−1Vi(β). We have

J2 ≤ P

(
sup

‖β−β0j‖≤CN1/2n−τ

∣∣∣∣∣n
−1

n∑

i=1

[Zi −E(Zi)]

∣∣∣∣∣

+ sup
‖β−β0j‖≤CN1/2n−τ

∣∣∣∣∣n
−1

n∑

i=1

δi[(Ĝ(Y ∗
i ))

−1 − (G(Y ∗
i ))

−1]Vi(β)

∣∣∣∣∣

≥ b4n
−2τ/2

)
.

Applying Knight’s identity [(1998), page 758], we have

Vi(β) = π(Xij)
T (β−β0j)[I(Y

∗
i −π(Xij)

Tβ0j ≤ 0)− τ ]

+

∫ π(Xij)T (β−β0j)

0
[I(Y ∗

i −π(Xij)
Tβ0j ≤ s)

− I(Y ∗
i −π(Xij)

Tβ0j ≤ 0)]ds.

Thus,

sup
‖β−β0j‖≤CN1/2n−τ

|Vi(β)| ≤ 2 sup
‖β−β0j‖≤CN1/2n−τ

|π(Xij)
T (β−β0j)|

(8.10)
≤ cNn−τ
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for some c > 0 because ‖Bk(·)‖∞ ≤ 1. Combining (8.10) with Lemma 8.4(3),
we have

sup
‖β−β0j‖≤CN1/2n−τ

∣∣∣∣∣n
−1

n∑

i=1

δi[(Ĝ(Y ∗
i ))

−1 − (G(Y ∗
i ))

−1]Vi(β)

∣∣∣∣∣

=O(Nn−τ−1/2(logn)1/2)

almost surely. Assume N2n2τ−1 logn= o(1), then for all n sufficiently large,

J2 ≤ P

(
sup

‖β−β0j‖≤CN1/2n−τ

∣∣∣∣∣n
−1

n∑

i=1

[Zi −E(Zi)]

∣∣∣∣∣≥ b4n
−2τ/4

)
.

We use Lemma 8.5 to evaluate the above inequality. First note that, (8.10)
implies that sup‖β−β0j‖≤CN1/2n−τ |Zi| ≤ c∗Nn−τ for some positive constant

c∗. Next, let e1, . . . , en be a Rademacher sequence (i.e., i.i.d. sequence taking
values of ±1 with probability 1/2) independent of Z1, . . . ,Zn. We have

E

{
sup

‖β−β0j‖≤CN1/2n−τ

n−1

∣∣∣∣∣
n∑

i=1

(Zi −E(Zi))

∣∣∣∣∣

}

≤ 2E

{
sup

‖β−β0j‖≤CN1/2n−τ

n−1

∣∣∣∣∣
n∑

i=1

eiZi

∣∣∣∣∣

}

≤CE

{
sup

‖β−β0j‖≤CN1/2n−τ

n−1

∣∣∣∣∣
n∑

i=1

eiπ(Xij)
T (β−β0j)

∣∣∣∣∣

}

≤CN1/2n−τE

∥∥∥∥∥n
−1

n∑

i=1

eiπ(Xij)

∥∥∥∥∥≤CN1/2n−τ

[
E

∥∥∥∥∥n
−1

n∑

i=1

eiπ(Xij)

∥∥∥∥∥

2]1/2

=CN1/2n−τ

[
n−2E

(
n∑

i=1

e2i π(Xij)
Tπ(Xij)

)]1/2
≤CN1/2n−τ−1/2

for some generic constant C which may vary from line to line. In the above,
the first inequality applies the symmetrization theorem [Lemma 2.3.1, van der
Vaart and Wellner (1996)], the second inequality applies the contraction
theorem [Ledoux and Talagrad, (1991)] using the Lipschitz property of the
quantile objective function, and the last inequality uses (8.3). Now, we ap-
ply Lemma 8.5 to evaluate J2. Let Z = sup‖β−β0j‖≤∆N1/2n−τ n−1|∑n

i=1(Zi−
E(Zi))|. In Lemma 8.5, we take t = b4n

−2τ/2 − CN1/2n−τ−1/2 and L2 =
4c2N2n−2τ , which gives

J2 = P (Z ≥ EZ + (b4n
−2τ/4−EZ))

≤ P (Z ≥ EZ + (b4n
−2τ/4−CN1/2n−τ−1/2))
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≤ exp

(
−n(b4n

−2τ/4−CN1/2n−τ−1/2)2

8c2N2n−2τ

)
≤ exp(−c8N

−2n1−2τ )

for some positive constant c8 and all n sufficiently large. �

8.3. Proof of the Theorem 4.1. In this subsection, we establish the ex-
ponential tail probability bounds for P (|Sjk| ≥Cn−τ/8), k = 1, . . . ,4, which
lead to the result of Theorem 4.1.

An exponential tail probability bound for Sj1. Recall that

Sj1 = (β̂
c

j −β0j)
T (Pnπ(Xj)π(Xj)

T )(β̂
c

j −β0j)

≤ λmax(Pnπ(Xj)π(Xj)
T )‖β̂c

j − β0j‖2.
It follows from Lemmas 8.1 and 8.7 that for some C∗ > 0,

P (Sj1 ≥Cn−τ/8)

≤ P (λmax(Pnπ(Xj)π(Xj)
T )≥ (b2 + 1)N−1)

+P (‖β̂c

j − β0j‖2 ≥ (b2 +1)−1CNn−τ/8)
(8.11)

≤ 2N2 exp(−c4nN
−3) + P (‖β̂c

j −β0j‖>C∗N1/2n−τ/2)

≤ 2N2 exp(−c4nN
−3) + P (‖β̂c

j −β0j‖>C∗N1/2n−τ )

≤ 2N2 exp(−c4nN
−3) + 4exp(−c7n

1−4τ ) + exp(−c8N
−2n1−2τ ).

An exponential tail probability bound for Sj2. We first establish an upper
bound for ‖β0j‖. By result (B.3) in the supplemental material [He, Wang

and Hong (2013)], E[fj(Xj)− fnj(Xj)]
2 ≤ c3N

−2d, ∀j, for some c3 > 0. It
follows that

E[fnj(Xj)
2]≤ 2E[fj(Xj)

2] + 2E[(fj(Xj)− fnj(Xj))
2]

≤ c9 +2c3N
−2d,

for some positive constant c9. Also note that

E[fnj(Xj)
2]≥ λmin(Eπ(Xj)π(Xj)

T )‖β0j‖2 ≥ b1N
−1‖β0j‖2.

This implies that ‖β0j‖ ≤ c10
√
N for some positive constant c10.

Since |Sj2| ≤ 2‖β̂c

j −β0j‖λmax(Pnπ(Xj)π(Xj)
T )‖β0j‖, we have

P (|Sj2| ≥Cn−τ/8)

≤ P (‖β̂c

j − β0j‖λmax(Pnπ(Xj)π(Xj)
T )≥CN−1/2n−τ/(16c10))

≤ P (λmax(Pnπ(Xj)π(Xj)
T )> (b2 + 1)N−1)

+P (‖β̂c

j − β0j‖ ≥ (b2 + 1)−1CN1/2n−τ/(16c10))

≤ 2N2 exp(−c4nN
−3) + 4exp(−c7n

1−4τ ) + exp(−c8N
−2n1−2τ ).
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An exponential tail probability bound for Sj3. We have

Sj3 = β̂
c

j(Pnπ(Xj)π(Xj)
T −Eπ(Xj)π(Xj)

T )β0j

= (β̂
c

j −β0j)(Pnπ(Xj)π(Xj)
T −Eπ(Xj)π(Xj)

T )β0j

+βT
0j(Pnπ(Xj)π(Xj)

T −Eπ(Xj)π(Xj)
T )β0j

∆
= Sj31 + Sj32.

Therefore,

P (|Sj3| ≥Cn−τ/8)

≤ P (|Sj31| ≥Cn−τ/16) +P (|Sj32| ≥Cn−τ/16)

≤ P (‖β̂c

j − β0j‖max(|λmax(Dj)|, |λmin(Dj)|)≥CN−1/2n−τ/(16c10))

+ P (‖β0j‖2max(|λmax(Dj)|, |λmin(Dj)|)≥Cn−τ/16)

≤ P (max(|λmax(Dj)|, |λmin(Dj)|)≥N−1/(16c10))

+ P (‖β̂c

j −β0j‖ ≥CN1/2n−τ )

+ P (max(|λmax(Dj)|, |λmin(Dj)|)≥CN−1n−τ/(16c210))

≤ 2P (max(|λmax(Dj)|, |λmin(Dj)|)≥C∗N−1n−τ )

+ P (‖β̂c

j −β0j‖ ≥CN1/2n−τ )

≤ 2N2 exp(−c6N
−3n1−2τ ) + 4exp(−c7n

1−4τ ) + exp(−c8N
−2n1−2τ )

for all n sufficiently large, where the last inequality uses Lemmas 8.1 and 8.7.
An exponential tail probability bound for Sj4.

Sj4 =−2F−1
KM,n(α)n

−1
n∑

i=1

[π(Xj)
Tβ0j −Eπ(Xj)

Tβ0j ]

− 2F−1
KM,n(α)n

−1
n∑

i=1

π(Xj)
T (β̂

c

j − β0j)

∆
= Sj41 + Sj42.

Note that F−1
KM,n(α) is uniformly bounded for β1 ≤ α ≤ β2 almost surely.

From the argument of Lemma 3.1, E(π(Xj)
Tβ0j) is uniformly bounded

in Xj . Applying Bernstein’s inequality to Sj41, there exists a positive con-
stant c9 such that P (|Sj41|>Cn−τ/16)≤ exp(−c9n

1−2τ ) for all n sufficiently
large. On the other hand, by the Cauchy–Schwarz inequality, for all n suffi-
ciently large,

P (|Sj42|>Cn−τ/16)
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≤ P

(∣∣∣∣∣n
−1√n

[
n∑

i=1

[π(Xj)
T (β̂

c

j −β0j)]
2

]1/2∣∣∣∣∣>C∗n−τ

)

≤ P ([(β̂
c

j −β0j)
T (Pnπ(Xj)π(Xj)

T )(β̂
c

j −β0j)]
1/2 >C∗n−τ )

≤ P (‖β̂c

j − β0j‖λ1/2
max(Pnπ(Xj)π(Xj)

T )>C∗n−τ )

≤ P (λmax(Pnπ(Xj)π(Xj)
T )> (b2 + 1)N−1)

+ P (‖β̂c

j −β0j‖ ≥C∗N1/2n−τ )

≤ 2N2 exp(−c6N
−3n1−2τ ) + 4exp(−c7n

1−4τ ) + exp(−c8N
−2n1−2τ )

for all n sufficiently large, where the last inequality uses Lemmas 8.1 and 8.7
and C∗ denotes a generic positive constant which may vary from line to line.
Therefore, for all n sufficiently large,

P (|Sj4|>Cn−τ/8)

≤ 2N2 exp(−c6N
−3n1−2τ ) + 4exp(−c7n

1−4τ ) + exp(−c8N
−2n1−2τ )

+ exp(−c9n
1−2τ )

≤ 2N2 exp(−c6N
−3n1−2τ ) + 5exp(−c7n

1−4τ ) + exp(−c8N
−2n1−2τ ).

Proof of Theorem 4.1.

(1) We have

P
(
max
1≤j≤p

|‖f̂ c
nj‖2n −‖fnj‖2| ≥Cn−τ

)

≤ p(4N2 exp(−c4N
−3n) + 17exp(−c7n

1−4τ ) + 4exp(−c8N
−2n1−2τ )

+ 4N2 exp(−c6N
−3n1−2τ ))

≤ p(17 exp(−δ3n
1−4τ ) + 12N2 exp(−δ4N

−3n1−2τ ))

for all n sufficiently large, for some positive constants δ3 and δ4.
(2) The result follows by making use of the bound in (1) and observing

that

P (Mα ⊂ M̂ c
α)≥ P

(
min
j∈Mα

‖f̂ c
nj‖2n ≥ νn

)

≥ P
(
min
j∈Mα

‖fnj‖2 − max
j∈Mα

|‖f̂ c
nj‖2n − ‖fnj‖2| ≥ νn

)

= 1−P
(
max
j∈Mα

|‖f̂ c
nj‖2n − ‖fnj‖2| ≥ min

j∈Mα

‖fnj‖2 − νn

)

≥ 1−P
(
max
j∈Mα

|‖f̂ c
nj‖2n − ‖fnj‖2| ≥ c1n

−τ/16
)
.

�
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SUPPLEMENTARY MATERIAL

Supplement A: “Quantile-adaptive model-free variable screening for high-
dimensional heterogeneous data” (DOI: 10.1214/13-AOS1087SUPP; .pdf).
We provide additional technical details and numerical examples in the sup-
plemental material.
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