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Abstract

The shape variation displayed by a class of objects can be represented as a
probability density function, allowing us to determine plausible and implausible
examples of the class. Given a training set of example shapeswe can align them
into a common co-ordinate frame and use kernel based densityestimation tech-
niques to represent this distribution. Such an estimate is complex and expensive,
so we generate a simpler approximation using a mixture of gaussians. We show
how to calculate the distribution, and how it can be used in image search to locate
examples of the modelled object in new images.

1 Introduction

Deformable models have proved effective for interpreting images of objects whose
shape can vary [2]. Where a training set of example images is available, a successful
approach is to build a statistical model of the shape variation seen in the training set.
Such a model can be used for image search to locate objects in new images. A good
model will be sufficiently general that it can fit to valid unseen examples, butspecific
in that it will not allow significantly different shapes.

Here we deal with the case where we can placen landmark points repeatably on
each example object (for instance around the boundary), andthus represent a shape by
this set of landmarksf(xi; yi)g [2]. Given a set of such shapes, aligned into a common
co-ordinate frame, each shape corresponds to a vectorx = (x1; : : : ; xn; y1; : : : ; yn)T
in a2n dimensional space. The set of shapes then forms a cloud of points in this space,
which can be thought of as drawn from a probability distribution. If we can estimate the
probability density function (p.d.f.) p(x) for the distribution of shapes, we can decide
whether any new shape is plausible, and can use this information when attempting to
locate examples of the object in new images.�This paper appears in: Image and Vision Computing 17, No.8, 1999, pp 567-574
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A general approach is to use a density estimation technique such as the kernel
method [9]. This represents the distribution as a sum of gaussians, one placed at every
original data point. However, when there are many points this becomes far too expen-
sive (in both time and memory). It is necessary to further approximate the distribution,
for instance using a mixture of a small number of gaussians, which can be fit to the
kernel estimate using a modification of the Expectation Maximisation (EM) algorithm.

We have previously described Active Shape Model (ASM) search - an efficient
approach to interpreting images containing known objects represented by statistically
defined deformable templates. The method is iterative; at each step an initial hypothesis
is deformed using the image evidence, then regularized to the nearest plausible shape
(as defined by the p.d.f.). Given a ‘good enough’ starting point, this can converge
rapidly to locate objects in new images. The method was originally intended for use
with PDMs, but can be extended to use mixture models.

In the following we will demonstrate how mixtures of gaussians can be used to
approximate the p.d.f. for a shape model, and how the Active Shape Model approach
can be used to find objects in new images.

2 Background

There have been several attempts to derive models of the formx = f(b) which can
approximate any example,x, of a class of objects using a small number of shape pa-
rameters,b, which are assumed to be independent. New plausible examples can be
generated by choosing new values for the parametersb within certain limits, derived
from the training set. The simplest of such models is the ‘Point Distribution Model’,
in which a principal component analysis is applied to the data to pick out the main
linear modes of shape variation. In this casex = �x+Pb, wherex is an example of a
shape,�x is the mean shape over the training set andP is a matrix containing the firstt
eigenvectors of the covariance matrix of the training set.

This model works well for a wide variety of examples [2], but cannot adequately
represent non-linear shape variations, such as those generated when parts of the object
rotate, or there are changes in viewing position of a 3D object. There have been sev-
eral non-linear extensions to the PDM, either using polynomial modes [11], using a
multi-layer perceptron to perform non-linear PCA [10] or using polar co-ordinates for
rotating sub-parts of the model [5].

However, all these approaches assume that varying the parametersb within given
limits will always generate plausible shapes, and that all plausible shapes can be so
generated. This is not always the case. For instance, if a sub-part of the shape can ap-
pear in one of two positions, but not in-between, then the distribution has two separate
peaks, with an illegal space in between. Without imposing more complex constraints
on the parametersb, models of the formx = f(b) are likely to generate illegal shapes.

The method presented below can model distinct classes of shape as well as non-
linear shape variation, and does not require any labelling of the class of each training
example.
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3 Modelling Shape Variation

Suppose we have a set ofN shapes, each labelled withn landmark points(xi; yi) in
such a way that theith point always represents a particular position on the shape [2]. A
single shape can be represented as the2n dimensional vectorx = (x1; : : : ; xn; y1; : : : ; yn)T .
To compare shapes they must be aligned into a common co-ordinate frame.

3.1 Aligning a Set of Shapes

There is considerable literature on methods of aligning shapes into a common co-
ordinate frame, the most popular approach being ProcrustesAnalysis [4]. This aligns
each shape so that the sum of distances of each shape to the mean (D =P jxi � �xj2)
is minimised. It is poorly defined unless constraints are placed on the alignment of
the mean (for instance, ensuring it is centred on the origin,has unit scale and some
fixed but arbitrary orientation). Though analytic solutions exist to the alignment of a
set, a simple iterative approach is as follows: First align all the shapes with one of
the examples, and calculate an initial estimate of the mean.Apply constraints on the
mean (eg on its scale and c.o.g.). Then repeatedly re-align the shapes with the mean
and recalculate it, until convergence. The operations allowed during the alignment will
affect the shape of the final distribution. A common approachis to centre each shape
on the origin, scale each so thatjxj = 1 and then choose the orientation for each which
minimisesD. The scaling constraint means that the aligned shapesx lie on a hyper-
sphere, which can introduce significant non-linearities iflarge shape changes occur.
For instance, Figure 1(a) shows the corners of a set of rectangles with varying aspect
ratio, aligned in this fashion. The scale constraint ensures all the corners lie on a circle
about the origin. A linear change in the aspect ratio introduces a non-linear variation
in the point positions. An alternative approach is to allow both scaling and orientation
to vary when minimisingD.

To align two shapes,x1 andx2, each centred on the origin (x1:1 = x2:1 = 0), we
choose a scales and rotation� so as to minimisejsAx1 � x2j, whereA performs a
rotation of a shapex by �. Let a = (x1:x2)=jx1j2b = (Pni=1(x1iy2i � y1ix2i)) =jx1j2 (1)

Thens2 = a2 + b2 and� = tan�1(b=a). If the shapes do not have C.o.G.s on the
origin, the optimal translation is chosen to match their C.o.G.s, the scaling and rotation
chosen as above.

If this approach is used to align the set of rectangles, (Figure 1(b)), their corners
lie on circles offset from the origin. A third approach is to rotate and scale each shape
into the tangent spaceto the mean so as to minimiseD. The tangent space toxt is
the hyperplane of vectors normal toxt, passing throughxt. ie All the vectorsx such
that (xt � x):xt = 0, or x:xt = 1 if jxtj = 1. Figure 1(c) demonstrates that for the
rectangles this leads to the corners varying along a straight line, preserving the linear
nature of the shape variation. The simplest way to achieve this is to align the shapes
with the mean, allowing scaling and rotation, then project into the tangent space by
scalingx by 1=(x:�x).
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Figure 1: Aligning rectangles with varying aspect ratios. a) All shapes set to unit scale,
b) Scale and angle free, c) Align into tangent space

Since we normalise the scale and orientation of the mean at each step, the mean of
the shapes projected into the tangent space,�x, may not be equal to the (normalised)
vector defining the tangent space,xt. We must retainxt so that when new shapes are
studied, they can be projected into the same tangent space asthe original data.

Different approaches to alignment can produce different distributions of the aligned
shapes. We wish to keep the distribution compact and keep anynon-linearities to a
minimum, so use the tangent space approach in the following.

3.2 Density Estimation

The kernel method of density estimation [9] gives an estimate of the p.d.f. from whichN samples,xi, have been drawn asp(x) = NXi=1 1NhdK(x� xih ) (2)

whereK(t) defines the shape of the kernel to be placed at each point,h is a smooth-
ing parameter defining the width of each kernel andd is the dimension of the data. In
general, the larger the number of samples, the smaller the width of the kernel at each
point. We use a gaussian kernel with a covariance matrix equal to that of the original
data set,S, ie K(t) = N(t : 0;S). The optimal smoothing parameter,h, can be
determined by cross-validation [9].

3.2.1 The Adaptive Kernel Method

The adaptive kernel method generalises the kernel method byallowing the scale of
the kernels to be different at different points. Essentially, broader kernels are used in
areas of low density where few observations are expected. The simplest approach is as
follows:
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1. Construct a pilot estimatep0(x) using (2).

2. Definelocal bandwidth factors�i = (p0(xi)=g)� 12 , whereg is the geometric
mean of thep0(xi)

3. Define theadaptive kernel estimateto bep(x) = 1N NXi=1(h�i)�dK(x� xih�i ) (3)

3.3 Approximating the PDF from a Kernel Estimate

The kernel method can give a good estimate of the distribution. However, because it is
constructed from a large number of kernels, it can be too expensive to use the estimate
in an application. We wish to find a simpler approximation which will allow p(x) to
be calculated quickly.

We will use a weighted mixture ofm gaussians to approximate the distribution
derived from the kernel method.pmix(x) = mXj=1wjN(x : �j ;Sj) (4)

whereN(x : �;S) is the p.d.f. of a gaussian with mean� and covarianceS.
Such a mixture can approximate any distribution up to arbitrary accuracy, assuming

sufficient components are used. The hope is that a small number of components will
give a ‘good enough’ estimate. The Expectation Maximisation (EM) algorithm [8] is
the standard method of fitting such a mixture to a set of data. However, if we were
to use as many components as samples (m = N ), the optimal fit of the standard EM
algorithm is to have a delta function at each sample point. This is unsatisfactory. We
assume that the kernel estimate,pk(x) is in some sense an optimal estimate, designed
to best generalise the given data. We would likepmix(x) ! pk(x) asm! N .

A good approximation to this can be achieved by modifying theM-step in the EM
algorithm to take into account the covariance about each data point suggested by the
kernel estimate (see Appendix A).

The number of gaussians used in the mixture should be chosen so as to achieve a
given approximation error betweenpk(x) andpmix(x).
3.4 Estimating the PDF for a Set of Shapes

Suppose we have a set ofN shapes, represented as2n dimensional vectors,Xi. We
wish to estimate their probability density function. We first align them into a common
co-ordinate frame, giving a set of aligned shapes,xi, and a vector,�x
, defining the
tangent space in which they dwell (see Section 3.1). We then projectxi into a lower
dimensional space by applying principal component analysis (PCA). If we compute
the eigenvalues,�j , of the covariance matrix of the data, only the firstt will be large
enough to be considered significant. For instance, if the noise on the measurements of
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the point positions has a variance of�2n, then we choose the largestt such that�t >�2n, assuming that the eigenvalues are sorted into descending order. The eigenvectors
corresponding to these eigenvalues span the subspace containing most of the variation
in the shapes. We can approximate each2n-vector,x, using thet-vector,b, given byb = PT (x� �x) (5)

whereP is the (2n x t) matrix of the firstt eigenvectors.
We can estimatep(b) using a mixture model approximation to an adaptive kernel

estimate, as described above.

3.5 A Synthetic Example

Suppose we wish to model the shape variation exhibited in thetraining set given in
Figure 2. Here 28 points are used to represent a triangle rotating inside a square (there
are 3 points along each line segment). If we apply PCA to the data, we find there are
two significant components. Projecting the 100 original shapesx into the 2-D space
of b (using (5)) gives the distribution shown in Figure 3. Figure4 shows the p.d.f.
estimated for this using the adaptive kernel method, with the initial h estimated using
cross-validation. The desired number of components can be obtained by specifying an
acceptable approximation error. Figure 5 shows the estimate of the p.d.f. obtained by
fitting a mixture of 12 gaussians to the data.

Figure 2: Examples from training set of
synthetic shapes
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Figure 3: Distribution ofb for 100 syn-
thetic shapes

4 Image Search

Given an estimate of the p.d.f. for a class of shapes,p(x), we can use it to help locate
examples of the class in new images. If a reasonably good initial approximation is
available, we can use local search to optimise the fit of a model to the data. Here we
describe a modification to the Active Shape Model (ASM) framework [2] which allows
search given the p.d.f. of the target shape.
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Figure 4: Plot of pdf estimated using
the adaptive kernel method

Figure 5: Plot of pdf approximation us-
ing mixture of 12 gaussians

Suppose that the shape of the object is represented by a set ofpoints given byx in
the model coordinate frame, and byX = M(s;�;t)(x) in the image, whereM(s;�;t)(:)
rotates by�, scales bys and translates byt = (tx; ty)T . Given an initial estimate, the
ASM iterates through the following steps:� For each model point(Xi; Yi) look nearby in the image for a better position(X 0i ; Y 0i ).� Update the model shape and the pose parameters to find the nearest plausible

shape toX0.
In the simplest case the first step involves finding the nearest strong edge along a

normal through the current point. Better results can be obtained by using a training
set to build a statistical model to represent the image structure expected at each point.
During search we use the model at each point to find the best nearby match [3].

In the second step we first updateM to minimise the errors in the image plane,jX0 � M(x)j2. We then invertM to projectX0 into the model frame usingx0 =M�1(X0).
If our model space is in the tangent space to some vectorxt, thenM(x) is defined

to rotate, translate and scale the (scale free) shapex=jxj. The inverseM�1(X) applies
the inverse pose transformation, then projects the result into the tangent space. This
ensures scale is defined only by the transformationM , and is kept independent of
shape changes.

If x0 is ‘plausible’ then we continue with it as our new shape estimate. If it is
not, we must find the nearest shape whichis plausible. This requires a definition of
‘plausible’, and a method of finding the nearest plausible shape to any given example.

We define the shapex as plausible ifp(x) � pt, wherept is chosen so that 99% of
samples drawn from the p.d.f. pass the threshold. This can bedetermined stochastically,
for instance by drawing 2000 examples from the distribution, ranking the value ofp(x)
at each and settingpt equal to an average about the20th smallest value.
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4.1 Finding the Nearest Plausible Shape

If p(x) < pt we wish to movex to the nearest point at which it is considered plausible.
In practice this is difficult to locate, but an acceptable approximation can be obtained
by gradient ascent - simply move uphill until the threshold is reached. The gradient
of (4) is straightforward to compute, and suitable step sizes can be estimated from the
distance to the mean of the nearest mixture component.

In most cases we will have built the mixture model in thet dimensional space,p(b), using (5) to computeb for eachx. This projection acts to limit the allowed
shape variation to a linear combination oft modes. Applying the density threshold
further constrains the allowed shapes. Given an initial shapex, we project into this
lower dimensional space,b, apply gradient ascent onb to find the nearest point which
passes the threshold, then project back into the original space usingx = �x+Pb.

For instance, Figure 6 shows an example of the synthetic shape with its points
perturbed by noise. Figure 7 shows the result of projecting into the space ofb and
back. There is significant reduction in noise, but the triangle is unacceptably large
compared with examples in the training set. Figure 8 shows the shape obtained by
gradient ascent to the nearest plausible point using the 12 component mixture model
estimate ofp(b). The triangle is now similar in scale to those in the trainingset.

Figure 6: Shape with noise
Figure 7: Projection intob-
space

Figure 8: Nearby plausible
shape

Given a good enough starting point, the search algorithm will converge. In practice,
knowing the approximate position, scale and orientation isenough. The search can be
attempted once for each mixture component, starting with the shape defined by the
mean of each component. The method can be made more efficient and robust using
multi-resolution techniques [3], first searching on a coarse scale image and refining on
finer and finer scale images.
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5 Example: Brain Stem Model

We have used the above approach to generate a model of the appearance of the brain
stem in successive slices of an MR image of the head. Figure 9 shows a set of con-
tours of a brain stem in sequential slices in a single brain image. (Figure 13 shows an
example image). We built a shape model from 153 different slices from 10 different
people. We aligned the shapes, performed PCA to lower the dimension and projected
the examples into a 7 dimensional sub-spaceb as described above. Figure 11 shows
the scatter ofb2 vs b1 for the set of shapes. Because there is a sudden change in cross
section as we move in thez direction, the shapes form two distinct groups, with a low
probability of finding an intermediate shape. Figure 12 shows the p.d.f. from fitting
two gaussians to the adaptive kernel estimate of the distribution. Figure 10 shows the
shapes obtained by corresponding combinations ofb1 andb2. The mixture model of
the p.d.f.suggests that the shapes in the middle of the figureare less likely than those
on the left and right. The full model uses a two gaussian mixture to represent the distri-
bution ofb1 andb2, and assumes the remaining 5 parametersb3 : : : b7 are independent
and normally distributed with variances�i.
Figure 9: Contours from sequential
slices

Figure 10: Shape forb1 vs b2 for brain
stem

b1

b2

Figure 11: Plot ofb1 vs b2 for brain
stem

Figure 12: pdf approximation with 2
gaussians

Figure 13 demonstrates the Active Shape Model search for thebrain stem in a new
image. After 14 iterations it converges to a good solution.
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Figure 13: Searching for a brain stem. Initial position and after 4, 8 and 14 iterations.

6 Discussion and Conclusions

The approach described above is a generalisation of the PDM,and if a single gaussian
is used in the mixture, is identical to it. Its main advantages are that it is able to model
more complex variations, including those cases where thereare two or more distinct
classes of shape variation. The approach can be extended into 3D, though the alignment
stage becomes more complex.

One problem with the method is that more examples are required to obtain reliable
parameters for a mixture model than for a single gaussian. However, if we use a mixture
model in only the first two or three dimensions of model parameter space (assuming the
rest to be independent normal), we may not need too many more training examples. We
anticipate that this requirement can in part be addressed byautomatic labelling schemes
[7], which, given a set of contours, choose the optimal positions of the landmarks
required for the shape model.

Using a mixture model representation of the p.d.f.introduces more constraints on
valid parameter combinations than assuming a single gaussian. During search this
is only important when the data is sufficiently noisy or ambiguous that unconstrained
search would lead to illegal parameter combinations. A common source of non-linearity
is the rotation of sub-parts or of 3D objects viewed in 2D. Heap and Hogg [6] and Bow-
denet. al. [1] describe applications where the training examples forma highly non-
linear space, which can be successfully represented by piece-wise linear sub-models.
These are essentially the same as the approach presented above, but each sub-model
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(corresponding to one mixture component) is generated using clustering algorithms
rather than by applying the EM, and the probabalistic natureof the problem is not
properly addressed. Note, however, that an initial clustering of the data is one way
of seeding the EM algorithm. The results presented in their papers demonstrate the
robustness that can be obtained by using non-linear constraints.

The choice of the optimal number of mixture components to used is difficult. Au-
tomatic approaches are discussed in [8]. In the above we havechosen the number by
inspection of the data. More work is required to determing the number automatically.
If we assume that the kernel estimate gives the optimal estimate of the p.d.f. given
the data, we can use this as a baseline to measure the accuracyof the mixture model
p.d.f.Ṫhe number of modes can then be chosen to pass a user defined error threshold.

We have demonstrated how mixture models can be used to represent the non-linear
shape variations displayed by a class of objects and how suchmodels can be used in the
search for examples of the class in new images. This approachgenerates more specific
models than earlier methods, leading to more robust search algorithms.

Appendix A: The Modified EM Algorithm

To fit a mixture ofm gaussians toN samplesxi, assuming a covariance ofTi at each
sample, we iterate on the following 2 steps:

E-step Compute the contribution of theith sample to thejth gaussianpij = wjN(xi : �j ;Sj)Pmj=1 wjN(xi : �j ;Sj) (6)

M-step Compute the parameters of the gaussians,wj = 1N Pi pij ; �j = 1Nwj Pi pijxi (7)Sj = 1NwjXi pij [(xi � �j)(xi � �j)T +Ti℄ (8)

Strictly we ought to modify the E-step to takeTi into account as well, but in our
experience just changing the M-step gives satisfactory results.
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