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1 Statistics and the Law

1.1 Evidence

At first sight, there may appear to be little connection between Statistics and
Law. On closer inspection it can be seen that the problems they tackle are in
many ways identical — although they go about them in very different ways. In
a broad sense, each subject can be regarded as concerned with the Interpreta-
tion of Evidence. I owe my own introduction to the common ground between
the two activities to my colleague William Twining, Professor of Jurisprudence
at University College London, who has long been interested in probability in
the law. In our discussions we quickly came to realise that, for both of us, the
principal objective in teaching our students was the same: to train them to
be able to interpret a mixed mass of evidence. That contact led to my con-
tributing some lectures on uses and abuses of probability and statistics in the
law to the University of London Intercollegiate LlM course on Evidence and
Proof (and an Appendix on “Probability and Proof” to Anderson and Twining
(1991)), as well as drawing me into related research (Dawid 1987; Dawid 1994;
Dawid and Mortera 1996; Dawid and Mortera 1998). To my initial surprise,
I found here a rich and stimulating source of problems, simultaneously prac-
tical and philosophical, to challenge my logical and analytical problem-solving
skills. For general background on some of the issues involved, see Eggleston
(1983); Robertson and Vignaux (1995); Aitken (1995); Evett and Weir (1998);
Gastwirth (2000).

The current state of legal analysis of evidence seems to me similar to that of
science before Galileo, in thrall to the authority of Aristotle and loth to concede
the need to break away from old habits of thought. Galileo had the revolutionary
idea that scientists should actually look at how the world behaves. It may be
equally revolutionary to suggest that lawyers might look at how others have
approached the problem of interpretation of evidence, and that they might even
have something to learn from them. It is my strong belief (though I do not
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expect it to be shared by many lawyers) that statisticians, with their training in
logical analysis of the impact of evidence on uncertainty, have much to contribute
towards identifying and clarifying many delicate issues in the interpretation of
legal evidence. And I believe that by far the greatest clarity and progress will
come from the exploitation of the Bayesian philosophy and methodology of
statistics. Although other statistical approaches are possible, I consider that
these are at best unnecessary and at worst dangerously misleading.

My message is not a new one. Some of the earliest work on Probability (by
such great minds as James and Nicholas Bernoulli, Condorcet, Laplace, Poisson,
Cournot) was concerned with, or motivated by, problems of quantification and
combination of legal evidence and judgement. However, both statisticians and
lawyers seem to have lost this thread. I hope I can persuade both communities
that it is well worth picking up and following.

2 Testing Between Two Hypotheses — in Court

In a criminal case, each charge on the indictment sheet can be regarded as a
hypothesis under test. For simplicity we restrict attention to the case of a single
defendant and a single charge against that defendant. The proposition that the
defendant is guilty of the charge (a proposition which typically combines issues
both of fact and of law) is the Prosecution Hypothesis; we shall henceforth
denote it by G. It is specific and clearly defined — what statisticians would call
a ‘simple hypothesis’.

The task of the Defence is to cast doubt on G, or, what is equivalent, to
argue for the reasonableness of the contrary proposition Ḡ, which asserts the
falsity of G. We call Ḡ the Defence Hypothesis. It can be very non-specific
— a ‘composite hypothesis’, in statistical parlance. The Defence is not obliged
to identify or argue in favour of any more specific alternative hypothesis to G,
although this will often be appropriate. In that case, Ḡ might also reduce to a
simple hypothesis.

Let us denote the conjunction of one or more items of evidence (perhaps the
totality of the evidence) in the case by E. Our task is to use the evidence E to
cast light on the two hypotheses, G and Ḡ, before the court.

2.1 Bayesian Approach

Since we start out with uncertainty about the hypotheses and the evidence, we
should try and quantify that uncertainty appropriately. A vast body of thought-
ful logical and philosophical analysis of uncertainty has concluded that the only
appropriate quantification of uncertainty, of any kind, is in terms of the Calculus
of Probability . This is the basis of the modern Bayesian approach to statistical
inference. An important aspect of this philosophy is that complete objectivity
is an illusion, and thus that there is no such thing as ‘the’ probability of any
uncertain event — rather, each individual is entitled to his or her own subjec-
tive probability. This is not, however, to say that anything goes: in the light
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of whatever relevant evidence may be available, certain opinions will be more
reasonable than others. In simple statistical problems, it can be shown that dif-
fering initial subjective distributions will be brought into ever closer and closer
agreement when updated through the incorporation of sufficiently extensive ob-
servational evidence. In legal applications the conditions for this convergence
may not apply, but even so there will be certain probabilistic ingredients and
conclusions that can be regarded as reasonable by all reasonable parties.

From the standpoint of any individual juror, the end-point of his (or her)
analysis of the evidence E heard should be his posterior probability of guilt given
the evidence:

P (G |E) (1)

(where we use the notation P (A |B) to denote the conditional probability of an
uncertain event A, in the light of known or hypothesised information B). This
is a direct expression of the juror’s remaining uncertainty as to the validity of
the Prosecution Hypothesis, after taking into account the evidence E. However,
it will not typically be appropriate to assess this directly; rather, it should be
constructed out of other, more basic and defensible, primitive ingredients. This
can be done using the ‘odds’ form of Bayes’s theorem:

P (G |E)
P (Ḡ |E)

=
P (G)
P (Ḡ)

× P (E |G)
P (E | Ḡ)

, (2)

or, in words:

Posterior Odds = Prior Odds× Likelihood Ratio.

The first term on the right-hand side of (2), the prior odds, measures the rel-
ative degrees of belief as between the Prosecution and the Defence hypotheses,
before the evidence E has been incorporated. There may be a range of rea-
sonable values that jurors could hold for this in the light of previous evidence.
The second term, the likelihood ratio, LR, involves the probabilities accorded
to the new evidence E by each of the two competing hypotheses. In some cases
(essentially when both G and Ḡ can be framed as simple hypotheses) these in-
gredients will be moderately ‘objective’ and agreed upon, and thus so also will
be the likelihood ratio. It might then seem appropriate to present the value
of LR, or its constituent probabilities, as a summary of the impact of the evi-
dence, leaving individual jurors to combine it with their own prior beliefs, using
equation (2). Once the posterior odds, say Ω, has been calculated, the desired
posterior probability of guilt, P (G |E), is just Ω/(1 + Ω). (When one or both
of the hypotheses is composite, more complex calculations may be required,
incoporating prior assessments even into the calculation of the likelihood ratio).

Simple though it is, both the logic and the calculation involved in equa-
tion (2) will be beyond most judges (and even some jurors). It could then be
helpful to present the impact of the evidence by means of a table, incorporating
the relevant value of LR, and showing how any hypothetical prior probability
of guilt, P (G), would be updated by the evidence to the posterior probability
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P (G |E). If the resulting posterior probability is sufficiently high (and it would
be up to the Judge to advise on what this means), then the verdict “Guilty”
would be appropriate. Table 1 shows the impact of a likelihood ratio value of
100 (i.e. the probability of the evidence E is 100 times greater under the Pros-
ecution hypothesis than it is under the Defence hypothesis). If it is appropriate
to regard satisfaction as to guilt “beyond reasonable doubt” as attained when
the posterior probability P (G |E) exceeds 99%, then we see that a juror should
be willing to convict whenever his prior probability, before incorporating E,
exceeded 50%. (Note, however, that when E is the only evidence in the case,
before E is admitted the suspect should be treated no differently from any other
member of the population, so that a prior probability of even 0.001 could be
regarded as unreasonably high.)

Prior Prob. 0.001 0.01 0.1 0.3 0.5 0.7 0.9
Post. Prob. 0.09 0.50 0.92 0.98 0.99 0.996 0.999

Table 1: The impact of a likelihood ratio LR = 100

The application of equation (2) can be done either ‘wholesale’, with E rep-
resenting the totality of the evidence in the case; or ‘piecemeal’, with sequential
incorporation of several items of evidence. In the latter case, the probabilities
on the right-hand side should be regarded as evaluated conditional on all pre-
viously incorporated evidence. This evaluation might have been done formally,
using previous applications of (2) to account for earlier items of evidence, or
more informally, if the previous evidence seems too ‘soft’ to justify that. One
has to be particularly aware of the possibility that this incorporation of pre-
vious evidence might alter the probabilities constituting the likelihood ratio.
This will happen if, conditional on the relevant hypothesis, the new item E is
not independent of previous evidence. But quite frequently this independence
assumption is justified, and then the LR value is unaffected by the previously
incorporated evidence.

2.2 Neyman-Pearson and Bayes

The Bayesian approach to statistical inference has been the subject of contro-
versy for at least 150 years, at times almost being consigned to oblivion, and
at others (increasingly so in modern times) being strongly in the ascendant.
Other schools of statistical inference have grown up which purport to banish
subjectivity by using probability in more indirect ways. The most successful
of these is the Neyman-Pearson approach, which assesses and selects decision
rules by examining their probabilistic performance under various hypotheses.
We introduce and examine this in the context of a real court case with which
the author was involved.
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2.2.1 Regina v Sally Clark

Sally Clark’s first child Christopher died unexpectedly at the age of about three
months, when Sally was the only person in the house. The death was initially
treated as a case of Sudden Infant Death Syndrome (SIDS, or ‘Cot Death’).
Sally’s second child Harry was born the following year. Harry died in similar
circumstances at the age of two months. Soon after, Sally was arrested and
tried for murdering both children. There was some medical evidence suggesting
smothering, although this could also be explained as arising from attempts at
resuscitation. For the moment we disregard the medical evidence, but return to
this at § 2.4 below.

At trial, a professor of paediatrics testified that the probability that, in
a family like Sally’s, two babies would both die of SIDS was around 1 in 73
million. This was based on a professionally executed study which estimated the
probability of a single SIDS death in such a family at one in 8500 — which
figure was then squared by the witness, to account for two deaths. Although
this calculation is extremely dubious, being based on unrealistic assumptions of
independence, I will accept it here, simply for the sake of argument.

Sally Clark was convicted of murder. Although we cannot know how the
jury regarded the statistical evidence, it is reasonable to speculate that it was
strongly influenced by the extremely small probability value of 1 in 73 million
that both deaths could have arisen from SIDS, regarding this as ruling out the
possibility of death by natural causes.

2.2.2 Neyman-Pearson approach

Let us see how a Neyman-Pearson statistician might go about making inference
from the evidence. For simplicity, suppose that the only possible causes of
infant death are SIDS and murder, and discount the possibility that these might
both occur in the same family. Consider the decision rule: “If two babies in a
family both die of unexplained causes, decide that their mother murdered them”.
Under the hypothesis that a mother does indeed murder two of her babies, the
probability of making an error using this rule is 0. Under the contrary hypothesis
that she does not, an error will be made if and only if they both die of SIDS,
which will occur with probability 1 in 73 million. The rule appears amazingly
accurate, under either hypothesis, and thus seems a good one to follow. And,
if we apply it to the case of Sally Clark, we must decide that she murdered her
babies.

2.2.3 Criticism

Even without looking at the above argument through Bayesian spectacles, it
does not need much thought to realise that there is something missing. We are
considering two hypotheses: death by SIDS, and death by murder. The proba-
bility of the former plays a major role in the above Neyman-Pearson argument.
But should not the probability of the latter be just as relevant? Office of Na-
tional Statistics data for 1997 show that, out of a total of 642093 live births,
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seven babies were murdered in the first year of life. This yields an estimate of
the probability of being murdered, for one child, of 1.1 × 10−5. If we were to
treat this in the same (admittedly dubious) way as the corresponding probabil-
ity for SIDS, and square it to account for the two deaths, we could argue that
the probability that Sally Clark’s two babies were both murdered is about 1 in
8.4 billion (we here use the American billion, i.e. one thousand million) — and
if this were the argument presented to the jury, how could it but conclude that
the possibility of murder is so improbable as to be inconceivable?

Once this is pointed out, it should be clear that the figure quoted of 1 in 73
million for two deaths due to SIDS cannot be significant in itself, but only in
relation to the ‘counterbalancing probability’ of two deaths due to murder.

2.3 Two Bayesian arguments

Only the Bayesian approach can be relied upon to take automatic correct ac-
count of all the evidence. However, there can be more than one way of formulat-
ing the problem for Bayesian analysis. Here we consider two such formulations,
and verify that they yield the same answer.

2.3.1 Restricted hypotheses

Taking into account that the two babies died of something, and that we only
consider SIDS and murder as possible causes of death, we can formulate two
hypotheses, exactly one of which must be the case:

M : Sally Clark murdered her babies.

S: Sally Clark’s babies died of SIDS.

The evidence E before the court is just the fact that the babies died.
By Bayes’s Theorem, the posterior odds for comparing the two hypotheses

is given by:
P (M |E)
P (S |E)

=
P (M)
P (S)

× P (E |M)
P (E |S)

. (3)

The first term on the right-hand side is just the ratio of the overall probabil-
ities of two deaths, under the two hypotheses. Using the hypothetical figures
above, this is (1/8.4 billion)/(1/73 million), or about 0.009. As for the second,
likelihood ratio, term, E is certain to occur under either hypothesis, so that
this is just unity, and the posterior odds is again 0.009 = 9/1000 — or over
100:1 against. We conclude that it is over 100 times more probable that the two
babies died of SIDS than that they were murdered.

2.3.2 Unrestricted hypotheses

It could be objected that the evidence E has been used twice in the above
calculation: once to delimit the hypotheses, and again to form a likelihood ratio.
Even though the latter use was completely ineffective, since the likelihood ratio
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was unity, there might still be a concern because the hypotheses being compared
were only formulated in the light of the evidence: in particular, hypotheses which
do not lead to the babies’ deaths should perhaps not have been excluded, prior
to taking the evidence of those deaths into account. To verify that this use
of the evidence to refine the hypotheses is not in fact of any importance, we
conduct an alternative analysis, in which no such refinement takes place. That
is, we now specify the hypotheses as G, that Sally Clark murdered her babies,
and Ḡ, that she did not. Then G is identical with M , but Ḡ is not the same
as S, since it does not assume that the babies will die at all — it is just the
negation of G.

Once again, Bayes’s Theorem, as given by (2), can be applied. We have
P (E |G) = 1, while P (E | Ḡ) is 1/73 million. The likelihood ratio in favour
of guilt is thus 73 million — a seemingly overwhelming weight of evidence in
favour of murder. However, we must not forget the first term on the right of
(2), the prior odds.

In fact we have P (G) = P (M) = 1/8.4 billion; so the prior odds, P (G)/P (Ḡ),
is also essentially 1/8.4 billion. Combining the two factors we obtain once again
(1/8.4 billion)/(1/73 million), or 0.009, as the posterior odds on guilt.

It is thus entirely immaterial which of the above two Bayesian arguments is
followed. My personal preference in this particular instance is for the former,
because it deals symmetrically with the two competing hypotheses about the
deaths, thus directly addressing the criticism voiced in § 2.2.3. However, this
preference is of no importance so long as the correct Bayesian calculations are
performed; and, as we shall see, the latter line of argument is a more natural
approach in many problems.

2.4 Additional evidence

In the case of Sally Clark, there was additional medical evidence, including
haemorrhages to the children’s brains and eyes. Once again, so long as the laws
of probability are followed correctly, it does not matter whether this evidence
is incorporated before or after the analysis based purely on the fact of death.
In this case it is more straightforward to bring it in at the end, as a new like-
lihood ratio term. Thus suppose (purely for illustration) that the probability
of observing the specific medical signs in the case, on the hypothesis that the
babies were murdered, is assessed at 1 in 20; while the probability of the same
signs being observed on the hypothesis that they died of SIDS can be taken as
1 in 100. The effect of the medical evidence is then to multiply the posterior
odds on guilt resulting from the previous analysis by 5. Combined with the hy-
pothetical figures used before, which gave posterior odds of 0.009 based just on
the fact of death, this would yield updated posterior odds of 0.043, correspond-
ing to a posterior probability of 4.2%. While the choice of specific numbers
here is clearly subject to some vagueness, the Bayesian approach does make it
very clear exactly what features of the evidence must be taken into account.
In particular, it could be quite misleading to suggest simply that the medical
signs observed are ‘consistent with’ the babies having been smothered. What is
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required is a quantitative estimate of how many times more likely that evidence
would be under the murder hypothesis than it would be under the hypothesis
of accidental death followed by attempts at resuscitation.

3 Identification evidence

In many criminal and civil cases, identification of a suspect as the actual per-
petrator of an offence is based on an alleged ‘match’ between trace evidence
taken from the scene and a sample taken from the suspect. A fingerprint on the
murder weapon is compared with that of the suspect; a footprint found at the
scene is compared with shoes belonging to the suspect; the refractive index of
fragments of glass found on the suspect’s clothing is compared with that of the
broken window at the scene of a burglary; fibres left at the scene are compared,
by eye, microspectro-fluorimetry, and thin layer chromatography, with others
taken from the suspect’s jumper. Increasingly, especially in cases of murder,
rape and alleged paternity, the match is based on DNA profiles, and may well
be the only evidence presented.

In the following we assume that the fact that a crime has been committed
is not in dispute — the only issue is the identity of the culprit.

A forensic scientist will typically summarise the strength of potentially in-
criminating identification evidence in terms of an associated match probability :
an assessment of the probability that the observed match would arise if the
suspect were in fact innocent. Match probability values of the order of one in
a billion are now routine for DNA profiling. Intuitively, the smaller the match
probability, the stronger the evidence against the suspect; and very tiny prob-
abilities appear to be incontrovertibly convincing evidence. However, there are
many subtleties and pitfalls in the interpretation of such forensic identification
evidence, which are all too often not appreciated.

A typical problem can be formulated as follows. Let M denote the evidence
as to the match, and B any other (background) evidence in the case. The full
evidence is thus E = M&B. Typically, though by no means universally, it is
appropriate assume that, if the suspect were indeed guilty, then the two samples
would be bound to match, and we shall assume this. That is, we take

P (M |G) = 1. (4)

The match probability measures how probable the match would be if the
suspect were innocent: that is, P (M | Ḡ). Typically this is calculated on the
hypothesis that, in this case, the true perpetrator would be entirely unrelated to
the suspect. However, this could be misleading if there were any possibility that
the suspect and the perpetrator might be related, either closely or distantly.
Taking such a possibility into account can greatly affect the value of a DNA
profile match probability.

For the sake of illustration, we shall proceed on the assumption that the
match probability is one in 10 million:

P (M | Ḡ) = 10−7. (5)
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3.1 Speeches in Court

3.1.1 The Prosecution argument

Counsel for the Prosecution argues as follows:

“Ladies and gentlemen of the jury, the probability of the observed
match between the sample at the scene of the crime and that of the
suspect having arisen by innocent means is one in 10 million. This
is an entirely negligible probability, and we must therefore conclude
that, with a probability overwhelmingly close to 1, the suspect is
guilty. You have no alternative but to convict.”

3.1.2 The Defence argument

Counsel for the Defence argues as follows:

“In the general population, there are about 30 million individuals
who might possibly have committed this crime. One of these is the
true culprit. Of the remaining 30 million innocent individuals, each
has a probability of one in 10 million of providing a match to the
crimes sample. We should therefore expect there to be 3 innocent
individuals who match. We know that the suspect matches, but he
could still be any one of the four matching individuals, of which 1
is guilty and three are innocent. So the probability that he is guilty
is only one quarter. This falls far short of the criminal criterion of
‘beyond reasonable doubt’. You must acquit.”

3.2 The Bayesian argument

Whatever one thinks of the above two arguments, neither can be generally
appropriate, since neither makes any allowance for the incorporation of the
other evidence (B) in the case. However, this can readily be done by means
of the correct Bayesian argument. We now present this, and then return to
reconsider the above Prosecution and Defence arguments.

We start from the position that the other evidence B has already been
presented, so that all the probabilities we consider are already conditional on B.
We then apply Bayes’s theorem to incorporate, in addition, the match evidence
M , so obtaining posterior probabilities given the totality of the evidence, E =
M&B. With this understanding, (2) becomes:

P (G |E)
P (Ḡ |E)

=
P (G |M&B)
P (Ḡ |M&B)

=
P (G |B)
P (Ḡ |B)

× P (M |G&B)
P (M | Ḡ&B)

. (6)

We previously assumed (4) that, if the suspect is guilty, then he will certainly
provide a match — and this property can not be affected by learning any further
background information. That is, P (M |G&B) = 1.
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It will likewise normally be appropriate (particularly for DNA evidence) to
disregard the background information when assessing the probability that the
suspect would match were he in fact innocent. This will hold when, conditional
on innocence, the background evidence and the match identification evidence
can be regarded as arising independently. Assuming this in the case at hand,
from (5) we have P (M | Ḡ&B) = P (M | Ḡ) = 10−7.

The likelihood ratio for the identification evidence, P (M |G&B)/P (M | Ḡ&B),
is thus 107, unaffected by the other evidence B.

The other term needed for (6) is the prior odds, P (G |B)/P (Ḡ |B). But,
while this is indeed prior to the introduction of the identification evidence, it
is posterior to the background evidence B. The initial incorporation of that
evidence might have been done formally, by means of an earlier application of
Bayes’s theorem, or informally. But in any event it needs to be taken into
account in making a realistic assessment of the relevant prior odds. Whatever
such assessment is made, the final odds on guilt is obtained by multiplying this
prior odds by 107.

3.3 Reconsideration of Counsels’ arguments

We now look more closely at Defence Counsel’s argument.
Let us accept that the appropriate size of the ‘catchment area’ of potential

perpetrators is indeed 30 million. We further suppose that, apart from the DNA
evidence, there is no additional background evidence relating to the suspect,
other than that he belongs to this catchment population. Then it would be
appropriate to take, as the prior probability of guilt, P (G |B) = 1/30 million,
and the prior odds would be essentially the same — certainly such a judgement
would seem to be in the spirit of the ‘presumption of innocence’. Applying
Bayes’s theorem (6), the posterior odds on guilt are thus (1/30 million)×(10
million) = 1/3, corresponding to a posterior probability of one quarter. That is
to say, the Defence argument agrees with a Bayesian analysis in which the only
background evidence used is the size of the population of potential perpetrators.
It is implicit that, before the identification evidence is taken into account, anyone
in this population is as likely as any other to be the true culprit. In cases where
the identification evidence is the sole evidence presented, the Defence argument
is thus essentially valid; however, it is not generally appropriate to use it as it
stands when there is additional evidence in the case.

In a case of ‘naked identification evidence’ the story-line of the Defence ar-
gument may well be more appealling than a dry application of Bayes’s theorem,
and would deliver the correct inference. However, one problem with reframing
the Bayesian argument in this way is that, when the match probability is suffi-
ciently tiny, the ‘expected number of innocent matches’ can be much less than
1. If, for example, the match probability in the case above had been one in one
billion (as is now fairly routine in DNA profiling), rather than one in 10 million,
we would expect only 0.03 innocent matches in a population of size 30 million.
Applied formally, the Defence argument still applies: of those matching, there
is one who is guilty and 0.03 who are innocent, and so the posterior probability
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of guilt is 1/1.03 = 0.971, exactly as would emerge from the Bayesian calcula-
tion. But when it requires them to juggle with small fractions of a person, the
intuitive appeal of the Defence argument to the jury may well disappear.

We now turn to reconsider the Prosecution argument. This is often termed
the ‘Prosecutor’s Fallacy’, and indeed as presented it does turn on a serious
misrepresentation. This is not usually deliberate, but rather a consequence
of the difficulty of expressing statements of conditional probability clearly and
unambiguously in English, which sometimes seems to have been deliberately
constructed to facilitate probabilistic misunderstanding (and I am sure that
English is no different from any other natural language in this respect).

The match probability of 1 in 10 million is a measure of the probability,
P (M | Ḡ), of obtaining the match, on the hypothesis that the suspect is inno-
cent. (Note that this is just the kind of conditional probability, for some ob-
served event conditional on one or more entertained hypotheses, which underlies
the Neyman-Pearson logic criticised in § 2.2 above.) However, the Prosecutor
misinterprets this as P (Ḡ |M), the probability that the suspect is innocent, on
the evidence of the match. This common and seductive error is also known as
‘transposing the conditional’. In general, there is absolutely no reason for the
two conditional probabilities, P (M | Ḡ) and P (Ḡ |M), to be similar. The actual
connection between them is governed by Bayes’s theorem, which also requires
other input, namely the prior probability of guilt, P (G).

It is not hard to show that the transposition involved in the Prosecution ar-
gument will lead to an (approximately) valid result only in the special case that
P (G |B) = 1

2 — i.e. when, on the basis of other evidence in the case, it can
be regarded as equally probable that the suspect is or is not guilty. There may
occasionally be cases where this is a reasonable assumption, but it is far from
being so automatically. Contrast it with the implicit assumption underlying the
Defence argument — that the prior probability that the suspect is guilty is one
in 30 million (or whatever the appropriate value for the population of possible
perpetrators may be).

In summary, seen through Bayesian spectacles, both the Prosecution and
the Defence arguments are generally inappropriate. Each becomes reasonable
under certain specific assumptions about the prior probability of guilt, but these
implicit assumptions are radically different in the two cases — which in turn ex-
plains why their answers are so completely different. Only the complete Bayesian
argument is flexible enough to allow incorporation of whatever might be a rea-
sonable prior judgment as to guilt, based on the other background evidence in
the case.

3.4 Regina v Denis John Adams

The case of Denis John Adams illustrates both the Bayesian approach to rea-
soning about identification evidence in the presence of other evidence, and some
of the pitfalls besetting presentation of this approach in court.
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Adams was arrested for rape. The only evidence linking him to the crime,
other than the fact that he lived in the local area, was a match between his
DNA and that of semen obtained from the victim. The relevant match proba-
bility was said to be one in 200 million, although the Defence challenged this,
suggesting that a figure of one in 20 million or even one in 2 million could be
more appropriate.

All other evidence in the case was in favour of the defendant. The victim
did not pick Adams out at an identification parade, and had said that he did
not resemble her attacker. Adams was 37 and looked older; the victim claimed
the rapist was in his early twenties. Furthermore, Adams’s girlfriend testified
that he had spent the night of the attack with her, and this alibi remained
unchallenged.

At trial, with the consent of both sides and the Court, the jury was given
instruction in the correct (Bayesian) way to combine all the evidence, introduc-
ing in turn (i) the prior probability, ahead of all specific evidence; (ii) likelihood
ratios engendered by the defence evidence; and finally (iii) the identification
evidence. Attention was drawn to the relevant probability questions to address,
and the jurors were asked to assess their own probability values for these. The
jury was guided through a practice calculation; however, care was taken at all
times not to propose any specific probability values (other than match proba-
bilities) to the jury. Below I shall insert specific numbers, but these are entirely
hypothetical, and used merely to illustrate the general shape of the argument
as it might be conducted by a juror following the instructions given.

It was indicated that there were approximately 150,000 males aged between
18 and 60 in the local area who, absent any other evidence, might have commit-
ted the crime. In order to allow for some possibility (assessed at something like
a 25% chance) that the attacker came from outside the area, a prior probability
of guilt of the order of one in 200,000 might be considered reasonable. (The
prior odds would then be essentially the same.)

With regard to the evidence that the victim did not recognise Adams as
her attacker, one might assess the conditional probability of this happening, if
Adams were truly guilty, at around 10%; and its conditional probability, were
he innocent, at around 90%. On forming the required ratio of these figures, a
likelihood ratio of 1/9 is obtained. As for the alibi evidence, one could assess
this might be proffered with probability 25% if he were guilty, as against 50% if
innocent, leading to a likelihood ratio of 1/2. If we assume that the two items of
defence evidence would arise independently, given either guilt or innocence, then
we can multiply them together to obtain an overall ‘defence likelihood ratio’ of
1/18.

Applying Bayes’s Theorem to combine the prior odds of one in 200,000 and
the above likelihood ratio of 1/18, the odds in favour of guilt, after taking into
account the defence evidence but before incorporating the DNA evidence, would
be assessed at one in 3.6 million.

Now the DNA match evidence by itself provides a likelihood ratio of be-
tween 200 million and 2 million in favour of guilt. Overwhelming though this
may seem, it has to be taken in conjunction with the counterbalancing defence
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evidence, by applying it (using Bayes’s theorem) to the previously calculated
odds of one in 3.6 million. When this is done, we find that the posterior prob-
ability of guilt, given the totality of the evidence, varies from 0.98 (using a
match probability of one in 200 million) to 0.36 (using one in 2 million). The
defence argued that, in the light of all the evidence, Adams’s guilt had not been
established beyond a reasonable doubt.

We cannot know what went on in the jury room, but the jury returned a
verdict of guilty. The case then went to appeal. The Appeal Court roundly
rejected the attempt to school the jury in the rational analysis of probabilis-
tic evidence, saying that “it trespasses on an area peculiarly and exclusively
within the province of the jury”, and that “to introduce Bayes’s theorem, or
any similar method, into a criminal trial plunges the jury into inappropriate and
unnecessary realms of theory and complexity”. The task of the jury was said
to be to “evaluate evidence and reach a conclusion not by means of a formula,
mathematical or otherwise, but by the joint application of their individual com-
mon sense and knowledge of the world to the evidence before them”. While
one may well applaud this restatement of the traditional rôle of the jury, it fails
to address the problem that common sense usually fares extremely badly when
it comes to manipulating probabilities, and in particular common experience
simply does not encompass such tiny probabilities as arise with DNA match
evidence.

The appeal was granted on the basis that the trial judge had not adequately
dealt with the question of what the jury should do if they did not want to
use Bayes’s theorem. A retrial was ordered. Once again attempts were made
to describe the Bayesian approach to the integration of all the evidence, once
again the jury convicted, once again the case went to appeal and once again the
Bayesian approach was rejected as inappropriate to the courtroom — although
this time the appeal was dismissed.

At the time of writing, it seems that Bayesian arguments, while not formally
banned from court, need to be presented with a good deal of circumspection.
One possible approach (recommended by the Court of Appeal in the case of R.
v. Doheny) uses a variation on the Defence argument presented in § 3.1.2. In
that argument, the defendant was identified as one of four matching individuals,
just one of whom is guilty. Absent other evidence, we can regard all four as
equally likely to be the guilty party, leading to a probability of 1 in 4 that it
is the defendant. However, we could go on to take into account other specific
evidence, for or against the defendant, so generating differing probabilities of
guilt for these four. This could be done formally, using Bayes’s theorem to
combine a suitable likelihood ratio based on the other evidence with a ‘prior’
odds of 1/3, or informally by the application of ‘common sense’. Thus in the
Adams case (taking a base population of 200,000 and a match probability of one
in 2 million), the number of innocent individuals matching the DNA would be
expected to be 1/10. Taking into account the likelihood ratio of 1/18 from the
other evidence means we must count Adams himself as 1/18 of an individual.
The probability that it is Adams, rather than anyone else, who is the guilty
party is thus calculated as (1/18)/{(1/18) + (1/10)} = 0.36, as before. But it
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must be admitted that such juggling with parts of people might be distasteful
to the jury!

There is an additional wrinkle to the Adams story. At appeal, the Defence
pointed out that Denis John Adams had a full brother, whose DNA had not
been investigated. The probability that his brother had the same DNA profile
as he did was calculated as one in 220, and it was submitted that this weakened
the impact of DNA evidence against Denis John Adams. The Appeal Court
dismissed this point on the grounds that there was no evidence that the brother
might have committed the offence — ignoring the fact that, in the absence
of the DNA match, neither was there any such evidence against Denis John
Adams. The Bayesian argument, in its original or variant forms, does allow one
to account for different match probabilities due to genetic relatedness. In effect,
the brother adds an additional 1/120 of a person to the pool (previously 1/10) of
matching individuals. This makes little numerical difference to the calculation
as conducted above, but would have a much larger effect if the match probability
for unrelated individuals had been taken as one in 200 million, so yielding 1/1000
as the number of unrelated matching individuals. Also, taking into account the
existence of a number of individuals (unknown as well as known) related to
Denis John Adams to various degrees could further add to the pool, perhaps
boosting the figure of 1/120 substantially.

4 Databases and search

The police now have computer databases of tens of thousands of DNA profiles,
and these look set to get much larger still. Increasingly, in crimes such as rape
or murder where there is no obvious suspect, such a database is ‘trawled’ to
see if it contains a profile matching that found at the scene. If it does, the
matching individual may be arrested and charged, even in the absence of any
other evidence linking him to the crime.

Because a jury might be unfairly prejudiced by the information that a de-
fendant’s profile had previously been entered into a police database, the fact
that he was identified in this way would typically not be admissible as evidence
in court. Nevertheless, for the sake of rational analysis, it is reasonable to ask
how — if at all — the fact of the database search should affect the impact of
the DNA match. Once again we can identify two mutually contradictory lines
of argument.

4.1 The Prosecution line

Prosecuting Counsel argues:

“A database of 10,000 profiles has been searched, and only the de-
fendant’s profile has been found to match that found at the scene.
We have thus eliminated 9,999 potential alternative suspects. This
must make it more likely that the defendant is guilty.”
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According to this argument, the evidence for the defendant’s guilt is stronger
(although, given the initial extremely large number of potential suspects, per-
haps only marginally) than it would have been had he been identified without
searching the database. It also gives some comfort that the usual practice of hid-
ing the database trawl from the jury is of little consequence, and is if anything
conservative, erring on the side of the defendant.

4.2 The Defence line

Counsel for the Defence argues:

“The DNA profile found at the scene of the crime occurs in the pop-
ulation with a frequency of one in one million. The police database
contains 10,000 profiles. The probability that, on searching the
database, a match will be found is thus 10, 000 × 1/1, 000, 000 =
1/100. This figure, rather than one in one million, is the relevant
match probability. Clearly it is not nearly small enough to be re-
garded as convincing evidence against my client.”

From this point of view, the effect of the database search is to weaken, very
dramatically, the strength of the evidence against the defendant.

4.3 Disagreeing to disagree

The comparative merits of the above two arguments have been fiercely debated
in the statistical community, with those of a Neyman-Pearson frame of mind
favouring the Defence line (National Research Council 1996; Stockmarr 1999),
and Bayesians arguing in favour of the Prosecution line, which indeed can be
rephrased as a Bayesian probability calculation (Dawid and Mortera 1996; Bald-
ing and Donnelly 1996; Donnelly and Friedman 1999; Dawid 2001). Rarely can
there have been such an important application of statistics in which the dif-
fering intuitions and approaches of the two schools lead to answers so vividly
and violently opposed. Defence Counsel, and Neyman-Pearsonites, claim that
the upward adjustment of the match probability is essential, to allow for the
fact that the hypothesis under test (that the specific matching individual iden-
tified by the search did indeed commit the crime) was not known in advance,
but only formulated in the light of the data examined. Prosecuting Counsel,
and Bayesians, counter-claim that this is irrelevant, and that it is the singular
guilt of the actual defendant that is at issue, not the whole database that is on
trial. One argument that seems particularly telling to me is to consider what
happens when we take matters to extremes. Thus suppose that (as may indeed
soon become the case) the police database is fully comprehensive, containing
the DNA profiles of all members of the population. And suppose that exactly
one of these is found to match the DNA profile from the scene of the crime. On
purely logical (and commonsense) grounds, we then know for sure that we must
have identified the true culprit — and this is exactly the import of the Prosecu-
tion line. But similarly to take the Defence line to extremes would be to regard
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the evidence against the defendant as weakened to the point of non-existence,
which is clearly absurd.

Statisticians on both sides of this divide (and here I speak as one firmly
planted on the Prosecution/Bayesian side) can only despair of the inability
of those on the other to appreciate the strengths of the ‘correct’ arguments,
and the weaknesses of the ‘incorrect’ arguments. An important moral is that,
while all agree that arguments phrased in terms of probabilities are essential
to such rational argument, there are various different ways of formulating such
arguments — and it does matter how this is done. I personally find that looking
at the world through Bayesian spectacles gives a crystal clear image, and clearly
brings into focus many issues that would otherwise remain fuzzy and confused.

5 Concluding Remarks

The last message is the one that I would like the reader to take home. Bayesian
Statistics is just the logic of rational inference in the presence of uncertainty.
It is a valuable intellectual resource, bringing clarity to the formulation and
analysis of many perplexing problems. I believe that it could be of far greater
significance in the Law than has thus far been allowed or appreciated.

I conclude by briefly mentioning some other problems of legal reasoning that
have been greatly clarified by examining them from a Bayesian perspective.

5.1 Genetic heterogeneity

There has been considerable technical discussion about how to allow, for pur-
poses of DNA identification, for the fact that the genetic structure of the pop-
ulation is heterogeneous, so that a given DNA profile may generate different
‘match probabilities’, depending on the subpopulation that is used to deter-
mine the frequencies of its constituent alleles (National Research Council 1992,
Chapter 3). And again there has been disagreement and confusion about appro-
priate ways to handle this problem (Foreman et al. 1997; Roeder et al. 1998). A
fully Bayesian approach (Dawid 1998; Dawid and Pueschel 1999) reveals that at
least some of the seeming disagreements are merely semantic, while identifying
other inadequacies in the arguments presented.

5.2 Combining evidence

The Bayesian machinery is ideally suited to the modelling and analysis of com-
plex inter-relations between many variables. Recent years have seen the devel-
opment of powerful computational systems based on natural graphical represen-
tations (Cowell et al. 1999) — an enterprise that can be seen as developing on
the pioneering work of Wigmore (1931) (see in particular Kadane and Schum
(1996)). Dawid and Evett (1997) show how these ideas can be used to organise
and implement the combination of evidence from a variety of sources, such as
forensic evidence obtained from fibre analysis and from bloodstains.
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5.3 Missing data

Particularly challenging problems arise when DNA evidence is not available on
the principal suspect, but indirect evidence can be obtained by typing close
relatives. This arises quite commonly in paternity suits, and occasionally in
criminal cases, but hitherto there has been no clear understanding of how to
analyse such problems. By building a suitable graphical computer model, it
is possible readily to calculate the appropriate likelihood ratio, taking correct
account of the information that is actually available (Dawid et al. 2001).
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