A Mixture Model for Representing Shape
Variation*

T.F. Cootes and C.J. Taylor
Dept. Medical Biophysics,
University of Manchester,
Oxford Road,
Manchester M13 9PT, UK

Abstract

The shape variation displayed by a class of objects can resempted as a
probability density function, allowing us to determine yséble and implausible
examples of the class. Given a training set of example shapesan align them
into a common co-ordinate frame and use kernel based desstityation tech-
niques to represent this distribution. Such an estimaterisptex and expensive,
SO we generate a simpler approximation using a mixture osgians. We show
how to calculate the distribution, and how it can be used iagensearch to locate
examples of the modelled object in new images.

1 Introduction

Deformable models have proved effective for interpretin@ges of objects whose
shape can vary [2]. Where a training set of example imagegaigable, a successful
approach is to build a statistical model of the shape variasieen in the training set.
Such a model can be used for image search to locate objecesinmages. A good
model will be sufficiently general that it can fit to valid ueseexamples, buspecific
in that it will not allow significantly different shapes.

Here we deal with the case where we can pladandmark points repeatably on
each example object (for instance around the boundary)trarsdrepresent a shape by
this set of landmarké§(z;, y;)} [2]. Given a set of such shapes, aligned into a common
co-ordinate frame, each shape corresponds to a vector(z, ..., T, y1,...,yn)"
in a2n dimensional space. The set of shapes then forms a cloudmipoithis space,
which can be thought of as drawn from a probability distribnt If we can estimate the
probability density functiond.d.f) p(x) for the distribution of shapes, we can decide
whether any new shape is plausible, and can use this infamaten attempting to
locate examples of the object in new images.
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A general approach is to use a density estimation technigale as the kernel
method [9]. This represents the distribution as a sum ofgjans, one placed at every
original data point. However, when there are many points ltleicomes far too expen-
sive (in both time and memory). It is necessary to furtherapipnate the distribution,
for instance using a mixture of a small number of gaussiamsctwcan be fit to the
kernel estimate using a modification of the Expectation Muasation (EM) algorithm.

We have previously described Active Shape Model (ASM) dearan efficient
approach to interpreting images containing known objesisasented by statistically
defined deformable templates. The method is iterative;cit si@p an initial hypothesis
is deformed using the image evidence, then regularizedgméarest plausible shape
(as defined by the p.d.f.). Given a ‘good enough’ startingipdhis can converge
rapidly to locate objects in new images. The method was malyi intended for use
with PDMs, but can be extended to use mixture models.

In the following we will demonstrate how mixtures of gaussiacan be used to
approximate the p.d.f. for a shape model, and how the Acthap8 Model approach
can be used to find objects in new images.

2 Background

There have been several attempts to derive models of thestoemf(b) which can
approximate any examplg, of a class of objects using a small number of shape pa-
rametersb, which are assumed to be independent. New plausible exarophe be
generated by choosing new values for the paramétevithin certain limits, derived
from the training set. The simplest of such models is theriPBistribution Model’,

in which a principal component analysis is applied to theadatpick out the main
linear modes of shape variation. In this case x + Pb, wherex is an example of a
shapex is the mean shape over the training set Bnid a matrix containing the firgt
eigenvectors of the covariance matrix of the training set.

This model works well for a wide variety of examples [2], bainniot adequately
represent non-linear shape variations, such as thoseajedavhen parts of the object
rotate, or there are changes in viewing position of a 3D dbjébere have been sev-
eral non-linear extensions to the PDM, either using polyia@modes [11], using a
multi-layer perceptron to perform non-linear PCA [10] oingspolar co-ordinates for
rotating sub-parts of the model [5].

However, all these approaches assume that varying the pseesh within given
limits will always generate plausible shapes, and that laligible shapes can be so
generated. This is not always the case. For instance, if goartlof the shape can ap-
pear in one of two positions, but not in-between, then theidigion has two separate
peaks, with an illegal space in between. Without imposingerm@mplex constraints
on the parametels, models of the fornx = f(b) are likely to generate illegal shapes.

The method presented below can model distinct classes pesimwell as non-
linear shape variation, and does not require any labelliith@class of each training
example.



3 Modelling Shape Variation

Suppose we have a set df shapes, each labelled withlandmark pointgz;, y;) in
such a way that thé" point always represents a particular position on the sh2jpé\[
single shape can be represented agth@imensional vectax = (z1,...,%n, Y1, .-, Yn)".
To compare shapes they must be aligned into a common coatediame.

3.1 Aligning a Set of Shapes

There is considerable literature on methods of aligningpskanto a common co-
ordinate frame, the most popular approach being Procrdsialysis [4]. This aligns
each shape so that the sum of distances of each shape to thémea}" |x; — x|?)
is minimised. It is poorly defined unless constraints aregdaon the alignment of
the mean (for instance, ensuring it is centred on the origas, unit scale and some
fixed but arbitrary orientation). Though analytic solutsogxist to the alignment of a
set, a simple iterative approach is as follows: First aligrttee shapes with one of
the examples, and calculate an initial estimate of the méaply constraints on the
mean (eg on its scale and c.0.g.). Then repeatedly re-diigshapes with the mean
and recalculate it, until convergence. The operationswatbduring the alignment will
affect the shape of the final distribution. A common approadb centre each shape
on the origin, scale each so that = 1 and then choose the orientation for each which
minimisesD. The scaling constraint means that the aligned shag&son a hyper-
sphere, which can introduce significant non-linearitieiifje shape changes occur.
For instance, Figure 1(a) shows the corners of a set of rglganvith varying aspect
ratio, aligned in this fashion. The scale constraint ersalethe corners lie on a circle
about the origin. A linear change in the aspect ratio inta@Edua non-linear variation
in the point positions. An alternative approach is to allavttbscaling and orientation
to vary when minimisingD.

To align two shapess; andx,, each centred on the origig{.1 = x5.1 = 0), we
choose a scale and rotatiord so as to minimisésAx; — x|, whereA performs a
rotation of a shape by 6. Let

a = (x1.x2)/|x1 \2
b= (2?21 (T1ﬂ/21 - U11T21)) /|X1|2 (1)

Thens? = a® + b*> andd = tan—!(b/a). If the shapes do not have C.0.G.s on the
origin, the optimal translation is chosen to match their.G.s, the scaling and rotation
chosen as above.

If this approach is used to align the set of rectangles, (€idyb)), their corners
lie on circles offset from the origin. A third approach is ttaite and scale each shape
into thetangent spacéo the mean so as to minimide. The tangent space to is
the hyperplane of vectors normaltg, passing througk;. ie All the vectorsx such
that(x; — x).x; = 0, orx.x; = 1if |x¢] = 1. Figure 1(c) demonstrates that for the
rectangles this leads to the corners varying along a stréiigdy preserving the linear
nature of the shape variation. The simplest way to achiegagto align the shapes
with the mean, allowing scaling and rotation, then projetb ithe tangent space by
scalingx by 1/(x.x).



a) All unit scale
b) Mean unit scale
c) Tangent space
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Figure 1: Aligning rectangles with varying aspect ratigsAl shapes set to unit scale,
b) Scale and angle free, c) Align into tangent space

Since we normalise the scale and orientation of the mearchtstap, the mean of
the shapes projected into the tangent spacenay not be equal to the (normalised)
vector defining the tangent spasg, We must retairx; so that when new shapes are
studied, they can be projected into the same tangent spdlce agginal data.

Different approaches to alignment can produce differesttithutions of the aligned
shapes. We wish to keep the distribution compact and keepamfinearities to a
minimum, so use the tangent space approach in the following.

3.2 Density Estimation

The kernel method of density estimation [9] gives an es@nodthe p.d.f. from which
N samplesx;, have been drawn as

N

p) =3 o KO @

=1

whereK (t) defines the shape of the kernel to be placed at each pdga smooth-
ing parameter defining the width of each kernel @rid the dimension of the data. In
general, the larger the number of samples, the smaller thehwaif the kernel at each
point. We use a gaussian kernel with a covariance matrixlg¢quhat of the original
data setS, ie K(t) = N(t : 0,S). The optimal smoothing parametér, can be
determined by cross-validation [9].

3.2.1 The Adaptive Kernel Method

The adaptive kernel method generalises the kernel methaalltwing the scale of
the kernels to be different at different points. Essentjddtoader kernels are used in

areas of low density where few observations are expecteel sirhplest approach is as
follows:



1. Construct a pilot estimatg (x) using (2).

2. Definelocal bandwidth factorsA; = (p'(x;)/g)"2, whereg is the geometric

mean of they' (x;)

3. Define theadaptive kernel estimate be

X —X;

hA;

px) = 5 S0 K (X €

i=1

3.3 Approximating the PDF from a Kernel Estimate

The kernel method can give a good estimate of the distributitowever, because it is
constructed from a large number of kernels, it can be too esige to use the estimate
in an application. We wish to find a simpler approximation ethwill allow p(x) to
be calculated quickly.

We will use a weighted mixture ofx gaussians to approximate the distribution
derived from the kernel method.

m

DPmiz(X) = ZzujN(x DK, S;) (4)

j=1

whereN (x : u, S) is the p.d.f. of a gaussian with mearand covarianc§.

Such a mixture can approximate any distribution up to aabjtaccuracy, assuming
sufficient components are used. The hope is that a small nuofilzemponents will
give a ‘good enough’ estimate. The Expectation Maximisa(leM) algorithm [8] is
the standard method of fitting such a mixture to a set of dataweer, if we were
to use as many components as samples= V), the optimal fit of the standard EM
algorithm is to have a delta function at each sample points iBhunsatisfactory. We
assume that the kernel estimgtg(x) is in some sense an optimal estimate, designed
to best generalise the given data. We would pikg,. (x) — pr(x) asm — N.

A good approximation to this can be achieved by modifyinghhstep in the EM
algorithm to take into account the covariance about each plaint suggested by the
kernel estimate (see Appendix A).

The number of gaussians used in the mixture should be chasas ® achieve a
given approximation error between (x) andp,,;, (x).

3.4 Estimating the PDF for a Set of Shapes

Suppose we have a set &f shapes, represented s dimensional vectorsX;. We
wish to estimate their probability density function. We tfisfign them into a common
co-ordinate frame, giving a set of aligned shapes,and a vectorg,, defining the
tangent space in which they dwell (see Section 3.1). We thejeg x; into a lower
dimensional space by applying principal component ansl{RCA). If we compute
the eigenvalues);, of the covariance matrix of the data, only the firstill be large
enough to be considered significant. For instance, if theenon the measurements of



the point positions has a variance®j, then we choose the largessuch that\; >
o2, assuming that the eigenvalues are sorted into descentdieg d’he eigenvectors
corresponding to these eigenvalues span the subspacéndogtaost of the variation
in the shapes. We can approximate e2ekvector,x, using thet-vector,b, given by

b=P"(x —x) (5)

whereP is the @n x t) matrix of the firstt eigenvectors.
We can estimatg(b) using a mixture model approximation to an adaptive kernel
estimate, as described above.

3.5 A Synthetic Example

Suppose we wish to model the shape variation exhibited irtrieing set given in

Figure 2. Here 28 points are used to represent a triangléngtiaside a square (there
are 3 points along each line segment). If we apply PCA to the, aee find there are
two significant components. Projecting the 100 originalp&sx into the 2-D space

of b (using (5)) gives the distribution shown in Figure 3. Figdrehows the p.d.f.

estimated for this using the adaptive kernel method, withitlitial 4 estimated using

cross-validation. The desired number of components camtaéred by specifying an
acceptable approximation error. Figure 5 shows the estirobithe p.d.f. obtained by
fitting a mixture of 12 gaussians to the data.
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Figure 2: Examples from training set of Figure 3: Distribution ob for 100 syn-
synthetic shapes thetic shapes
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4 Image Search

Given an estimate of the p.d.f. for a class of shapés), we can use it to help locate
examples of the class in new images. If a reasonably goodliapproximation is
available, we can use local search to optimise the fit of a trtodte data. Here we
describe a modification to the Active Shape Model (ASM) framoek [2] which allows
search given the p.d.f. of the target shape.



Figure 4: Plot of pdf estimated using Figure 5: Plot of pdf approximation us-
the adaptive kernel method ing mixture of 12 gaussians

Suppose that the shape of the object is represented by ageintd given byk in
the model coordinate frame, and By = M, 4 1)(x) in the image, wheré/, ¢ +(.)
rotates by, scales by and translates by = (t,,t,)”. Given an initial estimate, the
ASM iterates through the following steps:

e For each model pointX;,Y;) look nearby in the image for a better position
(XLY)).

it

e Update the model shape and the pose parameters to find theshpkausible
shape taX'.

In the simplest case the first step involves finding the neéatesng edge along a
normal through the current point. Better results can beinbthby using a training
set to build a statistical model to represent the image &tra@xpected at each point.
During search we use the model at each point to find the bedtyezatch [3].

In the second step we first updaté to minimise the errors in the image plane,
|X' — M(x)|?>. We then invertM to projectX’ into the model frame using’ =
M—1(X").

If our model space is in the tangent space to some vegtdhenM (x) is defined
to rotate, translate and scale the (scale free) sk@pd. The inverseV —' (X) applies
the inverse pose transformation, then projects the restdtthe tangent space. This
ensures scale is defined only by the transformafiénand is kept independent of
shape changes.

If x' is ‘plausible’ then we continue with it as our new shape eatan If it is
not, we must find the nearest shape whiglplausible. This requires a definition of
‘plausible’, and a method of finding the nearest plausiblpstto any given example.

We define the shapeas plausible ip(x) > p;, wherep, is chosen so that 99% of
samples drawn from the p.d.f. pass the threshold. This cdeteemined stochastically,
for instance by drawing 2000 examples from the distributranking the value of(x)
at each and setting equal to an average about t2@&” smallest value.



4.1 Finding the Nearest Plausible Shape

If p(x) < p; we wish to movex to the nearest point at which it is considered plausible.
In practice this is difficult to locate, but an acceptableragpmation can be obtained
by gradient ascent - simply move uphill until the thresha@deached. The gradient
of (4) is straightforward to compute, and suitable stepsstamn be estimated from the
distance to the mean of the nearest mixture component.

In most cases we will have built the mixture model in thdimensional space,
p(b), using (5) to computd for eachx. This projection acts to limit the allowed
shape variation to a linear combination#modes. Applying the density threshold
further constrains the allowed shapes. Given an initiapsha we project into this
lower dimensional spacs, apply gradient ascent dnto find the nearest point which
passes the threshold, then project back into the origiredespsingc = x + Pb.

For instance, Figure 6 shows an example of the syntheticeshét its points
perturbed by noise. Figure 7 shows the result of projectirig the space ob and
back. There is significant reduction in noise, but the triarig unacceptably large
compared with examples in the training set. Figure 8 showssttape obtained by
gradient ascent to the nearest plausible point using theofrfhonent mixture model
estimate ofp(b). The triangle is now similar in scale to those in the trainsed
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Figure 7: Projection intd-
Figure 6: Shape with noise space
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Figure 8: Nearby plausible
shape

Given a good enough starting point, the search algorithircaiiverge. In practice,
knowing the approximate position, scale and orientatie@nisugh. The search can be
attempted once for each mixture component, starting withsimape defined by the
mean of each component. The method can be made more efficiémbhust using
multi-resolution techniques [3], first searching on a ceasale image and refining on
finer and finer scale images.



5 Example: Brain Stem Model

We have used the above approach to generate a model of tharappe of the brain
stem in successive slices of an MR image of the head. Figur®®ssa set of con-
tours of a brain stem in sequential slices in a single brammgen (Figure 13 shows an
example image). We built a shape model from 153 differentslifrom 10 different
people. We aligned the shapes, performed PCA to lower themlion and projected
the examples into a 7 dimensional sub-sphaes described above. Figure 11 shows
the scatter ob, vs b; for the set of shapes. Because there is a sudden change én cros
section as we move in thedirection, the shapes form two distinct groups, with a low
probability of finding an intermediate shape. Figure 12 shdwe p.d.f. from fitting
two gaussians to the adaptive kernel estimate of the distoib. Figure 10 shows the
shapes obtained by corresponding combinations &ndb,. The mixture model of
the p.d.f.suggests that the shapes in the middle of the fayeréess likely than those
on the left and right. The full model uses a two gaussian méto represent the distri-
bution ofb; andb,, and assumes the remaining 5 paramdiers. b; are independent
and normally distributed with variances.

Figure 9: Contours from sequential Figure 10: Shape fak, vs b, for brain
slices stem
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Figure 11: Plot ofb; vs b, for brain Figure 12: pdf approximation with 2
stem gaussians

Figure 13 demonstrates the Active Shape Model search fdyrie stem in a new
image. After 14 iterations it converges to a good solution.
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Figure 13: Searching for a brain stem. Initial position aftdra4, 8 and 14 iterations.

6 Discussion and Conclusions

The approach described above is a generalisation of the RDWIf a single gaussian
is used in the mixture, is identical to it. Its main advantagee that it is able to model
more complex variations, including those cases where theraéwo or more distinct
classes of shape variation. The approach can be extendenthough the alignment
stage becomes more complex.

One problem with the method is that more examples are redjtorebtain reliable
parameters for a mixture model than for a single gaussiameder, if we use a mixture
model in only the first two or three dimensions of model pareamngpace (assuming the
rest to be independent normal), we may not need too many maonéig examples. We
anticipate that this requirement can in part be addressedtmynatic labelling schemes
[7], which, given a set of contours, choose the optimal jpwsit of the landmarks
required for the shape model.

Using a mixture model representation of the p.d.f.intrastumore constraints on
valid parameter combinations than assuming a single gausdburing search this
is only important when the data is sufficiently noisy or amiuigs that unconstrained
search would lead to illegal parameter combinations. A comsource of non-linearity
is the rotation of sub-parts or of 3D objects viewed in 2D. plaad Hogg [6] and Bow-
denet. al. [1] describe applications where the training examples farhighly non-
linear space, which can be successfully represented bgpiese linear sub-models.
These are essentially the same as the approach presenter] bbbeach sub-model
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(corresponding to one mixture component) is generatedgudimstering algorithms
rather than by applying the EM, and the probabalistic natfrthe problem is not
properly addressed. Note, however, that an initial clirsgeof the data is one way
of seeding the EM algorithm. The results presented in thajreps demonstrate the
robustness that can be obtained by using non-linear camtstra

The choice of the optimal number of mixture components tausdifficult. Au-
tomatic approaches are discussed in [8]. In the above wedfasen the number by
inspection of the data. More work is required to determirgriamber automatically.
If we assume that the kernel estimate gives the optimal estirof the p.d.f. given
the data, we can use this as a baseline to measure the acofitheymixture model
p.d.f.The number of modes can then be chosen to pass a user defioethezshold.

We have demonstrated how mixture models can be used to ezpitbg non-linear
shape variations displayed by a class of objects and howrsodels can be used in the
search for examples of the class in new images. This appgeérates more specific
models than earlier methods, leading to more robust sedgohitams.

Appendix A: The Modified EM Algorithm

To fit a mixture ofm gaussians t&v samplesk;, assuming a covariance @f; at each
sample, we iterate on the following 2 steps:

E-step Compute the contribution of thi&” sample to thg*" gaussian

w;N(x; @ p15,8;)

LY wiN(xi : g, S;)
M-step Compute the parameters of the gaussians,
Wi =N iP5 M= wey 2o PiiXi ()
1 T
i N > piil(xi = ) (xi = )" + T4 (8)
TUj p

Strictly we ought to modify the E-step to takg into account as well, but in our
experience just changing the M-step gives satisfactomyltes
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